ECMA-334

4™ Edition / June 2006

C# Language
Specification

ECMA-334

4™ Edition / June 2006

C# Language Specification

Ecma International Rue du Rhéne 114 CH-1204 Geneva T/F. +41 22 849 6000/01 www.ecma-international.org

Table of Contents

Table of Contents

FOMBWOIT ... Xvii
e d oo [0Tox o] o [PPSR XiX
S Tol0] o LT PRSP 1
P ©o] o {010 1 T 1 ot ST 3
K VL] g P NN e = o] T ot SR 5
L) T T T o USRS 7
5. NOtatioNal CONVENTIONS.ciiiiiiiicic ettt e st e st e e ste e sbe e sbeesbeesabesaresabeerbeenbeenbeesaee e 9
6. ACronyms and abBDIEVIALIONSc.ccviiieieiecie ettt e e e te e e e st e s te e besteenaesrennees 11
FA C LT T = o (=T Tod] o) [0 o OSSR OS PR SRPR 13
ST =T o O E= T [T oL T Y = SRR 15
ST = L [IR = =T S 15
A I L1 S TP PPTPR 16
8.2.1 PredefiNed TYPBSiiteieteieet ettt e ettt bbb 17
eI 00T 1YY] o] LTSS USSR 19
SR N ¢ £\ Y 1] 1 TSP PP TP OPPTPRURRTI 20
8.2.4 Type SYSTEM UNITICATION ...ttt bbb 22

8.3 Variables and PATQMELEISc.iii ettt sttt e te s e ste et e sbeaneesaesteeseesbeeneeneennens 22
8.4 Automatic MemMOrY MANAGEIMENTeiueiieeieeie e s e s e e e e rte e eesteesreesreesseeasee e beeteesreesreesreeaneeeeeeeeenees 25
BRI L oIS o] OSSO 27

e SIS - =T 0 0T o £ ST S 28
ST O TSR 31
N R O 1 = PO P U OP P TPROURTPN 33
BT 2 FIBIAS ..o ettt ettt b e e be et et e et b e bt be e abe e sheeaheeabeenbeeabaesreearreanbean 33
ST T 1=1 1 oo OSSR 34
ST o (T o 1= TSRS 35
ST A L= o €SOSSN 36
R O] o =] -1 (0] ¢ OO PR UPUPUPRPRN 37
ST A 1 110 (=) USROS 38
8.7.8 INSLANCE CONSIIUCTONSeiiiiieitie ettt ettt ettt et e st e e bt e st e et e e st be e s be e e sbbeesnbe e s nbbeesnbeeebeeens 39
BT 9 FINALIZEIS ..ottt ettt e st a et e e be e be e ebe e eae e e beebe e nbeenbaesreeaarearbean 40
8.7.10 SEALIC CONSIIUCTONS .. .eeivve i et e e e tee sttt e e e e te e s s e s e s e e e e e e teesbeesteeeneeesaeeteesreesreesneesneenneens 40
ST I 1 T v g o= PSSR 41
B.7.12 STALIC CIASSES ...veiiveiitieiie ettt et ettt ettt e te e te e s be e sbe e s be e s ae e s be e be e beesteesbeeetseeabeesbeesbeebeesbaesteesreesnbens 42
8.7.13 Partial type eCIAratioNSeeuiiieieie ettt sttt et seesae e e enes 42

e TR T 1 1o £ P TR 43
SIS 101 (=] 7T L TSRS 44
ST O =] T PSS 45
00 =T PSS 46
8.12 Namespaces and aSSEMDIIEScviiiiieiicie ettt sre et et sresre e b nne e 46

B L3 WBISIONING ...ttt bbbt b bbbt h b bt b bbbt b bbb 48
ST q (=T I LT =TSSR 49
ST AN 1] o1V (USSP 51
SR T o= Tt TSROSO 52

C# LANGUAGE SPECIFICATION

8.16.1 WY GBNEIICS? ...ttt ettt bbbt b bt b et bbbt eb bbb 52
8.16.2 Creating and CONSUMING GENETICSeeuiiteiieiteeieeieesteeteesteseeeeesteaseestesteeneeseeeseeseesseenseseeaneeseeseeanes 53
8.16.3 MUILIPIE tYPE PArAMELELS.veeteeiteeiiestie e te e e e se e s e s e e e e te e st e sreeeneeeeeenbeesreesreesreesneeaneeas 54

ST T O] TS i U] £ PS 54
8.16.5 GENEIIC METNOUS ..ottt sttt ettt et st e e e teeneesaeereentesaeeneeneesaeeeeneeanen 56
8.17 ANONYMOUS MELNOMS.......uieiie e et be et et e e s re e sneesneesnneeneeenres 56
SRSl (<] U0 £ U TP P PP OT PO T PO PP RSO 59
8. 19 INUIIADIE TYPES. ...ttt b bbbttt b bbbt n ettt bbb 62
ST I ot L] 1 Lo OSSR 65
SR o oo 22100 L TR PPTUPURTO 65
S 1 1001 0 1 L O OO OP PO U P OTPRUPURTO 65
I I Tor= LI [Ua 0] T U PSSR 65
9.2.2 SYNEACTIC GIAMITIALeititeeiesieti ettt ettt bbb bbbt bbbt e e b e et e b bbb n s 65
0.2.3 Grammar amMDIGUITIEScoeiie ettt ettt e steeneesbeeseentesaeeneeteseeeneeseeenes 66
eI Iy Lot LI T2 USSP 66
0.3.1 LNE TEIMINATOISvevi ettt sttt ettt et st e s et e s s e b e s teeseesbe et e e nbesaeeneenbesreeeeneeanen 67
SR I O] 1]111=] | PPV URTURRUPRPRN 67
0.3.3 WHITE SPACE ... e eteeiieeitee it et et te et e sttt et e et e e te e s teesbeesaeessteas e e s beeste e beeateeaneeeneeenteenteenreesneenneeaneens 69
I 0] =] OSSO UR SR PR RPN 69
9.4.1 UNICOUE ESCAPE SEUUEICESeeeeeteeneerieeseeteateeseesteaseeseeaseaseeseeaseessesseassesseaseessesseasesssesseessessesssesseases 69
LI Lo [T 0L T £SO PRTR 70
BB VAT 0] (o 1SS 71
S (=Y | PSR RROSROPRN 72
0.4.4.1 BOOIEAN TLEIAIS. ... ieiiieeeeie ettt sttt esee et e seesreeseeseesaeeneeeenne e 72
B A [] =T 1< 1 T = | SRS 72
R - L (<] | S PR 73
0.4.4.4 CharaCter HEEIALSeoeeieiiie ettt se et esaeere e e saeeneeeenee e 74
0.4.4.5 SEING HTEIAIS ... et e s e s e e e te e steesreenreesreesreenneeas 75
9.4.4.6 TNE NUIT TIEEIAL ... bbbt 76
9.4.5 Operators and PUNCTUALOTS.c.uiiriiterieiet ettt ettt b ettt ab b bbb 77
0.5 Pre-proCesSIiNgG GIMTBCTIVES.cciieiee i e it eiteese s e se e e e te s e e s e s e s e e e be e be e teesteesteesteeaseesneeaneeaneeeeeenres 77
9.5.1 Conditional compilation SYMBOIScccooiiiiiicie e 78
9.5.2 Pre-proCesSing EXPIESSIONScueirtirtirtertertesteseesestesseasessessesseeeseesesse st abessese e esseseebeabesbesbesnenneeas 78
0.5.3 DECIAration QIFECLIVES.eiueeeeieeeiie ettt et ste st e e sbeereentesneeneeneesaeeeeseeenes 79
9.5.4 Conditional compilation diFECLIVESceeiiiiiiieii et e re e esraesnee s 80
SRR DI o | TS (ol o [T (= (YRS 82
0.5.6 REJION CONIIOL ...ttt et a et e e esbe et e e besaeeneeeesaeeneenaeenen 83
0.5.7 NG GIFBCTIVES ...ttt ettt ettt s b et e bt bt e bt bt e n e sbe et e en b sbeeneenbesbeeneeneeenes 83
0.5.8 Pragma dIFECLIVESeiuieieiieiie ettt ettt st et e bbb et e e s e sbesteesbesaeeneebesteeeenreenes 84
O T T ol ot] aTolT o (S UROS PR SRPR 85
O o] o] T o=V Tl IS U (] o ISR 85
O AN o] o] N Tor= VT I T 0T [T LA o] o TSP 86
ORI B T F- T LA o] PRSI 86
10,4 IMIBIMIDEIS. ..ttt btttk bbb bRt R bbb bbbt R bbb bbb 89
10.4.1 NaMESPACE MEIMDEIS.cueiuieiiitietirtest ettt ettt sttt bt e et s bt b et b et e b et e bt s et e sb et st nn e 89
10.4.2 STIUCE MEIMDELSeiieeeeie ettt ettt ettt ettt e e see et e steeseesbeeteeneeseeeseenbesseeneeebeeneeneesreeneeneeaneas 89
10.4.3 ENUMETAtiON MEMIDELSoiuiiiiiiieesteei ettt sttt sttt e b bt st e sbeene e be b e seesbeeneeseesbeaneas 89
10.4.4 ClaSS MEMDETS ...ovieiieie ettt ettt et e s te et e s beete e besbees e e ntesseesesteensetesteeseenrearens 89
10.4.5 INErfaCe MEMDEISottt ettt st et e be s e seeseeeneeneeaneas 90
RO R N 4 -\ 11 0] 1= S 90
10.4.7 Delegate MEMDEIScui ittt s e et s b e e se e beste e b e beeaaesaesreeneenreares 90
10,5 IMBIMDEE BCCESS ..uvivretiiteeiee it sttt ettt ettt et s e s teete e s e s teese e tesseeseesbeeseestesteesaenteaneetenneeeenreanen 90
10.5.1 Declared acCeSSIDIITY........civiiiiiiicc e 90

Table of Contents

10.5.2 ACCESSIDIILY QOMAINSo.viiiiiicieii bbbttt 91
10.5.3 Protected access for iNStance MEMDEISccoiiiiiiiiee e 93
10.5.4 ACCESSIDIILY CONSIITAINTS.iiitiiiiiiieeie et sre e s e s e et e e be e reenteeneeenreenree e 94
10.6 Signatures and OVEITOAAINGcververeieieiieiisie sttt bbbttt 95
L0.7 SCOPES ..ttt ettt ettt ettt h e bt ettt a bttt e bt e ke e ket R e e oAbt e ke e bt e eRe e SRR e oAb e oAb e e b e eR bt e be e ebe e eheeenteebeenees 96
O A\ T 4T o o 1T S 98
10.7.1.1 Hiding through NESTING.......cvoiviiiiie ettt et sre e 98
10.7.1.2 Hiding through iNNErANCE.oiiieiiieiiise s 99

10.8 NaMESPACE AN LYPE NAIMES.eeueeiereieeieeieeieeteeeiestesteestesteaseestesseaseesteeseeseesseassesseaneenseaseeneessesseessessens 100
10.8. 1 UNQUAITIEA NAME ...ttt bbbttt bbb 102
10.8.2 FUllY QUATITIEA NAIMESccuieieiiiie ettt st e b e be e e sreeteeaesresneeeeseeens 102
10.9 Automatic MemOryY MANAGEMENTeeiiieeireeetie e reeee st eeestesteeeesteeseestesreeseesseaneessesseeseesseeneeseeaseas 103
10.20 EXECULION OFUET ...ttt sttt sttt b ettt st e b e bees e sbeene e e ebe e st e sbeabeeneesbeeneeneeeneas 105
I T I8/ o T PSPPSR 107
Y 0= £V o1 ST OSUSSRS 107
11.1.1 The System.ValUETYPE LY ..ottt 108
R B T o TU L oo] 0! (0] PSS 108
T O {104 1Y 1= SR PRSUSTR 109
A g T o] Lo oL SRS 109
I a1 =To | LI Y oL PSS 110
I L G (o= V[0 T o0 [1] 1R 111
11.1.7 THe dECIMAI LYPEcieciieiti ettt te e e e s be et e s teete e besresneenrenreens 111
11.1.8 THE DOOI TYPE ..ttt bbbttt bbb 112
11.1.9 ENUMETALION Y PES. . teiueeiteeieiteeee sttt sttt ettt ettt e see et e tesreeneesteeneesaeeseeseeaneeneesaeeteaneensenneens 112
I L (=] T Tt Y 0TS 112
112,10 ClaSS TY S, ..ttt stttk bt bbb bbb bR R bbbt bbb 113
I 0 T- N] o] 1= od Y/ LTSS 113
I T I 4T o Y o SR 113
N 11 =T o Tot TN 01T SRS PSSP 113
L1.2.5 ATTAY BYPBS .ottt b b b h bR R R R et Rt R E b e R b ene e nenre e 114
I R B T [T T 1= 1Y 0L SR 114
11,27 THE NUITEYPE ettt ettt s b e s e be e se e st e s ba et e s teetaesaesreaneebenneens 114
11.3 BOXING AN UNDOXING ...ttt bbbttt b s 114
11.3.1 BOXING CONVEISIONSeeteiieeneeeeeeiesteeseesteeteeseesteaseesaesseessesseaseesseaseensesseansessesseeseesseaneessesseensessens 114
11.3.2 UNDOXING CONVEISIONS.ueevieiteeitreiiesteesteesteesteesseeaseeesseessesssessssessssasseessesssesssesssssssseensesssssnsessees 115
R N U [P o] [Y oS OSURSR 116
Ot I VT o= OSSP 116
11.4.2 IMpPlemented INTEITACEScc.viiie et e st et e e e e neeeneeeeeenrs 117
(Y £ T T o] 1= 3OS 119
Y g bl o] [oF: Y (=T o o] TP PRORTURRRR 119
12.1.1 STALIC VANTADIES ...ttt bbbttt ettt 119
12.1.2 INSEANCE VATTADIES ...ttt ettt ettt et enteete et e seeeneesaesbeeneeneesneens 119
12.1.2.1 InStance variables iN CIASSEScierieiieieie ettt st eneas 119
12.1.2.2 InStance VariableS iN STFUCTES.........cuiiiiriiieiiiee e 120

12. 1.3 AITAY BIBIMEINTS ...ttt bbbttt b bttt b et e ettt ne et 120
R LU Tol o 1= o 1] (=T £ PSS 120
12.1.5 RETEIENCE PATAIMEIEIS .. ccuveeieeiieecteecee st e et e st e e et e e ste e ste e sreesse e s s e enteenteesbeesreesneesneeeneeenees 120
12.1.6 OULPUL PAFAMETEISottt sttt r et bbb bbbt e b e st e e e e sb e s e nbesbeenenneens 120
A I ToF L7 T = o] L= PSS 121
12.2 DEFAUIT VAIUEBS. ...ttt sttt sttt ettt e n e bt e ne e bt ebeeneesbeeneeneeeneas 121
12.3 DEfiNIte @SSIGNIMENT.......uiiieiicice ettt r e te s e s teere e besbeessesbesaeesaesbeenbenreeneas 122
12.3.1 Initially assigned VariabIES............cu i e 123
12.3.2 Initially unassigned Variables..........c.cociiiiiiiiiie e 123

C# LANGUAGE SPECIFICATION

12.3.3 Precise rules for determining definite assignmentcccooviiiiiinineneieeeese e 123
12.3.3.1 General rules fOr STAtEMENTScoiiiieeiee ettt 124
12.3.3.2 Block statements, checked, and unchecked StatemMENtS..........eevvvviiieeeiireeiieee s ee e 124
12.3.3.3 EXPreSSioN STATBMENTSc.ccviiiitiiiiiteitei ettt bbbt 124
12.3.3.4 Declaration SEALEMENTScceeiiieee ettt e e steeeeseeereeneeseeeneas 124
12.3.3.5 1T STALBIMENTS ...ttt sttt ettt be e e e besbeeneesaeeneesbeeneas 124
12.3.3.6 SWILCH STAIEMENTSeiuiiiieiieiiiicte ettt b e 125
12.3.3.7 WHIlE SEALEIMENTSecviiiiiiee sttt sttt te e e saesteeseenteenaeneenrenneas 125
12.3.3.8 D0 SEAIBIMENTS ...ttt bbb bt ab et enbe e sb e e sbe e et e b be e e 125
12.3.3.9 FOF STAIBIMENTS ...ttt e r e nb e et ne e 125
12.3.3.10 Break, continue, and goto StAtEMENTS.........ccccvereireiereseee et 126
12.3.3.11 TRIOW STATEIMENTSeitiiiieieitieie ettt ettt st ne e ee et enteste e esbesneeneesaeeneeseenneas 126
12.3.3.12 RELUIN STALEMENTS ...ttt ettt sb e bbbt et e b b e nbe b e e 126
12.3.3.13 Try-CatCh STALEIMENTScvveiiiiecic ettt et e st e sreenaesreane s 126
12.3.3.24 Try-finally StALEMENTSoiuiieie ettt see et eeneenneas 127
12.3.3.15 Try-catch-finally StatemeENntS..........cccviiriiiiie e 127
12.3.3.16 FOreach StateMENTScviiiiiiieite ettt 128
12.3.3.17 USING SLALEIMENTScueiviiiiitiitieti ittt ettt b bttt 128
12.3.3.18 LOCK SEALEIMENTS.eueiiiieieieiteeiie ettt ettt esee st esa e s ee s e e sneeeesteeseeseeeneeneesreaneas 128
12.3.3.19 General rules for SIMple eXPreSSIONSc.ccviieiiieiie et sre s 128
12.3.3.20 General rules for expressions with embedded exXpressions..........ccccovvvvvreneneneneieeienens 129
12.3.3.21 Invocation expressions and object creation eXPreSSioNScvoveeerereerieneeieereseeneeeees 129
12.3.3.22 Simple asSigNMENt @XPrESSIONSc.eeiueeieeieeireareareesseesteesreesseesseesseesseesseeesseessesssesssessnes 129
12.3.3.23 & EXPIESSIONSvviuviitreieite et et ste ettt e e s e et et e ta et e s beeteestesbeeseesbeareesbestaesaesreereerenrenres 130
12.3.3.24 || EXPIESSIONS. ...tttk sttt etttk bbbttt b bbb bbb b 131
G TR B ST - o] (= 1S1S] o] SR 131
12.3.3.26 2 EXPIESSIONSveveeeiiiteitee it ste et e ste et et e s te et e te s se et e s te e st e sbeeteesbesbeese e beaseeeesbeeneenreateeneenreares 132
12.3.3.27 AnoNnymOoUS MEtNOd EXPIESSIONS.......c.viuiriiriirteriitereesteeeie sttt sn e ene i 132
12.3.3.28 YHelt SALEIMENTSc.eiiiiieie ettt ettt et ettt e stesteeseeseeeneeneeneeaneas 133
R T I B = (0 £ 151] (o] 1SS 133

12,4 Variable FEFRIENCES.eiieie ettt ettt e st e ste e s e tesne e besteeseeseesteeneeneeenees 133
12.5 Atomicity Of variable refereNCES ..o 133
G I O] 11T] o] o LSS 135
13,2 IMPLICIE CONVEISIONS ...ttt ettt sttt ettt et e st et e saeese e besseeneesteaneeneesreeneeneeaneas 135

IR 0 I I 1o LT o] Yot 07T 6] o] SR 135

13.2.2 IMPliCIt NUMEIIC CONVEISIONSeeiiitieieiieeieeie sttt sttt aesbe st stesteesbesbeere e tesesreens 135

13.1.3 Implicit eNUMEration CONVEISIONSciuiiiieierieeiesteeee e etees e see et ste e e seesteeeeseeeneeseesreeneeseeseens 136

13.1.4 IMPiCit referenCe CONVEISIONSccuiiieiieeieeiteesie e st e see s e ste e s re e st e st e st e snaeeteesteesreesneesneeeneeenees 136

13.1.5 BOXING CONVEISIONSviiviiiriiiiteeiesteette e steeaeste et e stestaesaesteasaesbesteesbeste e s e sbesssesresteessestesneensenseens 137

13.1.6 Implicit type parameter CONVEISIONSc.eoveeeiririiriiite sttt sne e 137

13.1.7 Implicit constant eXPresSioN CONVEISIONS.cviiuireerierieareeseeeeeeeeseeaeeseesseeseeseeaseeseesseeneeseesnens 138

13.1.8 User-defined impliCit CONVEISIONSccvcviiiiiiciie ettt srene e 138

13.2 EXPICIT CONVEISIONS ...ttt bbbttt bbbttt bbb e 138

13.2.1 EXPIICIt NUMEIIC CONVEISIONSoviieieteitieiie st eite st stee et teesee e te st este s e steseeeneesaeeseenteneeseens 138

13.2.2 EXpliCit enUMEration CONVEISIONSuiiuieieeiieesieeseeseeesieesteestee s e snee s e teesteesteesreesneeeeeesreenes 140

13.2.3 EXPIICit reference CONVEISIONSccviiiiiiciiiii ettt sttt re st et sre e eesne e 140

13.2.4 UNDOXING CONVEISIONS.euveueeiieiieiisitste sttt ettt sttt bttt be bbb sb et et e e be b b e 141

13.2.5 EXplicit type parameter CONVEISIONScueiveiueieeeieesieesieeseeseeeseeesteesreesseesseessseesseessesssesssensees 141

13.2.6 User-defined exXpliCit CONVEISIONS.........ccvciuiiiiieite e sttt s re e b e saesrenne e 142

13.3 StANUAIT CONVEISIONS.eiuiiieeiieiiesie ettt ste et e teste st e besseeseesteeseesaeese e tesseeseesseaseeneesteaneeneennens 142
13.3.1 Standard iMpliCit CONVEISIONScieeiiieeieie ettt sttt st eeseeereestesreeneeneeseens 142
13.3.2 Standard eXpliCIt CONVEISIONScccueiiiiiiieeieeiiesie e sieeste e se e s e sae e sreesreesreesraeanaeeteesresneeenees 142

13.4 USEr-defined CONVEISIONSuoiiiieieiieii ettt st sttt sttt sbe e e e staeseesbesseeseesteeneenreaneas 142
13.4.1 Permitted uSer-defined CONVEISIONScouiiiiieieiieie e eee ettt nee e 142

Vi

Table of Contents

13.4.2 Evaluation of user-defined CONVEISIONScciveiiiiiiie i 143
13.4.3 User-defined impliCit CONVEISIONScoioiiiiiieiiiee ettt 144
13.4.4 User-defined eXpliCit CONVEISIONS..........cciveiiiiieiiesie e se s e ettt e raeeae e see e sreenes 144
13.5 AnONYymMOUS MELNOU CONVEISIONSeiviiiiieiiiiieieieeie sttt ettt 145
13.6 MEthOd grOUP CONVEISIONSeiuieiiiiieiesteeeeete ettt steesee st eteseeeseesteeseesteeseeneesaeeneesneaneeseesseeneeneeaneas 146
13.7 Conversions invVoIVING NUIEDIE TYPEScc.eeiereecce e 147
13.7.2 NUIEYPE CONVEISIONS. ...c.vieiiiiiiiiesiesteeieste st ee et ste st e st e s te et e sbeste et e ste e e e sbestaesesteesaesresneerenseens 148
A N[0 1P o] o0 =T £ o T PSS 148
R I =0 o] 1) /=] €] T 1TSS 148
I o] =] (o] TSRO 149
14.1 EXPression ClasSifiCAtIONSc.civiiiiiicie et sre e s sre e e reesre e 149
14.1.1 ValUES OF XPIESSIONS. . ..cueiiviitieieite ettt ste et te ettt este e e st et e st e s ae e s e s be s e e stesbeessesteeteebesresneeeenseens 150
@4 1=T -1 (o] £ T TSP PO T PPTORTUPTURPPRPRTOR 150
14.2.1 Operator precedence and aSSOCIALIVITYciveieiiiie et 150
I @ o 1= - (o) g1V T 4 [T o |1 o RSSO 151
14.2.3 Unary operator oVerload reSOIULIONccoeieiiiiiiiieieseseee e 152
14.2.4 Binary operator overload reSOIULION.............ooci i 153
14.2.5 Candidate user-defined OPEIAtOrS.cccve e re e re e e ns 153
14.2.6 NUMEFIC PrOMOLIONS.civiiiieiiiieiiesteetie e ste e te e ste e et e s te e s e sreeseebeste e s e sbeesbesteateenbesresneeneenseens 153
14.2.6.1 Unary NUMETIC PrOMOTIONS.ciuiiuierireeeesiesteeieenteseeseesteeseeseeetee e sseeseesteaseessesseeneesaeeseesseanens 154
14.2.6.2 Binary NUMETIC PrOMOTIONS.eiiiiiieeiieesieeseeseeseesteesteestaestaesseesseeesteesreesreesnnesnneeneeesreenees 154
I A I (=0 o] oL Lo OSSP 155
14.3 MEMDET TOOKUD ...ttt bbbttt 156
14.3.1 BaSE 1Y -.eeeuteeteeitieeite ettt ettt ettt ettt b e bt b e e Rt e b e be e ehe e ehe e R e e R bR bt e be e be e ebe e nae e e nee e be e nees 157
14.4 FUNCLION MEMDEIS ...ttt ettt sre et e sbe e e e sbeeneeseeeneas 157
1440 ATGUIMENT TISTS ...ttt bbbttt bbb 159
14.4.2 OVErl0ad reSOIULIONoiuieeiieeiie ettt sttt ettt e be s e seesreeneeseesneeeesnens 161
14.4.2.1 Applicable FUNCLION MEMDETcciiie e 162
14.4.2.2 Better FUNCLION MEMDET........oiiiiiiieieeee bbbt 163
14.4.2.3 BEHEI CONVEISION ..vecviiiiiiieiiecteeie st etee ettt et eeste et e stesteesaesteeseesaesteeseesteeneesaenrennens 163
14.4.3 FuNnCtion mMember INVOCATION.ciiiiiiieee et sttt 164
14.4.3.1 Invocations 0N DOXEd INSLANCES.........cveviieieiiiii et 165

14.5 PrIMAIY EXPIESSIONScuiititeteeesteseeteetesttate sttt esees e sttt sb bbb e e e se e bt e bt bbb e s e s e b e ea e et e nb e b b e s 165
I Tt I I - TS 166
I I AT 1140 (=N = TR 166
14.5.2.1 Invariant meaning in DIOCKScocviviiiiicc e 168
14.5.3 ParentheSiZed EXPIrESSIONScviieieieierieeie st et et stee e steereeste st eseesteeseestesseesteseeeneesaeaseeeeneeseens 168
L4.5.4 IMBIMDET BCCESS ... ettt ettt ettt ettt e ettt s e sbe bt e n bt sbe et e sbeebeeseesbeenbesbeaneeneenreens 169
14.5.4.1 Identical simple names and tYPe NAIMEScccoveieieiierieie e e sre e sre e aesreenees 170
14.5.5 INVOCATION EXPIESSIONSviuvieeutesieseeiesti sttt sttt sttt bttt s bbbt nn et nb et e 171
14.5.5.1 MethOd INVOCAIIONSc.eiieiiieitieiie sttt e et e seesteeneeseeseeeneas 171
14.5.5.2 Delegate INVOCALIONScveiiiiiriiesieetiesie sttt te e be st e s re e te e e stestaesaesteenaesaesreanes 172
I O T T g T o= PSS 173
LA.5.6. 1 AITAY BCCESS -..uveeteeiueeaiteate e bt esteeateesteestseetseasbeabe e ebeesheesheeeabeaRbeembeenbe e beeabeesbeeebneannesnneabeenrs 173
14.5.6.2 INUEXEE ACCESSveveereenteiteeeentesteestesteestesteeseestesteeseesbeaseeseesbeeseesaeaseeneesbeaseesbesteeneesaeeneesbenseas 173
LA.5.7 THES BCCESS ...vveuiteitiete sttt ettt sttt sttt s et b bbb bbb e s et e bt bt e bbb e b et ettt bt e 174
14.5.8 BaSE CCESS . veeteetriateeasieeiteesteesteesseesste e beabeesbeesbeeabeeasseaabe e sbeesheesheeaRbe e R be e R b e e beenbeenEeenneeeneeebeenees 175
14.5.9 Postfix increment and decrement OPEIatorScvcceeieereeiieeiee e seese e seesee e see e e e seeeneees 175
T O B T TV Ao 1= - o PSP 176
14.5.10.1 Object Creation EXPreSSIONS.eiverrerereereeiesteatestestessesees et ettt sbe bt sr e ese et sbesbe e 176
14.5.10.2 Array Creation EXPIESSIONSc.eieeeereriierierteaeesteeteeseeseeaseestesseeseesseaneesseaseessesseeseessessessens 178
14.5.10.3 Delegate Creation EXPreSSIONSciveieriiueeireereeseeseeseesseeseesseeesseesseesseesseessessssssnsesssessees 179
14.5.11 THe tYPEOT OPEIALOTc.vieieieeiieiieti sttt bbbttt b s 182
T A B T 2T] 01T - (o] PSS 184

vii

C# LANGUAGE SPECIFICATION

14.5.13 The checked and UNCheCked OPEIAtOrS.coviiveieiiieierie et 184
14.5.14 Default ValUE XPIESSIONeieeiieeeieeteeieeie st te sttt seeste e et sre e e et eestesseesteseeeneeseesreeneeneeseens 187
14.5.15 ANONYMOUS METNOUS.ccvieiee et e e b e e ste e s raeeneeereeneeenns 187
14.5.15.1 Anonymous MEtNOd SIGNALUIEScviiiiiiiirieieeir et 187
14.5.15.2 Anonymous Method BIOCKS...........coviiiiiice e 188
14.5.15.3 QUL VAITADIES ..ottt sttt sttt sae st eneesbeeneas 188
14.5.15.4 Anonymous method eValuation...........cccueviiiieie e e 191
14.5.15.5 Implementation eXamPIe ..o 191

14,6 UNGIY EXPIESSIONSveiteitieieeeteeseesteeseeteseeeeesteaseeseeateestesseaseenteaseeseeaseaneesseaseentesseansesseaneeneesseaneeseeasens 194
14.6.2 UNArY PIUS OPEIALOL.......ciiiiiieiie ettt ettt e s et et ste et e s besaaesbesteesbesresneetenreens 194
14.6.2 UNArY MINUS OPEIATONc.eeuieieetieiietistiete sttt s s ettt sb bbb s e e et bbb e s 194
14.6.3 Logical Negation OPEIALOTceieeieieeieie ettt e sttt st este s e stesteeneeseeeneeeeeeseens 195
14.6.4 Bitwise COMPIEMENT OPEFALOTcccveeiieeiieesieesieesiee e rteeste e sre e s e s e ae e nteesreesreesraesreeeneeeeeesreenees 195
14.6.5 Prefix increment and decrement OPEIatOrS.........civeieeriereeiesieseeese e ste e sre e sre e resre e 195
14.6.6 CaSE EXPIESSIONSeviiiiieeeteetee e steetee it ste et e ste e st e teste e eesaeeseeneesaeeseeabeameeasesbeaneeseeaseeneenseaneensensenns 196
N N 0T TR0 o LcT = (0] P 197
I Y/ T] o] o= Lo I o =] - o S SP 197
14.7.2 DIVISION OPEIALOT ... ettt sttt sttt bbbttt b bbbt e e ettt b b 198
IR o =T - Vo (=] o] o =] (o] S 199
I Ao (o [(T g o] o= Lo SO PS 200
14.7.5 SUDLIACTION OPEIATON ... ettt bbbttt bbb b s 202
IR T 100] 1< L SRR 204
14.9 Relational and type-teSting OPEIAtOrS.........ccciiiiiiie e e e sre e s e e s ae e e re e reesree e 205
14.9.1 Integer COMPAriSON OPEIALOISccviitieieiieeteeieste et e ste s e ste e e tesre e s e besraestesbessaesresteesbesreessesesseens 206
14.9.2 Floating-point COMPAriSON OPEIALOIScc.eiveeeiiriiriiriiste sttt b e 207
14.9.3 Decimal COMPAriSON OPEIALOIS.cccuviiveeiieesieesteesteesreeeeesteesteesteesreesseesseeanteeteesreesreesseesneesnseesees 207
14.9.4 Boolean equality OPEIatOrS.......cccviviieiiiice sttt sttt re st et sre e resne e 208
14.9.5 Enumeration COMPAriSON OPEIALONS.everereeiieiieiirieste sttt e ne e sienes 208
14.9.6 Reference type equality OPEIALOISoiieiiiiiie ettt nee e 208
14.9.7 String eqUAlITY OPEIALONSeiiveeieee e st ee et s e sr et e e e e beesteesreeaneesneeeeeenees 210
14.9.8 Delegate eqUalILY OPEIALOTS.cviiiiitiiteiterieiete ettt e s 210
14.9.9 Equality 0perators and NUIL ..ot 211
I I O N TS o =] 1 (0] SR 211
I o] o 1= Lo ST OUPP PR UPROURRRN 212
14,10 LOGICAI OPEIALOTS. ... vtttk bbbt b bttt ettt bt 213
14.10.1 Integer 10GICal OPEIALOFS. e ierieeie et eieesie et te sttt st ree st e re et este e stesteeneeseeereeneesreaneeeeneens 213
14.10.2 Enumeration [0giCal OPEIAtOrSccviieiiiiiiieite st ese ettt sresre e sresneenenne e 214
14.10.3 B0OIEan 10giCal OPEIALOIS.cveuiiiiriiitiiieite ettt 214
14.10.4 The booI? 10giCal OPEIALOIS.......cceiieiieeiieeeeeee ettt ettt seesteeneesteeneeeeseens 214
14.11 Conditional 10giCal OPEIALOISccvviieeiieiieiie e re e e s e st e e ee et sre e sre e sreesaaeanee e aeereenteenreesree e 215
14.11.1 Boolean conditional 10gical OPErators..........ccoviiiieieieeie e st 215
14.11.2 User-defined conditional 10gical OPEeratorscoiiieeienieieeese e e 216
14.12 The null cOaleSCING OPEIALOLeivieeieeie e s e s e s e e ee e teeste e reesree e 216
R R oL T [Lo o L o] o =T Lo SRS 217
14,14 ASSIGNIMENT OPEIALOIScvitititetet ettt sttt ettt b ke b bbbt e e bbb sb b b e e ettt b e 218
14.14.1 SIMPIE @SSTGNIMENTviiiieiiitiee ettt ettt et e s te e e s e ste e e e steebeestesteeneeseeereaneeneeseens 218
14.14.2 Compound aSSIGNMENTcccuiiieiie e seesee e e e e et e e sre e s e sre e sree s e e beesteesreesreeaneeeneeaneeenres 220
14.14.3 EVENT @SSTGNMENT ...c.vitititeieieeeie ettt b bbbttt bt bbbttt b b s 221
IR 0 1= T1SY Lo o ST SRUSSR 221
14.16 CONSLANT EXPIESSIONS ...c.vviiureesteeteesteesteeseesreeesteesteesteesreesteesseeaseeeseeesteesseesseesseesseeanseanseenseenseessesssesns 221
14.17 BOOIEAN EXPIESSIONS ... vevvevieteeie it et et st et e te et e steste e besteese e besteessesteasaesbeateestesteassebesseesesteeneenrenneas 222
T o1 =T 0 0[] o | O TP TSP PP PP PR PRT PP 225
15.1 End points and reaChabilityccoiiiiiiiiiiieee s 225
ST =] [0 < TSSO 227

viii

Table of Contents

15.2.1 STAIEMENT TISTS ..eviiiieiiii ittt sttt ettt ettt e s ettt e sttt e e s ettt e e e s eab b e e e seabbesesaabbesessabbesesaabaneesasbbesessanes 227
15.3 The emMPLY SEALEIMENTocvii ettt st e e te s e besre e tesbe e e e seesteeneeseeeneas 227
SR = o 1= [To ISy 1 (=Y 41T £ 228
15.5 DECIAration STALEIMENTSciiiieveiiei it e s sttt e s sttt e s st e e s st e e e s sb b e e e s sbbaeeesbbasessasbeesessabbesesastssesasrbeeessnses 228
15.5.1 Local variable dECIAratiONScocueiiiiiiiiie ettt et e e s s sab e e s s sabbe e s s aabbe e e s snres 229
15.5.2 Local constant deCIaratioNScoccueeiiiiiiiii et st b e e e s b e e e e enens 229
15.6 EXPreSSION STAIEMENTSc.viivieieiieciete sttt ettt te e s te et te et et e esbeeteesbesbeessesbesseesresesbeenaenreenes 230
15.7 SEIECTION STALEIMENTSvvveieeseteie ettt ettt e et e e s et e e s s bt e e s st bt e e s sab b e e e s sabbeeessasbesessabbesessabeseesasbbesessnses 230
T A R I 1 L) S C= 1<) 11 L TR 230
15.7.2 The SWICH STALEMENT.......oiiciii ittt e s b e e sab e e st e e st ae e sabessabesesbeeeas 231
SR L] o Lo T L =] 41T A C TR 234
SR I A I LY T [T = L =T 0 =T R 234
SR T Lol (O30 = 1 (=] 1. [=T 1 R 235
RS R I 1 Lo (01 QS - L=T (=T 0 ORI 235
15.8.4 The TOreach STALEMENTeeiiiieeiie ettt e e st e e s s bbb e s s s ab e e s s sbbae s s sebbbeeessnees 236
15.9 JUMP STALEIMENLS ..o ietiii ittt ee et e st e e e et e e s st e e ss e e esteeeaeeesnte e e sseeesnaeeanteeensaeeanneeennenens 239
15.9.1 The Break STAIEMENTcveiiieiie ittt ettt e st e e et e e e st b e e sab e e e sbeeesbbessbassabesesreeens 240
15.9.2 The CONLINUE SLALEIMENTveiiiieiiie ettt s ettt sttt e ettt e e s sttt s e s et b e e e s eab b e e e s sabbeeessabbesessabbesessrbbeeessanes 241
15.9.3 THe GO0 SLALEMENTceiiiieieeeee ettt st et ettt esteeteestesteeneesaeebesneeeenrens 241
15.9.4 The retUMN STAIEMENT.......viiiieie ettt e et e e s s e sbb e e ebb e s s be e e sbbeesbesesbeeesabessabesesbeeens 242
15.9.5 The thrOW SEAIEMIENT....c.ieeiiei ettt ettt s ettt e e s et e e e s sttt e e e s sb b e e e s sabbesessabbeeesasbbeeessanes 243
15.20 THE Ty SEAEEMEBNT ... iitiie ettt sttt e st et et e e s e saeereenteseeeneebeaseeneesbeeneeseeaneas 244
15.11 The checked and UNChECKEd STALEMENTSeviiiieiiii i 246
T I o T (0Tt) =1 (1111 TR ORR 247
15.13 THE USING STALEIMENT.iitiitiiteie ettt bbbt b s 247
15.14 The YIeld STAIEMENTooiii e te e re e s re e s re e s e e s be e teeneeeneeenreesree e 249
T N = U TS o = o PSPPSR 251
20 R @0 o] o | = V[U gL £SO 251
16.2 NamMeSPACE AECIATALIONSecviiieeiiecie ettt te e e st e re et e s beess e besseeseesbeenaesreenes 251
16.3 EXIEIN @lIAS QITBCLIVESvvviiiieieii ettt ettt ettt e e sttt e e s bt e e e s bt ae e e sbbe e s e sbbeeessabeseesaabbeseseanes 252
A] T g Vo 0 [T T €T P 253
16.4.2 USING AlIAS QIFECLIVES .. .ecvviviieeie sttt ettt st ettt e te st e sbesbesneebenneens 253
16.4.2 USING NAMESPACE TITECTIVESoviiiiiteieeieieeee sttt bbbttt 257
16.5 NAMESPACE MEIMIDELS ...ttt ettt ettt e e ste et e te s et s e e steaneesteeteeneesaeeseenbesseeneesaeaneeseesteeneeneeaneas 259
O I Y o L= T [<Tod P T 4 o] P 259
16.7 Qualified liaS MEMDELcviiiecce ettt et be e sbe e sbe e sbe e s beesbeeebeeebeeabee e 259
O F= Ty 263
I O Fo TS0 (= Tod FoT = 0] LR 263
0 R O T3 1 0 1o [=T TR 263
O N o 15 (- Tox Ao =Y 264
17.0.0.2 SEAIEA CIASSESeeeieviietie ettt ettt ettt s s e sba e e e b e e st e s s s bt e e st e e sbe s e sbbeesabeeenbaeen 264
R B = (ol o - 1Y 264

17.1.2 Class base SPECITICALION.........cciuiii e ettt e e e e s e e e eeenns 265

L17.0.2. 0 BASE CIASSESccuviiiieiieitie ettt ste ettt e bt e sttt e et e e e bt e e st e s e s bt e e ebe e s sb e e e sab e s s abeesebaeesabeesbeeearaeens 266
17.1.2.2 Interface iMpPIEMENTALIONSciiiiiiieieiiee e 267

T T O =TT o o PSS 268

R T AT | I o] Fo T L[] R 268
A O F- T 4 1=T .01 0] 6T RO 269

A R 1] 1= 7= T R 271

N Lo LTV 0 1T T =Y R 272

17.2.3 ACCESS MOMITIEIS ..eoiivviiiitii ettt et et e e et e e s b e e sab e e eab e s s b e e e sbbesaabessbaeessbessabesesbeeens 272

17.2.4 CONSTITUBNE TYPES ... etttk bbbt b bttt ettt nb e 272

17.2.5 Static and INSLANCE MEMEISveiiiieiiie et s sb e e s s bb e e e s sbbe e e s enens 272

C# LANGUAGE SPECIFICATION

17.2.8 NESTEA TYPES ...ttt bbbt bbbttt b bbbttt bbb 273
17.2.6.1 Fully QUalified NAIME ..ottt see e seeeneas 273
17.2.6.2 Declared acCesSIDIITY.........oiiiiiie e s 274
17.2.8.3 HITING. ...ttt bbbttt bbb 274
O ST (T3 (oo Tt 275
17.2.6.5 Access to private and protected members of the containing typecccoevveviveveevecvnene, 275

17.2.7 RESEIVEA MEMDET NAMES.eiiiviiiitie sttt etee ettt e et s b e st e e st e s st e e e sabesabesesbbessabesesbeeesbeeens 276
17.2.7.1 Member names reserved fOr PrOPEITIESccceiiireriiieieisese e 276
17.2.7.2 Member names reSErVEd TOr BVENTS.........ueii ittt ba e s s rba e s s earee s 277
17.2.7.3 Member names reServed FOr INAEXETSoovvii ittt 277
17.2.7.4 Member names reServed for fINAIIZEISoovcveii it 277

ARG T o] 1) = £ 277
I 1= [LSRR 279

17.4.1 Static and INSEANCE TIEIASciviiiiiii et s sb e e s sbe e e sbee e 280

17.4.2 REAAONIY FIBIAS ...ttt e eeene e aesbeeneeneesne e 280
17.4.2.1 Using static readonly fields for CONStants...........cccccvevveiie i 281
17.4.2.2 Versioning of constants and static readonly fields...........c.ccccooveviiiiici i, 281

R R R o1 oL AT Lo 1] (o F TR 282

17.4.4 FIeld INILIAIIZALION ..vveeiiceeeee ettt e e s s e e e s s bbb e e s s bbb e s s s ebee s s sanbbeeessnees 283

17.4.5 Variable INITIAIIZESoooovvieceie ettt sb e st e et e e e sbb e s sbbe s sbeeesbae e 283
17.4.5.1 Static field INILIANIZATIONocveeee e e e abe e s s baee s 284
17.4.5.2 Instance field iNtIaliZationoooueiiii e srree s 285

AT/ 11 0T F 285

17.5.1 MEthOU PATAMELEIS.....c.viiviieiticee ettt sttt s be et e st e e st e be et e s teesaesreeresneenrenreens 287
17.5.1.1 ValUB PATAMELEIS.eiiieeieieeiieieste sttt bbbt bbbttt b e 288
17.5.1.2 RefEIreNCE PArAMELEISeciviecieecieectee s e e te e e e s e e te et et e e te e st e sreeeneeeneeeneeenreenees 288
17.5.1.3 OULPUL PAFAIMETETS ...eeiiitiieiteee st site e st e bt stbe e st e sbe e e srbe e e sbb e e s sbe e sbe e e sbbeesnbeeasbaeesnbeeenbeeensneens 289
17.5.1.4 PArGmMELET @GITAYSeiuvterieteesieestee st sttt ettt r e r e nr e nre et e enn e sn e et neenns 290

17.5.2 Static and INStANCE MELNOUScoeiieiiiii it e s s s b be e e s sbre e e s saens 292

17.5.3 VIrUAI MEINOUS......eeiiii et e e s e e s eab e s e s ebbe e s s eab b e e e e ennes 292

17.5.4 OVEITIOE MELNOUSeeiiiitiiii ettt ettt sttt e sttt e e s et e e s eb bt e e s sab b e e e s sabbesessabbesessbbesesasbbasessases 294

17.5.5 SEAIEA METNOTSvveiii ittt s e e s e e e e s s bbb e e e s sabb e e e s sabb e s s s sabbaessasrbesessnnes 296

N I AN o1 1 = (ot =11 10T L 296

17.5.7 EXTEINAl MELNOUS. ... oviiiiii ittt st e et e e sa e s e be e e sbt e s sabe s e stessabeeesbeeens 297

17.5.8 METhOT DOAY ...ttt bbbt 298

AR Y[g oo [)Y =T o o[oo PSS 299

T S (0] 1= TSP SSTUSSRPR 299

17.6.1 Static and iNSLANCE PrOPEITIESc.veiiiitirierieite ettt b e 300

ST Ao o1 o] £ 300

17.6.3 Virtual, sealed, override, and aStraCt CCESSOIS .. .uuiiiiiiiiirriiieeeeeieeerree e e e e e s seee e e e e e s s s s ereeeeees 306

R A YT o1 €O SOP 307

A 1 o B 11 A Y=Y L C R 309

R A YT] A Tl ol o] £SO 312

17.7.3 StatiC and INSTANCE BVENTS........ccvviiiriieiiie et ettt ste e et e e st e s st ee e st e e sabe s s sbeeesabesabesesbaesssbessabesasseeens 313

17.7.4 Virtual, sealed, override, and abSIraCt ACCESSOIS.......uiviicviieiiiriresitriressirrieessrre e e s serbe e e s ebbeeessaens 313

AT 0 () G £ 314

A IO [T 1=y T oY= T o o= To T o S 317

17.9 OPBIALOIS ...tttk b et b bbbt e bR e e bt e Rt e et Rt R Rt R et R e et Rt bt e n b s nreene s 317

17.9. 0 UNGAIY OPEBIALOISeiiitiiitieete ettt ettt sttt et e et e e bt e eae e et e e ebe e she e she e shbeeabeenbeebeesbeesbeenbeeenneabeenes 318

R I ST T T Vo] =] 1 o] SR 319

17.9.3 CONVEISION OPEIALOIS ...vevieveiviiiiesiesteesiesteeteesteste e s e tessaesteste e besteessebesseessestaessesteataessessesneensenseens 320

17.20 INSTANCE CONSIIUCTONS ..vvvvviieeieictteti et e e e ettt e e e e e s st e e e e e e s s sbb b e b e e e e esssasbbbbeeeeeesssasbbbbaeesesesssssbbebeeesens 321

O R O 3 1 (0 Tox (o] T L (=1 [T £ 322

17.10.2 Instance variable INITAlIZES.........cuiiiiiiiic et eree e 322

17.10.3 CONSIIUCTON EXECULION ...vveiiiieeeiie s ittt e e sttt e s sttt e s st e e e s sttt e e s s bt e e e s sabbaeessabbesessabbesessbbesesssbraeessases 323

Table of Contents

17.10.4 DEfaUIt CONSITUCTOIS ..ottt ettt ettt e e s ettt e e s bbb e e e s st b e e e s aabaesesesbaneesaabbesessanes 324
RN o 17 (o0 1) {001 (0 £ 325
17.10.6 Optional instance CONSLrUCLOr PAFAMELELSciviiieeieeieesie e e see e e sre e sre e ee e 325
I) £ L Lol) 1 (o1 (0 TR 326
A 1T T4 6RO 327
ST 4 0 (o (T 331
T 1 0ot A [T = = L o] RO 331
I TR 1 0 Tox A 1o 0) T £ R 331
18. 1.2 SHIUCE INTBITACES. .. .eiiviii ittt ettt e b e e s e e e sbb e e ebt e e st e s e sbb e e sabessbeeesbbessabesesreeens 332
TG T {0 Tod o o | 332
T (U ot A LT 0] o T=T R 332
18.3 Class and SLrUCE QIffEIENCEScvviiivii ittt e e st e s st e e e sba e e sbeeeeree e 332
18.3.1 WVAIUE SEMANTICSuvvviieiiieii e sttt e sttt e sttt e e s ettt e e s eabb e e e s st b e s e s eab b e e e sabbbeeesaabbesesaabbesesasbbaeesasbbesessanes 332
T I 101 o 1= 7= g (R 333
ST AN] o 0] 0 1T] SRR TSP 333
18.3.4 DETAUIE VAIUES ..ottt st e sttt e s st e e e s bbb e e e s bt e e e e sebbaeeesaabbeeeseanes 333
18.3.5 BOXIiNG @Nd UNDOXINGcviiiiiiiiieie ettt st seeeneesaeeneeneeneesee e 334
18.3.6 MEaNING OF ThiS ...ccveiiii ittt e st e esre e s e e e eeenrs 334

R TR A ST (o I T T E= L V4= TR 334
SRR T O] 1S (U o] (o] S 335
ST I [Fo1 1] £ 335
18.3.10 STALIC CONSIIUCTONSiivviiiitie ettt ettt ettt eb e e st s e sbe e e eab e s st e e e sbbesebeeesbeessrbessabesesbeeens 335
R N - 1Y T PP PR UPRPRPRTP 337
RS BN -\ Y Y 01T PTPP O PRTPPPRPTR 337
19.1.1 THe SYSIEM.AITAY TYPE.....eeuiiieiiiitiiteitet ettt bbbttt st bbb 338
RS N £ Vo] - L[] o P 338
19.3 AITAY EIBMENT ACCESS . c.viivieieiteetieste st et st et e te st e et e steeseestesteesteste e e e s beateesbesteessesbesneessesteessesteeneesrennes 338
19,4 ATTAY IMEIMDEISvtiietieii ettt bbbttt bbbt bbb bt bbbt e ettt ettt e 338
19.5 AITAY COVAMANCE ... eeititieieeteetieete et e e ste e e bt e teesaeseeaseesaesseeseesteaseeseeeteenseaaeaseenbesseensesseaseeneesreeneeneeaneas 338
19.6 Arrays and the generic TLISt INTEITACEcccve e e 339
19.7 AITAY INITIAHIZEIS. ...ttt bbbttt b s 340
O) (] @ =101 LT 343
P20 R 1 (=T =TT L= od =T = o] LTS 343
2O O A 1 =T g 7 Lo 0 (oL L [R 343
20.1.2 BASE INLEITACES ...eeeiiieviie ettt ettt st e e s s e e e s s b e e s s sab b e e e s abb e e e e ssbtesesaabbesesannes 344
P0G B 101 (=T = Vol oo To YOS 344
PO A 11 (=T - 1oLl 41T 0 0] £SO 345
PO A 1 =T g 7 Lo =11 [0 o LR 346
20.2.2 INLErfACE PrOPEITIES ...vvivviitiiiecteete ettt et e st e et et e s te e st e s beesaesbesbeesaesreaneebenreens 346
20.2.3 INEEITACE BVENTS ...eeiiieviie ettt e e ettt e s e ettt e s et e e e s sttt e e s st beeessbbeeessabbeeesssbaesessrteeesabbesessases 346
O 11 =] (I 10 2 G £ 346
20.2.5 INErfact MEIMDET ACCESSocvviiierie ittt ettt ettt s s et e s eb e e st e s e sba e e sbae e sabe s e sbeeesrtesanbeas 347
20.3 Fully qualified interface MemMDEr NAMESccoiiiiiiiii e 348
20.4 Interface IMPIEMENTATIONSoiiiie ettt eseesaeeneeseesteeneeseeeneas 349
20.4.1 Explicit interface member iMmplementationscccovoeeviee e 349
A0 N g1 (=T = Yol 4 1o o[o USSR 351
20.4.3 Interface implementation INNEITTANCE............coiiiiiiii e 354
20.4.4 Interface re-implemMentationcoiii i 356
20.4.5 Abstract classes and INTEITACES........cuiiiuiiiiii et erbe e b 357

b T = o U TSRS 359
A 0 I T T I (<o =T L[U URRT 359
P2 A 10T o I 1 00T L [TSRO 359

Xi

C# LANGUAGE SPECIFICATION

P T oW oI 00 T=T 0] 1T SRRSO 360
21.4 TNE SYSTEIM.ENUM LY ..ottt ettt sttt ettt e s e besre e st e beeneesaesbeeneeseeeneeneeaneas 362
21.5 ENUM ValUES AN0 OPEIALIONS......cuiitieieiieeiieite ettt ettt sttt se et re et e bt et e sbeeneentesbeeneeneeeneas 362
R B L 1= Ta T USSP 363
22.1 Delegate AECIATALIONSccviiiiie ettt et e e bt e e b e s beeteesaestesbeenaenreeneas 363
22.2 Delegate INSTANTIATIONo.eitiiiiei ettt b ettt 365
22.3 Delegate INVOCALIONc.eitiiiie ittt ettt sttt s e s eeete e besaeese e besseeseeseeaseeneesteeneeseeaneas 365
B T (=T o T] ST 369
23.1 CaUSES OF EXCEPLIONS ...ttt ettt ettt ettt e sttt seesbeete e tesaeese e besseeseesbeeneeneesteeneeneeeneas 369
23.2 The SYStEM.EXCEPLION CIASSveiviciie ettt re st tesbeenaenreenes 369
23.3 How exceptions are NANAIEA.coviiiiiiiiiieeee e 369
23.4 COMMON EXCEPLION CIASSESeeiteeiie ittt ettt ettt ee sttt st et esbesse e e e te et e saeeteeneesteereeneeneeeneas 370
N 1 1o U =TSP 373
24,0 ATIIIDULE CIASSES ... viieeiteetie ettt sttt ettt ettt e ee et e e steeseesbeaeeeneesbeeneeseeebeeseeseeeteeneeseeaneas 373
O AN 1 101U IRV Vo SO STP 373
24.1.2 Positional and Named ParameTerS.........c.cveieiiiiiiiresie et 374
24.1.3 ALIrIDULE PArAMELEN TYPES ... i ieeeie ittt ettt et et e stesteeneeseeereeneesreeneeneeeneens 375
24.2 ALLriDULE SPECITICALIONc.vi et e et e et e e s te e sreesreesreesneeanees 375
24.3 ATITTIDULE INSTANCES ...ttt et bbbttt bbb sttt sttt e 380
24.3.1 Compilation of @n AttFIDULEooeiieieee e 380
24.3.2 Run-time retrieval of an attribute INSTANCE............cocoi i 381
24.4 RESEIVEA ALITTIOULESoviviiiiee ettt bbbttt bt 381
24.4.1 The AttributelUsage attriDULE...........cooiiiiiieee e 382
24.4.2 The Conditional @ttriDULEc.oiiiieee e 382
24.4.2.1 Conditional MEtNOOSoceiiiiiei e et 382
24.4.2.2 Conditional attribDULE ClASSES.......civiviiiiiiie e enes 384
24.4.3 The ODSOIEte AttrIDULEcoi ettt ste e e eeeneens 385

p T =] 1T TSP 387
25.1 GENEIiC ClasSS HECIATALIONSeiie ettt sttt et e besreeseesaeeneeseesteeneeseeeneas 387
DA T I R I T 0= U 10 1< (S 387
25.1.2 TNE INSTANCE TYPE ..ottt bbbt bbb bbbttt b et e 388
25.1.3 MemDBErS OF GENEIIC CIASSESoiveiuiiieiieeie ittt ettt sttt e seeere e e sre e eneeseens 389
25.1.4 Static fields iN geNEIIC CIASSES.......uiiiiiiece e eeenes 389
25.1.5 Static constructors in generiC CIASSESciiviieiiiieie sttt 390
25.1.6 ACCeSSING ProteCtEd MEIMDEIS.....c.eiiiiiiitiiieite ettt 390
25.1.7 Overloading iN geNEriC CIASSES........iii ittt sttt ste e eeneesee e 391
25.1.8 Parameter array methods and type Parameters.........cccceivereieciieieseeese e sre e e 391
25.1.9 Overriding and gENETIC CIASSES.......c.uiiiiriiiterieieieiet sttt 392
25.1.10 Operators iN geNEIiC CIASSESoii ittt ettt see st eseesreeneeseesneeeeeneans 392
25.1.11 Nested types iN geNEIIC CIASSESviiuiiie ettt e e ae e sreeeeenes 393
25.2 GENErIC STIUCE HECIATALIONSc.veeeeierieiieiieii sttt b ettt bt e 394
25.3 Generic iNterface AECIATALIONScivi ettt eseesteeneeseeeneas 394
25.3.1 Uniqueness of implemented iNtErfaCesccovveiiiiiiie e 395
25.3.2 Explicit interface member implementationsccccevveiiiiiiecc s 396
25.4 Generic delegate deClarations..........cocoveiiiiiiiiie et 396
25.5 CONSITUCTEA TYPBS - vt eeeeee ettt ettt ettt ettt ettt e sttt e e s beese e besseese e beemeeseeaaeeseeneeereeneeneeeneas 397
BT R I/ TR Vo 0T =T)RS 397
25.5.2 OPEN aNd CIOSEA TYPES.viieiieitiiterieteeee ettt bbbttt 398
25.5.3 Base classes and interfaces of a CONSLrUCIEd TYPEeoiverieiiiiiie e 398
25.5.4 Members Of @ CONSITUCTEA LYvveiveeiie ettt e ee e e sreens 399
25.5.5 Accessibility 0f a CONSITUCIEA tYPEocvveieiicie e 399

P N Sl O 11V £ o 1SR 400

Xii

Table of Contents

25.5.7 USING @lIAS IMECTIVESoueiiiiiiiiiciisiite ettt 400
25.6 GENEIIC METNOUS.ottt ettt e et se e steeteestesteese e tesae e e e seeeseeneesteeneeneeeneas 400
25.6.1 Generic MEthOd SIGNATUIES........ecvieieecie e see e e e st st e e e ste e sre e sreesneesnneeeeenrs 401
25.6.2 Virtual generic MENOGSouiiiiieieeee e 401
25.6.3 Calling generic METhOUS.iiiiee ettt nee e 403
25.6.4 Inference OF tyPe argUMENTS.......ccviiie e e st sre e e e s e e e eeeeeenns 403
25.6.5 Using a generic method with a delegate...........ccoiviveiiii i 405
25.6.6 No generic properties, events, indexers, operators, constructors, or finalizers.............cccccveuee. 405
A O] TS - U] £ SSUUSSRR 405
25.7.1 SatiSTYING CONSITAINTScuviiiiciiiiiie ettt et e et sreere e besresneebesreens 410
25.7.2 Member [00KUD 0N TYPE PATAMETEIS.cviieiiiiiitiite et 410
25.7.3 Type parameters and DOXINGcooooeiiiie i 411
25.7.4 Conversions iNVOIVING tYPe PAraMELErSvviueeieere e seeseesiee s ste e ste et e et e e aeeae e sreesreenns 412

P ST L 1=] =0 T T P PP PP PR T R PR PP PP 415
26.1 TEEIALON DIOCKS. ...ttt bbbttt bbbt b bbbt 415
26.1.1 ENUMEIAOr INTEITACES . .ovviieieeiiiie ettt e s te et e teste s e nbesneeneeeesneens 416
26.1.2 ENUMEIADIE INTEITACES i iei ettt ettt ste et e steste e s e seeeneeneeeeeneens 416
PG TN N 1=1 [0 I 1Y o= PP 416
26. 1.4 THIS BCCESS ...vvvttetetetee et ettt ettt b bbb e e st s bt b e bt st e b e bt e s e st e bt bt bbb et et et bt et et 416
26.2 ENUMEIALON ODJECES. ... ettt ettt s et e e e e see st e besne et e saeeneeneesreeneeneeeneas 416
26.2.1 The MOVENEXE MELNOAoiuiiiiiiiie et st sr e e e 417
26.2.2 The CUITENT PrOPEITY .e.veeiieivecieete ettt ettt e te et et este e e sae e et e s te e s e s beasaesbesbeesbesbeereesbesreaneensenseens 418
26.2.3 The DiSP0SE METNOM.c.eiiiiiiiiitiieei ettt 418
26.3 ENUMETADIE ODJECESeeieieeiee ettt sttt et st e e e nae e s e seesteeneeneeeneas 418
26.3.1 The GetEnumerator MEtNOd...........ooiiiiiei e e 419
26.4 IMplementation EXAMPIE ... bbb 419
27. UNSATE COUR ...ttt ettt ettt e s e st st e st e et e et e e be e s be e sbeesheesaeesabesabeebeesbeesteeatbessbeenbeeteeareenns 425
27.1 UNSATE CONTEXES ...vviutiiiietiiiie ittt ettt e st et e s e s be s te e st e nteese e beste et e sbeaseeseesteenaenneeneas 425
B o 101 =] Y 0SSOSR 427
27.3 Fixed and moveable Variables e 430
27 .4 POINTEE CONVEISIONSutiiitieitieitie ittt eteesteeste e ste e st e s tesste e sbeesteesbeestbessbeesbeebeesbeeaseesseeesteesbeesbaesbeesabesnreas 430
27.5 POINTEIS 1N EXPIESSIONS ...e.tieieeiteetie ettt ie sttt ettt et e steeseeseesteeseesbeeteentesteeseentesseaneesaeaseeneesteeneeseeaneas 431
27.5.1 POINTEE INAIMECTION ... ettt ettt ettt sttt sbeebe et sbesneeeesreens 432
27.5.2 POINTET MEIMDET BCCESSvveviiteitieteste sttt sttt sttt b e bbbt se ettt be st e 432
27.5.3 POINEEE EIEMENT BCCESS ...ouvvivveriiiteiiieitesieeie st e tee e ste et e tesre e e e tesseestesteasaestesteessestesseeneesseaneeneenseens 433
27.5.4 The addresS-0F OPEIALOLccuiiieieie ettt ettt ettt steste e seeereeneesreeneeeeenens 434
27.5.5 Pointer increment and dECTEMENT........cviviiiiiiii it 435
27.5.6 POINEEE @rTtMELICcvi ettt e sre e sre e e neenneens 435
27.5.7 POINET COMPATTISONeveiiiiieeeieete et ettt sttt eeste et e tesre e e e bt aseestesteeneeseeeteetesreeneeneesreaneeneenseans 436
27.5.8 Te SIZEOT OPEIAION.......ei ettt e e e ste e te e sre e sreesreesneeenreenrs 436
27.6 THe FIXEU STAIEMENToviiiieiieeee ettt bbbttt b et e 436
P S = Tod Q11 o o7 L4 T o SRS 439
27.8 Dynamic Memory allOCALIONc.ecuieiiiiic e e e ae e raesreennee s 440
ANNEX AL GEFAIMIMIAE ..ottt b ettt e ket eh bt e s b e ekt e eb e e she e sh b e ah bt ea bt enbe e bt e ebeenbeesbeeanneenbeenees 443
N et o= | I =g 0 SR 443
ALLL LINE TEIMINALOIS ...ttt bbbt b bbb e bt e e e bttt sb e b e 443
ALL2 WHITE SPACE ...ttt bbb bbb bbbt bbb ettt b bbb n s 443
AL COMIMENTS ..ottt ettt bt e s bt e sb e e eh bt e b bt e s bt e b e e ekt e sbe e sae e e mbe e bt e nbeesbeenbneanneas 444
AL TOKENS ...ttt bbb bbb Rt E e e Rt bR b bt e bbb e b e 444
A.L5 UNICOUE ESCAPE SEAUETIICESviuvirvinresieiiatistestestestesseseese sttt sbesse st e e e s eseebe s st et e sb e b e b e s eseasesbeseennenas 445

E AN LG [0 T 0 T £SO 445
N I Q=)Ao o OSSR 446
YN R 1 (=T | TSP RURTORRTPN 446

C# LANGUAGE SPECIFICATION

A.1.9 Operators and PUNCTUBLOTS.oveieiiiitiitiitest ettt sttt ne b 448
A.1.10 Pre-proCesSing QiFECLIVES.cuiiieieieeie ettt ettt ettt et ste e te e tesee e e e neeseeenes 448
N AL = Ve (Tl |- 4 SR 450
AL2.1 BASIC CONMCEPES ...ttt sttt bbb bbb bbb e e et b bbb b s 450

F N Y/ oL TP T TR PTUPTURTUPTUURTRN 451
AL2.3VAMADIES ...ttt bttt nreenes 452
N o] (-1S1S] o] ST TPS R 452
AL2.5 STALEIMENTS ...ttt st h e s r e st n e b e e be e bt e R et e e e e be e nbe e nbeenteenraeanbe s 456

E NG O - TS 460
AN STTUCTS. ..ttt h e b e s bbbt a et e R e e R e Rt e Rt et bbb e nn e 465
AAL2.8 AATTAYS ..ttt ettt h bbb bR R R R E AR R Rt Rt R Rt n et nn e nr e 466

E AN B [] (=1 7 o= LSS 467
AL2.L0 ENUMS...neeei ettt et s ettt et e e s e Rt Rt e b et et e st e e e e E e R e e nennenn et nnan 468
N T B - T TSP S 468
AL2.12 ATTIDULES ... ettt et e s e s ettt e b et e s e n e et e e neenenrenre et nnen 468
N R =T T=] o o RSP TPSR 470
A.3 Grammar extensions fOr UNSAfE COUEcuiiiiiiiiiiie s 470
ANNEX B. POITability ISSUBScviiiieiiitice ettt ettt s b et e besreane e besteesresreenee 473
B.1 UNAEFiNEU DENAVIONeiviiiiiiiici e bbbttt sttt 473
B.2 Implementation-defined DENAVION............oui i 473
B.3 UNSPECITIEd DENAVION........eiiie ettt re e e e e neeenrs 474
B4 OTNEE ISSUBS ...ttt b bbbt bt bbb b et et b e bbb nb et e 474
YA g Lo O N\ =T g1 aTo o (U T [T T TSP 475
ANNEX D. STANAAId LIDFAIYccooiiiiii s e et et e st et e e e sne e e eeenes 477
Annex E. Documentation COMIMENTScociiioiiiieieeeie et sttt sre e e nneeneeseeseeenes 487
O I T [o oo OO RO URURUS SRR 487
E.2 RECOMMENUEU TAQS ... e veitieieiieeie sttt ettt et sttt et e st e e ta et e s beesb e besre e besteensestesteeneenreenes 488
0 A oSS PROUR 489
A ol o ST 489
e B 111 0] = SR 490
A A=Y (o101 1o SRR 490
R ST 1 PSS 490
G 0 L SO PRSUSTR 491
R A o 111 > PP PP UPROURRN 492
RS I o1 - 401 13 RSP SS 492
e I o 1= 1 111 o] PSR 493
E.2.00 STBMAIKSS ...ttt ettt bbbt b bbb bbbttt sttt e 493
O B €] (01 1> PP 493

B 2.02 RSB .. ittt b bt bt h e oAbttt ehe e ehe e eRe e R b e oAbt e b e e be e ebe e ebe e aRe e e nee e nbeenees 494
EL2.13 <SBRAISOS ...ttt b et b et ettt n e b ene e renre e 494
N A U] 1 010 =T O PP P TP PRSP 495
R RS I 1 0 1<] 0L =11 0 S OO TR RTPURT 495
E.2.16 <EYPeParamIersooiii e nnes 495
EL2.07 QUAIUBS ... bbb bbbttt 496
E.3 Processing the documentation FIle ..o e 496
20 1 2 1T i 0] 100U 496
E.3.2 1D StHNG XAMPIES.....cciiiiieeie et e et e e st ste e s te e s n e e s e enteebeesreesneesnneenreenees 497
B4 AN BXAMPIE ..ottt 501
o Yo 10 ot ol o PSSP 501
E.4.2 RESUITING XML ...ciiiiiicic ettt et sae e s e s s e s e e e e steesteeaneeeneesnneenteenrs 503

WA a1 a1e Y i =TT o] oo =] | SR 507

Xiv

Table of Contents

F AN QT a1 ST 1T (= TR 508

XV

Foreword

Foreword

This fourth edition cancels and replaces the third edition. Changes from the previous edition were made to
align this Standard with 1ISO/IEC 23270:2006.

XVii

Introduction

Introduction

This International Standard is based on a submission from Hewlett-Packard, Intel, and Microsoft, that
described a language called C#, which was developed within Microsoft. The principal inventors of this
language were Anders Hejlsberg, Scott Wiltamuth, and Peter Golde. The first widely distributed
implementation of C# was released by Microsoft in July 2000, as part of its .NET Framework initiative.

Ecma Technical Committee 39 (TC39) Task Group 2 (TG2) was formed in September 2000, to produce a
standard for C#. Another Task Group, TG3, was also formed at that time to produce a standard for a library
and execution environment called Common Language Infrastructure (CLI). (CLI is based on a subset of the
.NET Framework.) Although Microsoft’s implementation of C# relies on CLI for library and runtime
support, other implementations of C# need not, provided they support an alternate way of getting at the
minimum CLI features required by this C# standard (see Annex D).

As the definition of C# evolved, the goals used in its design were as follows:
e C#is intended to be a simple, modern, general-purpose, object-oriented programming language.

e The language, and implementations thereof, should provide support for software engineering principles
such as strong type checking, array bounds checking, detection of attempts to use uninitialized variables,
and automatic garbage collection. Software robustness, durability, and programmer productivity are
important.

e The language is intended for use in developing software components suitable for deployment in
distributed environments.

e Source code portability is very important, as is programmer portability, especially for those
programmers already familiar with C and C++.

e Support for internationalization is very important.

e C#isintended to be suitable for writing applications for both hosted and embedded systems, ranging
from the very large that use sophisticated operating systems, down to the very small having dedicated
functions.

e Although C# applications are intended to be economical with regard to memory and processing power
requirements, the language was not intended to compete directly on performance and size with C or
assembly language.

The following companies and organizations have participated in the development of this standard, and their
contributions are gratefully acknowledged: ActiveState, Borland, CSK Corp., Hewlett-Packard, IBM, Intel,
IT University of Copenhagen, Jaggersoft (UK), Microsoft, Mountain View Compiler, Monash University
(AUS), Netscape, Novell, Pixo, Plum Hall, Sun, and the University of Canterbury (NZ).

The development of this version of the standard started in January 2003

This Ecma Standard has been adopted by the General Assembly of June 2006.

XiX

1 Scope

1. Scope

This International Standard specifies the form and establishes the interpretation of programs written in the
C# programming language. It specifies

e The representation of C# programs;

e The syntax and constraints of the C# language;

e The semantic rules for interpreting C# programs;

e The restrictions and limits imposed by a conforming implementation of C#.

This International Standard does not specify

e The mechanism by which C# programs are transformed for use by a data-processing system;

e The mechanism by which C# applications are invoked for use by a data-processing system;

e The mechanism by which input data are transformed for use by a C# application;

e The mechanism by which output data are transformed after being produced by a C# application;

e The size or complexity of a program and its data that will exceed the capacity of any specific data-
processing system or the capacity of a particular processor;

¢ All minimal requirements of a data-processing system that is capable of supporting a conforming
implementation.

2 Conformance

2. Conformance

Conformance is of interest to the following audiences:

e Those designing, implementing, or maintaining C# implementations.

e Governmental or commercial entities wishing to procure C# implementations.
e Testing organizations wishing to provide a C# conformance test suite.

e Programmers wishing to port code from one C# implementation to another.

e Educators wishing to teach Standard C#.

e Authors wanting to write about Standard C#.

As such, conformance is most important, and the bulk of this International Standard is aimed at specifying
the characteristics that make C# implementations and C# programs conforming ones.

The text in this International Standard that specifies requirements is considered normative. All other text in
this specification is informative; that is, for information purposes only. Unless stated otherwise, all text is
normative. Normative text is further broken into required and conditional categories. Conditionally
normative text specifies a feature and its requirements where the feature is optional. However, if that feature
is provided, its syntax and semantics must be exactly as specified.

Undefined behavior is indicated in this International Standard only by the words ‘“undefined behavior.”’

A strictly conforming program shall use only those features of the language specified in this International
Standard as being required. (This means that a strictly conforming program cannot use any conditionally
normative feature.) It shall not produce output dependent on any unspecified, undefined, or implementation-
defined behavior.

A conforming implementation of C# must accept any strictly conforming program.

A conforming implementation of C# must provide and support all the types, values, objects, properties,
methods, and program syntax and semantics described in the normative (but not the conditionally normative)
parts in this International Standard.

A conforming implementation of C# shall interpret characters in conformance with the Unicode Standard,
Version 4.0, and ISO/IEC 10646-1. Conforming implementations must accept Unicode source files encoded
with the UTF-8 encoding form.

A conforming implementation of C# shall not successfully translate source containing a #error
preprocessing directive unless it is part of a group skipped by conditional compilation.

A conforming implementation of C# shall produce at least one diagnostic message if the source program
violates any rule of syntax, or any negative requirement (defined as a “shall” or “shall not” or “error” or
“warning” requirement), unless that requirement is marked with the words “no diagnostic is required”.

A conforming implementation of C# is permitted to provide additional types, values, objects, properties, and
methods beyond those described in this International Standard, provided they do not alter the behavior of
any strictly conforming program. Conforming implementations are required to diagnose programs that use
extensions that are ill formed according to this International Standard. Having done so, however; they can
compile and execute such programs. (The ability to have extensions implies that a conforming
implementation reserves no identifiers other than those explicitly reserved in this International Standard.)

C# LANGUAGE SPECIFICATION

A conforming implementation of C# shall be accompanied by a document that defines all implementation-
defined characteristics, and all extensions.

A conforming implementation of C# shall support the class library documented in Annex D. This library is
included by reference in this International Standard.

A conforming program is one that is acceptable to a conforming implementation. (Such a program is
permitted to contain extensions or conditionally normative features.)

3 Normative references

3. Normative references

The following normative documents contain provisions, which, through reference in this text, constitute
provisions of this International Standard. For dated references, subsequent amendments to, or revisions of,
any of these publications do not apply. However, parties to agreements based on this International Standard
are encouraged to investigate the possibility of applying the most recent editions of the normative documents
indicated below. For undated references, the latest edition of the normative document referred to applies.
Members of 1SO and IEC maintain registers of currently valid International Standards.

ISO/IEC 23271:2005, Common Language Infrastructure (CLI), Partition IV: Base Class Library (BCL),
Extended Numerics Library, and Extended Array Library.

ISO 31.11:1992, Quantities and units — Part 11: Mathematical signs and symbols for use in the physical
sciences and technology.

ISO/IEC 2382.1:1993, Information technology — Vocabulary — Part 1: Fundamental terms.
ISO/IEC 10646 (all parts), Information technology — Universal Multiple-Octet Coded Character Set (UCS).

IEC 60559:1989, Binary floating-point arithmetic for microprocessor systems (previously designated IEC
559:1989). (This standard is widely known by its U.S. national designation, ANSI/IEEE Standard 754-1985,
IEEE Standard for Binary Floating-Point Arithmetic.)

The Unicode Consortium. The Unicode Standard, Version 4.0, defined by: The Unicode Standard,
Version 4.0 (Boston, MA, Addison-Wesley, 2003. ISBN 0-321-18578-1).

4 Definitions

4. Definitions

For the purposes of this International Standard, the following definitions apply. Other terms are defined
where they appear in italic type or on the left side of a syntax rule. Terms explicitly defined in this
International Standard are not to be presumed to refer implicitly to similar terms defined elsewhere. Terms
not defined in this International Standard are to be interpreted according to ISO/IEC 2382.1. Mathematical
symbols not defined in this International Standard are to be interpreted according to 1SO 31.11.

Application — refers to an assembly that has an entry point (810.1). When an application is run, a new
application domain is created. Several different instantiations of an application can exist on the same
machine at the same time, and each has its own application domain.

Application domain — an entity that enables application isolation by acting as a container for application
state. An application domain acts as a container and boundary for the types defined in the application and the
class libraries it uses. Types loaded into one application domain are distinct from the same type loaded into
another application domain, and instances of objects are not directly shared between application domains.
For instance, each application domain has its own copy of static variables for these types, and a static
constructor for a type is run at most once per application domain. Implementations are free to provide
implementation-specific policy or mechanisms for the creation and destruction of application domains.

Argument — an expression in the comma-separated list bounded by the parentheses in a method or instance
constructor call expression or bounded by the square brackets in an element access expression. It is also
known as an actual argument.

Assembly — refers to one or more files that are output by the compiler as a result of program compilation.
An assembly is a configured set of loadable code modules and other resources that together implement a unit
of functionality. An assembly can contain types, the executable code used to implement these types, and
references to other assemblies. The physical representation of an assembly is not defined by this
specification. Essentially, an assembly is the output of the compiler.

Behavior — external appearance or action.

Behavior, implementation-defined — unspecified behavior where each implementation documents how
the choice is made.

Behavior, undefined — behavior, upon use of a non-portable or erroneous construct or of erroneous data,
for which this International Standard imposes no requirements. [Possible handling of undefined behavior
ranges from ignoring the situation completely with unpredictable results, to behaving during translation or
execution in a documented manner characteristic of the environment (with or without the issuance of a
diagnostic message), to terminating a translation or execution (with the issuance of a diagnostic message)].

Behavior, unspecified — behavior where this International Standard provides two or more possibilities and
imposes no further requirements on which is chosen in any instance.

Class library — refers to an assembly that can be used by other assemblies. Use of a class library does not
cause the creation of a new application domain. Instead, a class library is loaded into the application domain
that uses it. For instance, when an application uses a class library, that class library is loaded into the
application domain for that application. If an application uses a class library A that itself uses a class

library B, then both A and B are loaded into the application domain for the application.

Diagnostic message — a message belonging to an implementation-defined subset of the implementation’s
output messages.

Error, compile-time — an error reported during program translation.

Exception — an error condition that is outside the ordinary expected behavior.

C# LANGUAGE SPECIFICATION

Implementation — particular set of software (running in a particular translation environment under
particular control options) that performs translation of programs for, and supports execution of methods in, a
particular execution environment.

Namespace — a logical organizational system that provides a way of presenting program elements that are
exposed to other programs.

Parameter — a variable declared as part of a method, instance constructor, operator, or indexer definition,
which acquires a value on entry to that function member. It is also known as a formal parameter.

Program — refers to one or more source files that are presented to the compiler. Essentially, a program is
the input to the compiler.

Program, valid — a C# program constructed according to the syntax rules and diagnosable semantic rules.
Program instantiation — the execution of an application.

Recommended practice — specification that is strongly recommended as being aligned with the intent of
the standard, but that might be impractical for some implementations

Source file — an ordered sequence of Unicode characters. Source files typically have a one-to-one
correspondence with files in a file system, but this correspondence is not required.

Unsafe code — code that is permitted to perform such lower-level operations as declaring and operating on
pointers, performing conversions between pointers and integral types, and taking the address of variables.
Such operations provide functionality such as permitting interfacing with the underlying operating system,
accessing a memory-mapped device, or implementing a time-critical algorithm.

Warning, compile-time — an informational message reported during program translation, that is intended
to identify a potentially questionable usage of a program element.

5 Notational conventions

5. Notational conventions

Lexical and syntactic grammars for C# are interspersed throughout this specification. The lexical grammar
defines how characters can be combined to form tokens (89.4), the minimal lexical elements of the
language. The syntactic grammar defines how tokens can be combined to make valid C# programs.

Grammar productions include both non-terminal and terminal symbols. In grammar productions, non-
terminal symbols are shown in italic type, and terminal symbols are shown in a fixed-width font. Each
non-terminal is defined by a set of productions. The first line of a set of productions is the name of the non-
terminal, followed by one or two colons. One colon is used for a production in the syntactic grammar, two
colons for a production in the lexical grammar. Each successive indented line contains the right-hand side
for a production that has the non-terminal symbol as the left-hand side. For example:

class-modifier:
new
public
protected
internal
private
abstract
sealed
static

defines the class-modifier non-terminal as having seven productions.

Alternatives are normally listed on separate lines, as shown above, though in cases where there are many
alternatives, the phrase “one of” precedes a list of the options. This is simply shorthand for listing each of
the alternatives on a separate line. For example:

decimal-digit: one of
0 1 2 3 45 6 7 8 9

is equivalent to:
decimal-digit:

O©CoOoO~NOOUDSMWNEO

A subscripted suffix “op”, as in identifiery, is used as shorthand to indicate an optional symbol. The
example:

for-statement:
for (for-initializery, ; for-conditiong,; ; for-iteratory,) embedded-statement

is equivalent to:

C# LANGUAGE SPECIFICATION

for-statement:
for (; ;) embedded-statement
for (for-initializer ; ;) embedded-statement
for (; for-condition ;) embedded-statement
for (; ; for-iterator) embedded-statement
for (for-initializer ; for-condition ;) embedded-statement
for (; for-condition ; for-iterator) embedded-statement
for (for-initializer ; ; for-iterator) embedded-statement
for (for-initializer ; for-condition ; for-iterator) embedded-statement

All terminal characters are to be understood as the appropriate Unicode character from the range U+0020 to
U+007F, as opposed to any similar-looking characters from other Unicode character ranges.

10

6 Acronyms and abbreviations

6. Acronyms and abbreviations

This clause is informative.

The following acronyms and abbreviations are used throughout this International Standard:

BCL — Base Class Library, which provides types to represent the built-in data types of the CLI, simple file
access, custom attributes, security attributes, string manipulation, formatting, streams, and collections.

CLI — Common Language Infrastructure

CLS — Common Language Specification

IEC — the International Electrotechnical Commission

IEEE — the Institute of Electrical and Electronics Engineers
ISO — the International Organization for Standardization

The name C# is pronounced “C Sharp”.

The name C# is written as the LATIN CAPITAL LETTER C (U+0043) followed by the NUMBER SIGN #
(U+0023).

End of informative text.

11

7 General description

7. General description

This text is informative.

This International Standard is intended to be used by implementers, academics, and application
programmers. As such, it contains a considerable amount of explanatory material that, strictly speaking, is
not necessary in a formal language specification.

This standard is divided into the following subdivisions:
1. Front matter (clauses 1-7);
2. Language overview (clause 8);
3. The language syntax, constraints, and semantics (clauses 9-27);
4. Annexes

Examples are provided to illustrate possible forms of the constructions described. References are used to
refer to related clauses. Notes are provided to give advice or guidance to implementers or programmers.
Annexes provide additional information and summarize the information contained in this International
Standard.

Clauses 1-5, part of 7, 9-26, the beginning of 27, and most of annex D form a normative part of this
standard; all of clause 27 with the exception of the beginning is conditionally normative; and Foreword,
Introduction, clause 6, part of 7, 8, annexes A, B, C, part of D, E, and F, notes, examples, and the index are
informative.

End of informative text.
Informative text is indicated in the following ways:

1. Whole or partial clauses or annexes delimited by “This clause/text is informative”and “End of
informative text”.

2. [Example: The following example ... code fragment, possibly with some narrative ... end example]
3. [Note: narrative ... end note]

All text not marked as being informative is normative.

13

8 Language overview

8. Language overview

This clause is informative.

C# (pronounced “C Sharp™) is a simple, modern, object oriented, and type-safe programming language. It
will immediately be familiar to C and C++ programmers. C# combines the high productivity of Rapid
Application Development (RAD) languages and the raw power of C++.

The rest of this clause describes the essential features of the language. While later clauses describe rules and
exceptions in a detail-oriented and sometimes mathematical manner, this clause strives for clarity and
brevity at the expense of completeness. The intent is to provide the reader with an introduction to the
language that will facilitate the writing of early programs and the reading of later clauses.

8.1 Getting started
The canonical “hello, world” program can be written as follows:
using System;

class Hello

static void Main(Q) {
Console._WriteLine(""hello, world™);
}

}

The source code for a C# program is typically stored in one or more text files with a file extension of .cs, as
in hello.cs. Using a command-line compiler, such a program can be compiled with a command line like

csc hello.cs

which produces an application named hel lo.exe. The output produced by this application when it is run
is:

hello, world
Close examination of this program is illuminating:

e Theusing System; directive references a namespace called System that is provided by the Common
Language Infrastructure (CLI) class library. This namespace contains the Console class referred to in
the Main method. Namespaces provide a hierarchical means of organizing the elements of one or more
programs. A using directive enables unqualified use of the types that are members of the namespace.
The “hello, world” program uses Console_WriteLine as shorthand for
System.Console._WriteLine

e The Main method is a member of the class Hel lo. It has the static modifier, and so it is a method on
the class He l 1o rather than on instances of this class.

e The entry point for an application—the method that is called to begin execution—is always a static
method named Main.

e The “hello, world” output is produced using a class library. This standard does not include a class
library. Instead, it references the class library provided by CLI.

For C and C++ developers, it is interesting to note a few things that do not appear in the “hello, world”
program.

e The program does not use a global method for Main. Methods and variables are not supported at the
global level; such elements are always contained within type declarations (e.g., class and struct
declarations).

15

C# LANGUAGE SPECIFICATION

e The program does not use either “: - or “~>" operators. The “: - token is used only to separate a
namespace alias from a member of the namespace, and the “->" operator is used in only a small fraction
of programs (which involve unsafe code). The separator “.” is used in compound names such as
Console._WritelLine.

e The program does not contain forward declarations. Forward declarations are never needed, as
declaration order is not significant.

e The program does not use #include to import program text. Dependencies among programs are
handled symbolically rather than textually. This approach eliminates barriers between applications
written using multiple languages. For example, the Console class need not be written in C#.

8.2 Types

C# supports two kinds of types: value types and reference types. Value types include simple types (e.g.,
char, int, and Float), enum types, and struct types. Reference types include class types, interface types,
delegate types, and array types.

Value types differ from reference types in that variables of the value types directly contain their data,
whereas variables of the reference types store references to objects. With reference types, it is possible for
two variables to reference the same object, and thus possible for operations on one variable to affect the
object referenced by the other variable. With value types, the variables each have their own copy of the data,
and it is not possible for operations on one to affect the other.

The example
using System;
struct Structl

public int Value;

class Classl

public int Value = 0;

class Test

static void Main(Q) {
Structl vall = new Structl();
Structl val2 = vall;
val2.Value = 123;

Classl refl = new Classl();
Classl ref2 = refl;
ref2.vValue = 123;

Console._WriteLine(""Values: {0}, {1}, vall.value, val2.VvValue);
Console._WriteLine("Refs: {0}, {1}", refl.value, ref2._Value);

}
}

shows this difference. The output produced is

Values: 0, 123
Refs: 123, 123

The assignment to a field of the local variable val2 does not impact the local variable val 1 because both
local variables are of a value type (the type Structl) and each local variable of a value type has its own
storage. In contrast, the assignment ref2.vValue = 123; affects the object that both ref1 and ref2
reference.

The lines

Console_WriteLine('Values: {0}, {1}, vall_value, val2_Vvalue);
Console._WriteLine(""Refs: {0}, {1}, refl.value, ref2.Value);

16

8 Language overview

deserve further comment, as they demonstrate some of the string formatting behavior of
Console.WritelLine, which, in fact, takes a variable number of arguments. The first argument is a string,
which can contain numbered placeholders like {0} and {1}. Each placeholder refers to a trailing argument
with {0} referring to the second argument, {1} referring to the third argument, and so on. Before the output
is sent to the console, each placeholder is replaced with the formatted value of its corresponding argument.

Developers can define new value types through enum and struct declarations, and can define new reference
types via class, interface, and delegate declarations. The example

using System;
public enum Color

Red, Blue, Green

ublic struct Point

public int x, y;

ublic interface IBase

void FQ;

ublic interface IDerived: IBase

void GQ);

ublic class A

AT W AT W AT W AT W

protected virtual void HQ {
Console.WriteLine("'A.H™);

}

public class B: A, IDerived

public void FQ {
Console_WriteLine(""B.F, implementation of IDerived.F");
}

public void GO {
Console_WriteLine(""'B.G, implementation of IDerived.G");
}

override protected void HO {
Console_WriteLine("'B.H, override of A_H");
}

}
public delegate void EmptyDelegate();
shows an example of each kind of type declaration. Later clauses describe type declarations in detail.

8.2.1 Predefined types
C# provides a set of predefined types, most of which will be familiar to C and C++ developers.
The predefined reference types are object and string. The type object is the ultimate base type of all

other types. The type string is used to represent Unicode string values. Values of type string are
immutable.

The predefined value types include signed and unsigned integral types, floating-point types, and the types
bool, char, and decimal. The signed integral types are sbyte, short, int, and long; the unsigned
integral types are byte, ushort, uint, and ulong; and the floating-point types are float and double.

17

C# LANGUAGE SPECIFICATION

The bool type is used to represent Boolean values: values that are either true or false. The inclusion of bool
makes it easier to write self-documenting code; it also helps eliminate the all-too-common C++ coding error

in which a developer mistakenly uses “=" when *“=="should have been used. In C#, the example
int i = .;
F(i);
if E; = 0) // Bug: the test should be (i == 0)
GQO;

results in a compile-time error because the expression i = 0 is of type int, and if statements require an
expression of type bool.

The char type is used to represent Unicode code units. A variable of type char represents a single 16-bit
Unicode code unit.

The decimal type is appropriate for calculations in which rounding errors caused by floating point
representations are unacceptable. Common examples include financial calculations such as tax computations
and currency conversions. The decimal type provides for at least 28 significant digits.

The table below lists the predefined types, and shows how to write literal values for each of them.

Type Description Example

object | The ultimate base type of all other types object o = null;

string String type; a string is a sequence of Unicode code string s = "hello™;

units

sbyte 8-bit signed integral type sbyte val = 12;

short 16-bit signed integral type short val = 12;

int 32-bit signed integral type int val = 12;

long 64-bit signed integral type long vall = 12;
long val2 = 34L;

byte 8-bit unsigned integral type byte vall = 12;

ushort | 16-bit unsigned integral type ushort vall = 12;

uint 32-bit unsigned integral type uint vall = 12;
uint val2 = 34U;

ulong 64-bit unsigned integral type ulong vall = 12;
ulong val2 = 34U;
ulong val3 = 56L;
ulong val4 = 78UL;

float Single-precision floating point type float val = 1.23F;

double | Double-precision floating point type double vall = 1.23;
double val2 = 4.56D;

bool Boolean type; a bool value is either true or false bool vall = true;
bool val2 = false;

char Character type; a char value is a Unicode code unit char val = "h";

decimal | precise decimal type with at least 28 significant digits | decimal val = 1.23M;

Each of the predefined types is shorthand for a system-provided type. For example, the keyword int refers
to the struct System. Int32. As a matter of style, use of the keyword is favored over use of the complete
system type name.

Predefined value types such as int are treated specially in a few ways but are for the most part treated
exactly like other structs. Operator overloading enables developers to define new struct types that behave
much like the predefined value types. For instance, a Digit struct can support the same mathematical

18

8 Language overview

operations as the predefined integral types, and can define conversions between Digit and predefined
types.

The predefined types employ operator overloading themselves. For example, the comparison operators ==
and = have different semantics for different predefined types:

o Two expressions of type int are considered equal if they represent the same integer value.

o Two expressions of type object are considered equal if both refer to the same object, or if both are
null.

o Two expressions of type string are considered equal if the string instances have identical lengths and
identical characters in each character position, or if both are nul .

The example
using System;
class Test

static void Main(Q {
string s = "Test";
string t = string.Copy(s);
Console._WriteLine(s == t);
Console._WriteLine((object)s == (object)t);
}
}

produces the output

True
False

because the first comparison compares two expressions of type string, and the second comparison
compares two expressions of type object. (Note that when the Standard Library produces a string
representation of a Boolean value, as is the case with System._WriteLine above, it uses “True” and
“False”, while the corresponding C# language Boolean literals are spelled true and false.)

8.2.2 Conversions

The predefined types also have predefined conversions. For instance, conversions exist between the
predefined types int and long. C# differentiates between two kinds of conversions: implicit conversions
and explicit conversions. Implicit conversions are supplied for conversions that can safely be performed
without careful scrutiny. For instance, the conversion from int to long is an implicit conversion. This
conversion always succeeds, and never results in a loss of information. The following example

using System;
class Test

{
static void Main(Q {
int intvValue = 123;
long longvValue = intValue;
Console._WriteLine("{0}, {1}", intvalue, longValue);
}
}

implicitly converts an int to a long.

In contrast, explicit conversions are performed with a cast expression. The example
using System;

19

C# LANGUAGE SPECIFICATION

class Test

static void Main(Q) {
long longValue = Int64._MaxValue;
int intvValue = (int) longvalue;
Console._WriteLine(""(int) {0} = {1}, longvalue, intValue);
}
}

uses an explicit conversion to convert a long to an int. The output is:
(int) 9223372036854775807 = -1

because an overflow occurs. Cast expressions permit the use of both implicit and explicit conversions.

8.2.3 Array types
Arrays can be single-dimensional or multi-dimensional. Both “rectangular” and “jagged” arrays are
supported.
Single-dimensional arrays are the most common type. The example
using System;
class Test

static void Main(Q) {
int[] arr = new Int[5];
for (int i = 0; 1 < arr.Length; i++)
arr[i] =1 * i3

for (int 1 = 0; 1 < arr.Length; i++)
3 Console._WriteLine("arr[{0}] = {1}, i, arr[i]);
}

creates a single-dimensional array of int values, initializes the array elements, and then prints each of them
out. The output produced is:

arr[0] =0
arr[l] =1
arr[2] = 4
arr[3] = 9
arr[4] = 16

The type int[] used in the previous example is an array type. Array types are written using a non-array-
type followed by one or more rank specifiers. The example

class Test

static void Main(Q) {

int[] ai; // single-dimensional array of int

int[,] a2; // 2-dimensional array of int

int[,,] a3; // 3-dimensional array of int

int[1[1 j2; // "jagged" array: array of (array of int)
int[10111 13; // array of (array of (array of int))

}
}

shows a variety of local variable declarations that use array types with int as the element type.

Array types are reference types, and so the declaration of an array variable merely sets aside space for the
reference to the array. Array instances are actually created via array initializers and array creation
expressions. The example

20

8 Language overview

class Test

static void Main(Q) {
int[] al = new int[] {1, 2, 3};
int[,] a2 = new int[,] {{1, 2, 3}, {4, 5, 6}};
int[,,] a3 = new int[10, 20, 30];

int[J[1 j2 = new int[3][1;

J2[0] = new int[] {1, 2, 3};
J2[1] = new int[] {1, 2, 3, 4, 5, 6};
J2[2] = new int[] {1, 2, 3, 4, 5, 6, 7, 8, 9};

}

shows a variety of array creation expressions. The variables al, a2 and a3 denote rectangular arrays, and
the variable j2 denotes a jagged array. It should be no surprise that these terms are based on the shapes of
the arrays. Rectangular arrays always have a rectangular shape. Given the length of each dimension of the
array, its rectangular shape is clear. For example, the lengths of a3’s three dimensions are 10, 20, and 30,
respectively, and it is easy to see that this array contains 10*20*30 elements.

In contrast, the variable j2 denotes a “jagged” array, or an “array of arrays”. Specifically, j2 denotes an
array of an array of int, or a single-dimensional array of type int[]. Each of these int[] variables can be
initialized individually, and this allows the array to take on a jagged shape. The example gives each of the
int[] arrays a different length. Specifically, the length of j2[0] is 3, the length of j2[1] is 6, and the
length of j2[2] is 9.

[Note: In C++, an array declared as int x[3][5][7] would be considered a three dimensional rectangular
array, while in C#, the declaration int[][][] declares a jagged array type. end note]

The element type and shape of an array—including whether it is jagged or rectangular, and the number of
dimensions it has—are part of its type. On the other hand, the size of the array—as represented by the length
of each of its dimensions—is not part of an array’s type. This split is made clear in the language syntax, as
the length of each dimension is specified in the array creation expression rather than in the array type. For
instance the declaration

int[,,] a3 = new int[10, 20, 30];
has an array type of int[, ,] and an array creation expression of new int[10, 20, 30].

For local variable and field declarations, a shorthand form is permitted so that it is not necessary to re-state
the array type. For instance, the example

int[] al = new int[] {1, 2, 3};
can be shortened to

int[] a1 = {1, 2, 3};
without any change in program semantics.

The context in which an array initializer such as {1, 2, 3} is used determines the type of the array being
initialized. The example

class Test

static void Main(Q) {
short[] a = {1, 2, 3};
int[] b = {1, 2, 3};
long[] c = {1, 2, 3};

}
}

shows that the same array initializer syntax can be used for several different array types. Because context is
required to determine the type of an array initializer, it is not possible to use an array initializer in an
expression context without explicitly stating the type of the array.

21

C# LANGUAGE SPECIFICATION

8.2.4 Type system unification

C# provides a “unified type system”. All types—including value types—derive from the type object. It is
possible to call object methods on any value, even values of “primitive” types such as int. The example

using System;
class Test

static void Main() {
Console._WriteLine(3.ToString());
}

}

calls the object-defined ToString method on an integer literal, resulting in the output “3”.

The example
class Test

static void Main(Q) {
int i = 123;
object o = i; // boxing
int § = (int) o; // unboxing

}

is more interesting. An int value can be converted to object and back again to int. This example shows
both boxing and unboxing. When a variable of a value type needs to be converted to a reference type, an
object box is allocated to hold the value, and the value is copied into the box. Unboxing is just the opposite.
When an object box is cast back to its original value type, the value is copied out of the box and into the
appropriate storage location.

This type system unification provides value types with the benefits of object-ness without introducing
unnecessary overhead. For programs that don’t need int values to act like objects, int values are simply
32-bit values. For programs that need int values to behave like objects, this capability is available on
demand. This ability to treat value types as objects bridges the gap between value types and reference types
that exists in most languages. For example, a Stack class can provide Push and Pop methods that take and
return object values.

public class Stack

public object Pop() {.}
public void Push(object o) {.}

Because C# has a unified type system, the Stack class can be used with elements of any type, including
value types like int.

8.3 Variables and parameters

Variables represent storage locations. Every variable has a type that determines what values can be stored in
the variable. Local variables are variables that are declared in function members such as methods,
properties, and indexers. A local variable is defined by specifying a type name and a declarator that specifies
the variable name and an optional initial value, as in:

int a;
int b =1;

but it is also possible for a local variable declaration to include multiple declarators. The declarations of a
and b can be rewritten as:

int a, b = 1;
A variable shall be assigned before its value can be obtained. The example

22

8 Language overview

class Test

static void Main() {

int a;
int b = 1;
int c = a+ b; // error, a not yet assigned

}
}

results in a compile-time error because it attempts to use the variable a before it is assigned a value. The
rules governing definite assignment are defined in §12.3.

A field (817.4) is a variable that is associated with a class or struct, or an instance of a class or struct. A field
declared with the static modifier defines a static variable, and a field declared without this modifier
defines an instance variable. A static variable is associated with a type, whereas an instance variable is
associated with an instance. The example

using Personnel .Data;
class Employee

private static DataSet ds;

public string Name;
public decimal Salary;

}

shows an Employee class that has a private static variable and two public instance variables.

Formal parameter declarations also define variables. There are four kinds of parameters: value parameters,
reference parameters, output parameters, and parameter arrays.

A value parameter is used for “in” parameter passing, in which the value of an argument is passed into a
method, and modifications of the parameter do not impact the original argument. A value parameter refers to
its own variable, one that is distinct from the corresponding argument. This variable is initialized by copying
the value of the corresponding argument. The example

using System;

class Test

{
static void F(int p) {
Console.WriteLine("p = {0}, p);
p++;
}
static void Main(Q) {
int a =1;
Console._WriteLine(""pre: a = {0}, a);
F(a);
Console._WriteLine("post: a = {0}, a);
}
¥

shows a method F that has a value parameter named p. The example produces the output:
pre: a=1
p=1
post: a =1

even though the value parameter p is modified.

A reference parameter is used for “by reference” parameter passing, in which the parameter acts as an alias
for a caller-provided argument. A reference parameter does not itself define a variable, but rather refers to
the variable of the corresponding argument. Modifications of a reference parameter impact the
corresponding argument. A reference parameter is declared with a ref modifier. The example

using System;

23

C# LANGUAGE SPECIFICATION

class Test

static v0|d Swap(ref int a, ref int b) {

int t = a;
a = b;
b = t;
}
static v0|d Maln() {
int x =
inty = 2;
Console_WriteLine('pre: x = {0}, v = {1}, X, y);
Swap(ref x, ref y);
Console._WriteLine("post: x = {0}, v = {1}, X, VY);
}
}
shows a Swap method that has two reference parameters. The output produced is:
prez: x =1,y =2
post: x =2,y =1

The ref keyword shall be used in both the declaration of the formal parameter and in uses of it. The use of
ref at the call site calls special attention to the parameter, so that a developer reading the code will
understand that the value of the argument could change as a result of the call.

An output parameter is similar to a reference parameter, except that the initial value of the caller-provided
argument is unimportant. An output parameter is declared with an out modifier. The example

using System;
class Test

static void Divide(int a, int b, out int result, out int remainder) {
result = a / b,
remainder = a % b;

}

static void Maln()
for (int i = 1; < 10; i++)
for (|nt Jj =1; j <10; j++) {
int ans, r
D|V|de(| , out ans, out r);
Console. erteLlne({O} / {1} = {23r{3}", i, j, ans, r);

[T TP

}
}
}

shows a Divide method that includes two output parameters—one for the result of the division and another
for the remainder.

For value, reference, and output parameters, there is a one-to-one correspondence between caller-provided
arguments and the parameters used to represent them. A parameter array enables a many-to-one
relationship: many arguments can be represented by a single parameter array. In other words, parameter
arrays enable variable length argument lists.

A parameter array is declared with a params modifier. There can be only one parameter array for a given
method, and it shall always be the last parameter specified. The type of a parameter array is always a single
dimensional array type. A caller can either pass a single argument of this array type, or any number of
arguments of the element type of this array type. For instance, the example

using System;

24

8 Language overview

class Test

static void F(params int[] args) {
Console._WriteLine("# of arguments: {0}, args.Length);
for (int i = 0; 1 < args.Length; i++)
Console_WriteLine(""\targs[{0}] = {1}, 1, args[i]);

3
static void Main(Q {

FQOj;

F(1);

F(1, 2);

F(1, 2, 3);

F(new int[] {1, 2, 3, 4});
s

}

shows a method F that takes a variable number of int arguments, and several invocations of this method.
The output is:

of arguments: O
of arguments: 1

args[o0] =1

of arguments: 2
args[o0] =1
args[1] = 2

of arguments: 3
args[o0] =1
args[1] = 2
args[2] = 3

of arguments: 4
args[o0] =1
args[1] = 2
args[2] = 3
args[3] = 4

Most of the examples presented in this introduction use the WriteLine method of the Console class. The
argument substitution behavior of this method, as exhibited in the example

inta=1, b = 2;
Console_WriteLine("a = {0}, b = {1}, a, b);

is accomplished using a parameter array. The WriteLine method provides several overloaded methods for
the common cases in which a small number of arguments are passed, and one method that uses a parameter
array.

namespace System
public class Console

public static void WriteLine(string s) {.}
public static void WriteLine(string s, object a) {.}
public static void WriteLine(string s, object a, object b) {.}

Bublic static void WriteLine(string s, params object[] args) {.}
}

8.4 Automatic memory management

Manual memory management requires developers to manage the allocation and de-allocation of blocks of
memory. Manual memory management can be both time-consuming and difficult. In C#, automatic memory
management is provided so that developers are freed from this burdensome task. In the vast majority of
cases, automatic memory management increases code quality and enhances developer productivity without
negatively impacting either expressiveness or performance.

The example
using System;

25

C# LANGUAGE SPECIFICATION

public class Stack

private Node first = null;
public bool Empty {

get {
return (First == null);

}
public object Pop() {
if (First == null)
throw new Exception(*'Can"t Pop from an empty Stack.'™);
else {
object temp = first.Value;
first = First_Next;
return temp;

}

public void Push(object 0) {
first = new Node(o, First);

class Node

public Node Next;
public object Value;
public Node(object value): this(value, null) {}
public Node(object value, Node next) {
Next = next;
Value = value;

}
}
}

shows a Stack class implemented as a linked list of Node instances. Node instances are created in the Push
method and are garbage collected when no longer needed. A Node instance becomes eligible for garbage
collection when it is no longer possible for any code to access it. For instance, when an item is removed
from the Stack, the associated Node instance becomes eligible for garbage collection.

The example
class Test

{
static void Main(Q) {
Stack s = new Stack();
for (int i = 0; 1 < 10; i++)
s.Push(i);
s = null;
}
}

shows code that uses the Stack class. A Stack is created and initialized with 10 elements, and then
assigned the value null . Once the variable s is assigned null, the Stack and the associated 10 Node
instances become eligible for garbage collection. The garbage collector is permitted to clean up immediately,
but is not required to do so.

The garbage collector underlying C# might work by moving objects around in memory, but this motion is
invisible to most C# developers. For developers who are generally content with automatic memory
management but sometimes need fine-grained control or that extra bit of performance, C# provides the
ability to write “unsafe” code. Such code can deal directly with pointer types and object addresses; however,
C# requires the programmer to fix objects to temporarily prevent the garbage collector from moving them.

This “unsafe” code feature is in fact a “safe” feature from the perspective of both developers and users.
Unsafe code shall be clearly marked in the code with the modifier unsafe, so developers can't possibly use
unsafe language features accidentally, and the compiler and the execution engine work together to ensure

26

8 Language overview

that unsafe code cannot masquerade as safe code. These restrictions limit the use of unsafe code to situations
in which the code is trusted.

The example
using System;
class Test

static void WriteLocations(byte[] arr) {
unsafe {
Ffixed (byte* pArray = arr) {
byte* pElem = pArray;
for (int i = 0; i1 < arr.Length; i++) {
byte value = *pElem;
Console._WriteLine(arr[{0}] at Ox{1:X} is {2}",
i, (uint)pElem, value);
pElem++;
}
}
}
}

static void Main(Q) {
byte[] arr = new byte[] {1, 2, 3, 4, 5};
WritelLocations(arr);

}

}
shows an unsafe block in a method named WriteLocations that fixes an array instance and uses pointer
manipulation to iterate over the elements. The index, value, and location of each array element are written to
the console. One possible example of output is:

arr[0] at Ox8E0360 is 1

arr[1] at Ox8E0361 is 2

arr[2] at Ox8E0362 is 3

arr[3] at Ox8E0363 is 4
arr[4] at Ox8E0364 is 5

but, of course, the exact memory locations can be different in different executions of the application.

8.5 Expressions

C# includes unary operators, binary operators, and one ternary operator. The following table summarizes the
operators, listing them in order of precedence from highest to lowest:

27

C# LANGUAGE SPECIFICATION

Subclause | Category Operators
14.5 Primary x.y F(x) a[x] x++ x-- new
typeof checked unchecked

14.5.14 Unary + - b~ Hx —=x (DX

14.7 Multiplicative | > 7/ %

14.7 Additive -

14.8 Shift << >>

14.9 Relationaland |< > <= >= s as
type-testing

14.9 Equality = I=

14.10 Logical AND | &

14.10 Logical XOR | *

14.10 Logical OR |

14.11 Conditional &&
AND

14.11 Conditional OR | I

14.13 Conditional ?:

14.14 Assignment = *= /= %= += = <<= >>= &= M= =

When an expression contains multiple operators, the precedence of the operators controls the order in which
the individual operators are evaluated. For example, the expression x + y * zis evaluated as
x + (y * Zz) because the * operator has higher precedence than the + operator.

When an operand occurs between two operators with the same precedence, the associativity of the operators
controls the order in which the operations are performed:

o Except for the assignment operators, all binary operators are left-associative, meaning that operations
are performed from left to right. For example, x + y + zisevaluated as (x +y) + z.

e The assignment operators and the conditional operator (?:) are right-associative, meaning that
operations are performed from right to left. For example, x = y = zisevaluatedasx = (y = 2).

Precedence and associativity can be controlled using parentheses. For example, x + y * z first multiplies
y by z and then adds the result to x, but (x + y) * z first adds x and y and then multiplies the result by z.

8.6 Statements

C# borrows most of its statements directly from C and C++, though there are some noteworthy additions and
modifications. The table below lists the kinds of statements that can be used, and provides an example for
each.

28

8 Language overview

Statement Example
Statement lists and block Statlizt(?)_/Oid Main() {
statements 60):
{
HQ);
10:
}

Labeled statements and goto
statements

static void Main(string[] args) {
if (args.Length == 0)
goto done;
Console.WriteLine(args.Length);

done:
Console.WriteLine(''Done™);

Local constant declarations

static void Main() {
const float pi = 3.14fF;
const int r = 123;
Console._WriteLine(pi * r * r);

b5
Local variable declarations StatiCtVOid Main() {
int a;
int b =2, c = 3;
a=1;
Console_WriteLine(a + b + ¢);
by

Expression statements

static int F(int a, int b) {
return a + b;
3

static void Main() {
F(1, 2); // Expression statement

i T statements

static void Main(string[] args) {
if (args.Length == 0)
Console_WriteLine("'No args');
else
Console._WriteLine("Args');

3

switch statements

static void Main(string[] args) {
switch (args.Length) {

case O:
Console._WriteLine("'"No args™);
break;

case 1:
Console_WriteLine("'One arg ");
break;

default:
int n = args.Length;
Console._WriteLine("'{0} args', n);

break;
}
3
whi le statements static void Main(string[] args) {
int i = 0;
while (i < args.Length) {
Console._WriteLine(args[i]);
i++;
}
}

29

C# LANGUAGE SPECIFICATION

30

do statements

static void Main(Q) {

string s;
do { s = Console.ReadLine(); }
while (s = "Exit");

for statements

static void Main(string[] args) {
for (int 1 = 0; i < args.Length; i++)
Console_WriteLine(args[i]);

+

Fforeach statements

static void Main(string[] args) {
foreach (string s in args)
Console_WriteLine(s);

}
break statements static void Main(string[] args) {
int i = 0;
while (true) {
if (i == args.Length)
break;
Console._WriteLine(args[i++]);
}
}
continue statements StatiCtVQid E/I)ain(string[] args) {
int i =0;
while (true) {
Console_WriteLine(args[i++]);
if (i < args.Length)
continue;
break;
}
}

return statements

static int F(int a, int b) {
return a + b;
3

static void Main() {
Console.WriteLine(F(1, 2));
return;

3

yield statements

static IEnumerable<int> FromTo(int a, int b) {
if (a > Db)
yield break;
for (; ; at+) {
yield return a;
if (a == b)
break;
}
}

throw statements and try
statements

static int F(int a, int b) {
it (b ==
throw new Exception("'Divide by zero");
return a / b;

}

static void Main() {
try {
Console._WriteLine(F(5, 0));

catch(Exception e) {
Console._WriteLine("Error™);
}

+

8 Language overview

checked and unchecked
statements

static void Main() {
int x = Int32_MaxValue;
Console._WriteLine(x + 1); // Overflow
checked {
Console._WriteLine(x + 1); // Exception

unchecked {
Console._WriteLine(x + 1); // Overflow

lock statements

}

3

static void Main(Q) {
Aa=.;
lock(a) {

a.P = a.P + 1;
}
3

using statements

static void Main() {
using (Resource r = new Resource()) {

r.-FQ;

8.7 Classes

Class declarations define new reference types. A class can inherit from another class, and can implement
interfaces. Generic class declarations (§25.1) have one or more type parameters.

Class members can include constants, fields, methods, properties, events, indexers, operators, instance
constructors, finalizers, static constructors, and nested type declarations. Each member has an associated
accessibility (810.5), which controls the regions of program text that are able to access the member. There
are five possible forms of accessibility. These are summarized in the table below.

Form Intuitive meaning
public Access not limited
protected Access limited to the containing class or types derived from the containing class
internal Access limited to this program
?;ggﬁﬁd Access limited to this program or types derived from the containing class
private Access limited to the containing type

The example

using System;
class MyClass

{

public const int MyConst = 12;

public int MyField = 34;
public static int MyStaticField = 34;

public void MyMethod(){
Console._WriteLine("MyClass.MyMethod™) ;
}

public int MyProperty {

get {
return MyField;
}

31

C# LANGUAGE SPECIFICATION

}

set {
MyField = value;

}

public event EventHandler MyEvent;

public int this[int index] {

get {
return O;

set {
Console._WriteLine(""this[{0}] = {1}", index, value);

}

public static MyClass operator+(MyClass a, MyClass b) {
return new MyClass(a-MyField + b_MyField);
}

public MyClass(Q {
Console_WriteLine("'Instance constructor™);
}

public MyClass(int value) {
MyField = value;
Console_WriteLine('Instance constructor™);

}

~MyClass() {
Console._WriteLine(""Finalizer'™);
3

static MyClass() {
MyStaticField *= 2;
Console_WriteLine('Static constructor™);

}

internal class MyNestedClass

{

shows a class that contains each kind of member. The example

32

class Test

static void Main(Q) {
// Instance constructor usage
MyClass a = new MyClass();
MyClass b new MyClass(123);

// Constant usage
Console_WriteLine('MyConst = {0}, MyClass.MyConst);

// Field usage
a.MyField++;
Console._WriteLine('a.MyField = {0}, a-MyField);

// Method usage
a.MyMethod(Q);

// Property usage

a.MyProperty++;

Console._WriteLine("a.MyProperty = {0}", a.MyProperty);
// Indexer usage

a[3] = a[1] = a[2];

Console._WriteLine("a[3] = {0}, a[3]D);

// Event usage

a.MyEvent += new EventHandler(MyHandler);

// Overloaded operator usage
MyClass ¢ = a + b;

8 Language overview

// Nested type usage
MyClass.MyNestedClass d = new MyClass.MyNestedClass();

static void MyHandler(object sender, EventArgs e) {
Console_WriteLine('Test_MyHandler');

}

shows uses of these members.

8.7.1 Constants

A constant is a class member that represents a constant value: a value that can be computed at compile-time.
Constants are permitted to depend on other constants within the same program as long as there are no
circular dependencies. The rules governing constant expressions are defined in 814.16. The example

class Constants

public const int A
public const int B

A+ 1;
3

shows a class named Constants that has two public constants.

Even though constants are considered static members, a constant declaration neither requires nor allows the
modifier static. Constants can be accessed through the class, as in

using System;
class Test

static void Main()
Console_WriteLine("'{0}, {1}", Constants.A, Constants.B);

}

which prints out the values of Constants.A and Constants. B, respectively.

8.7.2 Fields
A field is a member that represents a variable associated with an object or class. The example
class Color

internal ushort redPart;
internal ushort bluePart;
internal ushort greenPart;

public Color(ushort red, ushort blue, ushort green) {
redPart = red;
bluePart = blue;
greenPart = green;

public static Color Red = new Color(OxFF, 0, 0);

public static Color Blue = new Color(0, OxFF, 0);

public static Color Green new Color(0, 0, OxFF);
public static Color White new Color(OxFF, OxFF, OxFF);

}

shows a Color class that has internal instance fields named redPart, bluePart, and greenPart, and
static fields named Red, Blue, Green, and White

The use of static fields in this manner is not ideal. The fields are initialized at some point before they are
used, but after this initialization, there is nothing to stop a client from changing them. Such a modification
could cause unpredictable errors in other programs that use Color and assume that the values do not
change. Readonly fields can be used to prevent such problems. Assignments to a readonly field can only
occur as part of the declaration, or in an instance constructor or static constructor in the same class. A static
readonly field can be assigned in a static constructor, and a non-static readonly field can be assigned in an

33

C# LANGUAGE SPECIFICATION

instance constructor. Thus, the Color class can be enhanced by adding the modifier readonly to the static
fields:

class Color

{
internal ushort redPart;
internal ushort bluePart;
internal ushort greenPart;
public Color(ushort red, ushort blue, ushort green) {
redPart = red;
bluePart = blue;
greenPart = green;
public static readonly Color Red = new Color(OxFF, 0, 0);
public static readonly Color Blue = new Color(0, OxFF, 0);
public static readonly Color Green = new Color(0, 0, OxFF);
public static readonly Color White = new Color(OxFF, OxFF, OxFF);
}

8.7.3 Methods

A method is a member that implements a computation or action that can be performed by an object or class.
Methods have a (possibly empty) list of formal parameters, a return value (unless the method’s return-type is
void), and are either static or non-static. Static methods are accessed through the class. Non-static methods,
which are also called instance methods, are accessed through instances of the class. A generic method
(825.6) has a list of one or more type parameters. The example

using System;
public class Stack

{
public static Stack Clone(Stack s) {.}

public static Stack Flip(Stack s) {.}
public object Pop() {.}

public void Push(object o) {.}

public void PushMultiple<T>(T[]1 a) {.}
public override string ToString() {.}

}

class Test

static void Main(Q) {
Stack s = new Stack();
for (int i = 1; i < 10; i++)
s.Push(i);

Stack flipped = Stack.Flip(s);
Stack cloned = Stack.Clone(s);

Console_WriteLine("'Original stack: "™ + s._ToString());
Console._WriteLine("Flipped stack: " + Flipped.ToString());
Console._WriteLine('Cloned stack: " + cloned.ToString());

}
}

shows a Stack that has several static methods (Clone and Flip) and several instance methods (Pop, Push,
and ToString) and a generic method (PushMultiple<T>).

Methods can be overloaded, which means that multiple methods can have the same name so long as they
have unique signatures. The signature of a method consists of the name of the method and the number,
modifiers, and types of its formal parameters, and the number of generic type parameters. The signature of a
method does not include the return type or the names of the formal parameters or type parameters. The
example

34

8 Language overview

using System;
class Test

t static void FQO {

Console._WriteLine("FQ'™);

static void F(object 0) {
Console._WriteLine(""F(object)');

static void F(int value) {
Console._WriteLine("F(int)"™);

static void F(ref int value) {
Console._WriteLine("F(ref int)");

static void F(int a, int b) {
Console._WriteLine("F(int, int)™);

static void F(int[] values) {
Console._WriteLine("FGint[]D™);

static void F<T>(T t) {
Console_WriteLine("F<T>(T)");

static void Main(Q) {
FO;
F(1);
int i = 10;
F(ref 1);
F((object)1);
F(1, ;
F(new int[] {1, 2, 3});
F('Hello™);
F<string>("World™);

}
}

shows a class with a number of methods called F. The output produced is
FQO
F(int)
F(ref 1int)
F(object)
F(int, int)
FCintLD
F<T>(T)
F<T>(T)

8.7.4 Properties

A property is a member that provides access to a characteristic of an object or a class. Examples of
properties include the length of a string, the size of a font, the caption of a window, the name of a customer,
and so on. Properties are a natural extension of fields. Both are named members with associated types, and
the syntax for accessing fields and properties is the same. However, unlike fields, properties do not denote
storage locations. Instead, properties have accessors that specify the statements to be executed when their
values are read or written.

Properties are defined with property declarations. The first part of a property declaration looks quite similar
to a field declaration. The second part includes a get accessor and/or a set accessor. In the example below,
the Button class defines a Caption property.

35

C# LANGUAGE SPECIFICATION

public class Button

private string caption;

public string Caption {
get {
return caption;

}

set {
caption = value;
Repaint();

}

Properties that can be both read and written, such as Caption, include both get and set accessors. The get

accessor is called when the property’s value is read; the set accessor is called when the property’s value is

written. In a set accessor, the new value for the property is made available via an implicit parameter named
value.

The declaration of properties is relatively straightforward, but the real value of properties is seen when they
are used. For example, the Caption property can be read and written in the same way that fields can be read
and written:

Button b = new Button();

b.Caption = "ABC"; // set; causes repaint

string s = b.Caption; // get

b.Caption += "DEF"; // get & set; causes repaint
8.7.5 Events

An event is a member that enables an object or class to provide notifications. A class defines an event by
providing an event declaration (which resembles a field declaration, though with an added event keyword)
and an optional set of event accessors. The type of this declaration shall be a delegate type.

An instance of a delegate type encapsulates one or more callable entities. For instance methods, a callable
entity consists of an instance and a method on that instance. For static methods, a callable entity consists of
just a method. Given a delegate instance and an appropriate set of arguments, one can invoke all of that
delegate instance’s methods with that set of arguments.
In the example

public delegate void EventHandler(object sender, System.EventArgs e);

public class Button

public event EventHandler Click;
public void Reset() {

Click = null;
}

}

the Button class defines a Click event of type EventHandler. Inside the Button class, the Click
member is exactly like a private field of type EventHandler. However, outside the Button class, the
Click member can only be used on the left-hand side of the += and —= operators. The += operator adds a
handler for the event, and the -= operator removes a handler for the event. The example

using System;
public class Forml

public Formi() {
// Add Buttonl Click as an event handler for Buttonl’s Click event
Buttonl.Click += new EventHandler(Buttonl Click);

Button Buttonl = new Button();

36

8 Language overview

void Buttonl Click(object sender, EventArgs e) {
Console._WriteLine("Buttonl was clicked!");

public void Disconnect() {
Buttonl.Click -= new EventHandler(Buttonl Click);

}

shows a Form1 class that adds Button1_Click as an event handler for Buttonl’s Click event. In the
Disconnect method, that event handler is removed.
For a simple event declaration such as

public event EventHandler Click;

the compiler automatically provides the implementation underlying the += and -= operators.

An implementer who wants more control can get it by explicitly providing add and remove accessors. For
example, the Button class could be rewritten as follows:

public class Button

private EventHandler handler;
public event EventHandler Click {
add { handler += value; }

remove { handler -= value; }

}
}

This change has no effect on client code, but allows the Button class more implementation flexibility. For
example, the event handler for Click need not be represented by a field.

8.7.6 Operators

An operator is a member that defines the meaning of an expression operator that can be applied to instances
of the class. Three kinds of operators can be defined: unary, binary, and conversion.

The following example defines a Digi t type that represents decimal digits—integral values between 0
and 9.

using System;

public struct Digit
{

byte value;

public Digit(int value) {
if (value < 0 || value > 9) throw new ArgumentException();
this.value = (byte)value;

}

public static implicit operator byte(Digit d) {
return d.value;
}

public static explicit operator Digit(int value) {
return new Digit(value);
}

public static Digit operator+(Digit a, Digit b) {
return new Digit(a.value + b.value);
}

public static Digit operator-(Digit a, Digit b) {
return new Digit(a.value - b.value);

¥

public static bool operator==(Digit a, Digit b) {
return a.value == b.value;

¥

37

C# LANGUAGE SPECIFICATION

public static bool operator!=(Digit a, Digit b) {
return a.value = b.value;

public override bool Equals(object value) {
if (value == null) return false;
it (GetType() == value.GetType()) return this == (Digit)value;
return false;

}

public override int GetHashCode() {
return value.GetHashCode();
}

public override string ToString() {
return value.ToString();
}

}

class Test

static void Maln() {
Digit a = (Digit)
Digit b = (Digit)
Digit plus = a + b;
Digit minus = b
bool equals = (a == b);
Console._WriteLine("'{0} + {1

5!
3,

+ = {2}, b plus);
Console._WriteLine(""{0} - {1} = {2}", minus) ;
Console._WriteLine("{0} == {1} = {2} a, b, equals);

}
}

The Digi t type defines the following operators:

An implicit conversion operator from Digit to byte.

An explicit conversion operator from int to Digit.

An addition operator that adds two Digi t values and returns a Digit value.

A subtraction operator that subtracts one Digit value from another, and returns a Digit value.

The equality (==) and inequality (¥=) operators, which compare two Digit values.

8.7.7 Indexers

An indexer is a member that enables an object to be indexed in the same way as an array. Whereas
properties enable field-like access, indexers enable array-like access.

As an example, consider the Stack class presented earlier. The designer of this class might want to expose
array-like access so that it is possible to inspect or alter the items on the stack without performing
unnecessary Push and Pop operations. That is, class Stack is implemented as a linked list, but it also
provides the convenience of array access.

Indexer declarations are similar to property declarations, with the main differences being that indexers are
nameless (the “name” used in the declaration is this, since this is being indexed) and that indexers
include indexing parameters. The indexing parameters are provided between square brackets. The example

38

using System;

8 Language overview

public class Stack

}

private Node GetNode(int index) {
Node temp = First;
while (true) {
if (temp == null]| index < 0)
throw new Exception('Index out of range.');
if (index == 0)
return temp;
temp = temp.Next;

index--;
}
}
public object this[int index] {
get {
return GetNode(index).Value;
}
set {
GetNode(index).Value = value;
}

class Test

{

}

static void Main() {
Stack s = new Stack(Q);

s.Push(1);

s.Push(2);

s.Push(3);

s[0] = 33; // Changes the top item from 3 to 33
s[1] = 22; // Changes the middle item from 2 to 22
s[2] = 11; // Changes the bottom item from 1 to 11

}

shows an indexer for the Stack class.

8.7.8 Instance constructors
An instance constructor is a member that implements the actions required to initialize an instance of a class.

The example
using System;

class Point

{

public double x, y;

public P0|nt() {
this.x
this.y

0;

public Point(double x, double y) {
this.x = X;

this.y = vy;

public static double Distance(Point a, Point b) {
double xdiff = a.x - b.x;
double ydiff = _y - b.

Ys
return Math_Sqrt(xdiff * xdiff + ydiff * ydiff);

39

C# LANGUAGE SPECIFICATION

public override string ToString() {
return string.Format(""({0}, {1})"., X, Y);

}

class Test

static void Main() {
Point a = new Point();
Point b new Point(3, 4);
double d = Point.Distance(a, b);
Console._WriteLine("'Distance from {0} to {1} is {2}, a, b, d);

}
}

shows a Point class that provides two public instance constructors, one of which takes no arguments, while
the other takes two double arguments.

If no instance constructor is supplied for a class, then one having no parameters is automatically provided,
which simply invokes the parameterless constructor of the direct base class.

8.7.9 Finalizers

A finalizer is a member that implements the actions required to finalize an instance of a class. Finalizers
cannot have parameters, they cannot have accessibility modifiers, and they cannot be called explicitly. The
finalizer for an instance is called automatically during garbage collection.
The example

using System;

class Point

{
public double x, y;
public Point(double x, double y) {
this.x = Xx;
this.y = y;
~Point() {
Console._WriteLine(""Finalized {0}, this);
}
public override string ToString() {
return string.Format(" ({0}, {1D", X, V);
}
}

shows a Point class with a finalizer.

8.7.10 Static constructors

A static constructor is a member that implements the actions required to initialize a class. Static constructors
cannot have parameters, they cannot have accessibility modifiers, and they cannot be called explicitly. The
static constructor for a class is called automatically.

The example

using Personnel .Data;
class Employee

private static DataSet ds;

static Employee() {
ds = new DataSet(...);
b

40

8 Language overview

public string Name;
public decimal Salary;

}

shows an Employee class with a static constructor that initializes a static field.

8.7.11 Inheritance
Classes support single inheritance, and the type object is the ultimate base class for all classes.

The classes shown in earlier examples all implicitly derive from object. The example
using System;
class A

public void F(Q) { Console._WriteLine("A.F'"); }

shows a class A that implicitly derives from object. The example
class B: A

public void G { Console.WriteLine("'B.G"); }

class Test

{
static void Main(Q {
B b= new BQ;
b.FQO; // lInherited from A
b.GQO; // Introduced in B
A a = b; // Treat a B as an A
a.FQ;
}
}

shows a class B that derives from A. The class B inherits A’s F method, and introduces a G method of its own.
Methods, properties, and indexers can be virtual, which means that their implementation can be overridden
in derived classes. The example

using System;

class A

public virtual void F(Q) { Console.WriteLine("A.F'); }

class B: A

public override void FQ) {
base.FQ);
Console._WriteLine(""B.F'");

}
}

class Test

static void Main(Q) {
B b =new BQ;
b.FO;

A a = b;
a.FQ;

}

shows a class A with a virtual method F, and a class B that overrides F. The overriding method in B contains
a call, base.F(Q), which calls the overridden method in A.

41

C# LANGUAGE SPECIFICATION

A class can indicate that it is incomplete, and is intended only as a base class for other classes, by including
the modifier abstract. Such a class is called an abstract class. An abstract class can specify abstract
members—members that a non-abstract derived class shall implement. The example

using System;
abstract class A

public abstract void FQ;

class B: A

public override void F() { Console.WriteLine(""B.F'"); }

class Test

static void Main(Q) {
B b =new BQ;
b.FO;
A a = b;
a.FQ;

}

introduces an abstract method F in the abstract class A. The non-abstract class B provides an implementation
for this method.

8.7.12 Static classes

Classes that are not intended to be instantiated, and which contain only static members should be declared as
static classes. Examples of such classes are System.Console and System.Environment. Static classes
are implicitly sealed and have no instance constructors. Static classes can be used only with the typeof
operator and to access elements of the class. In particular, a static class cannot be used as the type of a
variable or be used as a type argument.

public static class Months

{

static Months(Q) { .. }

private static readonly string[] monthName = { .. }

public static string GetMonthName(int mm) { .. }

private static readonly int[,] daysinMonth = { ..

public static int GetDaysInMonth(bool isLeapYear, int mm) { .. }
3 public static bool IsLeapYear(int yy) { .. }

8.7.13 Partial type declarations

In certain situations, the declaration of a type may grow so large that keeping it in a single source file
becomes impractical or difficult. In such cases, it is often desirable to split that class declaration into
multiple source files, with each source file focusing on one or more semi-independent concerns.

Another common situation occurs when code is generated from a program rather than written by a person. In
rich frameworks and development environments, it is often most efficient to have parts of a project’s source
code generated automatically from visual form designers, database schemas, RPC descriptions, etc. While
these kinds of tools produce huge productivity gains, they suffer from problems when we wish to customize
the output, possibly by adding members to generated classes. If we directly modify the output of the code
generator, then those changes will be lost if the code generator needs to be run again. By placing the
customized additions in a different source file, lost modifications can be greatly reduced or eliminated.

Partial type declarations allow greater flexibility in these situations by allowing the definition of a class,
struct, or interface to be split into as many different pieces as needed. For example, when the following
source files are compiled together:

42

// machine-generated code in file #1
partial class Widget

private int[] counts;
public string ToString() {

}
}

// programmer-generated code in file #2
partial class Widget

{

private int value;
private void Helper() {
/7 ...

}
public int Process(object obj) {

}
}

Widget’s members are the union of all the members in all its parts.

8.8 Structs

8 Language overview

The list of similarities between classes and structs is long—structs can implement interfaces, and can have
the same kinds of members as classes. Structs differ from classes in several important ways, however:
structs are value types rather than reference types, and inheritance is not supported for structs. Struct values
are stored “on the stack” or “in-line”. Careful programmers can sometimes enhance performance through

judicious use of structs.

For example, the use of a struct rather than a class for a Point can make a large difference in the number of
memory allocations performed at run time. The program below creates and initializes an array of 100 points.
With Point implemented as a class, 101 separate objects are instantiated—one for the array and one each

for the 100 elements.
class Point

public int x, y;

public Point(int x, int y) {
this.x = Xx;
this.y = y;

}
}

class Test

static void Main(Q {
Point[] points = new Point[100];
for (int 1 = 0; 1 < 100; i++)
points[i] = new Point(i, i*i);

}

If Point is instead implemented as a struct, as in
struct Point

public int x, y;

public Point(int x, int y) {
this.x = Xx;
this.y = vy;

}
}

only one object is instantiated—the one for the array. The Point instances are allocated in-line within the
array. This optimization can be misused. Using structs instead of classes can also make an application run

43

C# LANGUAGE SPECIFICATION

slower or take up more memory, as passing a struct instance by value causes a copy of that struct to be
created.

8.9 Interfaces

An interface defines a contract. A class or struct that implements an interface shall adhere to its contract.
Interfaces can contain methods, properties, events, and indexers as members.

The example

interface lExample

string this[int index] { get; set; }
event EventHandler E;
void F(int value);
string P { get; set; }
public delegate void EventHandler(object sender, EventArgs e);
shows an interface that contains an indexer, an event E, a method F, and a property P.
Interfaces can employ multiple inheritance. In the example
interface IControl

void Paint();

nterface 1TextBox: IControl

void SetText(string text);

nterface IListBox: IControl

i
{
void Setltems(string[] items);
3
interface IComboBox: ITextBox, IListBox {}
the interface 1ComboBox inherits from both 1TextBox and IListBox.
Classes and structs can implement multiple interfaces. In the example
interface IDataBound

void Bind(Binder b);

public class EditBox: Control, 1Control, IDataBound

public void Paint() {.}
public void Bind(Binder b) {.}
}

the class EditBox derives from the class Control and implements both 1Control and 1DataBound.

In the previous example, the Paint method from the 1Control interface and the Bind method from
IDataBound interface are implemented using public members on the EditBox class. C# provides an
alternative way of implementing these methods that allows the implementing class to avoid having these
members be public. Interface members can be implemented using a qualified name. For example, the

EditBox class could instead be implemented by providing 1Control .Paint and 1DataBound.Bind
methods.

public class EditBox: IControl, IDataBound

void IControl.Paint() {.}
void IDataBound.Bind(Binder b) {.}

44

8 Language overview

Interface members implemented in this way are called explicit interface members because each member
explicitly designates the interface member being implemented. Explicit interface members can only be
called via the interface. For example, the EditBox’s implementation of the Paint method can be called
only by casting to the 1Control interface.

class Test

static void Main(Q) {
EditBox editbox = new EditBox();
editbox.Paint(); // error: no such method
IControl control = editbox;
control _.Paint(); // calls EditBox’s Paint implementation

}

8.10 Delegates

Delegates enable scenarios that some other languages have addressed with function pointers. However,
unlike function pointers, delegates are object-oriented and type-safe.

A delegate declaration defines a class that is derived from the class System.Delegate. A delegate instance
encapsulates one or more methods, each of which is referred to as a callable entity. For instance methods, a
callable entity consists of an instance and a method on that instance. For static methods, a callable entity
consists of just a method. Given a delegate instance and an appropriate set of arguments, one can invoke all
of that delegate instance’s methods with that set of arguments.

An interesting and useful property of a delegate instance is that it does not know or care about the classes of
the methods it encapsulates; all that matters is that those methods be consistent (§22.1) with the delegate’s
type. This makes delegates perfectly suited for “anonymous” invocation. This is a powerful capability.

There are three steps in defining and using delegates: declaration, instantiation, and invocation. Delegates
are declared using delegate declaration syntax. The example

delegate void SimpleDelegate();
declares a delegate named SimpleDelegate that takes no arguments and returns no result.

The example
class Test

static void FQ {
System.Console.WriteLine("Test.F'");

static void Main(Q) {
SimpleDelegate d = new SimpleDelegate(F);

dO;
}

creates a SimpleDelegate instance and then immediately calls it.

There is not much point in instantiating a delegate for a method and then immediately calling that method
via the delegate, as it would be simpler to call the method directly. Delegates really show their usefulness
when their anonymity is used. The example
void MultiCall(SimpleDelegate d, int count) {
for (int 1 = 0; 1 < count; i++) {

dO;

}

shows a MultiCall method that repeatedly calls a SimpleDelegate. The MultiCall method doesn’t
know or care about the type of the target method for the SimpleDelegate, what accessibility that method
has, or whether or not that method is static. All that matters is that the target method is consistent (§22.1)
with SimpleDelegate.

45

C# LANGUAGE SPECIFICATION

8.11 Enums

An enum type declaration defines a type name for a related group of symbolic constants. Enums are used for
“multiple choice” scenarios, in which a runtime decision is made from a fixed number of choices that are
known at compile-time.

The example
enum Color

Red,
Blue,
Green

}

class Shape

public void Fill(Color color) {
switch(color) {
case Color.Red:

break;
case Color.Blue:

break;
case Color.Green:

Break;

default:
break;

}
}
}

shows a Color enum and a method that uses this enum. The signature of the Fi 1l method makes it clear
that the shape can be filled with one of the given colors.

The use of enums is superior to the use of integer constants—as is common in languages without enums—
because the use of enums makes the code more readable and self-documenting. The self-documenting nature
of the code also makes it possible for the development tool to assist with code writing and other “designer”
activities. For example, the use of Color rather than int for a parameter type enables smart code editors to
suggest Color values.

8.12 Namespaces and assemblies

The programs presented so far have stood on their own except for dependence on a few system-provided
classes such as System.Console. It is far more common, however, for real-world applications to consist of
several different pieces, each compiled separately. For example, a corporate application might depend on
several different components, including some developed internally and some purchased from independent
software vendors.

Namespaces and assemblies enable this component-based system. Namespaces provide a logical
organizational system. Namespaces are used both as an “internal” organization system for a program, and as
an “external” organization system—a way of presenting program elements that are exposed to other
programs.

Assemblies are used for physical packaging and deployment. An assembly can contain types, the executable
code used to implement these types, and references to other assemblies.

To demonstrate the use of namespaces and assemblies, this subclause revisits the “hello, world” program
presented earlier, and splits it into two pieces: a class library that provides messages and a console
application that displays them.

The class library will contain a single class named He I loMessage. The example

46

8 Language overview

// HellolLibrary.cs
namespace CSharp.Introduction

public class HelloMessage

public string Message {
get {
return "hello, world";
3

}
}
}

shows the He l loMessage class in a namespace hamed CSharp. Introduction. The Hel loMessage
class provides a read-only property named Message. Namespaces can nest, and the declaration

namespace CSharp. Introduction

is shorthand for two levels of namespace nesting:
namespace CSharp

namespace Introduction

{.}

The next step in the componentization of “hello, world” is to write a console application that uses the

Hel loMessage class. The fully qualified name (810.8.2) for the class—

CSharp. Introduction.Hel loMessage—could be used, but this name is quite long and unwieldy. An
easier way is to use a using namespace directive, which makes it possible to use all of the types in a
namespace without qualification. The example

// HelloApp.cs
using CSharp.Introduction;
class HelloApp

static void Main({
HelloMessage m = new HelloMessage();
System._Console_WriteLine(n.Message);

}
}

shows a using namespace directive that refers to the CSharp. Introduction namespace. The occurrences
of Hel loMessage are shorthand for CSharp. Introduction.Hel loMessage

C# also enables the definition and use of aliases. A using alias directive defines an alias for a type or
namespace. Such aliases can be useful in situation in which name collisions occur between two class
libraries, or when a small number of types from a much larger namespace are being used. The example

using MessageSource = CSharp.Introduction.HelloMessage;
shows a using alias directive that defines MessageSource as an alias for the He l loMessage class.

The code we have written can be compiled into a class library containing the class Hel loMessage and an
application containing the class Hel loApp. The details of this compilation step might differ based on the

compiler or tool being used. A command-line compiler might enable compilation of a class library and an
application that uses that library with the following command-line invocations:

csc /target:library HellolLibrary.cs
csc /reference:HelloLibrary.dll HelloApp.cs

which produce a class library named Hel loLibrary.dl1 and an application named Hel loApp . exe.

47

C# LANGUAGE SPECIFICATION

8.13 Versioning

Versioning is the process of evolving a component over time in a compatible manner. A new version of a
component is source compatible with a previous version if code that depends on the previous version can,
when recompiled, work with the new version. In contrast, a new version of a component is binary-
compatible if an application that depended on the old version can, without recompilation, work with the new
version.

Most languages do not support binary compatibility at all, and many do little to facilitate source
compatibility. In fact, some languages contain flaws that make it impossible, in general, to evolve a class
over time without breaking at least some client code.

As an example, consider the situation of a base class author who ships a class named Base. In the first
version, Base contains no method F. A component named Derived derives from Base, and introduces
an F. This Derived class, along with the class Base on which it depends, is released to customers, who
deploy to numerous clients and servers.

// Author A
namespace A

public class Base // version 1

{
}
}

// Author B
namespace B

class Derived: A.Base

public virtual void FQ {
System._Console._WriteLine("'Derived.F);

}
}

So far, so good, but now the versioning trouble begins. The author of Base produces a new version, giving it
its own method F.

// Author A
namespace A

public class Base // version 2

public virtual void FQ { // added in version 2
System._Console_WriteLine("'Base.F");

}
}

This new version of Base should be both source and binary compatible with the initial version. (If it weren’t
possible to simply add a method then a base class could never evolve.) Unfortunately, the new F in Base
makes the meaning of Derived’s F unclear. Did Derived mean to override Base’s F? This seems unlikely,
since when Derived was compiled, Base did not even have an F! Further, if Derived’s F does override
Base’s F, then it shall adhere to the contract specified by Base—a contract that was unspecified when
Derived was written. In some cases, this is impossible. For example, Base’s F might require that overrides
of it always call the base. Derived’s F could not possibly adhere to such a contract.

C# addresses this versioning problem by requiring developers to state their intent clearly. In the original
code example, the code was clear, since Base did not even have an F. Clearly, Derived’s F is intended as a
new method rather than an override of a base method, since no base method named F exists.

If Base adds an F and ships a new version, then the intent of a binary version of Derived is still clear—
Derived’s F is semantically unrelated, and should not be treated as an override.

48

8 Language overview

However, when Derived is recompiled, the meaning is unclear—the author of Derived might intend its F
to override Base’s F, or to hide it. Since the intent is unclear, the compiler produces a warning, and by
default makes Derived’s F hide Base’s F. This course of action duplicates the semantics for the case in
which Derived is not recompiled. The warning that is generated alerts Derived’s author to the presence of
the F method in Base.

If Derived’s F is semantically unrelated to Base’s F, then Derived’s author can express this intent—and,
in effect, turn off the warning—by using the new keyword in the declaration of F.
// Author A
namespace A
public class Base // version 2

public virtual void F(Q) { // added in version 2
System.Console._WriteLine("'Base.F"");

}
}

// Author B
namespace B
class Derived: A.Base // version 2a: new

new public virtual void FQ
System._Console._WriteLine("'Derived.F);
}

}
}
On the other hand, Derived’s author might investigate further, and decide that Derived’s F should
override Base’s F. This intent can be specified by using the override keyword, as shown below.

// Author A
namespace A

public class Base // version 2

public virtual void F(O { // added in version 2
System.Console._WriteLine(""Base.F");

}
}

// Author B
namespace B

class Derived: A.Base // version 2b: override

public override void FQ {
base.FQ);
System.Console._WriteLine(''Derived.F");

}
}

The author of Derived has one other option, and that is to change the name of F, thus completely avoiding
the name collision. Although this change would break source and binary compatibility for Derived, the
importance of this compatibility varies depending on the scenario. If Derived is not exposed to other
programs, then changing the name of F is likely a good idea, as it would improve the readability of the
program—there would no longer be any confusion about the meaning of F.

8.14 Extern aliases

By default types from all referenced assemblies and the current program are placed into a single namespace
hierarchy. With only a single namespace hierarchy, it is not possible to reference types with the same fully

49

C# LANGUAGE SPECIFICATION

qualified name from different assemblies, a situation that arises when types are independently given the
same name, or when a program needs to reference several versions of the same assembly. Extern aliases
make it possible to create and reference separate namespace hierarchies in such situations.

Consider the following two assemblies:
// Assembly al.dll:

namespace N

public class A {}
public class B {}

// Assembly a2._dll:

namespace N

public class B {}
public class C {}

and the following program:
class Test

N.A a; // 0Ok
N.B b; // Error
N.C c; // Ok

}

A command-line compiler might allow compilation of this program with a command-line something like
this:

csc /r:zal.dll /r:a2.dll test.cs

where the types contained inal.dll and a2.dl1 are all placed in the global namespace hierarchy, and an
error occurs because the type N.B exists in both assemblies. With extern aliases, it becomes possible to place
the types contained in al.d 11 and a2.dl1 into separate namespace hierarchies.

The following program declares and uses two extern aliases, X and Y, each of which represent the root of a
distinct namespace hierarchy created from the types contained in one or more assemblies.

extern alias X;
extern alias Y;

class Test

{

::N.A

< <X X
OWwW

OTUTO
N

N .

The program declares the existence of the extern aliases X and Y, but the actual definitions of the aliases are
external to the program. A command line compiler can enable the definition of the extern aliases X and Y
such that the extern alias X is the root of a namespace hierarchy formed by the typesinal.dll and Y is the
root of a namespace hierarchy formed by the types in a2.d11. A compiler might enable the above example
with a command-line like:

csc /r:X=al.dll /r:Y=a2.dll test.cs

The identically named N.B classes can now be referenced as X.N_B and Y .N_B, or, using the namespace
alias qualifier, Xz -N.B and Y: z:N.B. An error occurs if a program declares an extern alias for which no
external definition is provided.

An extern alias can include multiple assemblies, and a particular assembly can be included in multiple extern
aliases. For example, given the assembly

50

8 Language overview

// Assembly a3.dll:
namespace N

public class D {}
public class E {}

a command line like
csc /r:X=al.dll /r:X=a3.dll /r:Y=a2.dll /r:Y=a3.dll test.cs

might define the extern alias X to be the root of a namespace hierarchy formed by the types inal.dl1l and
a3.dll and Y to be the root of a namespace hierarchy formed by the types in a2.d11 and a3.dI 1. Because
of this definition, it is possible to refer to the class N.D in a3.dll as both X: :N.Dand Y- :N.D.

An assembly can be placed in the global namespace hierarchy even if it is also included in one or more
extern aliases. For example, the command line

csc /r:al.dll /r:X=al.dll /r:Y=a2.dll test.cs

places the assembly a1.d 11 in both the global namespace hierarchy and the namespace hierarchy rooted by
the extern alias X. Consequently, the class N.A can be referred to as N.A or Xz zN_A.

It is possible to ensure that a lookup always starts at the root of the global namespace hierarchy by using the
identifier global with the namespace alias qualifier, such as global : : System. 10.Stream.

A using directive may reference an extern alias that was defined in the same immediately enclosing
namespace declaration or compilation unit. For example:

extern alias X;

using X::N;
class Test
{
A a; // X::N.A
B b; // X::N.B
b

8.15 Attributes

C# is an imperative language, but like all imperative languages, it does have some declarative elements. For
example, the accessibility of a method in a class is specified by declaring it public, protected,
internal, protected internal, or private. C# generalizes this capability, so that programmers can
invent new kinds of declarative information, attach this declarative information to various program entities,
and retrieve this declarative information at run-time. Programs specify this additional declarative
information by defining and using attributes (§24).

For instance, a framework might define a He IpAttribute attribute that can be placed on program elements
such as classes and methods, enabling developers to provide a mapping from program elements to
documentation for them. The example

using System;

[AttributeUsage(AttributeTargets.All)]
public class HelpAttribute: Attribute

public HelpAttribute(string url) {
this.url = url;
}

public string Topic = null;
private string url;

public string Url {
get { return url; }

51

C# LANGUAGE SPECIFICATION

defines an attribute class named HelpAttribute, or Help for short, that has one positional parameter
(string url) and one named parameter (string Topic). Positional parameters are defined by the
formal parameters for public instance constructors of the attribute class, and named parameters are defined
by public non-static read-write fields and properties of the attribute class.

The example

[Help(C'http://www.mycompany.com/../Classl.htm™)]
public class Classl

[Help(C'http://www._mycompany.com/../Classl_htm”, Topic = "F")]
public void FQ {}

shows several uses of the attribute Help.

Attribute information for a given program element can be retrieved at run-time by using reflection support.
The example

using System;
class Test

t static void Main() {

Type type = typeof(Classl);
object[] arr = type.GetCustomAttributes(
typeof(HelpAttribute), true);

if (arr.Length == 0)
Console._WriteLine(''Classl has no Help attribute.™);

else {
HelpAttribute ha = (HelpAttribute) arr[0];
Console._WriteLine("Url = {0}, Topic = {1}, ha.Url, ha.Topic);

}

}
}

checks to see if Class1 has a Help attribute, and writes out the associated Url and Topic values if the
attribute is present.

8.16 Generics

C# allows classes, structs, interfaces, and methods to be parameterized by the types of data they store and
manipulate. This feature is really a set of features known collectively as generics. C# generics will
immediately be familiar to users of generics in Eiffel or Ada, or to users of templates in C++.

Many common classes and structs can be parameterized by the types of data being stored and manipulated—
these are called generic class declarations and generic struct declarations, respectively. Similarly, many
interfaces define contracts that can be parameterized by the types of data they handle—these are called
generic interface declarations. In order to implement “generic algorithms,” methods can also be
parameterized by type; such methods are known as generic methods.

8.16.1 Why generics?

Without generics, programmers can store data of any type in variables of the base type object. To
illustrate, let’s create a simple Stack type with two actions, “Push” and “Pop”. The Stack class stores its
data in an array of object, and the Push and Pop methods use the object type to accept and return data,
respectively:

public class Stack
private object[] items = new object[100];

public void Push(object data) {.}
public object Pop() {.}

}

We can then push a value of any type, such as a Customer type, for example, onto the stack. However,
when we wanted to retrieve that value, we would need to cast explicitly the result of the Pop method, an

52

8 Language overview

object, into a Customer type, which is tedious to write, and carries a performance penalty for run-time
type checking:
Stack s = new Stack();

s.Push(new Customer());
Customer ¢ = (Customer)s.Pop();

If we pass to the Push method a value type, such as an int, it will automatically be boxed. Similarly, if we
want to retrieve an int from the stack, we would need to unbox explicitly the object type we obtain from
the Pop method:

Stack s = new Stack();

s.Push(3);
int 1 = (int)s.Pop(Q);

Such boxing and unboxing operations can affect performance.

Furthermore, in the implementation shown, it is not possible to enforce the kind of data placed in the stack.
Indeed, we could create a stack and push a Customer type onto it. However, later, we could use the same
stack and try to pop data off of it and cast it into an incompatible type:

Stack s = new Stack();

s.Push(new Customer());
Employee e = (Employee)s.Pop(); // runtime error

While the code above is an improper use of the Stack class we presumably intended to implement, and
should be a compile-time error, it is actually valid code. However, at run-time, the application will fail
because we have performed an invalid cast operation.

8.16.2 Creating and consuming generics

Generics provide a facility for creating high-performance data structures that are specialized by the compiler
and/or execution engine based on the types that they use. These so-called generic type declarations are
created so that their internal algorithms remain the same, yet the types of their external interface and internal
data can vary based on user preference.

In order to minimize the learning curve for developers, generics are used in much the same way as C++
templates. Programmers can create classes and structures just as they normally have, and by using the angle
bracket notation (< and >) they can specify type parameters. When the generic class declaration is used, each
type parameter shall be replaced by a type argument that the user of the class supplies.

In the example below, we create a Stack generic class declaration where we specify a type parameter,
called 1temType, declared in angle brackets after the declaration. Rather than forcing conversions to and
from object, instances of the generic Stack class will accept the type for which they are created and store
data of that type without conversion. The type parameter 1temType acts as a placeholder until an runtime
type is specified at use. Note that 1temType is used as the element type for the internal items array, the type
for the parameter to the Push method, and the return type for the Pop method:

public class Stack<ltemType>

{
private ltemType[] items = new ltemType[100];
public void Push(ltemType data) {.}
public ItemType Pop() {.}

}

When we use the generic class declaration Stack, as in the short example below, we can specify the runtime
type to be used by the generic class. In this case, we instruct the Stack to use an int type by specifying it
as a type argument using the angle brackets after the name:

Stack<int> s = new Stack<int>();

s.Push(3);
int x = s.PopQ);

In so doing, we have created a new constructed type, Stack<int>, for which every ItemType inside the
declaration of Stack is replaced with the supplied type argument int. Indeed, when we create our new
instance of Stack<int>, the native storage of the items array is now an int[] rather than object[],

53

C# LANGUAGE SPECIFICATION

providing substantial storage efficiency. Additionally, we have eliminated the boxing penalty associated
with pushing an int onto the stack. Further, when we pop an item off the stack, we no longer need to cast it
explicitly to the appropriate type because this particular kind of Stack class natively stores an int in its
data structure.

If we wanted to store items other than an int into a Stack, we would have to create a different constructed
type from Stack, specifying a new type argument. Suppose we had a simple Customer type and we
wanted to use a Stack to store it. To do so, we simply use the Customer class as the type argument to
Stack and easily reuse our code:

Stack<Customer> s = new Stack<Customer>();

s.Push(new Customer());
Customer ¢ = s.Pop(Q);

Of course, once we’ve created a Stack with a Customer type as its type argument, we are now limited to
storing only Customer objects (or objects of a class derived from Customer). Generics provide strong
typing, meaning we can no longer improperly store an integer into the stack, like so:

Stack<Customer> s = new Stack<Customer>();

s.Push(new Customer());

s.Push(3); // compile-time error
Customer c = s.Pop(Q); // no cast required

8.16.3 Multiple type parameters

Generic type declarations can have any number of type parameters. In our Stack example, we used only
one type parameter. Suppose we created a simple Dictionary generic class declaration that stored values
alongside keys. We could define a generic version of a Dictionary by declaring two type parameters,
separated by commas within the angle brackets of the declaration:

public class Dictionary<KeyType, ElementType>

public void Add(KeyType key, ElementType val) {.}
public ElementType this[KeyType key] {.}

}

When we use Dictionary, we need to supply two type arguments within the angle brackets. Then when
we call the Add function or use the indexer, the compiler checks that we supplied the right types:

Dictionary<string, Customer> dict = new Dictionary<string, Customer>();
dict.Add('Peter™, new Customer());
Customer c = dict["Peter'];

8.16.4 Constraints

In many cases, we will do more than store data based on a given type parameter. Often, we will also want to
use members of the type parameter to execute statements within our generic type declaration.

For example, suppose in the Add method of our Dictionary we wanted to compare items using the
CompareTo method of the supplied key, like so:

public class Dictionary<KeyType, ElementType>

public void Add(KeyType key, ElementType val)
{

iT (key.CompareTo(x) < 0) {.} 7/ compile-time error

}
}

Unfortunately, at compile-time the type parameter KeyType is, as expected, generic. As written, the
compiler will assume that only the operations available to object, such as ToString, are available on the
variable key of type KeyType. As a result, the compiler will display an error because the CompareTo
method would not be found. However, we can cast the key variable to a type that does contain a
CompareTo method, such as an 1Comparable interface, allowing the program to compile:

54

8 Language overview

public class Dictionary<KeyType, ElementType>

public void Add(KeyType key, ElementType val)
{

if (((1Comparable)key) .CompareTo(x) < 0) {.}

}
}

However, if we now construct a type from Dictionary and supply a type argument, which does not
implement 1Comparable, we will encounter a run-time error, specifically an Inval idCastException.
Since one of the objectives of generics is to provide strong typing and to reduce the need for casts, a more
elegant solution is needed.

We can supply an optional list of constraints for each type parameter. A constraint indicates a requirement
that a type shall fulfill in order to be accepted as a type argument. (For example, it might have to implement
a given interface or be derived from a given base class.) A constraint is declared using the word where,
followed by a type parameter and colon (:), followed by a comma-separated list of constraints, which can
include a class type, interface types, other type parameters, the reference type constraint “class”, the value
type constraint “struct”, and the constructor constraint “new()”.

In order to satisfy our need to use the CompareTo method inside Dictionary, we can impose a constraint
on KeyType, requiring any type passed as the first argument to Dictionary to implement 1Comparable,
like so:

public class Dictionary<KeyType, ElementType> where KeyType: IComparable

public void Add(KeyType key, ElementType val)
{

if (key.CompareTo(x) < 0) {.}

}
}

When compiled, this code will now be checked to ensure that each time we construct a Dictionary type
we are passing a first type argument that implements 1Comparable. Further, we no longer have to cast
variable key to 1Comparable explicitly before calling the CompareTo method.

Constraints are most useful when they are used in the context of defining a framework, i.e. a collection of
related classes, where it is advantageous to ensure that a number of types support some common sighatures
and/or base types. Constraints can be used to help define “generic algorithms” that plug together
functionality provided by different types. This can also be achieved by subclassing and runtime
polymorphism, but static, constrained polymorphism can, in many cases, result in more efficient code, more
flexible specifications of generic algorithms, and more errors being caught at compile-time rather than run-
time. However, constraints need to be used with care and taste. Types that do not implement the constraints
will not easily be usable in conjunction with generic code.

For any given type parameter, we can specify any number of interfaces and type parameters as constraints,
but no more than one class. Each constrained type parameter has a separate where clause. In the example
below, the KeyType type parameter has two interface constraints, while the ElementType type parameter
has one class type constraint:

public class Dictionary<KeyType, ElementType >

where KeyType: IComparable, IEnumerable
where ElementType: Customer

public void Add(KeyType key, ElementType val)
{

55

C# LANGUAGE SPECIFICATION

if (key.CompareTo(x) < 0) {.}

}
}

8.16.5 Generic methods

In some cases, a type parameter is not needed for an entire class, but only when calling a particular method.
Often, this occurs when creating a method that takes a generic type as a parameter. For example, when using
the Stack described earlier, we might often find ourselves pushing multiple values in a row onto a stack,
and decide to write a method to do so in a single call. If we are only using a single kind of Stack, say
Stack<int>, writing such a method is easy:

static void PushMultiple(Stack<int> s, params int[] values) {

foreach (int v in values) {
s.Push(v);

}
We can use this method to push multiple int values onto a Stack<int>:

Stack<int> s = new Stack<int>();
PushMultiple(s, 1, 2, 3, 4);

However, the method above only works with one particular constructed type: Stack<int>. While we can
easily write similar code for other constructed Stack types, we would like to write a single method that can
work with any Stack, no matter what type argument was used.

We do this by writing a generic method. Like a generic class declaration, a generic method is written with
type parameters enclosed in angle brackets. With a generic method, the type parameters are written
immediately after the method name, and can be used within the parameter list, return type, and body of the
method. A generic PushMul tiple method would look like this:

static void PushMultiple<ltemType>(Stack<ltemType> s,
params ltemType[] values)

foreach (ItemType v in values) {
s.Push(v);

}

Using this generic method, we can now push multiple items onto a Stack of any kind. Furthermore, the
compiler type checking will ensure that the pushed items have the correct type for the kind of Stack being
used. When calling a generic method, we place type arguments to the method in angle brackets. The generic
PushMultiple method can be called this way:

Stack<int> s = new Stack<int>();
PushMultiple<int>(s, 1, 2, 3, 4);

This generic PushMultiple method is much better than the previous version, since it works on any kind of
Stack. However, it appears to be less convenient to call, since the desired 1temType shall be supplied as a
type argument to the method. In many cases, however, the compiler can deduce the correct type argument
from the other arguments passed to the method, using a process called type inferencing. In the example
above, since the first regular argument is of type Stack<int>, and the subsequent arguments are of type
int, the compiler can reason that the type parameter shall also be int. Thus, the generic PushMul tiple
method can be called without specifying the type parameter:

Stack<int> s = new Stack<int>();
PushMultiple(s, 1, 2, 3, 4);

8.17 Anonymous methods

In C# code, a callback method is often invoked strictly through a delegate and not invoked directly. The
purpose of such a method is obscured by the necessary separation of the method declaration from the
delegate instantiation. In contrast, the body of an anonymous method is written “in-line” where the delegate
is used, conveniently tying the method source code to the delegate instance. Besides this convenience,

56

8 Language overview

anonymous methods have shared access to the local state of the containing function member. To achieve the
same state sharing using named methods requires “lifting” local variables into fields of some object, further
obscuring the source code.

An anonymous method is declared using an anonymous-method-expression:

anonymous-method-expression:
delegate anonymous-method-signature,, block

The optional anonymous-method-signature defines the names and types of the formal parameters for the
anonymous method. If the anonymous-method-signature is omitted, the block does not use any formal
parameters. The block defines the body of the anonymous method.

An anonymous-method-expression is classified as a special kind of value that references the anonymous
method. This value has no intrinsic type, but is implicitly convertible to any delegate type that has parameter
types and a return type compatible with the anonymous method. If an anonymous method is declared
without a signature, any delegate parameter types that do not include an out parameter are compatible with
the anonymous method. If an anonymous method is declared with a signature, only delegate parameter types
that exactly match in type and order are compatible. The return type of a delegate is compatible with an
anonymous method if the expressions associated with all return statements in the anonymous method can
be implicitly converted to the return type of the delegate. A void delegate return type is compatible with an
anonymous method that has no return statements, or only has return statements with no expression.

Local variables and value parameters (including this) whose scope contains an anonymous method
declaration are called outer variables of the anonymous method.

In the absence of anonymous methods, the lifetime of a local variable or value parameter ends when
execution of its scope ends, as described in 812.1.7. However, an anonymous method can access an outer
variable instance after execution has left the scope of the outer variable. In this case, the lifetime of the outer
variable extends until all referencing anonymous method delegates are eligible for garbage collection, as
described in §10.9.

An anonymous method cannot access ref or out parameters of an outer scope. The reason for this is that
the caller of a function member allocates the storage for such parameters, so their lifetimes cannot be
extended arbitrarily by the called function member. Consequently, since the this value of an instance
method of a struct is equivalent to a ref parameter, an anonymous method in a struct is not allowed to
access this.

Semantically, an anonymous method contained in a class or struct T is considered a method of T. If Tis a
class type, the anonymous method is considered an instance method or static method according to whether
the containing function member is instance or static, respectively. In contrast, if T is a struct type, the
anonymous method is always considered static and, as indicated above, cannot access this.

The following code defines an Action delegate type and a Walk method. The Walk method invokes an
action sequentially on nodes in a linked list until either the action returns false or the end of the list is
encountered.

delegate bool Action(Node n);

static void Walk(Node n, Action a) {
while (n = null && a(n)) n = n.Next;

The following invocation of Walk employs an anonymous method to display the names of the nodes in a
list:

walk(list,
delegate(Node n) {
Console_WriteLine(n_.Name);
return true;
}
);

57

C# LANGUAGE SPECIFICATION

This code could easily be implemented using a named method, but doing so would require separating the
method declaration from the invocation, obscuring the purpose of the method and the result of the
invocation:

Walk(list, new Action(DisplayNodeName));

bool DisplayNodeName(Node n) {
Console._WriteLine(n.Name);
return true;

The following code uses an outer local variable c to display the ordinal position of each node:
int c = 0;

Walk(list,
delegate(Node n) {
Console._WriteLine("{0}: {1}", ++c, n_.Name);
return true;

}
)
Console_WriteLine(""Processed {0} nodes', c¢);
Implementing this example using a named method would require “lifting” the outer local variable c into a
field, which would further obscure the code, would introduce additional overhead in the type, and could
introduce concurrency issues.

The following code uses an outer local variable c and an instance field max to restrict the number of items
displayed:
class A

int max;

void F(Node list) {
int c = 0;

Walk(list,
delegate(Node n) {
if (c >= max) {
Console._WriteLine("... display truncated");
return false;

}
Console._WriteLine("{0}: {1}", ++c, n.Name);
return true;

}
)

Console_WriteLine(""Processed {0} nodes', c);

}
}
Since F is an instance method of class A, the anonymous method is considered to be an instance method
of A, and the field max is accessed through the anonymous method’s this variable (which is the same as
F’s this variable). That is, max is a field, not an outer variable, and the anonymous method can access max
just as any other instance method does.

Implementing this example in a safe way (considering the possibility of concurrency) without an anonymous
method requires a significant amount of work and decreases clarity:

class A

{

int max;

void F(Node list) {
NodeNameDisplayer nnd = new NodeNameDisplayer(this);
nnd.c = 0;

58

8 Language overview

Walk(list, new Action(nnd.DisplayNodeName));
Console._WriteLine("Processed {0} nodes', nnd.c);

}

internal class NodeNameDisplayer

{

A outer;
internal int c;

public NodeNameDisplayer(A outer) {
this.outer = outer;
}

bool DisplayNodeName(Node n) {
if (c >= outer.max)
Console._WriteLine("... display truncated");
return false;

}
Console._WriteLine("'{0}: {1}", ++c, n.Name);
return true;

}
}
}

8.18 lterators

The foreach statement is used to iterate over the elements of an enumerable collection. In order to be
enumerable, a collection shall have a parameterless GetEnumerator method that returns an enumerator.
Generally, enumerators are difficult to implement, but the task is significantly simplified with iterators.

An iterator is a statement block that yields an ordered sequence of values. An iterator is distinguished from a
normal statement block by the presence of one or more yield statements:

e Theyield return statement produces the next value of the iteration.
o Theyield break statement indicates that the iteration is complete.

An iterator can be used as the body of a function member as long as the return type of the function member
is one of the enumerator interfaces or one of the enumerable interfaces:

e The enumerator interfaces are System.Col lections. IEnumerator and types constructed from
System_Collections.Generic. lEnumerator<T>

e The enumerable interfaces are System.Col lections. IEnumerable and types constructed from
System.Collections.Generic. lEnumerable<T>

It is important to understand that an iterator is not a kind of member, but is a means of implementing a
function member. A member implemented via an iterator can be overridden or overloaded by other
members, which may or may not be implemented with iterators.

The following Stack<T> class implements its GetEnumerator method using an iterator, which
enumerates the elements of the stack in top-to-bottom order.
using System.Collections.Generic;
public class Stack<T>: IEnumerable<T>
T[] items;
int count;
public void Push(T data) {.}

public T Pop(Q {.}

public l1Enumerator<T> GetEnumerator() {
for (int i = count — 1; 1 >= 0; --i) {
yield return items[i];

59

C# LANGUAGE SPECIFICATION

The presence of the GetEnumerator method makes Stack<T> an enumerable type, allowing instances of
Stack<T> to be used in a foreach statement. The following example pushes the values 0 through 9 onto
an integer stack and then uses a foreach loop to display the values in top-to-bottom order.

using System;
class Test

static void Main() {
Stack<int> s = new Stack<int>();
for (int i = 0; i1 < 10; i++) s._.Push(i);
foreach (int i in s) Console.Write("{0} ", 1);
Console.WriteLine();

}
}

The output of the example is:
9876543210

The foreach statement implicitly calls a collection’s parameterless GetEnumerator method to obtain an
enumerator. There can only be one such parameterless GetEnumerator method defined by a collection, yet
it is often appropriate to have multiple ways of enumerating, and ways of controlling the enumeration
through parameters. In such cases, a collection can use iterators to implement properties or methods that
return one of the enumerable interfaces. For example, Stack<T> might introduce two new properties,
TopToBottom and BottomToTop, of type IEnumerable<T>:

using System.Collections.Generic;
public class Stack<T>: IEnumerable<T>

{ _
T[] items;
int count;

public void Push(T data) {.}

public T Pop(Q {.}
public l1Enumerator<T> GetEnumerator() {
for (int i = count — 1; 1 >= 0; --i) {
yield return items[i];

}

public I1Enumerable<T> TopToBottom {

get {
return this;
b

}

public IEnumerable<T> BottomToTop {
get {
for (int 1 = 0; 1 < count; ii++) {
yield return items[i];

}
}
}

The get accessor for the TopToBottom property just returns this since the stack itself is an enumerable.
The BottomToTop property returns an enumerable implemented with an iterator. The following example
shows how the properties can be used to enumerate stack elements in either order:

using System;
class Test

static void Main(Q) {
Stack<int> s = new Stack<int>();
for (int i = 0; i1 < 10; i++) s.Push(i);

60

8 Language overview

foreach (int i in s.TopToBottom) Console.Write(""{0} ", 1);
Console.WriteLine();

foreach (int i in s.BottomToTop) Console._Write('{0} ', 1);
Console.WriteLine();

}
}

Of course, these properties can be used outside of a foreach statement as well. The following example
passes the results of invoking the properties to a separate Print method. The example also shows an iterator
used as the body of a FromToBy method that takes parameters:

using System;
using System.Collections.Generic;

class Test

static void Print(lEnumerable<int> collection) {
foreach (int i in collection) Console Write("{0} ™, 1);
Console.WriteLine();

}
static IEnumerable<int> FromToBy(int from, int to, int by) {
for (int 1 = from; 1 <= to; 1 += by) {
yield return i;

}

static void Main(Q {
Stack<int> s = new Stack<int>();
for (int 1 = 0; 1 < 10; i1++) s.Push(i);
Print(s.TopToBottom);
Print(s.BottomToTop);
Print(FromToBy(10, 20, 2));

}
}

The output of the example is:

9876543210
0123456789
10 12 14 16 18 20

The generic and non-generic enumerable interfaces contain a single member, a GetEnumerator method
that takes no arguments and returns an enumerator interface. An enumerable acts as an enumerator factory.
Properly implemented enumerables generate independent enumerators each time their GetEnumerator
method is called. Assuming the internal state of the enumerable has not changed between two calls to
GetEnumerator, the two enumerators returned should produce the same set of values in the same order.
This should hold even if the lifetimes of the enumerators overlap as in the following code sample:

using System;
using System.Collections.Generic;

class Test

static IEnumerable<int> FromTo(int from, int to) {
while (from <= to) yield return from++;
}

static void Main(Q {
IEnumerable<int> e = FromTo(1, 10);
foreach (int x in e) {
foreach (int y in e) {
Console_Write({0,3} ", X * y);

Console._WriteLine();

61

C# LANGUAGE SPECIFICATION

The code above prints a simple multiplication table of the integers 1 through 10. Note that the FromTo
method is invoked only once to generate the enumerable e. However, e .GetEnumerator() is invoked
multiple times (by the foreach statements) to generate multiple equivalent enumerators. These enumerators
all encapsulate the iterator code specified in the declaration of FromTo. Note that the iterator code modifies
the from parameter. Nevertheless, the enumerators act independently because each enumerator is given its
own copy of the from and to parameters. The sharing of transient state between enumerators is one of
several common subtle flaws that should be avoided when implementing enumerables and enumerators.
Iterators are designed to help avoid these problems and to implement robust enumerables and enumerators in
a simple intuitive way.

8.19 Nullable types

Support for nullability across all types, including value types, is essential when interacting with databases;
yet, historically, general-purpose programming languages have provided little or no support in this area.
Many approaches exist for handling nulls and value types without direct language support, but all have
shortcomings. For example, one approach is to use a “special” value (such as —1 for integers) to indicate
null, but this only works when an unused value can be identified. Another approach is to maintain Boolean
null indicators in separate fields or variables, but this doesn’t work well for parameters and return values. A
third approach is to use a set of user-defined nullable types, but this only works for a closed set of types.
C#’s nullable types solve this long-standing problem by providing complete and integrated support for
nullable forms of all value types.

Nullable types are constructed using the ? type modifier. For example, int? is the nullable form of the
predefined type int. A nullable type’s underlying type must be a non-nullable value type.

A nullable type is a structure that combines a value of the underlying type with a Boolean null indicator. An
instance of a nullable type has two public read-only properties: HasValue, of type bool, and Value, of the
nullable type’s underlying type. HasValue is true for a non-null instance and false for a null instance. When
HasValue is true, the Value property returns the contained value. When HasValue is false, an attempt to
access the vValue property throws an exception.

An implicit conversion exists from any non-nullable value type to a nullable form of that type. Furthermore,
an implicit conversion exists from the nul I type (§11.2.7) to any nullable type. In the example

int? x = 123;

int? y = null;

if (x.HasValue) Console.WriteLine(x.Value);
ifT (y-HasvValue) Console._WriteLine(y.Value);

the int value 123 and the nul I literal are implicitly converted to the nullable type int?. The example
outputs 123 for x, but the second Console.WriteLine isn’t executed because y.HasValue is false.

Nullable conversions and lifted conversions permit predefined and user-defined conversions that operate on
non-nullable value types also to be used with nullable forms of those types. Likewise, lifted operators
permit predefined and user-defined operators that work for non-nullable value types also to work for
nullable forms of those types.

For every predefined conversion from a non-nullable value type S to a non-nullable value type T, a
predefined nullable conversion automatically exists from S? to T?. This nullable conversion is a null
propagating form of the underlying conversion: It converts a null source value directly to a null target value,
but otherwise performs the underlying non-nullable conversion. Nullable conversions are furthermore
provided from S to T? and from S? to T, the latter as an explicit conversion that throws an exception if the
source value is null.

Some examples of nullable conversions are shown in the following.

int i = 123;

int? x = i; // int —-> Int?
double? y = Xx; // int? --> double?
int? z = (int?)y; // double? --> int?
int J = (int)z; // int? --—> iInt

62

8 Language overview

A user-defined conversion operator has a lifted form when the source and target types are both non-nullable
value types. A ? modifier is added to the source and target types to create the lifted form. Similar to
predefined nullable conversions, lifted conversion operators propagate nulls.

A non-comparison operator has a lifted form when the operand types and result type are all non-nullable
value types. For non-comparison operators, a ? modifier is added to each operand type and the result type to
create the lifted form. For example, the lifted form of the predefined + operator that takes two int operands
and returns an int, is an operator that takes two int? operands and returns an int?. Similar to lifted
conversions, lifted non-comparison operators are null-propagating: If either operand of a lifted operator is
null, the result is null.

The following example uses a lifted + operator to add two int? values:

int? x = GetNullablelnt();
int? y = GetNullablelnt();
int? z = x +vy;

the assignment to z effectively corresponds to:
int? z = x.HasValue && y.HasValue ? x.Value + y.Value : (int?)null;
Because an implicit conversion exists from a non-nullable value type to its nullable form, a lifted operator is

applicable when just one operand is of a nullable type. The following example uses the same lifted +
operator as the example above:

GetNullablelnt();
X + 1;

int? x
int? y

If x is null, y is assigned null. Otherwise, y is assigned the value of x plus one.

The null-propagating semantics of C#’s nullable conversions, lifted conversions, and lifted non-comparison
operators are very similar to the corresponding conversions and operators in SQL. However, C#’s lifted
comparison operators produce regular Boolean results rather than introducing SQL’s three-valued Boolean
logic.

A comparison operator (==, 1=, <, >, <=, >=) has a lifted form when the operand types are both non-nullable
value types and the result type is bool. The lifted form of a comparison operator is formed by adding a

? modifier to each operand type (but not to the result type). Lifted forms of the == and 1= operators consider
two null values equal, and a null value unequal to a non-null value. Lifted forms of the <, >, <=, and

>= operators return false if one or both operands are null.

When one of the operands of the == or 1= operator has the nul I type (§11.2.7), the other operand may be of
any nullable type regardless of whether the underlying value type actually declares that operator. In cases
where no operator == or = implementation is available, a check of the operand’s HasValue property is
substituted. The effect of this rule is that statements such as

if (x == null) Console._WriteLine("'x is null™);

if (x = null) Console._WriteLine("'x is non-null™);

are permitted for an x of any nullable type or reference type, thus providing a common way of performing
null checks for all types that can be null.

A new null coalescing operator, ??, is provided. The result of a ?? b is a if a is non-null; otherwise, the
result is b. Intuitively, b supplies the value to use when a is null.

When a is of a nullable type and b is of a non-nullable type, a ?? b returns a non-nullable value, provided
the appropriate implicit conversions exist between the operand types. In the example

int? x = GetNullablelnt();
int? y = GetNullablelnt();
int? z = x ?? y;

int i =z ?? -1;

the type of x ?? yis int?, but the type of z ?? -1is int. The latter operation is particularly convenient
because it removes the ? from the type and at the same time supplies the default value to use in the null case.

63

C# LANGUAGE SPECIFICATION

The null coalescing operator also works for reference types. The example

string s = GetStringValue(Q);
Console_WriteLine(s ?? "Unspecified™);

outputs the value of s, or outputs Unspecified if s is null.

End of informative text.

64

9 Lexical structure

0. Lexical structure

9.1 Programs

A C# program consists of one or more source files, known formally as compilation units (816.1). A source
file is an ordered sequence of Unicode characters. Source files typically have a one-to-one correspondence
with files in a file system, but this correspondence is not required.

Conceptually speaking, a program is compiled using three steps:

1. Transformation, which converts a file from a particular character repertoire and encoding scheme into a
sequence of Unicode characters.

2. Lexical analysis, which translates a stream of Unicode input characters into a stream of tokens.
3. Syntactic analysis, which translates the stream of tokens into executable code.

Conforming implementations shall accept Unicode source files encoded with the UTF-8 encoding form
(as defined by the Unicode standard), and transform them into a sequence of Unicode characters.
Implementations can choose to accept and transform additional character encoding schemes (such as
UTF-16, UTF-32, or non-Unicode character mappings).

[Note: It is beyond the scope of this standard to define how a file using a character representation other
than Unicode might be transformed into a sequence of Unicode characters. During such transformation,
however, it is recommended that the usual line-separating character (or sequence) in the other character
set be translated to the two-character sequence consisting of the Unicode carriage-return character
followed by Unicode line-feed character. For the most part this transformation will have no visible
effects; however, it will affect the interpretation of verbatim string literal tokens (89.4.4.5). The purpose
of this recommendation is to allow a verbatim string literal to produce the same character sequence
when its source file is moved between systems that support differing non-Unicode character sets, in
particular, those using differing character sequences for line-separation. end note]

9.2 Grammars

This specification presents the syntax of the C# programming language using two grammars. The lexical
grammar (89.2.1) defines how Unicode characters are combined to form line terminators, white space,
comments, tokens, and pre-processing directives. The syntactic grammar (89.2.2) defines how the tokens
resulting from the lexical grammar are combined to form C# programs.

9.2.1 Lexical grammar

The lexical grammar of C# is presented in 89.3, 89.4, and §9.5. The terminal symbols of the lexical grammar
are the characters of the Unicode character set, and the lexical grammar specifies how characters are
combined to form tokens (89.4), white space (89.3.3), comments (89.3.2), and pre-processing directives
(89.5).

Every source file in a C# program shall conform to the input production of the lexical grammar (89.3).

9.2.2 Syntactic grammar

The syntactic grammar of C# is presented in the clauses, subclauses, and appendices that follow this
subclause. The terminal symbols of the syntactic grammar are the tokens defined by the lexical grammar,
and the syntactic grammar specifies how tokens are combined to form C# programs.

65

C# LANGUAGE SPECIFICATION

Every source file in a C# program shall conform to the compilation-unit production (§16.1) of the syntactic
grammar.

9.2.3 Grammar ambiguities

The productions for simple-name (814.5.2) and member-access (814.5.4) can give rise to ambiguities in the
grammar for expressions. [Example: The statement:

F(G<A, B>(7));
could be interpreted as a call to F with two arguments, G < A and B > (7). Alternatively, it could be

interpreted as a call to F with one argument, which is a call to a generic method G with two type arguments
and one regular argument. end example]

If a sequence of tokens can be parsed (in context) as a simple-name (814.5.2), member-access (§14.5.4), or
pointer-member-access (§27.5.2) ending with a type-argument-list (§25.5.1), the token immediately
following the closing > token is examined. If it is one of

(> 1 : 5 ., .2 = 1=
then the type-argument-list is retained as part of the simple-name, member-access or pointer-member-access
and any other possible parse of the sequence of tokens is discarded. Otherwise, the type-argument-list is not
considered part of the simple-name, member-access or pointer-member-access, even if there is no other
possible parse of the sequence of tokens. [Note: These rules are not applied when parsing a type-argument-
list in a namespace-or-type-name (810.8). end note] [Example: The statement:

F(G<A, B>(7));

will, according to this rule, be interpreted as a call to F with one argument, which is a call to a generic
method G with two type arguments and one regular argument. The statements

F(G<A, B>7);
F(G<A, B>>7);

will each be interpreted as a call to F with two arguments. The statement
X = F<A> + y;

will be interpreted as a less-than operator, greater-than operator and unary-plus operator, as if the statement
had been written x = (F < A) > (+y), instead of as a simple-name with a type-argument-list followed
by a binary-plus operator. In the statement

X =y is C<T> + z;

the tokens C<T> are interpreted as a namespace-or-type-name with a type-argument-list. end example]

9.3 Lexical analysis

The input production defines the lexical structure of a C# source file. Each source file in a C# program shall
conform to this lexical grammar production.
input::
input-sectiongy
input-section::
input-section-part
input-section input-section-part
input-section-part::
input-elementsy,: new-line
pp-directive

input-elements::
input-element
input-elements input-element

66

9 Lexical structure

input-element::
whitespace
comment
token

Five basic elements make up the lexical structure of a C# source file: Line terminators (89.3.1), white space
(89.3.3), comments (89.3.2), tokens (89.4), and pre-processing directives (89.5). Of these basic elements,
only tokens are significant in the syntactic grammar of a C# program (89.2.2), except in the case of a > token
being combined with another token to form a single operator (89.4.5).

The lexical processing of a C# source file consists of reducing the file into a sequence of tokens which
becomes the input to the syntactic analysis. Line terminators, white space, and comments can serve to
separate tokens, and pre-processing directives can cause sections of the source file to be skipped, but
otherwise these lexical elements have no impact on the syntactic structure of a C# program.

When several lexical grammar productions match a sequence of characters in a source file, the lexical
processing always forms the longest possible lexical element. [Example: The character sequence /7 is
processed as the beginning of a single-line comment because that lexical element is longer than a single /
token. end example]

9.3.1 Line terminators
Line terminators divide the characters of a C# source file into lines.

new-line::
Carriage return character (U+000D)
Line feed character (U+000A)
Carriage return character (U+000D) followed by line feed character (U+000A)
Next line character (U+2085)
Line separator character (U+2028)
Paragraph separator character (U+2029)

For compatibility with source code editing tools that add end-of-file markers, and to enable a source file to
be viewed as a sequence of properly terminated lines, the following transformations are applied, in order, to
every source file in a C# program:

o If the last character of the source file is a Control-Z character (U+001A), this character is deleted.

e A carriage-return character (U+000D) is added to the end of the source file if that source file is non-
empty and if the last character of the source file is not a carriage return (U+000D), a line feed (U+000A),
a next line character (U+2085), a line separator (U+2028), or a paragraph separator (U+2029). [Note:
The additional carriage-return allows a program to end in a pp-directive (89.5) that does not have a
terminating new-line. end note]

9.3.2 Comments
Two forms of comments are supported: delimited comments and single-line comments.

A delimited comment begins with the characters /* and ends with the characters */. Delimited comments
can occupy a portion of a line, a single line, or multiple lines. [Example: The example

/* Hello, world program

This program writes “hello, world” to the console
*/
class Hello

static void Main(Q {
System._Console._WriteLine("'hello, world');

}

includes a delimited comment. end example]

67

C# LANGUAGE SPECIFICATION

A single-line comment begins with the characters // and extends to the end of the line. [Example: The
example

// Hello, world program

// This program writes “hello, world” to the console

//
class Hello // any name will do for this class

static void Main() { // this method must be named 'Main"
System._Console._WriteLine("'hello, world');

}

shows several single-line comments. end example]

comment::
single-line-comment
delimited-comment

single-line-comment::
/7 input-charactersyy

input-characters::
input-character
input-characters input-character

input-character::
Any Unicode character except a new-line-character

new-line-character::
Carriage return character (U+000D)
Line feed character (U+000A)
Next line character (U+0085)
Line separator character (U+2028)
Paragraph separator character (U+2029)

delimited-comment::
/* delimited-comment-texto,: asterisks /

delimited-comment-text::
delimited-comment-section
delimited-comment-text delimited-comment-section

delimited-comment-section::
not-asterisk
asterisks not-slash

asterisks::

*

asterisks *

not-asterisk::
Any Unicode character except *

not-slash::
Any Unicode character except /

Comments do not nest. The character sequences /* and */ have no special meaning within a single-line
comment, and the character sequences // and /* have no special meaning within a delimited comment.

Comments are not processed within character and string literals.

68

9 Lexical structure

9.3.3 White space

White space is defined as any character with Unicode class Zs (which includes the space character) as well
as the horizontal tab character, the vertical tab character, and the form feed character.

whitespace::
whitespace-characters

whitespace-characters::
whitespace-character
whitespace-characters whitespace-character

whitespace-character::
Any character with Unicode class Zs
Horizontal tab character (U+0009)
Vertical tab character (U+000B)
Form feed character (U+000C)

9.4 Tokens

There are several kinds of tokens: identifiers, keywords, literals, operators, and punctuators. White space
and comments are not tokens, though they act as separators for tokens.

token::
identifier
keyword
integer-literal
real-literal
character-literal
string-literal
operator-or-punctuator

9.4.1 Unicode escape sequences

A Unicode escape sequence represents a Unicode character. Unicode escape sequences are processed in
identifiers (89.4.2), regular string literals (89.4.4.5), and character literals (89.4.4.4). A Unicode character
escape is not processed in any other location (for example, to form an operator, punctuator, or keyword).

unicode-escape-sequence::
\u hex-digit hex-digit hex-digit hex-digit
\U hex-digit hex-digit hex-digit hex-digit hex-digit hex-digit hex-digit hex-digit
A Unicode escape sequence represents the single Unicode character formed by the hexadecimal number
following the “\u” or “\U” characters. Since C# uses a 16-bit encoding of Unicode characters in characters
and string values, a Unicode code point in the range U+10000 to U+10FFFF is represented using two
Unicode surrogate code units. Unicode code points above Ox10FFFF are invalid and are not supported.

Multiple translations are not performed. For instance, the string literal “\u005Cu005C” is equivalent to
*“\u005C” rather than “\”. [Note: The Unicode value \u0O05C is the character “\”. end note]

[Example: The example

class Classl

static void Test(bool \u0066) {
char ¢ = "\u0066";
it (\u0066)
System.Console._WriteLine(c.ToString());

}

shows several uses of \u0066, which is the escape sequence for the letter “f”. The program is equivalent to

69

C# LANGUAGE SPECIFICATION

class Classl

static void Test(bool) {
char c = *f";
it ()
System._Console_WriteLine(c.ToString());

}
}

end example]

9.4.2 Identifiers

The rules for identifiers given in this subclause correspond exactly to those recommended by the Unicode
Standard Annex 15 except that underscore is allowed as an initial character (as is traditional in the

C programming language), Unicode escape sequences are permitted in identifiers, and the “@” character is
allowed as a prefix to enable keywords to be used as identifiers.

identifier::
available-identifier
@ identifier-or-keyword

available-identifier::
An identifier-or-keyword that is not a keyword

identifier-or-keyword::
identifier-start-character identifier-part-charactersy

identifier-start-character::
letter-character
_ (the underscore character U+005F)

identifier-part-characters::
identifier-part-character
identifier-part-characters identifier-part-character

identifier-part-character::
letter-character
decimal-digit-character
connecting-character
combining-character
formatting-character

letter-character::
A Unicode character of classes Lu, LI, Lt, Lm, Lo, or NI
A unicode-escape-sequence representing a character of classes Lu, LI, Lt, Lm, Lo, or NI

combining-character::
A Unicode character of classes Mn or Mc
A unicode-escape-sequence representing a character of classes Mn or Mc

decimal-digit-character::
A Unicode character of the class Nd
A unicode-escape-sequence representing a character of the class Nd

connecting-character::
A Unicode character of the class Pc
A unicode-escape-sequence representing a character of the class Pc

formatting-character::
A Unicode character of the class Cf
A unicode-escape-sequence representing a character of the class Cf

70

9 Lexical structure

[Note: For information on the Unicode character classes mentioned above, see The Unicode Standard,
Verson 3.0, §4.5. end note]

[Example: Examples of valid identifiers include “identifierl”, “_identifier2”, and “@if”. end
example]

An identifier in a conforming program shall be in the canonical format defined by Unicode Normalization
Form C, as defined by Unicode Standard Annex 15. The behavior when encountering an identifier not in
Normalization Form C is implementation-defined; however, a diagnostic is not required.

The prefix “@” enables the use of keywords as identifiers, which is useful when interfacing with other
programming languages. The character @ is not actually part of the identifier, so the identifier might be seen
in other languages as a normal identifier, without the prefix. An identifier with an @ prefix is called a
verbatim identifier. [Note: Use of the @ prefix for identifiers that are not keywords is permitted, but strongly
discouraged as a matter of style. end note]

[Example: The example:
class @class

public static void @static(bool @bool) {
it (@bool)
System.Console._WriteLine(""true'™);
else
System._Console_WriteLine("false™);

}
}

class Classl

static void MQO
cI\u0061ss.st\u0061tic(true);

}

defines a class named “class” with a static method named “static” that takes a parameter named
“bool”. Note that since Unicode escapes are not permitted in keywords, the token “cI\u0061ss” is an
identifier, and is the same identifier as “@class”. end example]

Two identifiers are considered the same if they are identical after the following transformations are applied,
in order:

e The prefix “@”, if used, is removed.
e Each unicode-escape-sequence is transformed into its corresponding Unicode character.
e Any formatting-characters are removed.

Identifiers containing two consecutive underscore characters (U+005F) are reserved for use by the
implementation; however, no diagnostic is required if such an identifier is defined. [Note: For example, an
implementation might provide extended keywords that begin with two underscores. end note]

9.4.3 Keywords

A keyword is an identifier-like sequence of characters that is reserved, and cannot be used as an identifier
except when prefaced by the @ character.

71

C# LANGUAGE SPECIFICATION

keyword:: one of

abstract as base bool break
byte case catch char checked
class const continue decimal default
delegate do double else enum
event explicit extern false finally
Fixed float for foreach goto

if implicit in int interface
internal is lock long namespace
new null object operator out
override params private protected public
readonly ref return shyte sealed
short sizeof stackalloc static string
struct switch this throw true

try typeof uint ulong unchecked
unsafe ushort using virtual void
volatile while

The following identifiers have special meaning in the syntactic grammar, but they are not keywords: add
(817.7), alias (816.3), get (817.6.2), global (816.7), partial (817.1.4), remove (817.7), set
(817.6.2), value (817.6.2, 817.7.2), where (825.7), and yield (815.14). For convenience and clarity, these
identifiers appear as terminals in the syntactic grammar; however, they are identifiers. [Note: As a result,
unlike keywords, these identifiers can be written with a @ prefix and can contain unicode-escape-sequences.
end note]

9.4.4 Literals
A literal (814.5.1) is a source code representation of a value.

9.4.4.1 Boolean literals
There are two Boolean literal values: true and false.

boolean-literal::
true
false

The type of a boolean-literal is bool.

9.4.4.2 Integer literals

Integer literals are used to write values of types int, uint, long, and ulong. Integer literals have two
possible forms: decimal and hexadecimal.

integer-literal::

decimal-integer-literal

hexadecimal-integer-literal
decimal-integer-literal::

decimal-digits integer-type-suffiXop
decimal-digits::

decimal-digit

decimal-digits decimal-digit
decimal-digit:: one of

0 1 2 3 45 6 7 8 9
integer-type-suffix:: one of

U u L I UL Ul uL ul LU Lu U lu

72

9 Lexical structure

hexadecimal-integer-literal::
Ox hex-digits integer-type-suffiXqp
0X hex-digits integer-type-suffiXop
hex-digits::
hex-digit
hex-digits hex-digit
hex-digit:: one of
01 2 3 45 6 7 8 9 A B CDEFabcdef

The type of an integer literal is determined as follows:

If the literal has no suffix, it has the first of these types in which its value can be represented: int, uint,
long, ulong.

If the literal is suffixed by U or u, it has the first of these types in which its value can be represented:
uint, ulong.

If the literal is suffixed by L or I, it has the first of these types in which its value can be represented:
long, ulong.

If the literal is suffixed by UL, UI, uL, ul, LU, Lu, 1U, or lu, it is of type ulong.

If the value represented by an integer literal is outside the range of the ulong type, a compile-time error
occurs.

[Note: As a matter of style, it is suggested that “L” be used instead of “1” when writing literals of type long,
since it is easy to confuse the letter “1” with the digit “1”. end note]

To permit the smallest possible int and Iong values to be written as decimal integer literals, the following
two rules exist:

When a decimal-integer-literal with the value 2147483648 (2*") and no integer-type-suffix appears as
the token immediately following a unary minus operator token (814.6.2), the result (of both tokens) is a
constant of type int with the value —2147483648 (—2%"). In all other situations, such a decimal-integer-
literal is of type uint.

When a decimal-integer-literal with the value 9223372036854775808 (2% and no integer-type-suffix or
the integer-type-suffix L or 1 appears as the token immediately following a unary minus operator token
(814.6.2), the result (of both tokens) is a constant of type long with the value —9223372036854775808
(—2%). In all other situations, such a decimal-integer-literal is of type ulong.

9.4.4.3 Real literals
Real literals are used to write values of types Float, double, and decimal.

real-literal::
decimal-digits . decimal-digits exponent-party, real-type-suffixop
decimal-digits exponent-partyy, real-type-suffixop
decimal-digits exponent-part real-type-suffixXop
decimal-digits real-type-suffix

exponent-part::
e signe,: decimal-digits
E signg: decimal-digits

sign:: one of
+ —_

real-type-suffix:: one of
F £f D d M m

73

C# LANGUAGE SPECIFICATION

If no real-type-suffix is specified, the type of the real literal is double. Otherwise, the real-type-suffix
determines the type of the real literal, as follows:

o A real literal suffixed by F or f is of type float. [Example: The literals 1f, 1_5F, 1e10¥, and
123.456F are all of type float. end example]

o A real literal suffixed by D or d is of type double. [Example: The literals 1d, 1.5d, 1e10d, and
123.456D are all of type double. end example]

o Areal literal suffixed by M or m is of type decimal. [Example: The literals 1m, 1.5m, 1e10m, and
123.456M are all of type decimal. end example] This literal is converted to a decimal value by
taking the exact value, and, if necessary, rounding to the nearest representable value using banker's
rounding (811.1.7). Any scale apparent in the literal is preserved unless the value is rounded. [Note:
Hence, the literal 2.900m will be parsed to form the decimal with sign 0, coefficient 2900, and scale 3.
end note]

If the specified literal is too large to be represented in the indicated type, a compile-time error occurs. [Note:
In particular, a real-literal will never produce a floating-point infinity. A non-zero real-literal may,
however, be rounded to zero. end note]

The value of a real literal having type float or double is determined by using the IEC 60559 “round to
nearest” mode.

9.4.4.4 Character literals
A character literal represents a single character, and usually consists of a character in quotes, as in "a-.

character-literal::
* character -

character::
single-character
simple-escape-sequence
hexadecimal-escape-sequence
unicode-escape-sequence

single-character::
Any character except " (U+0027), \ (U+005C), and new-line-character

simple-escape-sequence:: one of
A" \" \\ \0 \a \b \f \n \r \t \v

hexadecimal-escape-sequence::
\x hex-digit hex-digit,,x hex-digite,: hex-digitop

[Note: A character that follows a backslash character (\) in a character shall be one of the following
characters: =, ", \,0,a, b, f, n, r, t, u, U, x, v. Otherwise, a compile-time error occurs. end note]

A hexadecimal escape sequence represents a single Unicode character, with the value formed by the
hexadecimal number following “\x”.

If the value represented by a character literal is greater than U+FFFF, a compile-time error occurs.
A Unicode character escape sequence (89.4.1) in a character literal shall be in the range U+0000 to U+FFFF.

A simple escape sequence represents a Unicode character encoding, as described in the table below.

74

9 Lexical structure

Escape Character Unicode code
sequence name point
* Single quote 0x0027
\" Double quote 0x0022
W\ Backslash 0x005C
\O Null 0x0000
\a Alert 0x0007
\b Backspace 0x0008
\f Form feed 0x000C
\n New line 0x000A
\r Carriage return | 0x000D
\t Horizontal tab | 0X0009
\v Vertical tab 0x000B

The type of a character-literal is char.

9.4.4.5 String literals

C# supports two forms of string literals: regular string literals and verbatim string literals. A regular string
literal consists of zero or more characters enclosed in double quotes, as in "*hello, world", and can
include both simple escape sequences (such as \t for the tab character), and hexadecimal and Unicode
escape sequences.

A verbatim string literal consists of an @ character followed by a double-quote character, zero or more
characters, and a closing double-quote character. [Example: A simple example is @ hello, world". end
example] In a verbatim string literal, the characters between the delimiters are interpreted verbatim, with the
only exception being a quote-escape-sequence, which represents one double-quote character. In particular,
simple escape sequences, and hexadecimal and Unicode escape sequences are not processed in verbatim
string literals. A verbatim string literal can span multiple lines.

string-literal::
regular-string-literal
verbatim-string-literal

regular-string-literal::
" regular-string-literal-charactersyy ™

regular-string-literal-characters::
regular-string-literal-character
regular-string-literal-characters regular-string-literal-character

regular-string-literal-character::
single-regular-string-literal-character
simple-escape-sequence
hexadecimal-escape-sequence
unicode-escape-sequence

single-regular-string-literal-character::
Any character except ** (U+0022), \ (U+005C), and new-line-character

verbatim-string-literal::
@ verbatim-string-literal-charactersy,

75

C# LANGUAGE SPECIFICATION

verbatim-string-literal-characters::
verbatim-string-literal-character
verbatim-string-literal-characters verbatim-string-literal-character

verbatim-string-literal-character::
single-verbatim-string-literal-character
quote-escape-sequence

single-verbatim-string-literal-character::
Any character except **

guote-escape-sequence::

[Note: A character that follows a backslash character (\) in a regular-string-literal-character shall be one of
the following characters: =, ", \, 0, a, b, f, n, r, t, u, U, x, v. Otherwise, a compile-time error occurs. end
note]

[Example: The example

string a = "Happy birthday, Joel™; // Happy birthday, Joel
string b = @"Happy birthday, Joel"; // Happy birthday, Joel
string ¢ = "hello \t world"; // hello world

string d = @ hello \t world"; // hello \t world

string e = "Joe said \"Hello\" to me"; // Joe said "Hello" to me
string f = @"Joe said ""Hello"™" to me"™; // Joe said "Hello" to me
string g = "\\\\server\\share\\file.txt"; // \\server\share\file.txt
string h = @"\\server\share\file._.txt"; // \\server\share\file.txt
string i1 = "one\r\ntwo\r\nthree";

string j = @"one

two

three";

shows a variety of string literals. The last string literal, j, is a verbatim string literal that spans multiple lines.
The characters between the quotation marks, including white space such as new line characters, are
preserved verbatim, and each pair of double-quote characters is replaced by one such character. end
example]

[Note: Since a hexadecimal escape sequence can have a variable number of hex digits, the string literal
"\x123"" contains a single character with hex value 123. To create a string containing the character with hex
value 12 followed by the character 3, one could write *\x00123" or ""\x12" + 3" instead. end note]

The type of a string-literal is string.

Each string literal does not necessarily result in a new string instance. When two or more string literals that
are equivalent according to the string equality operator (§14.9.7), appear in the same assembly, these string
literals refer to the same string instance. [Example: For instance, the output produced by

class Test

static void Main(Q) {
object a = "hello";
object b = "hello";
System.Console._WriteLine(a == b);

}
}

is True because the two literals refer to the same string instance. end example]

9.4.4.6 The null literal

null-literal::
null

The type of a null-literal is the null type (§11.2.7).

76

9 Lexical structure

9.4.5 Operators and punctuators

There are several kinds of operators and punctuators. Operators are used in expressions to describe
operations involving one or more operands. [Example: The expression a + b uses the + operator to add the
two operands a and b. end example] Punctuators are for grouping and separating.

operator-or-punctuator:: one of

{ } [1 () . , : ;
+ - * / % & | ~ ! ~
= < > ? ?? bl ++ -— && 11
-> == 1= <= >= += -= *= /= %=
&= I= N= << <<=

right-shift::
> >

right-shift-assignment::
> >=

right-shift is made up of the two tokens > and >. Similarly, right-shift-assignment is made up of the two
tokens > and >=. Unlike other productions in the syntactic grammar, no characters of any kind (not even
whitespace) are allowed between the two tokens in each of these productions. [Note: Prior to the addition of
generics to C#, >> and >>= were both single tokens. However, the syntax for generics uses the < and >
characters to delimit type parameters and type arguments. It is often desirable to use nested constructed
types, such as List<Dictionary<string, int>>. Rather than requiring the programmer to separate the
> and > by a space, the definition of the two operator-or-punctuators was changed. end note]

9.5 Pre-processing directives

The pre-processing directives provide the ability to skip conditionally sections of source files, to report error
and warning conditions, and to delineate distinct regions of source code. [Note: The term “pre-processing
directives” is used only for consistency with the C and C++ programming languages. In C#, there is no
separate pre-processing step; pre-processing directives are processed as part of the lexical analysis phase.
end note]
pp-directive::

pp-declaration

pp-conditional

pp-line

pp-diagnostic

pp-region

pp-pragma
The following pre-processing directives are available:

o #define and #undef, which are used to define and undefine, respectively, conditional compilation
symbols (89.5.3).

o #if, #elif, #else, and #endif, which are used to skip conditionally sections of source code (89.5.4).
e #line, which is used to control line numbers emitted for errors and warnings (89.5.7).

e #error and #warning, which are used to issue errors and warnings, respectively (89.5.5).

e #region and #endregion, which are used to explicitly mark sections of source code (89.5.6).

e #pragma, which is used to provide contextual information to a compiler (89.5.8).

A pre-processing directive always occupies a separate line of source code and always begins with a
character and a pre-processing directive name. White space can occur before the # character and between
the # character and the directive name.

77

C# LANGUAGE SPECIFICATION

A source line containing a #define, #undef, #if, #elif, #else, #endif, or #line directive can end
with a single-line comment. Delimited comments (the /7* */ style of comments) are not permitted on source
lines containing pre-processing directives.

Pre-processing directives are not tokens and are not part of the syntactic grammar of C#. However, pre-
processing directives can be used to include or exclude sequences of tokens and in that way can affect the
meaning of a C# program. [Example: When compiled, the program

#define A
#undef B

class C

#if A
void FOQ {3}

#else

void GO {}
#endi f

#if B
void HO {3

#else

void 10 {}
#endif

}
results in the exact same sequence of tokens as the program
class C

void FO {}
void 1) {3}

Thus, whereas lexically, the two programs are quite different, syntactically, they are identical. end example]

9.5.1 Conditional compilation symbols

The conditional compilation functionality provided by the #if, #el i f, #else, and #endi f directives is
controlled through pre-processing expressions (89.5.2) and conditional compilation symbols.

conditional-symbol::
identifier
Any keyword except true or false

A conditional compilation symbol has two possible states: defined or undefined. At the beginning of the
lexical processing of a source file, a conditional compilation symbol is undefined unless it has been
explicitly defined by an external mechanism (such as a command-line compiler option). When a #define
directive is processed, the conditional compilation symbol named in that directive becomes defined in that
source file. The symbol remains defined until a #undef directive for that same symbol is processed, or until
the end of the source file is reached. An implication of this is that #define and #undef directives in one
source file have no effect on other source files in the same program.

The name space for conditional compilation symbols is distinct and separate from all other named entities in
a C# program. Conditional compilation symbols can only be referenced in #define and #undef directives
and in pre-processing expressions.

9.5.2 Pre-processing expressions

Pre-processing expressions can occur in #iF and #eli f directives. The operators !, ==, 1=, && and | | are
permitted in pre-processing expressions, and parentheses can be used for grouping.

pp-expression::
whitespaceg,: pp-or-expression whitespace,p

78

9 Lexical structure

pp-or-expression::
pp-and-expression
pp-or-expression whitespace,,: || whitespacey,: pp-and-expression

pp-and-expression::
pp-equality-expression
pp-and-expression whitespace,,: && whitespaceq,: pp-equality-expression

pp-equality-expression::
pp-unary-expression
pp-equality-expression whitespace,,: == Wwhitespacey,: pp-unary-expression
pp-equality-expression whitespace,,: = whitespacey,: pp-unary-expression

pp-unary-expression::
pp-primary-expression
! whitespacey, pp-unary-expression

pp-primary-expression::
true
false
conditional-symbol
(whitespaceg,: pp-expression whitespaceqy:)

When referenced in a pre-processing expression, a defined conditional compilation symbol has the Boolean
value true, and an undefined conditional compilation symbol has the Boolean value false.

Evaluation of a pre-processing expression always yields a Boolean value. The rules of evaluation for a pre-
processing expression are the same as those for a constant expression (814.16), except that the only user-
defined entities that can be referenced are conditional compilation symbols.

9.5.3 Declaration directives
The declaration directives are used to define or undefine conditional compilation symbols.

pp-declaration::
whitespaceq,: # Wwhitespace,,, define whitespace conditional-symbol pp-new-line
whitespaceq,: # Wwhitespacey,: undef whitespace conditional-symbol pp-new-line

pp-new-line::
whitespacey,: single-line-comment,,, new-line
The processing of a #define directive causes the given conditional compilation symbol to become defined,
starting with the source line that follows the directive. Likewise, the processing of a #undeT directive

causes the given conditional compilation symbol to become undefined, starting with the source line that
follows the directive.

Any #define and #undef directives in a source file shall occur before the first token (89.4) in the source
file; otherwise a compile-time error occurs. In intuitive terms, #define and #undef directives shall
precede any “real code” in the source file.
[Example: The example:

#define Enterprise

#i1F Professional || Enterprise
#define Advanced
#endi f

namespace Megacorp.Data

#if Advanced
class PivotTable {...}
#endi f

}

is valid because the #define directives precede the first token (the namespace keyword) in the source file.

79

C# LANGUAGE SPECIFICATION

end example]

[Example: The following example results in a compile-time error because a #define follows real code:

#define A
namespace N

#define B

#if B

class Classl {}
#endif

end example]

A #define can define a conditional compilation symbol that is already defined, without there being any
intervening #undeT for that symbol. [Example: The example below defines a conditional compilation
symbol A and then defines it again.

#define A
#define A

For compilers that allow conditional compilation symbols to be defined as compilation options, an
alternative way for such redefinition to occur is to define the symbol as a compiler option as well as in the
source. end example]

A #undef can “undefine” a conditional compilation symbol that is not defined. [Example: The example
below defines a conditional compilation symbol A and then undefines it twice; although the second #undef
has no effect, it is still valid.

#define A

#undef A
#undef A

end example]

9.5.4 Conditional compilation directives
The conditional compilation directives are used to conditionally include or exclude portions of a source file.

pp-conditional::
pp-if-section pp-elif-sections,,: pp-else-sectiony,: pp-endif

pp-if-section::
whitespace,,: # Wwhitespacey,: if whitespace pp-expression pp-new-line
conditional-sectiong

pp-elif-sections::
pp-elif-section
pp-elif-sections pp-elif-section
pp-elif-section::
whitespaceq,: # whitespace,, el i f whitespace pp-expression pp-new-line
conditional-sectiongy

pp-else-section::

whitespacey,: # whitespacey,,: else pp-new-line conditional-sectiongy
pp-endif::

whitespaceq,: # Wwhitespacey,: endif pp-new-line
conditional-section::

input-section

skipped-section

80

9 Lexical structure

skipped-section::
skipped-section-part
skipped-section skipped-section-part

skipped-section-part::
whitespaceq,: skipped-charactersy,: new-line
pp-directive

skipped-characters::
not-number-sign input-charactersyy

not-number-sign::
Any input-character except #

[Note: As indicated by the syntax, conditional compilation directives shall be written as sets consisting of, in
order, a #if directive, zero or more #el i f directives, zero or one #else directive, and a #endi f directive.
Between the directives are conditional sections of source code. Each section is controlled by the
immediately preceding directive. A conditional section can itself contain nested conditional compilation
directives provided these directives form complete sets. end note]

A pp-conditional selects at most one of the contained conditional-sections for normal lexical processing:

e The pp-expressions of the #if and #el i f directives are evaluated in order until one yields true. If an
expression yields true, the conditional-section of the corresponding directive is selected.

o Ifall pp-expressions yield false, and if a #else directive is present, the conditional-section of the
#else directive is selected.

e Otherwise, no conditional-section is selected.

The selected conditional-section, if any, is processed as a normal input-section: the source code contained in
the section shall adhere to the lexical grammar; tokens are generated from the source code in the section; and
pre-processing directives in the section have the prescribed effects.

The remaining conditional-sections, if any, are processed as skipped-sections: except for pre-processing
directives, the source code in the section need not adhere to the lexical grammar; no tokens are generated
from the source code in the section; and pre-processing directives in the section shall be lexically correct but
are not otherwise processed. Within a conditional-section that is being processed as a skipped-section, any
nested conditional-sections (contained in nested #i f...#endi f and #region...#endregion constructs) are
also processed as skipped-sections.

[Example: The following example illustrates how conditional compilation directives can nest:

#define Debug // Debugging on
#undef Trace // Tracing off

class PurchaseTransaction

void Commit() {

#i1F Debug
CheckConsistency();
#iF Trace

WriteToLog(this.ToString());

#endif

#endif

CommitHelper();

}

Except for pre-processing directives, skipped source code is not subject to lexical analysis. For example, the
following is valid despite the unterminated comment in the #else section:

#define Debug // Debugging on

81

C# LANGUAGE SPECIFICATION

class PurchaseTransaction

void Commit() {
#i1F Debug
CheckConsistency();
#else
/* Do something else
#endif

}
y

Note, however, that pre-processing directives are required to be lexically correct even in skipped sections of
source code.

Pre-processing directives are not processed when they appear inside multi-line input elements. For example,
the program:

class Hello

static void Main(Q) {

System_Console._WriteLine(@" hello,
#i1F Debug

world
#else

Nebraska
#endif

")

}
}

results in the output:

hello,
#iT Debug
world
#else
Nebraska
#endif

In peculiar cases, the set of pre-processing directives that is processed might depend on the evaluation of the
pp-expression. The example:
#if X
/*
#else

/* */ class Q { }
#endif

always produces the same token stream (class Q { }), regardless of whether or not X is defined. If X is
defined, the only processed directives are #if and #endiF, due to the multi-line comment. If X is
undefined, then three directives (#if, #else, #endif) are part of the directive set. end example]

9.5.5 Diagnostic directives

The diagnostic directives are used to generate explicitly error and warning messages that are reported in the
same way as other compile-time errors and warnings.

pp-diagnostic::
whitespacey,: # whitespacey,,: error pp-message
whitespaceq,: # whitespacey,,x warning pp-message

pp-message::
new-line
whitespace input-charactersq,; new-line

[Example: The example
#warning Code review needed before check-in

82

9 Lexical structure

#i1F Debug && Retail
#error A build can"t be both debug and retail
#endif

class Test {.}

always produces a warning (“Code review needed before check-in”), and produces a compile-time
error if the pre-processing identifiers Debug and Retai I are both defined. Note that a pp-message can
contain arbitrary text; specifically, it need not contain well-formed tokens, as shown by the single quote in
the word can™t. end example]

9.5.6 Region control
The region directives are used to mark explicitly regions of source code.
pp-region::
pp-start-region conditional-section,, pp-end-region
pp-start-region::
whitespaceq,: # whitespace,,: region pp-message
pp-end-region::
whitespaceq,: # whitespace,,: endregion pp-message

No semantic meaning is attached to a region; regions are intended for use by the programmer or by
automated tools to mark a section of source code. The message specified in a #region or #endregion
directive likewise has no semantic meaning; it merely serves to identify the region. Matching #region and
#endregion directives can have different pp-messages.
The lexical processing of a region:

#region

#éﬁdregion
corresponds exactly to the lexical processing of a conditional compilation directive of the form:

#if true

#endif
9.5.7 Line directives

Line directives can be used to alter the line numbers and source file names that are reported by the compiler
in output such as warnings and errors.

[Note: Line directives are most commonly used in meta-programming tools that generate C# source code
from some other text input. end note]
pp-line::
whitespacey,: # whitespacey,,: line whitespace line-indicator pp-new-line
line-indicator::
decimal-digits whitespace file-name
decimal-digits
identifier-or-keyword

file-name::
' file-name-characters "
file-name-characters::

file-name-character
file-name-characters file-name-character

file-name-character::
Any character except ** (U+0022), and new-line-character

83

C# LANGUAGE SPECIFICATION

When no #1 ine directives are present, the compiler reports true line numbers and source file names in its
output. When processing a #1ine directive that includes a line-indicator that is not identifier-or-keyword,
the compiler treats the line after the directive as having the given line number (and file name, if specified).

A #line directive in which the line-indicator is an identifier-or-keyword whose value equals default
(using equality as specified in §9.4.2) reverses the effect of all preceding #1 ine directives. The compiler
reports true line information for subsequent lines, precisely as if no #1 ine directives had been processed.

The purpose of a line-indicator with an identifier-or-keyword whose value does not equal default is
implementation-defined. An implementation that does not recognize such an identifier-or-keyword in a line-
indicator shall issue a warning.

[Note: Note that a file-name differs from a regular string literal in that escape characters are not processed;
the “\’ character simply designates an ordinary back-slash character within a file-name. end note]

9.5.8 Pragma directives

The #pragma directive is a preprocessing directive used to specify contextual information to a compiler.
[Note: For example, a compiler might provide #pragma directives that

o Enable or disable particular warning messages when compiling subsequent code.
o Specify which optimizations to apply to subsequent code.

o Specify information to be used by a debugger.

end note]

pp-pragma:
whitespaceq,: # Whitespace,,: pragma pp-pragma-text
pp-pragma-text:
new-line
whitespace input-charactersy,: new-line

The input-characters in the pp-pragma-text are interpreted by the compiler in an implementation-defined
manner. The information supplied in a #pragma directive shall not change program semantics. A #pragma
directive shall only change compiler behavior that is outside the scope of this language specification. If the
compiler cannot interpret the input-characters, the compiler can produce a warning; however, it shall not
produce a compile-time error.

[Note: pp-pragma-text can contain arbitrary text; specifically, it need not contain well-formed tokens. end
note]

84

10 Basic concepts

10. Basic concepts

10.1 Application startup

Application startup occurs when the execution environment calls a designated method, which is referred to
as the application's entry point. This entry point method is always named Main, and shall have one of the
following signatures:

static void MainQ {.}

static void Main(string[] args) {.}

static int Main(Q) {.}
static int Main(string[] args) {.}

As shown, the entry point can optionally return an int value. This return value is used in application
termination (810.2).

The entry point can optionally have one formal parameter, and this formal parameter can have any name. If
such a parameter is declared, it shall obey the following constraints:

e The implementation shall ensure that the value of this parameter is not nul 1.

e Let args be the name of the parameter. If the length of the array designated by args is greater than
zero, the array members args[0] through args[args.Length-117, inclusive, shall refer to strings,
called application parameters, which are given implementation-defined values by the host environment
prior to application startup. The intent is to supply to the application information determined prior to
application startup from elsewhere in the hosted environment. If the host environment is not capable of
supplying strings with letters in both uppercase and lowercase, the implementation shall ensure that the
strings are received in lowercase. [Note: On systems supporting a command line, application parameters
correspond to what are generally known as command-line arguments. end note]

Since C# supports method overloading, a class or struct can contain multiple definitions of some method,
provided each has a different signature. However, within a single program, no class or struct shall contain
more than one method called Main whose definition qualifies it to be used as an application entry point.
Other overloaded versions of Main are permitted, however, provided they have more than one parameter, or
their only parameter is other than type string[].

An application can be made up of multiple classes or structs. It is possible for more than one of these classes
or structs to contain a method called Main whose definition qualifies it to be used as an application entry
point. In such cases, one of these Main methods shall be chosen as the entry point so that application startup
can occur. This choice of an entry point is beyond the scope of this specification—no mechanism for
specifying or determining an entry point is provided.

In C#, every method shall be defined as a member of a class or struct. Ordinarily, the declared accessibility
(810.5.1) of a method is determined by the access modifiers (§17.2.3) specified in its declaration, and
similarly the declared accessibility of a type is determined by the access modifiers specified in its
declaration. In order for a given method of a given type to be callable, both the type and the member shall be
accessible. However, the application entry point is a special case. Specifically, the execution environment
can access the application's entry point regardless of its declared accessibility and regardless of the declared
accessibility of its enclosing type declarations.

The entry point method shall not be defined in a generic class declaration (825.1) or a generic struct
declaration (825.2).

In all other respects, entry point methods behave like those that are not entry points.

85

C# LANGUAGE SPECIFICATION

10.2 Application termination
Application termination returns control to the execution environment.

If the return type of the application’s entry point method is int, the value returned serves as the
application's termination status code. The purpose of this code is to allow communication of success or
failure to the execution environment.

If the return type of the entry point method is void, reaching the right brace (}) which terminates that
method, or executing a return statement that has no expression, results in a termination status code of 0.

Prior to an application’s termination, finalizers for all of its objects that have not yet been garbage collected
are called, unless such cleanup has been suppressed (by a call to the library method
GC.SuppressFinalize, for example).

10.3 Declarations

Declarations in a C# program define the constituent elements of the program. C# programs are organized
using namespace declarations (816), which can contain type declarations and nested namespace declarations.
Type declarations (816.6) are used to define classes (817), structs (818), interfaces (820), enums (821), and
delegates (§22). The kinds of members permitted in a type declaration depend on the form of the type
declaration. For instance, class declarations can contain declarations for constants (817.3), fields (§17.4),
methods (817.5), properties (817.6), events (817.7), indexers (817.8), operators (817.9), instance
constructors (817.10), finalizers (§17.12), static constructors (817.11), and nested types.

A declaration defines a name in the declaration space to which the declaration belongs. It is a compile-time
error to have two or more declarations that introduce members with the same name in a declaration space,
except in the following cases:

e Two or more namespace declarations with the same name are allowed in the same declaration space.
Such namespace declarations are aggregated to form a single logical namespace and share a single
declaration space.

o Declarations in separate programs but in the same namespace declaration space are allowed to share the
same name.

e Two or more methods with the same name but distinct signatures are allowed in the same declaration
space (810.6).

e Two or more type declarations with the same name but distinct numbers of type parameters are allowed
in the same declaration space (§10.8.2).

e Two or more type declarations with the partial modifier in the same declaration space may share the
same name, same number of type parameters and same classification (class, struct or interface).
In this case, the type declarations contribute to a single type and are themselves aggregated to form a
single declaration space (§17.1.4).

e A namespace declaration and a type declaration in the same declaration space can share the same name
as long as the type declaration has at least one type parameter (810.8.2).

It is never possible for a type declaration space to contain different kinds of members with the same name.
[Example: A type declaration space can never contain a field and a method by the same name. end example]

There are several different types of declaration spaces, as described in the following.

o Within all source files of a program, namespace-member-declarations with no enclosing hamespace-
declaration are members of a single combined declaration space called the global declaration space.

o Within all source files of a program, namespace-member-declarations within namespace-declarations
that have the same fully qualified namespace name are members of a single combined declaration space.

86

10 Basic concepts

Each compilation-unit and namespace-body has an alias declaration space. Each extern-alias-directive
and using-alias-directive of the compilation-unit or namespace-body contributes a member to the alias
declaration space (816.4.1).

Each non-partial class, struct, or interface declaration creates a new declaration space. Each partial class,
struct, or interface declaration contributes to a declaration space shared by all matching parts in the same
program (817.1.4). Names are introduced into this declaration space through the type-parameter-list and
class-member-declarations, struct-member-declarations, or interface-member-declarations. Except for
overloaded instance constructor declarations and static constructor declarations, a class or struct member
declaration cannot introduce a member by the same name as the class or struct. A class, struct, or
interface permits the declaration of overloaded methods and indexers. Furthermore, a class or struct
permits the declaration of overloaded instance constructors, operators, and types. [Example: A class,
struct, or interface can contain multiple method declarations with the same name, provided these method
declarations differ in their signature (810.6). A class or struct can contain multiple nested types with the
same name provided the types differ in the number of type parameters. end example] Base classes do not
contribute to the declaration space of a class, and base interfaces do not contribute to the declaration
space of an interface. Thus, a derived class or interface is allowed to declare a member with the same
name as an inherited member.

Each enumeration declaration creates a new declaration space. Names are introduced into this
declaration space through enum-member-declarations.

Each block, switch-block, for-statement, foreach-statement, or using-statement creates a declaration
space for local variables and local constants called the local variable declaration space. Names are
introduced into this declaration space through local-variable-declarations and local-constant-
declarations. If a block is the body of an instance constructor, method, or operator declaration, or a get
or set accessor for an indexer declaration, the parameters declared in such a declaration are members of
the block’s local variable declaration space. If a block is the body of a generic method, the type
parameters declared in such a declaration are members of the block’s local variable declaration space. It
is an error for two members of a local variable declaration space to have the same name. It is an error for
a local variable declaration space and a nested local variable declaration space to contain elements with
the same name. [Note: Thus, within a nested block it is not possible to declare a local variable or
constant with the same name as a local variable or constant in an enclosing block. It is possible for two
nested blocks to contain elements with the same name as long as neither block contains the other. end
note]

Each block or switch-block creates a separate declaration space for labels called the label declaration
space of the block. Names are introduced into this declaration space through labeled-statements, and the
names are referenced through goto-statements. It is an error for the label declaration space of a block
and the label declaration space of a nested block to contain elements with the same name. Thus, within a
nested block it is not possible to declare a label with the same name as a label in an enclosing block.
[Note: It is possible for two nested blocks to contain elements with the same name as long as neither
block contains the other. end note]

The textual order in which names are declared is generally of no significance. In particular, textual order is
not significant for the declaration and use of namespaces, constants, methods, properties, events, indexers,

operators, instance constructors, finalizers, static constructors, and types. Declaration order is significant in
the following ways:

Declaration order for field declarations and local variable declarations determines the order in which
their initializers (if any) are executed. When there are field declarations in multiple partial type
declarations for the same type, the order of the parts is unspecified. However, within each part the field
initializers are executed in order.

Local variables and local constants shall be defined before they are used (§10.7).

Declaration order for enum member declarations (§21.3) is significant when constant-expression values
are omitted.

87

C# LANGUAGE SPECIFICATION

[Example: The declaration space of a namespace is “open ended”, and two namespace declarations with the
same fully qualified name contribute to the same declaration space. For example

namespace Megacorp.Data

class Customer

{
}
}

namespace Megacorp.Data

class Order

}
}

The two namespace declarations above contribute to the same declaration space, in this case declaring two
classes with the fully qualified names Megacorp.Data.Customer and Megacorp.Data.Order. Because
the two declarations contribute to the same declaration space, it would have caused a compile-time error if
each contained a declaration of a class with the same name.

All declarations of a partial type contribute to the same declaration space:
partial class C

int F;

partial struct N1 {.}
partial class N2 {.}
partial class N3 {.}

}

partial class C
void FO {.} // Error: conflicts with field F
partial class N1 {.} // Error: conflicts with struct N1
class N2 {.} // Error: conflicts with other N2

partial class N3 {.} // Ok

The two partial declarations for C combine to form a single declaration space and a single type. The field
named F in the first part conflicts with the method named F in the second part. The struct named N1 in the
first part conflicts with the class named N1 in the second part. The non-partial class N2 in the second part
conflicts with the partial class N2 in the first part. The two partial declarations for N3 combine to form a
single type C.N3. end example]

[Note: As specified above, the declaration space of a block cannot share names with the declaration spaces
of any nested blocks. Thus, in the following example, the F and G methods result in a compile-time error
because the name i is declared in the outer block and cannot be redeclared in the inner block. However, the
H and I methods are valid since the two i’s are declared in separate non-nested blocks.

class A
void FQ {
int 1 = 0;
if (true) {
int 1 = 1;
3
void GO {
if (true) {
int i = 0;
I S
int 1 = 1;
3

88

10 Basic concepts

void HO {
if (true) {
int i = 0;
%f (true) {
int i = 1;
}
}
void 1 {
for (int i = 0; i < 10; i++)
HO: _ _
for (int 1 = 0; 1 < 10; i++)
HO;
}
end note]

10.4 Members
Namespaces and types have members. [Note: The members of an entity are generally available through the

use of a qualified name that starts with a reference to the entity, followed by a “.” token, followed by the
name of the member. end note]

Members of a type are either declared in the type or inherited from the base class of the type. When a type
inherits from a base class, all members of the base class, except instance constructors, finalizers, and static
constructors become members of the derived type. The declared accessibility of a base class member does
not control whether the member is inherited—inheritance extends to any member that isn’t an instance
constructor, static constructor, or finalizer. However, an inherited member might not be accessible in a
derived type, either because of its declared accessibility (§10.5.1) or because it is hidden by a declaration in
the type itself (810.7.1.2).

10.4.1 Namespace members
Namespaces and types that have no enclosing namespace are members of the global namespace. This
corresponds directly to the names declared in the global declaration space.

Namespaces and types declared within a namespace are members of that namespace. This corresponds
directly to the names declared in the declaration space of the namespace.

Namespaces have no access restrictions. It is not possible to declare private, protected, or internal
namespaces, and namespace names are always publicly accessible.

10.4.2 Struct members
The members of a struct are the members declared in the struct and the members inherited from the struct’s
direct base class System.ValueType and the indirect base class object.

The members of a simple type are the members of the struct type aliased by the simple type (§11.1.4).

10.4.3 Enumeration members

The members of an enumeration are the constants declared in the enumeration and the members inherited
from the enumeration’s direct base class System.Enum and the indirect base classes System.ValueType
and object

10.4.4 Class members

The members of a class are the members declared in the class and the members inherited from the base class
(except for class ob ject which has no base class). The members inherited from the base class include the
constants, fields, methods, properties, events, indexers, operators, and types of the base class, but not the
instance constructors, finalizers, and static constructors of the base class. Base class members are inherited
without regard to their accessibility.

89

C# LANGUAGE SPECIFICATION

A class declaration can contain declarations of constants, fields, methods, properties, events, indexers,
operators, instance constructors, finalizers, static constructors, and types.

The members of object and string correspond directly to the members of the class types they alias:
e The members of object are the members of the System.Object class.

e The members of string are the members of the System.String class.

10.4.5 Interface members

The members of an interface are the members declared in the interface and in all base interfaces of the
interface. [Note: The members in class object are not, strictly speaking, members of any interface (§20.2).
However, the members in class object are available via member lookup in any interface type (§14.3). end
note]

10.4.6 Array members
The members of an array are the members inherited from class System.Array.

10.4.7 Delegate members
The members of a delegate are the members inherited from class System.Delegate.

10.5 Member access

Declarations of members allow control over member access. The accessibility of a member is established by
the declared accessibility (§10.5.1) of the member combined with the accessibility of the immediately
containing type, if any.

When access to a particular member is allowed, the member is said to be accessible. Conversely, when
access to a particular member is disallowed, the member is said to be inaccessible. Access to a member is
permitted when the textual location in which the access takes place is included in the accessibility domain
(810.5.2) of the member.

10.5.1 Declared accessibility
The declared accessibility of a member can be one of the following:

e Public, which is selected by including a publ ic modifier in the member declaration. The intuitive
meaning of public is “access not limited”.

e Protected, which is selected by including a protected modifier in the member declaration. The
intuitive meaning of protected is “access limited to the containing class or types derived from the
containing class”.

e Internal, which is selected by including an internal modifier in the member declaration. The intuitive
meaning of internal is “access limited to this program”.

e Protected internal, which is selected by including both a protected and an internal modifier in the
member declaration. The intuitive meaning of protected internal is “access limited to this program
or types derived from the containing class”.

e Private, which is selected by including a private modifier in the member declaration. The intuitive
meaning of private is “access limited to the containing type”.

Depending on the context in which a member declaration takes place, only certain types of declared
accessibility are permitted. Furthermore, when a member declaration does not include any access modifiers,
the context in which the declaration takes place determines the default declared accessibility.

o Namespaces implicitly have public declared accessibility. No access modifiers are allowed on
namespace declarations.

90

10 Basic concepts

e Types declared in compilation units or namespaces can have public or internal declared
accessibility and default to internal declared accessibility.

o Class members can have any of the five kinds of declared accessibility and default to private declared
accessibility. [Note: A type declared as a member of a class can have any of the five kinds of declared
accessibility, whereas a type declared as a member of a namespace can have only public or internal
declared accessibility. end note]

e Struct members can have public, internal, or private declared accessibility and default to
private declared accessibility because structs are implicitly sealed. Struct members introduced in a
struct (that is, not inherited by that struct) cannot have protected or protected internal declared
accessibility. [Note: A type declared as a member of a struct can have public, internal, or private
declared accessibility, whereas a type declared as a member of a namespace can have only public or
internal declared accessibility. end note]

o Interface members implicitly have public declared accessibility. No access modifiers are allowed on
interface member declarations.

e Enumeration members implicitly have public declared accessibility. No access modifiers are allowed
on enumeration member declarations.

10.5.2 Accessibility domains

The accessibility domain of a member consists of the (possibly disjoint) sections of program text in which
access to the member is permitted. For purposes of defining the accessibility domain of a member, a member
is said to be top-level if it is not declared within a type, and a member is said to be nested if it is declared
within another type. Furthermore, the text of a program is defined as all source text contained in all source
files of that program, and the source text of a type is defined as all source text contained between the
opening and closing “{” and “}” tokens in the class-body, struct-body, interface-body, or enum-body of all
declarations for the type (including, possibly, multiple partial declarations and all types that are nested
within the type).

The accessibility domain of a predefined type (such as object, int, or double) is unlimited.
The accessibility domain of a top-level type T that is declared in a program P is defined as follows:

o If the declared accessibility of T is publ ic, the accessibility domain of T is the program text of P and
any program that references P.

o |f the declared accessibility of T is internal, the accessibility domain of T is the program text of P.

[Note: From these definitions, it follows that the accessibility domain of a top-level type is always at least
the program text of the program in which that type is declared. end note]

The accessibility domain of a nested member M declared in a type T within a program P, is defined as
follows (noting that M itself might possibly be a type):

o If the declared accessibility of M is publ ic, the accessibility domain of M is the accessibility domain
of T.

o If the declared accessibility of M is protected internal, let D be the union of the program text of P
and the program text of any type derived from T, which is declared outside P. The accessibility domain
of M is the intersection of the accessibility domain of T with D.

o If the declared accessibility of M is protected, let D be the union of the program text of T and the
program text of any type derived from T. The accessibility domain of M is the intersection of the
accessibility domain of T with D.

o If the declared accessibility of M is internal, the accessibility domain of M is the intersection of the
accessibility domain of T with the program text of P.

o |f the declared accessibility of M is private, the accessibility domain of M is the program text of T.

91

C# LANGUAGE SPECIFICATION

[Note: From these definitions, it follows that the accessibility domain of a nested member is always at least
the program text of the type in which the member is declared. Furthermore, it follows that the accessibility
domain of a member is never more inclusive than the accessibility domain of the type in which the member
is declared. end note]

[Note: In intuitive terms, when a type or member M is accessed, the following steps are evaluated to ensure
that the access is permitted:

First, if M is declared within a type (as opposed to a compilation unit or a namespace), a compile-time
error occurs if that type is not accessible.

Then, if Mis publ ic, the access is permitted.

Otherwise, if M is protected internal, the access is permitted if it occurs within the program in
which M is declared, or if it occurs within a class derived from the class in which M is declared and takes
place through the derived class type (810.5.3).

Otherwise, if M is protected, the access is permitted if it occurs within the class in which M is declared,
or if it occurs within a class derived from the class in which M is declared and takes place through the
derived class type (810.5.3).

Otherwise, if M is internal, the access is permitted if it occurs within the program in which M is
declared.

Otherwise, if M is private, the access is permitted if it occurs within the type in which M is declared.

Otherwise, the type or member is inaccessible, and a compile-time error occurs.

end note]

[Example: In the following code

public class A

public static int X;
internal static int Y;
private static int Z;

internal class B

public static int X;
internal static int Y;
private static int Z;

public class C
public static int X;

internal static int Y;
private static int Z;

rivate class D

T -

public static int X;
internal static int Y;
private static int Z;

}

the classes and members have the following accessibility domains:

92

The accessibility domain of A and A_X is unlimited.

The accessibility domain of A_Y, B, B.X,B.Y,B.C,B_.C.X,and B_C.Y is the program text of the
containing program.

The accessibility domain of A.Z is the program text of A.

10 Basic concepts

e The accessibility domain of B.Z and B.D is the program text of B, including the program text of B.C
and B.D.

e The accessibility domain of B.C.Z is the program text of B. C.

e The accessibility domain of B.D.X and B.D.Y is the program text of B, including the program text of
B.CandB.D.

e The accessibility domain of B.D.Z is the program text of B.D.

As the example illustrates, the accessibility domain of a member is never larger than that of a containing
type. For example, even though all X members have public declared accessibility, all but A_X have
accessibility domains that are constrained by a containing type. end example]

As described in 810.4, all members of a base class, except for instance constructors, finalizers, and static
constructors are inherited by derived types. This includes even private members of a base class. However,
the accessibility domain of a private member includes only the program text of the type in which the
member is declared. [Example: In the following code

class A

{
int x;
static void F(B b) {
b.x = 1; // Ok
3

}

class B: A

static void F(B b) {
b.x = 1; // Error, x not accessible
¥

}

the B class inherits the private member x from the A class. Because the member is private, it is only
accessible within the class-body of A. Thus, the access to b. x succeeds in the A_F method, but fails in the
B.F method. end example]

10.5.3 Protected access for instance members

When a protected instance member is accessed outside the program text of the class in which it is
declared, and when a protected internal instance member is accessed outside the program text of the
program in which it is declared, the access is required to take place through an instance of the derived class
type in which the access occurs. Let B be a base class that declares a protected instance member M, and let D
be a class that derives from B. Within the class-body of D, access to M can take one of the following forms:

e Anunqualified type-name or primary-expression of the form M.
e A primary-expression of the form E.M, provided the type of E is D or a class derived from D.
e A primary-expression of the form base .M.

In addition to these forms of access, a derived class can access a protected instance constructor of a base
class in a constructor-initializer (817.10.1).
[Example: In the following code

public class A

protected int Xx;

static void F(A a, B b) {
a.x = 1; // Ok
b.x = 1; // Ok
}
}

93

C# LANGUAGE SPECIFICATION

public class B: A

static void F(A a, B b) {
a.x 1; // Error, must access through instance of B
b.x 1; // Ok

}
}

within A, it is possible to access x through instances of both A and B, since in either case the access takes
place through an instance of A or a class derived from A. However, within B, it is not possible to access x
through an instance of A, since A does not derive from B. end example]

In the context of generics (§25.1.6), the rules for accessing protected and protected internal
instance members are augmented by the following:

e Within a generic class G, access to an inherited protected instance member M using a primary-expression
of the form E_M is permitted if the type of E is a class type constructed from G or a class type derived
from a class type constructed from G.

10.5.4 Accessibility constraints

Several constructs in the C# language require a type to be at least as accessible as a member or another type.
A type T is said to be at least as accessible as a member or type M if the accessibility domain of T is a
superset of the accessibility domain of M. In other words, T is at least as accessible as M if T is accessible in
all contexts in which M is accessible.

The following accessibility constraints exist:
e The direct base class of a class type shall be at least as accessible as the class type itself.
e The explicit base interfaces of an interface type shall be at least as accessible as the interface type itself.

e The return type and parameter types of a delegate type shall be at least as accessible as the delegate type
itself.

e The type of a constant shall be at least as accessible as the constant itself.

e The type of a field shall be at least as accessible as the field itself.

e The return type and parameter types of a method shall be at least as accessible as the method itself.

e The type of a property shall be at least as accessible as the property itself.

e The type of an event shall be at least as accessible as the event itself.

e The type and parameter types of an indexer shall be at least as accessible as the indexer itself.

e The return type and parameter types of an operator shall be at least as accessible as the operator itself.

e The parameter types of an instance constructor shall be at least as accessible as the instance constructor
itself.

[Example: In the following code
class A {.}
public class B: A {.}

the B class results in a compile-time error because A is not at least as accessible as B. end example]

[Example: Likewise, in the following code
class A {.}
public class B

AFO {.}
internal A GO {.}

94

10 Basic concepts

public A HO {.}

the H method in B results in a compile-time error because the return type A is not at least as accessible as the
method. end example]

10.6 Signatures and overloading
Methods, instance constructors, indexers, and operators are characterized by their signatures:

e The signature of a method consists of the name of the method, the number of type parameters, and the
type and kind (value, reference, or output) of each of its formal parameters, considered in the order left
to right. The signature of a method specifically does not include the return type, parameter names, or
type parameter names, nor does it include the params modifier that can be specified for the right-most
parameter. When a parameter type includes a type parameter of the method, the ordinal position of the
type parameter is used for type equivalence, not the name of the type parameter.

e The signature of an instance constructor consists of the type and kind (value, reference, or output) of
each of its formal parameters, considered in the order left to right. The signature of an instance
constructor specifically does not include the parameter names or the params modifier that can be
specified for the right-most parameter.

e The signature of an indexer consists of the type of each of its formal parameters, considered in the order
left to right. The signature of an indexer specifically does not include the element type or parameter
names, nor does it include the params modifier that can be specified for the right-most parameter.

e The signature of an operator consists of the name of the operator and the type of each of its formal
parameters, considered in the order left to right. The signature of an operator specifically does not
include the result type or parameter names.

Signatures are the enabling mechanism for overloading of members in classes, structs, and interfaces:

e Overloading of methods permits a class, struct, or interface to declare multiple methods with the same
name, provided their signatures are unique within that class, struct, or interface.

o Overloading of instance constructors permits a class or struct to declare multiple instance constructors,
provided their signatures are unique within that class or struct.

o Overloading of indexers permits a class, struct, or interface to declare multiple indexers, provided their
signatures are unique within that class, struct, or interface.

e Overloading of operators permits a class or struct to declare multiple operators with the same name,
provided their signatures are unigque within that class or struct.

Although out and ref parameter modifiers are considered part of a signature, members declared in a single
type cannot differ in signature solely by ref and out. A compile-time error occurs if two members are
declared in the same type with signatures that would be the same if all parameters in both methods with out
modifiers were changed to ref modifiers. For other purposes of signature matching (e.g., hiding or
overriding), ref and out are considered part of the signature and do not match each other. [Note: This
restriction is to allow C# programs to be easily translated to run on the Common Language Infrastructure
(CL1I), which does not provide a way to define methods that differ solely in ref and out. end note]

[Example: The following example shows a set of overloaded method declarations along with their
signatures.

interface ITest

void FQ; /7 FQO

void F(int x); // F(int)

void F(ref int x); // F(ref int)

void F(out int Xx); // F(out int) error

95

C# LANGUAGE SPECIFICATION

void F(int x, Int y); // F(int, int)

int F(string s); // F(string)

int F(int x); // F(int) error
void F(string[] a); // F(string[D

void F(params string[] a); // F(string[]) error
void F<S>(S s); // F<T0>(C0)

void F<T>(T t); // F<T0>(0) error
void F<S,T>(S s); // F<°0,71>(C0)

void F<T,S>(S s); // F<70,71>(C1) ok

}

Note that any ref and out parameter modifiers (817.5.1) are part of a signature. Thus, F(int), F(ref
int), and F(out int) are all unique signatures. However, F(ref int) and F(out int) cannot be
declared within the same interface because their signatures differ solely by ref and out. Also, note that the
return type and the params modifier are not part of a signature, so it is not possible to overload solely based
on return type or on the inclusion or exclusion of the params modifier. As such, the declarations of the
methods F(int) and F(params string[]) identified above, result in a compile-time error. end example]

10.7 Scopes

The scope of a name is the region of program text within which it is possible to refer to the entity declared
by the name without qualification of the name. Scopes can be nested, and an inner scope can redeclare the
meaning of a name from an outer scope. [Note: This does not, however, remove the restriction imposed by
810.3 that within a nested block it is not possible to declare a local variable or local constant with the same
name as a local variable or local constant in an enclosing block. end note] The name from the outer scope is
then said to be hidden in the region of program text covered by the inner scope, and access to the outer name
is only possible by qualifying the name.

e The scope of a namespace member declared by a namespace-member-declaration (816.5) with no
enclosing namespace-declaration is the entire program text.

e The scope of a namespace member declared by a namespace-member-declaration within a namespace-
declaration whose fully qualified name is N, is the namespace-body of every namespace-declaration
whose fully qualified name is N or starts with N, followed by a period.

e The scope of a name defined by an extern-alias-directive (816.3) extends over the using-directives,
global-attributes and namespace-member-declarations of the compilation-unit or namespace-body in
which the extern-alias-directive occurs. An extern-alias-directive does not contribute any new members
to the underlying declaration space. In other words, an extern-alias-directive is not transitive, but, rather,
affects only the compilation-unit or namespace-body in which it occurs.

e The scope of a name defined or imported by a using-directive (816.4) extends over the global-attributes
and namespace-member-declarations of the compilation-unit or namespace-body in which the using-
directive occurs. A using-directive can make zero or more namespace or type names available within a
particular compilation-unit or namespace-body, but does not contribute any new members to the
underlying declaration space. In other words, a using-directive is not transitive, but, rather, affects only
the compilation-unit or namespace-body in which it occurs.

e The scope of a member declared by a class-member-declaration (§17.2) is the class-body in which the
declaration occurs. In addition, the scope of a class member extends to the class-body of those derived
classes that are included in the accessibility domain (810.5.2) of the member.

e The scope of a member declared by a struct-member-declaration (818.2) is the struct-body in which the
declaration occurs.

e The scope of a member declared by an enum-member-declaration (§21.3) is the enum-body in which the
declaration occurs.

e The scope of a parameter declared in a method-declaration (§17.5) is the method-body of that method-
declaration.

96

10 Basic concepts

e The scope of a parameter declared in an indexer-declaration (§17.8) is the accessor-declarations of that
indexer-declaration.

e The scope of a parameter declared in an operator-declaration (817.9) is the block of that operator-
declaration.

e The scope of a parameter declared in a constructor-declaration (§17.10) is the constructor-initializer
and block of that constructor-declaration.

e The scope of a label declared in a labeled-statement (815.4) is the block in which the declaration occurs.

e The scope of a local variable declared in a local-variable-declaration (815.5.1) is the block in which the
declaration occurs.

e The scope of a local variable declared in a switch-block of a switch statement (§15.7.2) is the switch-
block.

e The scope of a local variable declared in a for-initializer of a for statement (§15.8.3) is the for-
initializer, the for-condition, the for-iterator, and the contained statement of the for statement.

e The scope of a local constant declared in a local-constant-declaration (815.5.2) is the block in which the
declaration occurs. It is a compile-time error to refer to a local constant in a textual position that
precedes its constant-declarator.

Within the scope of a namespace, class, struct, or enumeration member it is possible to refer to the member
in a textual position that precedes the declaration of the member. [Example:

class A
void FQ {
i = 1;
I
int 1 = 0;
s

Here, it is valid for F to refer to i before it is declared. end example]

Within the scope of a local variable, it is a compile-time error to refer to the local variable in a textual
position that precedes the local-variable-declarator of the local variable. [Example:

class A
int i = 0;
void FQ {
i =1; // Error, use precedes declaration
int i;
i = 2;
}
void GO {
int = =1); // Valid
}
void HO {
inta=1, b = ++a; // Valid
}
}

In the F method above, the first assignment to i specifically does not refer to the field declared in the outer
scope. Rather, it refers to the local variable and it results in a compile-time error because it textually
precedes the declaration of the variable. In the G method, the use of j in the initializer for the declaration of
J is valid because the use does not precede the local-variable-declarator. In the H method, a subsequent
local-variable-declarator correctly refers to a local variable declared in an earlier local-variable-declarator
within the same local-variable-declaration. end example]

[Note: The scoping rules for local variables and local constants are designed to guarantee that the meaning of
a name used in an expression context is always the same within a block. If the scope of a local variable were

97

C# LANGUAGE SPECIFICATION

to extend only from its declaration to the end of the block, then in the example above, the first assignment
would assign to the instance variable and the second assignment would assign to the local variable. (In
certain situations, but not in the example above, this could lead to a compile-time error if the statements of
the block were later to be rearranged.)

The meaning of a name within a block can differ based on the context in which the name is used. In the
example

using System;
class A {}
class Test

static void Main()

string A "hello, world"; // declarator context
string s = A; // expression context
Type t = typeof(A); // type context
Console_WriteLine(s); // writes "hello, world"”

Console._WriteLine(t.ToString()); // writes "Type: A"

}
}

the name A is used in an expression context to refer to the local variable A and in a type context to refer to
the class A. end note]

10.7.1 Name hiding

The scope of an entity typically encompasses more program text than the declaration space of the entity. In
particular, the scope of an entity can include declarations that introduce new declaration spaces containing
entities of the same name. Such declarations cause the original entity to become hidden. Conversely, an
entity is said to be visible when it is not hidden.

Name hiding occurs when scopes overlap through nesting and when scopes overlap through inheritance. The
characteristics of the two types of hiding are described in the following subclauses.

Local variables, local constants, parameters, and method type parameters cannot hide other local variables,
local constants, parameters, or method type parameters (810.3).

10.7.1.1 Hiding through nesting

Name hiding through nesting can occur as a result of nesting namespaces or types within namespaces, as a
result of nesting types within classes or structs, and as a result of parameter, local variable, and local
constant declarations. [Example: In the following code

class A

<
(o]
o
~ |
[\
I T

}

within the F method, the instance variable i is hidden by the local variable i, but within the G method, i still
refers to the instance variable. end example]

When a name in an inner scope hides a name in an outer scope, it hides all overloaded occurrences of that
name. [Example: In the following code

class Outer

static void F(int 1) {}

98

10 Basic concepts

static void F(string s) {}
class Inner

void GO {
F(1); // Invokes Outer.lInner.F
F(C'Hello™); // Error

static void F(long) {}
}

the call F(1) invokes the F declared in Inner because all outer occurrences of F are hidden by the inner
declaration. For the same reason, the call F(""Hel 10™) results in a compile-time error. end example]

10.7.1.2 Hiding through inheritance

Name hiding through inheritance occurs when classes or structs redeclare names that were inherited from
base classes. This type of name hiding takes one of the following forms:

e A constant, field, property, or event introduced in a class or struct hides all base class members with the
same name and no type parameters.

e Atype introduced in a class or struct hides all base class members with the same name and same number
of type parameters.

e A method introduced in a class or struct hides all non-method base class members with the same name
and either, the same number of type parameters or no type parameters, and all base class methods with
the same signature.

e Anindexer introduced in a class or struct hides all base class indexers with the same signature
(parameter count and types).

Contrary to hiding a name from an outer scope, hiding an accessible name from an inherited scope causes a
warning to be reported. [Example: In the following code

class Base

public void FOQ {»

class Derived: Base

public void FO {} // Warning, hiding an inherited name

the declaration of F in Derived causes a warning to be reported. Hiding an inherited name is specifically
not an error, since that would preclude separate evolution of base classes. For example, the above situation
might have come about because a later version of Base introduced an F method that wasn’t present in an
earlier version of the class. Had the above situation been an error, then any change made to a base class in a
separately versioned class library could potentially cause derived classes to become invalid. end example]

The warning caused by hiding an inherited name can be eliminated through use of the new modifier:
[Example:

class Base

public void FOQ {

class Derived: Base

new public void FQ {}

The new modifier indicates that the F in Derived is “new”, and that it is indeed intended to hide the
inherited member. end example]

99

C# LANGUAGE SPECIFICATION

A declaration of a new member hides an inherited member only within the scope of the new member.
[Example:

class Base

public static void FQ {3

class Derived: Base

new private static void FQQ {} // Hides Base.F in Derived only

class MoreDerived: Derived

static void GO { FO:; } // Invokes Base.F

In the example above, the declaration of F in Derived hides the F that was inherited from Base, but since
the new F in Derived has private access, its scope does not extend to MoreDerived. Thus, the call FQ) in
MoreDerived.G is valid and will invoke Base . F. end example]

10.8 Namespace and type names
Several contexts in a C# program require a namespace-name or a type-name to be specified.

namespace-name:
namespace-or-type-name

type-name:
namespace-or-type-name

namespace-or-type-name:
identifier type-argument-list,p
qualified-alias-member
namespace-or-type-name . identifier type-argument-list,y

A namespace-name is a namespace-or-type-name that refers to a namespace.

Following resolution as described below, the namespace-or-type-name of a namespace-name shall refer to a
namespace, or otherwise a compile-time error occurs. Type arguments (825.5.1) shall not be present in a
namespace-name (only types can have type arguments).

A type-name is a namespace-or-type-name that refers to a type. Following resolution as described below, the
namespace-or-type-name of a type-name shall refer to a type, or otherwise a compile-time error occurs.

The syntax and semantics of qualified-alias-member are defined in §16.7.

A namespace-or-type-name that is not a qualified-alias-member has one of four forms:
o |

o I<Aq, ..., A

o N.I

e N.I<A4, ..., Ac

where 1 is a single identifier, N is a namespace-or-type-name and <A, ..., A¢x> IS an optional type-
argument-list. When no type-argument-list is specified, consider K to be zero.

The meaning of a namespace-or-type-name is determined as follows:
o If the namespace-or-type-name is a qualified-alias-member, the meaning is as specified in 816.7.

o Otherwise, if the namespace-or-type-name is of the form 1 or of the form 1<A,, ..., Ac:

100

(0]

10 Basic concepts

If K is zero and the namespace-or-type-name appears within the body of a generic method
declaration (825.6) and if that declaration includes a type parameter (§25.1.1) with name 1, then the
namespace-or-type-name refers to that type parameter.

Otherwise, if the namespace-or-type-name appears within the body of a type declaration, then for
each instance type T (825.1.2), starting with the instance type of that type declaration and continuing
with the instance type of each enclosing class or struct declaration (if any):

If K is zero and the declaration of T includes a type parameter with name 1, then the namespace-
or-type-name refers to that type parameter.

Otherwise, if T contains a nested accessible type having name 1 and K type parameters, then the
namespace-or-type-name refers to that type constructed with the given type arguments. If there
is more than one such type, the type declared within the more derived type is selected. [Note:
Non-type members (constants, fields, methods, properties, indexers, operators, instance
constructors, finalizers, and static constructors) and type members with a different number of
type parameters are ignored when determining the meaning of the namespace-or-type-name. end
note]

Otherwise, for each namespace N, starting with the namespace in which the namespace-or-type-
name occurs, continuing with each enclosing namespace (if any), and ending with the global
namespace, the following steps are evaluated until an entity is located:

If K is zero and 1 is the name of a namespace in N, then:

o If the location where the namespace-or-type-name occurs is enclosed by a namespace
declaration for N and the namespace declaration contains an extern-alias-directive or using-
alias-directive that associates the name 1 with a namespace or type, then the namespace-or-
type-name is ambiguous and a compile-time error occurs.

0 Otherwise, the namespace-or-type-name refers to the namespace named 1 in N.
Otherwise, if N contains an accessible type having name 1 and K type parameters, then:

0 IfKis zero and the location where the namespace-or-type-name occurs is enclosed by a
namespace declaration for N and the namespace declaration contains an extern-alias-
directive or using-alias-directive that associates the name I with a namespace or type, then
the namespace-or-type-name is ambiguous and a compile-time error occurs.

o0 Otherwise, the namespace-or-type-name refers to the type constructed with the given type
arguments.

Otherwise, if the location where the namespace-or-type-name occurs is enclosed by a
namespace declaration for N:

o0 IfKis zero and the namespace declaration contains an extern-alias-directive or using-alias-
directive that associates the name 1 with an imported namespace or type, then the
namespace-or-type-name refers to that namespace or type.

o0 Otherwise, if the namespaces imported by the using-namespace-directives of the namespace
declaration contain exactly one type having name 1 and K type parameters, then the
namespace-or-type-name refers to that type constructed with the given type arguments.

o0 Otherwise, if the namespaces imported by the using-namespace-directives of the namespace
declaration contain more than one type having name I and K type parameters, then the
namespace-or-type-name is ambiguous and an error occurs.

0 Otherwise, the namespace-or-type-name is undefined and a compile-time error occurs.

Otherwise, the namespace-or-type-name is of the form N. 1 or of the form N. 1<A,, ..., Ax>. N is first
resolved as a namespace-or-type-name. If the resolution of N is not successful, a compile-time error
occurs. Otherwise, N. 1 or N. I<A1, ..., A is resolved as follows:

101

C# LANGUAGE SPECIFICATION

o0 IfKiszeroand N refers to a namespace and N contains a nested namespace with name 1, then the
namespace-or-type-name refers to that nested namespace.

0 Otherwise, if N refers to a namespace and N contains an accessible type having name 1 and K type
parameters, then the namespace-or-type-name refers to that type constructed with the given type
arguments.

0 Otherwise, if N refers to a (possibly constructed) class or struct type and N contains a nested
accessible type having name 1 and K type parameters, then the namespace-or-type-name refers to
that type constructed with the given type arguments. If there is more than one such type, the type
declared within the more derived type is selected.

0 Otherwise, N. 1 is an invalid namespace-or-type-name, and a compile-time error occurs.
A namespace-or-type-name is permitted to reference a static class (§17.1.1.3) if
e The namespace-or-type-name is the T in a namespace-or-type-name of the form T_1, or

e The namespace-or-type-name is the T in a typeof-expression (814.5.11) of the form typeof(T)

10.8.1 Unqualified name
Every namespace declaration and type declaration has an unqualified name determined as follows:

e For a namespace declaration, the unqualified name is the qualified-identifier specified in the declaration.

e For atype declaration with no type-parameter-list, the unqualified name is the identifier specified in the
declaration.

o For atype declaration with K type parameters, the unqualified name is the identifier specified in the
declaration, followed by the generic-dimension-specifier (§14.5.11).

10.8.2 Fully qualified names

Every namespace declaration and type declaration has a fully qualified name, which uniquely identifies the
namespace or type amongst all others. The fully qualified name of a namespace or type declaration with
unqualified name N is determined as follows:

o |f the declaration is contained directly in a compilation unit and not nested in any other declaration, its
fully qualified name is N.

e Otherwise, its fully qualified name is S.N, where S is the fully qualified name of the immediately
enclosing namespace or type declaration.

In other words, the fully qualified name of a declaration is the complete hierarchical path of identifiers (and
generic-dimension-specifier (814.5.11)) that lead to the type or namespace, starting from the global
namespace. The fully qualified name of a declaration shall uniquely identify the namespace, non-generic
type or generic instance type (825.1.2) associated with the declaration. It is a compile-time error for the
same fully qualified name to refer to two distinct entities. In particular:

e |tisan error for both a namespace declaration and a type declaration to have the same fully qualified
name.

e lItisan error for two different kinds of type declarations to have the same fully qualified name (for
example, if both a struct and class declaration have the same fully qualified name).

e Itisan error for a type declaration without the partial modifier to have the same fully qualified name
as another type declaration (817.1.4).

[Example: The example below shows several namespace and type declarations along with their associated
fully qualified names.

class A {} // A

102

10 Basic concepts

namespace X // X
class B // X_.B
class C {} // X.B.C
namespace Y // XY
class D {} // X.Y.D
}
namespace X.Y // XY
class E {} // X.Y_.E
class G<T> { // X.Y.G<>
class H {} // X_.Y.G<>_H
class G<S,T> { // X.Y.G<,>
class H<U> {} // X.Y.G<,>_H<>

}
}

end example]

10.9 Automatic memory management

C# employs automatic memory management, which frees developers from manually allocating and freeing
the memory occupied by objects. Automatic memory management policies are implemented by a garbage
collector. The memory management life cycle of an object is as follows:

1. When the object is created, memory is allocated for it, the constructor is run, and the object is
considered live.

2. If no part of the object can be accessed by any possible continuation of execution, other than the running
of finalizers, the object is considered no longer in use and it becomes eligible for finalization. [Note:
Implementations might choose to analyze code to determine which references to an object can be used in
the future. For instance, if a local variable that is in scope is the only existing reference to an object, but
that local variable is never referred to in any possible continuation of execution from the current
execution point in the procedure, an implementation might (but is not required to) treat the object as no
longer in use. end note]

3. Once the object is eligible for finalization, at some unspecified later time the finalizer (817.12) (if any)
for the object is run. Unless overridden by explicit calls, the finalizer for the object is run once only.

4. Once the finalizer for an object is run, if that object, or any part of it, cannot be accessed by any possible
continuation of execution, including the running of finalizers, the object is considered inaccessible and
the object becomes eligible for collection.

5. Finally, at some time after the object becomes eligible for collection, the garbage collector frees the
memory associated with that object.

The garbage collector maintains information about object usage, and uses this information to make memory
management decisions, such as where in memory to locate a newly created object, when to relocate an
object, and when an object is no longer in use or inaccessible.

Like other languages that assume the existence of a garbage collector, C# is designed so that the garbage
collector can implement a wide range of memory management policies. For instance, C# does not require
that finalizers be run or that objects be collected as soon as they are eligible, or that finalizers be run in any
particular order, or on any particular thread.

The behavior of the garbage collector can be controlled, to some degree, via static methods on the class
System.GC.

103

C# LANGUAGE SPECIFICATION

[Example: Since the garbage collector is allowed wide latitude in deciding when to collect objects and run
finalizers, a conforming implementation might produce output that differs from that shown by the following
code. The program

using System;

class A
~AQ { o o
Console._WriteLine("Finalize instance of A"™);
}
class B
object Ref;
public B(object 0) {
Ref = o;
}
~BQO { o o
Console_WriteLine("Finalize instance of B");
}

class Test

}

static void Main(Q {
B b = new B(new AQ);
b = null;
GC.Collect();
GC.WaitForPendingFinalizers(Q);
}

creates an instance of class A and an instance of class B. These objects become eligible for garbage
collection when the variable b is assigned the value null I, since after this time it is impossible for any user-
written code to access them. The output could be either

Finalize instance of A
Finalize instance of B

or

Finalize instance of B
Finalize instance of A

because the language imposes no constraints on the order in which objects are garbage collected.

In subtle cases, the distinction between “eligible for finalization” and “eligible for collection” can be
important. For example,

using System;

class A

~AQ {

Console._WriteLine("Finalize instance of A"™);

}

public void FQ {
Console._WriteLine("A.F'");
Test.RefA = this;

}
}
class B
{ _
public A Ref;
~BO { . o
Console._WriteLine("Finalize instance of B");
Ref.FQ;
}

104

10 Basic concepts

class Test

public static A RefA;
public static B RefB;
static void Main(Q {
RefB = new B();
RefA = new AQ);
RefB.Ref = RefA;
RefB = null;
RefA = null;

// A and B now eligible for finalization
GC.Collect();
GC.WaitForPendingFinalizers();
// B now eligible for collection, but A is not
it (RefA = null)

Console._WriteLine(""RefA is not null'™);

}
}

In the above program, if the garbage collector chooses to run the finalizer of A before the finalizer of B, then
the output of this program might be:

Finalize instance of A

Finalize instance of B

A.F
RefA i1s not null

Note that although the instance of A was not in use and A's finalizer was run, it is still possible for methods
of A (in this case, F) to be called from another finalizer. Also, note that running of a finalizer might cause an
object to become usable from the mainline program again. In this case, the running of B's finalizer caused an
instance of A that was previously not in use, to become accessible from the live reference RefA. After the
call to waitForPendingFinalizers, the instance of B is eligible for collection, but the instance of A is
not, because of the reference RefA.

To avoid confusion and unexpected behavior, it is generally a good idea for finalizers to perform cleanup
only on data stored in their object's own fields, and not to perform any actions on referenced objects or static
fields. end example]

10.10 Execution order

Execution shall proceed such that the side effects of each executing thread are preserved at critical execution
points. A side effect is defined as a read or write of a volatile field, a write to a non-volatile variable, a write
to an external resource, and the throwing of an exception. The critical execution points at which the order of
these side effects shall be preserved are references to volatile fields (§17.4.3), lock statements (815.12), and
thread creation and termination. An implementation is free to change the order of execution of a

C# program, subject to the following constraints:

e Data dependence is preserved within a thread of execution. That is, the value of each variable is
computed as if all statements in the thread were executed in original program order.

e Initialization ordering rules are preserved (§17.4.4, 817.4.5).

e The ordering of side effects is preserved with respect to volatile reads and writes (§817.4.3). Additionally,
an implementation need not evaluate part of an expression if it can deduce that that expression’s value is
not used and that no needed side effects are produced (including any caused by calling a method or
accessing a volatile field). When program execution is interrupted by an asynchronous event (such as an
exception thrown by another thread), it is not guaranteed that the observable side effects are visible in
the original program order.

105

11 Types

11. Types

The types of the C# language are divided into three main categories: Value types, reference types, and type-
parameter types.

type:
value-type
reference-type
type-parameter

Type parameters are part of generics, and are discussed in 825.1.1. A fourth category of types, pointers, is
available only in unsafe code. This is discussed further in §27.2.

Value types differ from reference types in that variables of the value types directly contain their data,
whereas variables of the reference types store references to their data, the latter being known as objects.
With reference types, it is possible for two variables to reference the same object, and thus possible for
operations on one variable to affect the object referenced by the other variable. With value types, the
variables each have their own copy of the data, and it is not possible for operations on one to affect the other.
[Note: When a variable is a ref or out parameter, it does not have its own storage but references the storage
of another variable. In this case, the ref or out variable is effectively an alias for another variable and not a
distinct variable. end note]

C#’s type system is unified such that a value of any type can be treated as an object. Every type in C#
directly or indirectly derives from the object class type, and object is the ultimate base class of all types.
Values of reference types are treated as objects simply by viewing the values as type object. Values of
value types are treated as objects by performing boxing and unboxing operations (811.3).

11.1 Value types

A value type is either a struct type or an enumeration type. C# provides a set of predefined struct types
called the simple types. The simple types are identified through reserved words.

value-type:
struct-type
enum-type

struct-type:
type-name
simple-type
nullable-type

simple-type:
numeric-type
bool

numeric-type:
integral-type
floating-point-type
decimal

107

C# LANGUAGE SPECIFICATION

integral-type:
sbyte
byte
short
ushort
int
uint
long
ullong
char

floating-point-type:
float
double

enum-type:
type-name

nullable-type:
non-nullable-value-type ?

non-nullable-value-type:
enum-type
type-name
simple-type

All value types implicitly inherit from class object. It is not possible for any type to derive from a value
type, and value types are thus implicitly sealed (817.1.1.2).

A variable of a value type always contains a value of that type. Unlike reference types, it is not possible for
a value of a value type to be nul I, or to reference an object of a more derived type.

Assignment to a variable of a value type creates a copy of the value being assigned. This differs from
assignment to a variable of a reference type, which copies the reference but not the object identified by the
reference.

11.1.1 The System.ValueType type

All value types implicitly inherit from the class System.ValueType, which, in turn, inherits from class
object.

Note that System.ValueType is not itself a value-type. Rather, it is a class-type from which all value-types
are automatically derived.

11.1.2 Default constructors

All value types implicitly declare a public parameterless instance constructor called the default constructor.
The default constructor returns a zero-initialized instance known as the default value for the value type:

o For all simple-types, the default value is the value produced by a bit pattern of all zeros:

For sbyte, byte, short, ushort, int, uint, long, and ulong, the default value is 0.
For char, the default value is *\x0000".

For float, the default value is 0.0F.

For double, the default value is 0.0d.

For decimal, the default value is Om.

O O O o o O

For bool, the default value is false.

o For an enum-type E, the default value is 0.

108

11 Types

e For astruct-type, the default value is the value produced by setting all value type fields to their default
value and all reference type fields to nul .

o Foranullable type, the default value is one for which HasValue returns false.

Like any other instance constructor, the default constructor of a value type is invoked using the new
operator. [Note: For efficiency reasons, this requirement is not intended to actually have the implementation
generate a constructor call. For value types, the default value expression (§14.5.14) produces the same result
as using the default constructor. end note] [Example: In the code below, variables i, j and k are all
initialized to zero.

class A
void FO {
int i = 0;
int j = new int();
int k = default(int);
}
3

end example]

Because every value type implicitly has a public parameterless instance constructor, it is not possible for a
struct type to contain an explicit declaration of a parameterless constructor. A struct type is however
permitted to declare parameterized instance constructors (§18.3.8).

11.1.3 Struct types

A struct type is a value type that can declare constants, fields, methods, properties, indexers, operators,
instance constructors, static constructors, and nested types. Struct types are described in 818.

11.1.4 Simple types

C# provides a set of predefined struct types called the simple types. The simple types are identified through
reserved words, but these reserved words are simply aliases for predefined struct types in the System
namespace, as described in the table below.

Reserved word Aliased type
sbyte System.SByte
byte System_Byte
short System. Intl6
ushort System.UIntl16
int System.Int32
uint System._UInt32
long System. Int64
ullong System._UInt64
char System.Char
float System._Single
double System.Double
bool System.Boolean
decimal System._Decimal

Because a simple type aliases a struct type, every simple type has members. [Example: int has the members

declared in System. Int32 and the members inherited from System.Object, and the following

statements are permitted:

109

C# LANGUAGE SPECIFICATION

int 1 = int.MaxValue; // System.Int32._MaxValue constant
string s = i.ToString(); // System.Int32._.ToString() instance method
string t = 123.ToString(); // System.Int32.ToString() instance method

end example] The simple types differ from other struct types in that they permit certain additional
operations:

e Most simple types permit values to be created by writing literals (§89.4.4). [Example: 123 is a literal of
type int and "a- is a literal of type char. end example] C# makes no provision for literals of struct
types in general.

o When the operands of an expression are all simple type constants, the compiler evaluates the expression
at compile-time. Such an expression is known as a constant-expression (814.16). Expressions involving
operators defined by other struct types are not considered constant expressions.

e Through const declarations, it is possible to declare constants of the simple types (817.3). It is not
possible to have constants of other struct types, but a similar effect is provided by static readonly
fields.

o Conversions involving simple types can participate in evaluation of conversion operators defined by
other struct types, but a user-defined conversion operator can never participate in evaluation of another
user-defined conversion operator (§13.4.2).

11.1.5 Integral types

C# supports nine integral types: sbyte, byte, short, ushort, int, uint, long, ulong, and char. The
integral types have the following sizes and ranges of values:

e The shyte type represents signed 8-bit integers with values from —128 to 127, inclusive.

e The byte type represents unsigned 8-bit integers with values from 0 to 255, inclusive.

e The short type represents signed 16-bit integers with values from —32768 to 32767, inclusive.
e The ushort type represents unsigned 16-bit integers with values from 0 to 65535, inclusive.

e The int type represents signed 32-bit integers with values from —2147483648 to 2147483647,
inclusive.

e The uint type represents unsigned 32-bit integers with values from 0 to 4294967295, inclusive.

e The long type represents signed 64-bit integers with values from —9223372036854775808 to
9223372036854775807, inclusive.

e The ulong type represents unsigned 64-bit integers with values from 0 to 18446744073709551615,
inclusive.

e The char type represents unsigned 16-bit integers with values from 0 to 65535, inclusive. The set of
possible values for the char type corresponds to the Unicode character set. [Note: Although char has
the same representation as ushort, not all operations permitted on one type are permitted on the other.
end note]

The integral-type unary and binary operators always operate with signed 32-bit precision, unsigned 32-bit
precision, signed 64-bit precision, or unsigned 64-bit precision, as detailed in clause §14.

The char type is classified as an integral type, but it differs from the other integral types in two ways:

e There are no implicit conversions from other types to the char type. In particular, even though the
shyte, byte, and ushort types have ranges of values that are fully representable using the char type,
implicit conversions from sbyte, byte, or ushort to char do not exist.

o Constants of the char type shall be written as character-literals or as integer-literals in combination
with a cast to type char. [Example: (char)10 is the same as "\x000A". end example]

110

11 Types

The checked and unchecked operators and statements are used to control overflow checking for integral-
type arithmetic operations and conversions (814.5.12). In a checked context, an overflow produces a
compile-time error or causes a System.OverflowException to be thrown. In an unchecked context,
overflows are ignored and any high-order bits that do not fit in the destination type are discarded.

11.1.6 Floating point types

C# supports two floating-point types: Float and double. The Float and double types are represented
using the 32-bit single-precision and 64-bit double-precision IEC 60559 formats, which provide the
following sets of values:

e Positive zero and negative zero. In most situations, positive zero and negative zero behave identically as
the simple value zero, but certain operations distinguish between the two (814.7.2).

o Positive infinity and negative infinity. Infinities are produced by such operations as dividing a non-zero
number by zero. [Example: 1.0 /7 0.0 yields positive infinity, and —1.0 / 0.0 yields negative infinity.
end example]

e The Not-a-Number value, often abbreviated NaN. NaNs are produced by invalid floating-point
operations, such as dividing zero by zero.

e The finite set of non-zero values of the form s x m x 2¢, where s is 1 or —1, and m and e are determined
by the particular floating-point type: For float, 0 < m < 2%* and —149 < e < 104, and for double,
0 <m< 2% and —1075 < e < 970. Denormalized floating-point numbers are considered valid non-zero
values. C# neither requires nor forbids that a conforming implementation support denormalized floating-
point numbers.

The Float type can represent values ranging from approximately 1.5 x 10™* to 3.4 x 10® with a precision
of 7 digits.

The double type can represent values ranging from approximately 5.0 x 10°%* to 1.7 x 10°® with a
precision of 15-16 digits.

The floating-point operators, including the assignment operators, never produce exceptions. Instead, in
exceptional situations, floating-point operations produce zero, infinity, or NaN, as described below:

o The result of a floating-point operation is rounded to the nearest representable value in the destination
format. This may cause a non-zero value to be rounded to zero.

o |f the magnitude of the result of a floating-point operation is too large for the destination format, the
result of the operation becomes positive infinity or negative infinity.

e If afloating-point operation is invalid, the result of the operation becomes NaN.
e If one or both operands of a floating-point operation is NaN, the result of the operation becomes NaN.

Floating-point operations can be performed with higher precision than the result type of the operation.
[Example: Some hardware architectures support an “extended” or “long double” floating-point type with
greater range and precision than the double type, and implicitly perform all floating-point operations using
this higher precision type. Only at excessive cost in performance can such hardware architectures be made to
perform floating-point operations with less precision, and rather than require an implementation to forfeit
both performance and precision, C# allows a higher precision type to be used for all floating-point
operations. Other than delivering more precise results, this rarely has any measurable effects. However, in
expressions of the form x * y / z, where the multiplication produces a result that is outside the double
range, but the subsequent division brings the temporary result back into the double range, the fact that the
expression is evaluated in a higher range format can cause a finite result to be produced instead of an
infinity. end example]

11.1.7 The decimal type

The decimal type is a 128-bit data type suitable for financial and monetary calculations. The decimal type
can represent values including those in the range 1 x 107 through 1 x 10% with at least 28 significant digits.

111

C# LANGUAGE SPECIFICATION

The finite set of values of type decimal are of the form (=1)°x ¢ x 10, where the sign s is 0 or 1, the
coefficient c is given by 0 < ¢ < Cmax, and the scale e is such that Emin < e < Emax, where Cmax is at least
1 x 10%, Emin <0, and Emax > 28. The decimal type does not necessarily support signed zeros, infinities,
or NaN's.

A decimal is represented as an integer scaled by a power of ten. For decimals with an absolute value less
than 1.0m, the value is exact to at least the 28" decimal place. For decimals with an absolute value greater
than or equal to 1.0m, the value is exact to at least 28 digits. Contrary to the float and double data types,
decimal fractional numbers such as 0.1 can be represented exactly in the decimal representation. In the
float and doubl e representations, such numbers often have non-terminating binary expansions, making
those representations more prone to round-off errors.

The result of an operation on values of type decimal is that which would result from calculating an exact
result (preserving scale, as defined for each operator) and then rounding to fit the representation. Results are
rounded to the nearest representable value, and, when a result is equally close to two representable values, to
the value that has an even number in the least significant digit position (this is known as “banker’s
rounding™). That is, results are exact to at least the 28" decimal place. Note that rounding may produce a
zero value from a non-zero value.

If a decimal arithmetic operation produces a result whose magnitude is too large for the decimal format, a
System.OverflowException is thrown.

The decimal type has greater precision but may have a smaller range than the floating-point types. Thus,
conversions from the floating-point types to decimal might produce overflow exceptions, and conversions
from decimal to the floating-point types might cause loss of precision or overflow exceptions. For these
reasons, no implicit conversions exist between the floating-point types and decimal, and without explicit
casts, a compile-time error occurs when floating-point and decimal operands are directly mixed in the
same expression.

11.1.8 The bool type

The bool type represents Boolean logical quantities. The possible values of type bool are true and
false.

No standard conversions exist between bool and other types. In particular, the bool type is distinct and
separate from the integral types, and a bool value cannot be used in place of an integral value, and vice
versa.

[Note: In the C and C++ languages, a zero integral or floating-point value, or a null pointer can be converted
to the Boolean value false, and a non-zero integral or floating-point value, or a non-null pointer can be
converted to the Boolean value true. In C#, such conversions are accomplished by explicitly comparing an
integral or floating-point value to zero, or by explicitly comparing an object reference to nul 1. end note]

11.1.9 Enumeration types

An enumeration type is a distinct type with named constants. Every enumeration type has an underlying
type, which shall be byte, sbyte, short, ushort, int, uint, long or ulong. Enumeration types are
defined through enumeration declarations (§21.1). The direct base type of every enumeration type is the
class System.Enum. The direct base class of System.Enum is System.ValueType.

11.2 Reference types
A reference type is a class type, an interface type, an array type, or a delegate type.

reference-type:
class-type
interface-type
array-type
delegate-type

112

11 Types

class-type:
type-name
object
string

interface-type:
type-name

array-type:
non-array-type rank-specifiers

non-array-type:
value-type
class-type
interface-type
delegate-type
type-parameter

rank-specifiers:
rank-specifier
rank-specifiers rank-specifier

rank-specifier:
[dim-separatorse,:]

dim-separators:

dim-separators ,

delegate-type:
type-name

A reference type value is a reference to an instance of the type, the latter known as an object. The special
value nul I is compatible with all reference types and indicates the absence of an instance.

11.2.1 Class types

A class type defines a data structure that contains data members (constants and fields), function members
(methods, properties, events, indexers, operators, instance constructors, finalizers, and static constructors),
and nested types. Class types support inheritance, a mechanism whereby derived classes can extend and
specialize base classes. Instances of class types are created using object-creation-expressions (§14.5.10.1).

Class types are described in §17.

11.2.2 The object type

The object class type is the ultimate base class of all other types. Every type in C# directly or indirectly
derives from the object class type.

The keyword object is simply an alias for the predefined class System.Object.

11.2.3 The string type

The string type is a sealed class type that inherits directly from object. Instances of the string class
represent Unicode character strings.

Values of the string type can be written as string literals (89.4.4).

The keyword string is simply an alias for the predefined class System. String.

11.2.4 Interface types

An interface defines a contract. A class or struct that implements an interface shall adhere to its contract. An
interface can inherit from multiple base interfaces, and a class or struct can implement multiple interfaces.

113

C# LANGUAGE SPECIFICATION

Interface types are described in §20.

11.2.5 Array types

An array is a data structure that contains zero or more variables which are accessed through computed
indices. The variables contained in an array, also called the elements of the array, are all of the same type,
and this type is called the element type of the array.

Array types are described in §19.

11.2.6 Delegate types

A delegate is a data structure that refers to one or more methods, and for instance methods, it also refers to
their corresponding object instances.

[Note: The closest equivalent of a delegate in C or C++ is a function pointer, but whereas a function pointer
can only reference static functions, a delegate can reference both static and instance methods. In the latter
case, the delegate stores not only a reference to the method’s entry point, but also a reference to the object
instance on which to invoke the method. end note]

Delegate types are described in §22.

11.2.7 The null type

The null literal (89.4.4.6) evaluates to the null value, which is used to denote a reference not pointing at any
object or array, or the absence of a value. The null type has a single value, which is the null value. Hence
an expression whose type is the null type can evaluate only to the null value. There is no way to explicitly
write the null type and, therefore, no way to use it in a declared type.

Moreover, the null type can never be the type inferred for a type parameter (§25.6.4).

11.3 Boxing and unboxing

The concept of boxing and unboxing is central to C#’s type system. It provides a bridge between value-types
and reference-types by permitting any value of a value-type to be converted to and from type object.
Boxing and unboxing enables a unified view of the type system wherein a value of any type can ultimately
be treated as an object.

11.3.1 Boxing conversions

A boxing conversion permits any non-nullable-value-type to be implicitly converted to object or
System.ValueType or to any interface-type implemented by the non-nullable-value-type. Furthermore,
there is an implicit boxing conversion from any enumeration type to System.Enum. Boxing a value of a
non-nullable-value-type consists of allocating an object instance and copying the value-type value into that
instance. A boxing conversion is also permitted on a nullable-type. A nullable type T? has boxing
conversions to the same set of types as T. A boxing conversion from a nullable type T? is processed as
follows:

o If the source value is null (HasValue property is false), the result is a null reference of the target type.
e Otherwise, the result is a reference to a boxed T produced by unwrapping and boxing the source value.

[Note: As a consequence of this, if v is a value of a nullable type and vb is the result of boxing v, then the
four expressions vb==nul I, v==nul I, nul I==vb, and nul I==v produce the same result.

The actual process of boxing a value of a value-type is best explained by imagining the existence of a boxing
class for that type. For example, for any value-type T, the boxing class behaves as if it were declared as
follows:

sealed class T_Box

T value;

114

11 Types

public T Box(T t) {
value = t;

}

Boxing of a value v of type T now consists of executing the expression new T_Box(Vv), and returning the
resulting instance as a value of type object. Thus, the statements

int i = 123;

object box = 1i;

conceptually correspond to

int i = 123;

object box = new int Box(i);
Boxing classes like T_Box and int_Box above don’t actually exist and the dynamic type of a boxed value
isn’t actually a class type. Instead, a boxed value of type T has the dynamic type T, and a dynamic type
check using the is operator can simply reference type T. For example,

int 1 = 123;

object box = 1i;

if (box is int) {

Console_Write(''Box contains an int');
}

will output the string “Box contains an int” on the console.

A boxing conversion implies making a copy of the value being boxed. This is different from a conversion of
a reference-type to type object, in which the value continues to reference the same instance and simply is
regarded as the less derived type object. For example, given the declaration

struct Point

public int x, y;

public Point(int x, int y) {
this.x = Xx;
this.y = y;

}

the following statements

Point p = new Point(10, 10);

object box = p;

p-x = 20;

Console._Write(((Point)box).x);
will output the value 10 on the console because the implicit boxing operation that occurs in the assignment
of p to box causes the value of p to be copied. Had Point been declared a class instead, the value 20
would be output because p and box would reference the same instance. end note]

11.3.2 Unboxing conversions

An unboxing conversion permits an explicit conversion from object or System.ValueType to any non-
nullable-value-type or from any interface-type to any non-nullable-value-type that implements the interface-
type. Furthermore, there is an explicit unboxing conversion from System.Enum to any enumeration type.
An unboxing operation consists of first checking that the object instance is a boxed value of the given value-
type, and then copying the value out of the instance.

A nullable-type T2 has unboxing conversions from the same set of types as T. An unboxing conversion
permits an explicit conversion from object or System.ValueType to any nullable-type or from any
interface-type to any nullable-type whose underlying type implements the interface-type. Furthermore, there
is an explicit unboxing conversion from System.Enum to any nullable-type whose underlying type is an
enumeration type. An unboxing conversion to a nullable-type T? is processed as follows:

o |f the source is a null reference, the result is a null value of type T?.

115

C# LANGUAGE SPECIFICATION

o If the source is a reference to a boxed T, the result is a T? produced by unboxing and wrapping the
source.

e Otherwise, a System. InvalidCastException is thrown.

Referring to the imaginary boxing class described in the previous subclause, an unboxing conversion of an
object box to a value-type T consists of executing the expression ((T_Box)box) .value. [Example: Thus,
the statements

object box = 123;
int i = (int)box;

conceptually correspond to

object box = new int Box(123);
int i = ((int_Box)box) .value;

end example]

For an unboxing conversion to a given value-type to succeed at run-time, the value of the source operand
shall be a reference to an object that was previously created by boxing a value of that value-type. If the
source operand is null a System.Nul IReferenceException is thrown. If the source operand is a
reference to an incompatible object, a System. Inval idCastException is thrown.

11.4 Nullable types

A nullable type is a structure that combines a value of the underlying type together with a null indicator.
More precisely, an instance of a nullable type has two public read-only properties: HasValue, of type bool,
and Value, of the nullable type’s underlying type. HasValue is true for a non-null instance and false for a
null instance. When HasValue is true, the Value property returns the contained value. When HasValue is
false, an attempt to access the Value property results in an exception. A nullable type is classified as a value
type (811.1).

nullable-type:
non-nullable-value-type ?

The non-nullable-value-type specified before the ? modifier in a nullable type is called the underlying type
of the nullable type. The underlying type of a nullable type shall be any non-nullable value type or any type
parameter that is constrained (§25.7) to non-nullable value types (that is, any type parameter with a struct
constraint). The underlying type of a nullable type shall not be a nullable type or a reference type. [Example:
int?? and string? are invalid types. end example]

A nullable type can represent all values of its underlying type plus an additional null value.

T? and System.Nul lable<T> denote the same type.

11.4.1 Members

An instance of a nullable type T2 has two public read-only properties:
o A HasValue property of type bool

e AValue property of type T

An instance for which HasValue is true is said to be non-null. A non-null instance contains a known value
and Value returns that value.

An instance for which HasValue is false is said to be null. Attempting to read the Value of a null instance
causes a System. InvalidOperationException to be thrown.

In addition to the default constructor, every nullable type T? has a public constructor that takes a single
argument of type T. Given a value x of type T, a constructor invocation of the form

new T?(x)

creates a non-null instance of T2 for which the Value property is x.

116

11 Types

It is never necessary to explicitly invoke a nullable type’s constructor, since equivalent functionality is
provided as an implicit conversion from T to T?.

11.4.2 Implemented interfaces

A type of the form T2, which is an alias for System.Nul lable<T>, implements no interfaces (820). In
particular, this means it does not implement any interface that the underlying type T does.

117

12 Variables

12. Variables

Variables represent storage locations. Every variable has a type that determines what values can be stored in
the variable. C# is a type-safe language, and the C# compiler guarantees that values stored in variables are
always of the appropriate type. The value of a variable can be changed through assignment or through use of
the ++ and -- operators.

A variable shall be definitely assigned (812.3) before its value can be obtained.

As described in the following subclauses, variables are either initially assigned or initially unassigned. An
initially assigned variable has a well-defined initial value and is always considered definitely assigned. An
initially unassigned variable has no initial value. For an initially unassigned variable to be considered
definitely assigned at a certain location, an assignment to the variable shall occur in every possible execution
path leading to that location.

12.1 Variable categories

C# defines seven categories of variables: static variables, instance variables, array elements, value
parameters, reference parameters, output parameters, and local variables. The subclauses that follow
describe each of these categories.

[Example: In the following code
class A

public static int x;

int y;
void F(int[] v, int a, ref int b, out int ¢c) {
int i = 1;

cC = a + b++;
}
}

x is a static variable, y is an instance variable, v[0] is an array element, a is a value parameter, b is a
reference parameter, c is an output parameter, and i is a local variable. end example]

12.1.1 Static variables

A field declared with the static modifier is called a static variable. A static variable comes into existence
before execution of the static constructor (817.11) for its containing type, and ceases to exist when the
associated application domain ceases to exist.

The initial value of a static variable is the default value (§812.2) of the variable’s type.

For the purposes of definite assignment checking, a static variable is considered initially assigned.

12.1.2 Instance variables
A field declared without the static modifier is called an instance variable.

12.1.2.1 Instance variables in classes

An instance variable of a class comes into existence when a new instance of that class is created, and ceases
to exist when there are no references to that instance and the instance’s finalizer (if any) has executed.

The initial value of an instance variable of a class is the default value (§12.2) of the variable’s type.

For the purpose of definite assignment checking, an instance variable is considered initially assigned.

119

C# LANGUAGE SPECIFICATION

12.1.2.2 Instance variables in structs

An instance variable of a struct has exactly the same lifetime as the struct variable to which it belongs. In
other words, when a variable of a struct type comes into existence or ceases to exist, so too do the instance
variables of the struct.

The initial assignment state of an instance variable of a struct is the same as that of the containing struct
variable. In other words, when a struct variable is considered initially assigned, so too are its instance
variables, and when a struct variable is considered initially unassigned, its instance variables are likewise
unassigned.

12.1.3 Array elements

The elements of an array come into existence when an array instance is created, and cease to exist when
there are no references to that array instance.

The initial value of each of the elements of an array is the default value (812.2) of the type of the array
elements.

For the purpose of definite assignment checking, an array element is considered initially assigned.

12.1.4 Value parameters
A parameter declared without a ref or out modifier is a value parameter.

A value parameter comes into existence upon invocation of the function member (method, instance
constructor, accessor, or operator) to which the parameter belongs, and is initialized with the value of the
argument given in the invocation. A value parameter ceases to exist upon return of the function member
(except when the value parameter is captured by an anonymous method (§14.5.15.3.1) or the function
member body is an iterator block (§26)).

For the purpose of definite assignment checking, a value parameter is considered initially assigned.

12.1.5 Reference parameters
A parameter declared with a ref modifier is a reference parameter.

A reference parameter does not create a new storage location. Instead, a reference parameter represents the
same storage location as the variable given as the argument in the function member invocation. Thus, the
value of a reference parameter is always the same as the underlying variable.

The following definite assignment rules apply to reference parameters. [Note: The rules for output
parameters are different, and are described in §12.1.6. end note]

e A variable shall be definitely assigned (812.3) before it can be passed as a reference parameter in a
function member invocation.

o Within a function member, a reference parameter is considered initially assigned.

Within an instance method or instance accessor of a struct type, the this keyword behaves exactly as a
reference parameter of the struct type (814.5.7).

12.1.6 Output parameters
A parameter declared with an out modifier is an output parameter.

An output parameter does not create a new storage location. Instead, an output parameter represents the
same storage location as the variable given as the argument in the function member invocation. Thus, the
value of an output parameter is always the same as the underlying variable.

The following definite assignment rules apply to output parameters. [Note: The rules for reference
parameters are different, and are described in §12.1.5. end note]

120

12 Variables

e Avariable need not be definitely assigned before it can be passed as an output parameter in a function
member invocation.

¢ Following the normal completion of a function member invocation, each variable that was passed as an
output parameter is considered assigned in that execution path.

o Within a function member, an output parameter is considered initially unassigned.

o Every output parameter of a function member shall be definitely assigned (§812.3) before the function
member returns normally.

Within an instance constructor of a struct type, the this keyword behaves exactly as an output or reference
parameter of the struct type, depending on whether the constructor declaration includes a constructor
initializer (814.5.7).

12.1.7 Local variables

A local variable is declared by a local-variable-declaration, foreach-statement, or specific-catch-clause of a
try-statement. For a foreach-statement, the local variable is an iteration variable (815.8.4). For a specific-
catch-clause, the local variable is an exception variable (§15.10). A local variable declared by a foreach-
statement or specific-catch-clause is considered initially assigned.

A local-variable-declaration can occur in a block, a for-statement, a switch-block, or a using-statement.

The lifetime of a local variable is the portion of program execution during which storage is guaranteed to be
reserved for it. This lifetime extends from entry into the scope with which it is associated, at least until
execution of that scope ends in some way. (Entering an enclosed block, calling a method, or yielding a value
from an iterator block suspends, but does not end, execution of the current scope.) If the local variable is
captured by an anonymous method, the lifetime of the variable is extended at least until all referencing
delegates are eligible for garbage collection (§14.5.15.3.1). If the parent scope is entered recursively or
iteratively, a new instance of the local variable is created each time, and its local-variable-initializer, if any,
is evaluated each time. [Note: A local variable is instantiated each time its scope is entered. This behavior is
visible to user code containing anonymous methods. end note]

A local variable introduced by a local-variable-declaration is not automatically initialized and thus has no
default value. Such a local variable is considered initially unassigned. A local-variable-declaration can
include a local-variable-initializer, in which case the variable is considered definitely assigned in its entire
scope, except within the expression provided in the local-variable-initializer.

Within the scope of a local variable, it is a compile-time error to refer to that local variable in a textual
position that precedes its local-variable-declarator.

[Note: The actual lifetime of a local variable is implementation-dependent. For example, a compiler might
statically determine that a local variable in a block is only used for a small portion of that block. Using this
analysis, the compiler could generate code that results in the variable’s storage having a shorter lifetime than
its containing block.

The storage referred to by a local reference variable is reclaimed independently of the lifetime of that local
reference variable (810.9). end note]

12.2 Default values
The following categories of variables are automatically initialized to their default values:

e Static variables
e Instance variables of class instances
e Array elements

The default value of a variable depends on the type of the variable and is determined as follows:

121

C# LANGUAGE SPECIFICATION

e For avariable of a value-type, the default value is the same as the value computed by the value-type’s
default constructor (811.1.2).

o Foravariable of a reference-type, the default value is nul I.

[Note: Initialization to default values is typically done by having the memory manager or garbage collector
initialize memory to all-bits-zero before it is allocated for use. For this reason, it is convenient to use all-bits-
zero to represent the null reference. end note]

The default value of a nullable type is an instance for which the HasValue property is false. Referencing the
Value property of a default value of a nullable type results in an exception of type

System. Inval idOperationException. The default value is also known as the null value of the
nullable type. An implicit conversion exists from the nul I type (§11.2.7) to any nullable type, and this
conversion produces the null value of the type.

12.3 Definite assignment

At a given location in the executable code of a function member, a variable is said to be definitely assigned
if the compiler can prove, by a particular static flow analysis (812.3.3), that the variable has been
automatically initialized or has been the target of at least one assignment. [Note: Informally stated, the rules
of definite assignment are:

¢ Aninitially assigned variable (812.3.1) is always considered definitely assigned.

e Aninitially unassigned variable (§12.3.2) is considered definitely assigned at a given location if all
possible execution paths leading to that location contain at least one of the following:

0 Asimple assignment (814.14.1) in which the variable is the left operand.

0 An invocation expression (§14.5.5) or object creation expression (§14.5.10.1) that passes the
variable as an output parameter.

o For alocal variable, a local variable declaration (815.5) that includes a variable initializer.

The formal specification underlying the above informal rules is described in §12.3.1, §12.3.2, and §12.3.3.
end note]

The definite assignment states of instance variables of a struct-type variable are tracked individually as well
as collectively. In additional to the rules above, the following rules apply to struct-type variables and their
instance variables:

e Aninstance variable is considered definitely assigned if its containing struct-type variable is considered
definitely assigned.

e Astruct-type variable is considered definitely assigned if each of its instance variables is considered
definitely assigned.

Definite assignment is a requirement in the following contexts:

e A variable shall be definitely assigned at each location where its value is obtained. [Note: This ensures
that undefined values never occur. end note] The occurrence of a variable in an expression is considered
to obtain the value of the variable, except when

0 the variable is the left operand of a simple assignment,
o the variable is passed as an output parameter, or
o0 the variable is a struct-type variable and occurs as the left operand of a member access.

e A variable shall be definitely assigned at each location where it is passed as a reference parameter.
[Note: This ensures that the function member being invoked can consider the reference parameter
initially assigned. end note]

o All output parameters of a function member shall be definitely assigned at each location where the
function member returns (through a return statement or through execution reaching the end of the

122

12 Variables

function member body). [Note: This ensures that function members do not return undefined values in
output parameters, thus enabling the compiler to consider a function member invocation that takes a
variable as an output parameter equivalent to an assignment to the variable. end note]

e The this variable of a struct-type instance constructor shall be definitely assigned at each location
where that instance constructor returns.

12.3.1 Initially assigned variables
The following categories of variables are classified as initially assigned:

e Static variables

e Instance variables of class instances

e Instance variables of initially assigned struct variables
e Array elements

e Value parameters

e Reference parameters

e Variables declared by a catch clause, a foreach statement, or a using statement.

12.3.2 Initially unassigned variables

The following categories of variables are classified as initially unassigned:

e Instance variables of initially unassigned struct variables.

o Output parameters, including the this variable of struct instance constructors without a constructor
initializer.

e Local variables, except those declared in a catch clause, a foreach statement, or a using statement.

12.3.3 Precise rules for determining definite assignment

In order to determine that each used variable is definitely assigned, the compiler shall use a process that is
equivalent to the one described in this subclause.

The compiler processes the body of each function member that has one or more initially unassigned
variables. For each initially unassigned variable v, the compiler determines a definite assignment state for v
at each of the following points in the function member:

e At the beginning of each statement

e Atthe end point (815.1) of each statement

e On each arc which transfers control to another statement or to the end point of a statement
e At the beginning of each expression

e Atthe end of each expression

The definite assignment state of v can be either:

o Definitely assigned. This indicates that on all possible control flows to this point, v has been assigned a
value.

o Not definitely assigned. For the state of a variable at the end of an expression of type bool, the state of a
variable that isn’t definitely assigned might (but doesn’t necessarily) fall into one of the following sub-
states:

123

C# LANGUAGE SPECIFICATION

o Definitely assigned after true expression. This state indicates that v is definitely assigned if the
Boolean expression evaluated as true, but is not necessarily assigned if the Boolean expression
evaluated as false.

o Definitely assigned after false expression. This state indicates that v is definitely assigned if the
Boolean expression evaluated as false, but is not necessarily assigned if the Boolean expression
evaluated as true.

The following rules govern how the state of a variable v is determined at each location.

12.3.3.1 General rules for statements
e visnot definitely assigned at the beginning of a function member body.

o v is definitely assigned at the beginning of any unreachable statement.

o The definite assignment state of v at the beginning of any other statement is determined by checking the
definite assignment state of v on all control flow transfers that target the beginning of that statement. If
(and only if) v is definitely assigned on all such control flow transfers, then v is definitely assigned at the
beginning of the statement. The set of possible control flow transfers is determined in the same way as
for checking statement reachability (815.1).

e The definite assignment state of v at the end point of a block, checked, unchecked, if, while, do,
for, foreach, lock, using, or switch statement is determined by checking the definite assignment
state of v on all control flow transfers that target the end point of that statement. If v is definitely
assigned on all such control flow transfers, then v is definitely assigned at the end point of the statement.
Otherwise, v is not definitely assigned at the end point of the statement. The set of possible control flow
transfers is determined in the same way as for checking statement reachability (§15.1).

12.3.3.2 Block statements, checked, and unchecked statements

The definite assignment state of v on the control transfer to the first statement of the statement list in the
block (or to the end point of the block, if the statement list is empty) is the same as the definite assignment
statement of v before the block, checked, or unchecked statement.

12.3.3.3 Expression statements

For an expression statement stmt that consists of the expression expr:

e v has the same definite assignment state at the beginning of expr as at the beginning of stmt.

o [fvif definitely assigned at the end of expr, it is definitely assigned at the end point of stmt; otherwise, it
is not definitely assigned at the end point of stmt.

12.3.3.4 Declaration statements

o If stmtis a declaration statement without initializers, then v has the same definite assignment state at the
end point of stmt as at the beginning of stmt.

o |f stmtis a declaration statement with initializers, then the definite assignment state for v is determined
as if stmt were a statement list, with one assignment statement for each declaration with an initializer (in
the order of declaration).

12.3.3.5 If statements
For an i f statement stmt of the form:

if (expr) then-stmt else else-stmt
o v has the same definite assignment state at the beginning of expr as at the beginning of stmt.

e Ifvis definitely assigned at the end of expr, then it is definitely assigned on the control flow transfer to
then-stmt and to either else-stmt or to the end-point of stmt if there is no else clause.

124

12 Variables

o If v has the state “definitely assigned after true expression” at the end of expr, then it is definitely
assigned on the control flow transfer to then-stmt, and not definitely assigned on the control flow
transfer to either else-stmt or to the end-point of stmt if there is no else clause.

o If v has the state “definitely assigned after false expression” at the end of expr, then it is definitely
assigned on the control flow transfer to else-stmt, and not definitely assigned on the control flow transfer
to then-stmt. It is definitely assigned at the end-point of stmt if and only if it is definitely assigned at the
end-point of then-stmt.

o Otherwise, v is considered not definitely assigned on the control flow transfer to either the then-stmt or
else-stmt, or to the end-point of stmt if there is no else clause.

12.3.3.6 Switch statements
In a swi tch statement stmt with a controlling expression expr:

e The definite assignment state of v at the beginning of expr is the same as the state of v at the beginning
of stmt.

o The definite assignment state of v on the control flow transfer to a reachable switch block statement list
is the same as the definite assignment state of v at the end of expr.

12.3.3.7 While statements
For a whi le statement stmt of the form:

while (expr) while-body
e v has the same definite assignment state at the beginning of expr as at the beginning of stmt.

o If vis definitely assigned at the end of expr, then it is definitely assigned on the control flow transfer to
while-body and to the end point of stmt.

o If v has the state “definitely assigned after true expression” at the end of expr, then it is definitely
assigned on the control flow transfer to while-body, but not definitely assigned at the end-point of stmt.

o If v has the state “definitely assigned after false expression” at the end of expr, then it is definitely
assigned on the control flow transfer to the end point of stmt, but not definitely assigned on the control
flow transfer to while-body.

12.3.3.8 Do statements
For a do statement stmt of the form:

do do-body while (expr) ;

e v has the same definite assignment state on the control flow transfer from the beginning of stmt to do-
body as at the beginning of stmt.

¢ v has the same definite assignment state at the beginning of expr as at the end point of do-body.

e Ifvis definitely assigned at the end of expr, then it is definitely assigned on the control flow transfer to
the end point of stmt.

o If v has the state “definitely assigned after false expression” at the end of expr, then it is definitely
assigned on the control flow transfer to the end point of stmt, but not definitely assigned on the control
flow transfer to do-body.

12.3.3.9 For statements
Definite assignment checking for a for statement of the form:

for (for-initializer ; for-condition ; for-iterator) embedded-statement

is done as if the statement were written:

125

C# LANGUAGE SPECIFICATION

{
for-initializer ;
while (for-condition) {

embedded-statement ;
LLoop:
for-iterator ;
3

}

with continue statements that target the for statement being translated to goto statements targeting the
label LLoop. If the for-condition is omitted from the for statement, then evaluation of definite assignment
proceeds as if for-condition were replaced with true in the above expansion.

12.3.3.10 Break, continue, and goto statements

The definite assignment state of v on the control flow transfer caused by a break, continue, or goto
statement is the same as the definite assignment state of v at the beginning of the statement.

12.3.3.11 Throw statements
For a statement stmt of the form

throw expr ;

the definite assignment state of v at the beginning of expr is the same as the definite assignment state of v at
the beginning of stmt.

12.3.3.12 Return statements
For a statement stmt of the form

return expr ;

o The definite assignment state of v at the beginning of expr is the same as the definite assignment state of
v at the beginning of stmt.

e If visan output parameter, then it shall be definitely assigned either:
o after expr

o oratthe end of the final ly block of a try-finally or try-catch-final ly that encloses the
return statement.

For a statement stmt of the form:
return ;
e Ifvisan output parameter, then it shall be definitely assigned either:
0 hbefore stmt
o or atthe end of the Final ly block of a try-finally or try-catch-final ly that encloses the
return statement.

12.3.3.13 Try-catch statements
For a statement stmt of the form:

try try-block
catch (..) catch-block-1

éatch (..) catch-block-n

o The definite assignment state of v at the beginning of try-block is the same as the definite assignment
state of v at the beginning of stmt.

126

12 Variables

e The definite assignment state of v at the beginning of catch-block-i (for any i) is the same as the definite
assignment state of v at the beginning of stmt.

o The definite assignment state of v at the end-point of stmt is definitely assigned if (and only if) v is
definitely assigned at the end-point of try-block and every catch-block-i (for every i from 1 to n).

12.3.3.14 Try-finally statements
For a try statement stmt of the form:

try try-block Ffinally finally-block

o The definite assignment state of v at the beginning of try-block is the same as the definite assignment
state of v at the beginning of stmt.

o The definite assignment state of v at the beginning of finally-block is the same as the definite assignment
state of v at the beginning of stmt.

e The definite assignment state of v at the end-point of stmt is definitely assigned if (and only if) either:
o vis definitely assigned at the end-point of try-block
o0 vis definitely assigned at the end-point of finally-block

If a control flow transfer (such as a goto statement) is made that begins within try-block, and ends outside
of try-block, then v is also considered definitely assigned on that control flow transfer if v is definitely
assigned at the end-point of finally-block. (This is not an only if—if v is definitely assigned for another
reason on this control flow transfer, then it is still considered definitely assigned.)

12.3.3.15 Try-catch-finally statements
Definite assignment analysis for a try-catch-final ly statement of the form:

try try-block
catch (..) catch-block-1

éatch (..) catch-block-n
finally finally-block

is done as if the statement were a try-final ly statement enclosing a try-catch statement:

try {
try try-block

catch (..) catch-block-1

éatch (..) catch-block-n

}
finally finally-block

[Example: The following example demonstrates how the different blocks of a try statement (815.10) affect
definite assignment.

class A

static void FQ {
int i, j;
try {
goto LABEL;
// neither 1 nor j definitely assigned
i =1;
// i1 definitely assigned

127

C# LANGUAGE SPECIFICATION

catch {
// neither i nor j definitely assigned
i = 3;
// 1 definitely assigned

}

finally {
// neither i nor j definitely assigned

1 =5;
// j definitely assigned
}
// i and j definitely assigned

LABEL: ;
// j definitely assigned

}
}

end example]

12.3.3.16 Foreach statements
For a foreach statement stmt of the form:

foreach (type identifier in expr) embedded-statement

e The definite assignment state of v at the beginning of expr is the same as the state of v at the beginning
of stmt.

o The definite assignment state of v on the control flow transfer to embedded-statement or to the end point
of stmt is the same as the state of v at the end of expr.

12.3.3.17 Using statements
For a using statement stmt of the form:

using (resource-acquisition) embedded-statement

o The definite assignment state of v at the beginning of resource-acquisition is the same as the state of v at
the beginning of stmt.

e The definite assignment state of v on the control flow transfer to embedded-statement is the same as the
state of v at the end of resource-acquisition.

12.3.3.18 Lock statements
For a lock statement stmt of the form:
lock (expr) embedded-statement

e The definite assignment state of v at the beginning of expr is the same as the state of v at the beginning
of stmt.

o The definite assignment state of v on the control flow transfer to embedded-statement is the same as the
state of v at the end of expr.

12.3.3.19 General rules for simple expressions

The following rule applies to these kinds of expressions: literals (814.5.1), simple names (814.5.2), member
access expressions (814.5.4), non-indexed base access expressions (§14.5.8), and typeof expressions
(814.5.11).

o The definite assignment state of v at the end of such an expression is the same as the definite assignment
state of v at the beginning of the expression.

128

12 Variables

12.3.3.20 General rules for expressions with embedded expressions

The following rules apply to these kinds of expressions: parenthesized expressions (§14.5.3), element access
expressions (814.5.6), base access expressions with indexing (814.5.8), increment and decrement
expressions (814.5.9, §14.6.5), cast expressions (§14.6.6), unary +, —, ~, * expressions, binary +, -, *, /, %,
<<, >>, <, <=, >, >=, == I=is, as, &, |, ™ expressions (814.7, §14.8, §14.9, 814.10), compound
assignment expressions (814.14.2), checked and unchecked expressions (814.5.12), array and delegate
creation expressions (§14.5.10).

Each of these expressions has one or more sub-expressions that are unconditionally evaluated in a fixed
order. [Example: The binary % operator evaluates the left hand side of the operator, then the right hand side.
An indexing operation evaluates the indexed expression, and then evaluates each of the index expressions, in
order from left to right. end example] For an expression expr, which has sub-expressions expry, expra, ...,
expr,, evaluated in that order:

e The definite assignment state of v at the beginning of expr; is the same as the definite assignment state at
the beginning of expr.

o The definite assignment state of v at the beginning of expr; (i greater than one) is the same as the definite
assignment state at the end of expri.;.

e The definite assignment state of v at the end of expr is the same as the definite assignment state at the
end of expry.

12.3.3.21 Invocation expressions and object creation expressions
For an invocation expression expr of the form:

primary-expression (arg;, args, .. , argn,)
or an object creation expression expr of the form:
new type (arg;, arg, .. , argn)

e For an invocation expression, the definite assignment state of v before primary-expression is the same as
the state of v before expr.

o For an invocation expression, the definite assignment state of v before arg; is the same as the state of v
after primary-expression.

o For an object creation expression, the definite assignment state of v before arg; is the same as the state
of v before expr.

o For each argument arg;, the definite assignment state of v after arg; is determined by the normal
expression rules, ignoring any ref or out modifiers.

o For each argument arg; for any i greater than one, the definite assignment state of v before arg; is the
same as the state of v after arg;..

e |f the variable v is passed as an out argument (i.e., an argument of the form “out v”) in any of the
arguments, then the state of v after expr is definitely assigned. Otherwise, the state of v after expr is the
same as the state of v after argp.

12.3.3.22 Simple assignment expressions
For an expression expr of the form w = expr-rhs:

e The definite assignment state of v before w is the same as the definite assignment state of v before expr.

e The definite assignment state of v before expr-rhs is the same as the definite assignment state of v after
w.

129

C# LANGUAGE SPECIFICATION

o If wis the same variable as v, then the definite assignment state of v after expr is definitely assigned.
Otherwise, the definite assignment state of v after expr is the same as the definite assignment state of v
after expr-rhs.

[Example: In the following code
class A
static void F(int[] arr) {
int x;
arr[x = 1] = x; // ok

}

the variable x is considered definitely assigned after arr[x = 1] is evaluated as the left hand side of the
second simple assignment. end example]

12.3.3.23 && expressions
For an expression expr of the form expr-first && expr-second:

o The definite assignment state of v before expr-first is the same as the definite assignment state of v
before expr.

o The definite assignment state of v before expr-second is definitely assigned if the state of v after expr-
first is either definitely assigned or “definitely assigned after true expression”. Otherwise, it is not
definitely assigned.

e The definite assignment state of v after expr is determined by:

0 If the state of v after expr-first is definitely assigned, then the state of v after expr is definitely
assigned.

0 Otherwise, if the state of v after expr-second is definitely assigned, and the state of v after expr-first
is “definitely assigned after false expression”, then the state of v after expr is definitely assigned.

0 Otherwise, if the state of v after expr-second is definitely assigned or “definitely assigned after true
expression”, then the state of v after expr is “definitely assigned after true expression”.

0 Otherwise, if the state of v after expr-first is “definitely assigned after false expression”, and the
state of v after expr-second is “definitely assigned after false expression”, then the state of v after
expr is “definitely assigned after false expression”.

o Otherwise, the state of v after expr is not definitely assigned.

[Example: In the following code
class A

{
static void F(int x, int y) {
int 1;
iITXxX>=08& (i =y) >=0) {
// i1 definitely assigned

else {
// i1 not definitely assigned

3
// 1 not definitely assigned

}
}

the variable i is considered definitely assigned in one of the embedded statements of an i ¥ statement but not
in the other. In the if statement in method F, the variable i is definitely assigned in the first embedded
statement because execution of the expression (i = y) always precedes execution of this embedded
statement. In contrast, the variable i is not definitely assigned in the second embedded statement, since

x >= 0 might have tested false, resulting in the variable i’s being unassigned. end example]

130

12 Variables

12.3.3.24 || expressions
For an expression expr of the form expr-first | | expr-second:

The definite assignment state of v before expr-first is the same as the definite assignment state of v
before expr.

The definite assignment state of v before expr-second is definitely assigned if the state of v after expr-
first is either definitely assigned or “definitely assigned after false expression”. Otherwise, it is not
definitely assigned.

The definite assignment statement of v after expr is determined by:

(0]

(0]

If the state of v after expr-first is definitely assigned, then the state of v after expr is definitely
assigned.

Otherwise, if the state of v after expr-second is definitely assigned, and the state of v after expr-first
is “definitely assigned after true expression”, then the state of v after expr is definitely assigned.

Otherwise, if the state of v after expr-second is definitely assigned or “definitely assigned after false
expression”, then the state of v after expr is “definitely assigned after false expression”.

Otherwise, if the state of v after expr-first is “definitely assigned after true expression”, and the state
of v after expr-second is “definitely assigned after true expression”, then the state of v after expr is
“definitely assigned after true expression”.

Otherwise, the state of v after expr is not definitely assigned.

[Example: In the following code

class A

static void G(int x, int y) {

int i;

iTX>=01]1]1 (i =y)>=0) {
// i1 not definitely assigned

else {

// i1 definitely assigned

}
// 1 not definitely assigned

}
}

the variable i is considered definitely assigned in one of the embedded statements of an if statement but not
in the other. In the i statement in method G, the variable i is definitely assigned in the second embedded
statement because execution of the expression (i = y) always precedes execution of this embedded
statement. In contrast, the variable i is not definitely assigned in the first embedded statement, since

x >= 0 might have tested true, resulting in the variable i's being unassigned. end example]

12.3.3.25 ! expressions
For an expression expr of the form 1 expr-operand:

The definite assignment state of v before expr-operand is the same as the definite assignment state of v
before expr.

The definite assignment state of v after expr is determined by:

(0]

If the state of v after expr-operand is definitely assigned, then the state of v after expr is definitely
assigned.

If the state of v after expr-operand is not definitely assigned, then the state of v after expr is not
definitely assigned.

If the state of v after expr-operand is “definitely assigned after false expression”, then the state of v
after expr is “definitely assigned after true expression”.

131

C# LANGUAGE SPECIFICATION

o If the state of v after expr-operand is “definitely assigned after true expression”, then the state of v
after expr is “definitely assigned after false expression”.

12.3.3.26 ?: expressions
For an expression expr of the form expr-cond ? expr-true - expr-false:

e The definite assignment state of v before expr-cond is the same as the state of v before expr.

o The definite assignment state of v before expr-true is definitely assigned if and only if the state of v after
expr-cond is definitely assigned or “definitely assigned after true expression”.

o The definite assignment state of v before expr-false is definitely assigned if and only if the state of v
after expr-cond is definitely assigned or “definitely assigned after false expression”.

e The definite assignment state of v after expr is determined by:

o If expr-cond is a constant expression (814.16) with value true then the state of v after expr is the
same as the state of v after expr-true.

o0 Otherwise, if expr-cond is a constant expression (814.16) with value false then the state of v after
expr is the same as the state of v after expr-false.

0 Otherwise, if the state of v after expr-true is definitely assigned and the state of v after expr-false is
definitely assigned, then the state of v after expr is definitely assigned.

0 Otherwise, the state of v after expr is not definitely assigned.

12.3.3.27 Anonymous method expressions

The definite assignment state of a parameter of an anonymous method (§14.5.15) is the same as for a
parameter of a named method. That is, reference parameters and value parameters are initially definitely
assigned and output parameters are initially unassigned. Furthermore, output parameters shall be definitely
assigned before the anonymous method returns normally (§12.1.6).

The definite assignment state of an outer variable v on the control transfer to the block of an anonymous-
method-expression is the same as the definite assignment state of v before the anonymous-method-
expression. That is, definite assignment of outer variables is inherited from the context of the anonymous-
method-expression. Within the block of an anonymous-method-expression, definite assignment evolves as in
a normal block (812.3.3).

The definite assignment state of a variable v after an anonymous-method-expression is the same as its
definite assignment state before the anonymous-method-expression.
[Example: The example

delegate bool Filter(int i);

void FO {
int max;

// Error, max is not definitely assigned
Filter T = delegate(int n) { return n < max; };

max = 5;
DoWork(T);
}

generates a compile-time error since max is not definitely assigned where the anonymous method is
declared. end example] [Example: The example
delegate void DQ);
void FQO {
int n;
Dd=delegate { n = 1; };

dO;

132

12 Variables

// Error, n is not definitely assigned
Console._WriteLine(n);

also generates a compile-time error since the assignment to n in the anonymous method has no affect on the
definite assignment state of n outside the anonymous method. end example]

12.3.3.28 Yield statements
For ayield return statement stmt of the form:
yield return expr ;
e Avariable v has the same definite assignment state at the beginning of expr as at the beginning of stmt.

o Ifavariable v is definitely assigned at the end of expr, it is definitely assigned at the end point of stmt;
otherwise, it is not definitely assigned at the end point of stmt.

12.3.3.29 ?? expressions
For an expression expr of the form
expr-first ?? expr-second

o The definite assignment state of v before expr-first is the same as the definite assignment state of v
before expr.

o The definite assignment state of v before expr-second is the same as the definite assignment state after
expr-first.

e The definite assignment state of v after expr is the same as the definite assignment state after expr-first.

12.4 Variable references

A variable-reference is an expression that is classified as a variable. A variable-reference denotes a storage
location that can be accessed both to fetch the current value and to store a new value.

variable-reference:
expression

[Note: In C and C++, a variable-reference is known as an lvalue. end note]

12.5 Atomicity of variable references

Reads and writes of the following data types shall be atomic: bool, char, byte, sbyte, short, ushort,
uint, int, Float, and reference types. In addition, reads and writes of enum types with an underlying type
in the previous list shall also be atomic. Reads and writes of other types, including long, ulong, double,
and decimal, as well as user-defined types, need not be atomic. Aside from the library functions designed
for that purpose, there is no guarantee of atomic read-modify-write, such as in the case of increment or
decrement.

133

13 Conversions

13. Conversions

A conversion enables an expression of one type to be treated as another type. Conversions can be implicit or
explicit, and this determines whether an explicit cast is required. [Example: For instance, the conversion
from type int to type long is implicit, so expressions of type int can implicitly be treated as type long.
The opposite conversion, from type long to type int, is explicit, so an explicit cast is required.

int a = 123;

long b = a; // implicit conversion from int to long

int ¢ = (int) b; // explicit conversion from long to int
end example] Some conversions are defined by the language. Programs can also define their own
conversions (813.4).

13.1 Implicit conversions
The following conversions are classified as implicit conversions:

e Identity conversions

e Implicit numeric conversions

e Implicit enumeration conversions

e Implicit reference conversions

e Boxing conversions

e Implicit type parameter conversions

e Implicit constant expression conversions

e User-defined implicit conversions

o Implicit conversions from an anonymous method expression to a compatible delegate type
o Implicit conversion from a method group to a compatible delegate type
e Conversions from the nul I type (811.2.7) to any nullable type

e Implicit nullable conversions

o Lifted user-defined implicit conversions

Implicit conversions can occur in a variety of situations, including function member invocations (§14.4.3),
cast expressions (814.6.6), and assignments (§814.14).

The pre-defined implicit conversions always succeed and never cause exceptions to be thrown. [Note:
Properly designed user-defined implicit conversions should exhibit these characteristics as well. end note]

13.1.1 Identity conversion

An identity conversion converts from any type to the same type. This conversion exists only such that an
entity that already has a required type can be said to be convertible to that type.

13.1.2 Implicit numeric conversions
The implicit numeric conversions are:

e From sbyte to short, int, long, float, double, or decimal.

135

C# LANGUAGE SPECIFICATION

e From byte to short, ushort, int, uint, long, ulong, float, double, or decimal.
e Fromshortto int, long, float, double, or decimal.

e Fromushortto int, uint, long, ulong, float, double, or decimal.

e From intto long, float, double, or decimal.

e Fromuintto long, ulong, float, double, or decimal.

e From long to float, double, or decimal.

e Fromulongto float, double, or decimal.

e From char to ushort, int, uint, long, ulong, float, double, or decimal.

e From float to double.

Conversions from int, uint, long or ulong to float and from long or ulong to double can cause a
loss of precision, but will never cause a loss of magnitude. The other implicit numeric conversions never
lose any information.

There are no implicit conversions to the char type, so values of the other integral types do not automatically
convert to the char type.

13.1.3 Implicit enumeration conversions
An implicit enumeration conversion permits the decimal-integer-literal O to be converted to any enum-type.

13.1.4 Implicit reference conversions
The implicit reference conversions are:

e From any reference-type to object.

e From any class-type S to any class-type T, provided S is derived from T.

e From any class-type S to any interface-type T, provided S implements T.

e From any interface-type S to any interface-type T, provided S is derived from T.

e From an array-type S with an element type Se to an array-type T with an element type Te, provided all
of the following are true:

0 Sand T differ only in element type. In other words, S and T have the same number of dimensions.
0 An implicit reference conversion exists from Sg to Te.

e From a one-dimensional array-type S[] to System.Collections.Generic. IList<S>and base
interfaces of this interface.

e From a one-dimensional array-type S[] to System.Collections.Generic.IList<T> and base
interfaces of this interface, provided there is an implicit reference conversion from S to T.

e From any array-type to System.Array.

e From any delegate-type to System.Delegate.

e From any array-type to any interface implemented by System.Array.
e From any delegate-type to System. ICloneable.

e From the null type (811.2.7) to any reference-type.

For a type-parameter T that is known to be a reference type (825.7), the following implicit reference
conversions exist:

136

13 Conversions

e From T to its effective base class C, from T to any base class of C, and from T to any interface
implemented by C.

e From T to an interface-type 1 in T’s effective interface set and from T to any base interface of 1.

e From T to a type parameter U provided that T depends on U (825.7). [Note: Since T is known to be a
reference type, within the scope of T, the run-time type of U will always be a reference type, even if U is
not known to be a reference type at compile-time. end note]

e From the null type (§11.2.7) to T.

The implicit reference conversions are those conversions between reference-types that can be proven to
always succeed, and therefore require no checks at run-time.

Reference conversions, implicit or explicit, never change the referential identity of the object being
converted. [Note: In other words, while a reference conversion can change the type of the reference, it never
changes the type or value of the object being referred to. end note]

13.1.5 Boxing conversions

A boxing conversion permits any non-nullable-value-type to be implicitly converted to the type object or
System.ValueType or to any interface-type implemented by the non-nullable-value-type, and any enum
type to be implicitly converted to System.Enum as well. Boxing a value of a non-nullable-value-type
consists of allocating an object instance and copying the value-type value into that instance. An enum can be
boxed to the type System.Enum, since that is the direct base class for all enums (821.4). A struct or enum
can be boxed to the type System.ValueType, since that is the direct base class for all structs (§18.3.2) and
a base class for all enums.

A nullable-type has a boxing conversion to the same set of types to which the nullable-type’s underlying
type has boxing conversions. A boxing conversion applied to a value of a nullable-type proceeds as follows:

o If the HasValue property of the nullable value evaluates to false, then the result of the boxing
conversion is the null reference of the appropriate type.

e Otherwise, the result is obtained by boxing the result of evaluating the Value property on the nullable
value.

For a type-parameter T that is not known to be a reference type (825.7), the following conversions involving
T are considered to be boxing conversions at compile-time. At run-time, if T is a value type, the conversion
is executed as a boxing conversion. At run-time, if T is a reference type, the conversion is executed as an
implicit reference conversion or identity conversion.

o From T to its effective base class C, from T to any base class of C, and from T to any interface
implemented by C. [Note: C will be one of the types System.Object, System.ValueType, or
System.Enum (otherwise T would be known to be a reference type and §13.1.4 would apply instead of
this clause). end note]

e From T to an interface-type 1 in T’s effective interface set and from T to any base interface of 1.
Boxing conversions are described further in §11.3.1.

13.1.6 Implicit type parameter conversions

This clause details implicit conversions involving type parameters that are not classified as implicit
reference conversions or implicit boxing conversions.

For a type-parameter T that is not known to be a reference type, there is an implicit conversion from T to a
type parameter U provided T depends on U. At run-time, if T is a value type and U is a reference type, the
conversion is executed as a boxing conversion. At run-time, if both T and U are value types, then T and U are
necessarily the same type and no conversion is performed. At run-time, if T is a reference type, then U is
necessarily also a reference type and the conversion is executed as an implicit reference conversion or
identity conversion (825.7).

137

C# LANGUAGE SPECIFICATION

13.1.7 Implicit constant expression conversions
An implicit constant expression conversion permits the following conversions:

e A constant-expression (§14.16) of type int can be converted to type sbyte, byte, short, ushort,
uint, or ulong, provided the value of the constant-expression is within the range of the destination

type.
e A constant-expression of type long can be converted to type ulong, provided the value of the constant-
expression is not negative.

13.1.8 User-defined implicit conversions

A user-defined implicit conversion consists of an optional standard implicit conversion, followed by
execution of a user-defined implicit conversion operator, followed by another optional standard implicit
conversion. The exact rules for evaluating user-defined conversions are described in §13.4.3.

13.2 Explicit conversions
The following conversions are classified as explicit conversions:

e All implicit conversions

e Explicit numeric conversions

e Explicit enumeration conversions

e Explicit reference conversions

e Explicit interface conversions

e Unboxing conversions

e Explicit type parameter conversions

o User-defined explicit conversions

e Explicit nullable conversions

o Lifted user-defined explicit conversions
Explicit conversions can occur in cast expressions (§14.6.6).

The set of explicit conversions includes all implicit conversions. [Note: This means that redundant cast
expressions are allowed. end note]

The explicit conversions that are not implicit conversions are conversions that cannot be proven always to
succeed, conversions that are known possibly to lose information, and conversions across domains of types
sufficiently different to merit explicit notation.

13.2.1 Explicit numeric conversions

The explicit numeric conversions are the conversions from a numeric-type to another numeric-type for
which an implicit numeric conversion (813.1.2) does not already exist:

e From sbyte to byte, ushort, uint, ulong, or char.

e From byte to sbyte or char.

e From short to sbyte, byte, ushort, uint, ulong, or char.

e From ushort to shyte, byte, short, or char.

e From intto sbyte, byte, short, ushort, uint, ulong, or char.

e Fromuintto sbyte, byte, short, ushort, int, or char.

138

13 Conversions

From long to sbyte, byte, short, ushort, int, uint, ulong, or char.

From ulong to shyte, byte, short, ushort, int, uint, long, or char.

From char to sbyte, byte, or short.

From float to shyte, byte, short, ushort, int, uint, long, ulong, char, or decimal.

From double to sbyte, byte, short, ushort, int, uint, long, ulong, char, float, or decimal.

From decimal to sbyte, byte, short, ushort, int, uint, long, ulong, char, float, or double.

Because the explicit conversions include all implicit and explicit numeric conversions, it is always possible
to convert from any numeric-type to any other numeric-type using a cast expression (§14.6.6).

The explicit numeric conversions possibly lose information or possibly cause exceptions to be thrown. An
explicit numeric conversion is processed as follows:

For a conversion from an integral type to another integral type, the processing depends on the overflow
checking context (814.5.12) in which the conversion takes place:

0 Inachecked context, the conversion succeeds if the value of the source operand is within the range
of the destination type, but throws a System.OverflowException if the value of the source
operand is outside the range of the destination type.

0 Inan unchecked context, the conversion always succeeds, and proceeds as follows.

o |f the source type is larger than the destination type, then the source value is truncated by
discarding its “extra” most significant bits. The result is then treated as a value of the destination

type.

o If the source type is smaller than the destination type, then the source value is either sign-
extended or zero-extended so that it is the same size as the destination type. Sign-extension is
used if the source type is signed; zero-extension is used if the source type is unsigned. The result
is then treated as a value of the destination type.

e If the source type is the same size as the destination type, then the source value is treated as a
value of the destination type

For a conversion from decimal to an integral type, the source value is rounded towards zero to the
nearest integral value, and this integral value becomes the result of the conversion. If the resulting
integral value is outside the range of the destination type, a System.OverflowException is thrown.

For a conversion from float or double to an integral type, the processing depends on the overflow-
checking context (§14.5.12) in which the conversion takes place:

0 Inachecked context, the conversion proceeds as follows:

o The value is rounded towards zero to the nearest integral value. If this integral value is within
the range of the destination type, then this value is the result of the conversion.

e Otherwise, a System.OverflowException is thrown.
0 Inan unchecked context, the conversion always succeeds, and proceeds as follows.

e The value is rounded towards zero to the nearest integral value. If this integral value is within
the range of the destination type, then this value is the result of the conversion.

e Otherwise, the result of the conversion is an unspecified value of the destination type.

For a conversion from double to float, the double value is rounded to the nearest float value. This
rounding may cause a hon-zero value to be rounded to a zero value of the same sign. If the magnitude of
the double value is too large to represent as a float, the result becomes positive infinity or negative
infinity. If the double value is NaN, the result is also NaN.

139

C# LANGUAGE SPECIFICATION

e For aconversion from float or double to decimal, the source value is converted to decimal
representation and rounded to the nearest number if required (811.1.7). This rounding may cause a non-
zero value to be rounded to zero. If the source value's magnitude is too large to represent as a decimal,
or that value is a NaN or infinity, yet the decimal representation does not support NaNs or infinities,
respectively, a System.OverflowException is thrown.

e For aconversion from decimal to float or double, the decimal value is rounded to the nearest
double or Float value. However, if the value being converted is not within the range of the destination
type, a System.OverflowException is thrown.

13.2.2 Explicit enumeration conversions
The explicit enumeration conversions are:

e From sbyte, byte, short, ushort, int, uint, long, ulong, char, float, double, or decimal to
any enum-type.

e From any enum-type to sbyte, byte, short, ushort, int, uint, long, ulong, char, float,
double, or decimal.

e From any enum-type to any other enum-type.

An explicit enumeration conversion between two types is processed by treating any participating enum-type
as the underlying type of that enum-type, and then performing an implicit or explicit numeric conversion
between the resulting types. [Example: Given an enum-type E with and underlying type of int, a conversion
from E to byte is processed as an explicit numeric conversion (§13.2.1) from int to byte, and a
conversion from byte to E is processed as an implicit numeric conversion (813.1.2) from byte to int. end
example]

13.2.3 Explicit reference conversions
The explicit reference conversions are:

e From object to any reference-type.
e From any class-type S to any class-type T, provided S is a base class of T.

e From any class-type S to any interface-type T, provided S is not sealed and provided S does not
implement T.

e From any interface-type S to any class-type T, provided T is not sealed or provided T implements S.
e From any interface-type S to any interface-type T, provided S is not derived from T.

e From an array-type S with an element type Se to an array-type T with an element type Te, provided all
of the following are true:

0 Sand T differ only in element type. (In other words, S and T have the same number of dimensions.)
0 An explicit reference conversion exists from Sg to Te.

o From System.Array and the interfaces it implements, to any array-type.

e From System._Delegate and the interfaces it implements, to any delegate-type.

e From a one-dimensional array-type S[] to System.Collections.Generic.lList<T>and its base
interfaces, provided there is an explicit reference conversion from S to T.

e From System.Collections.Generic.IList<T> and its base interfaces to a one-dimensional
array-type S[1, provided there is an implicit or explicit reference conversion from S[] to
System.Collections.Generic. IList<T>. This is precisely when either S and T are the same type
or there is an implicit or explicit reference conversion from S to T.

140

13 Conversions

For a type-parameter T that is known to be a reference type (§25.7), the following explicit reference
conversions exist:

o From the effective base class C of T to T and from any base class of C to T.
e From any interface-type to T.
e From T to any interface-type 1 provided there isn’t already an implicit reference conversion from T to I.

e From a type-parameter U to T provided that T depends on U (825.7). [Note: Since T is known to be a
reference type, within the scope of T, the run-time type of U will always be a reference type, even if U is
not known to be a reference type at compile-time. end note]

The explicit reference conversions are those conversions between reference-types that require run-time
checks to ensure they are correct.

For an explicit reference conversion to succeed at run-time, the value of the source operand shall be nul I,
or the runtime type of the object referenced by the source operand shall be a type that can be converted to
the destination type by an implicit reference conversion (813.1.4). If an explicit reference conversion fails, a
System. Inval idCastException is thrown.

Reference conversions, implicit or explicit, never change the referential identity of the object being
converted. [Note: In other words, while a reference conversion can change the type of the reference, it never
changes the type or value of the object being referred to. end note]

13.2.4 Unboxing conversions

An unboxing conversion permits an explicit conversion from type object or System.ValueType to any
non-nullable-value-type, or from any interface-type to any non-nullable-value-type that implements the
interface-type, and from the type System.Enum to any enumeration type. An unboxing operation consists of
first checking that the object instance is a boxed value of the given value-type or enumeration type, and then
copying the value out of the instance. An enum can be unboxed from the type System.Enum, since that is
the direct base class for all enum types (821.4). A struct or enum can be unboxed from the type
System.ValueType, since that is the direct base class for all structs (§18.3.2) and a base class for all
enums.

An unboxing conversion permits an explicit conversion from object or System.ValueType to any
nullable-type or from any interface-type to any nullable-type whose underlying type implements the
interface-type and from System.Enum to any nullable-type whose underlying type is an enumeration type.
An unboxing conversion from an expression e of type T to a nullable type V? proceeds as follows:

o [Ifeisnull the result is the null value of type V2.

e Otherwise, the result is equivalent to an unboxing from e to V, followed by a wrapping (813.7) from v
to V2.

For a type-parameter T that is not known to be a reference type (825.7), the following conversions involving
T are considered to be unboxing conversions at compile-time. At run-time, if T is a value type, the
conversion is executed as an unboxing conversion. At run-time, if T is a reference type, the conversion is
executed as an explicit reference conversion or identity conversion.

o From the effective base class C of T to T and from any base class of C to T. [Note: C will be one of the
types System.Object, System.ValueType, or System.Enum (otherwise T would be known to be a
reference type and 813.2.3 would apply instead of this clause). end note]

e From any interface-type to T.

Unboxing conversions are described further in §11.3.2.

13.2.5 Explicit type parameter conversions

This clause details explicit conversions involving type parameters that are not classified as explicit reference
conversions or explicit unboxing conversions.

141

C# LANGUAGE SPECIFICATION

For a type-parameter T that is not known to be a reference type (825.7), the following explicit conversions
exist:

e From T to any interface-type 1 provided there is not already an implicit conversion from T to I. This
conversion consists of an implicit boxing conversion (813.1.5) from T to object followed by an
explicit reference conversion from object to I. At run-time, if T is a value type, the conversion is
executed as a boxing conversion followed by an explicit reference conversion. At run-time, if T is a
reference type, the conversion is executed as an explicit reference conversion.

e From atype parameter U to T provided that T depends on U (825.7). At run-time, if T is a value type and
U is a reference type, the conversion is executed as an unboxing conversion. At run-time, if both T and U
are value types, then T and U are necessarily the same type and no conversion is performed. At run-time,
if T is a reference type, then U is necessarily also a reference type and the conversion is executed as an
explicit reference conversion or identity conversion.

13.2.6 User-defined explicit conversions

A user-defined explicit conversion consists of an optional standard explicit conversion, followed by
execution of a user-defined implicit or explicit conversion operator, followed by another optional standard
explicit conversion. The exact rules for evaluating user-defined conversions are described in §13.4.4.

13.3 Standard conversions

The standard conversions are those pre-defined conversions that can occur as part of a user-defined
conversion.

13.3.1 Standard implicit conversions
The following implicit conversions are classified as standard implicit conversions:

e |dentity conversions (813.1.1)

e Implicit numeric conversions (813.1.2)

e Implicit reference conversions (813.1.4)

e Boxing conversions (813.1.5)

e Implicit type parameter conversions (813.1.6)

e Implicit constant expression conversions (8§13.1.7)
e Implicit nullable conversions (813.7.2)

The standard implicit conversions specifically exclude user-defined implicit conversions.

13.3.2 Standard explicit conversions

The standard explicit conversions are all standard implicit conversions plus the subset of the explicit
conversions for which an opposite standard implicit conversion exists. [Note: In other words, if a standard
implicit conversion exists from a type A to a type B, then a standard explicit conversion exists from type A to
type B and from type B to type A. end note]

13.4 User-defined conversions

C# allows the pre-defined implicit and explicit conversions to be augmented by user-defined conversions.
User-defined conversions are introduced by declaring conversion operators (817.9.3) in class and struct

types.

13.4.1 Permitted user-defined conversions

C# permits only certain user-defined conversions to be declared. In particular, it is not possible to redefine
an already existing implicit or explicit conversion.

142

13 Conversions

The restrictions that apply to user-defined conversions are specified in §17.9.3.

13.4.2 Evaluation of user-defined conversions

A user-defined conversion converts a value from its type, called the source type, to another type, called the
target type. Evaluation of a user-defined conversion centers on finding the most specific user-defined
conversion operator for the particular source and target types. This determination is broken into several
steps:

e Finding the set of classes and structs from which user-defined conversion operators will be considered.
This set consists of the source type and its base classes and the target type and its base classes (with the
implicit assumptions that only classes and structs can declare user-defined operators, and that non-class
types have no base classes). Trailing ? modifiers, if any, are removed from the source and target types
before determining the set of types from which user-defined conversion operators will be considered.
For example, when converting from a type S? to a type T?, the set of types from which user-defined
conversion operators will be considered consists of Sand T.

e From that set of types, determining which user-defined conversion operators are applicable. For a
conversion operator to be applicable, it shall be possible to perform a standard conversion (§13.3) from
the source type to the operand type of the operator, and it shall be possible to perform a standard
conversion from the result type of the operator to the target type. When the source and target types are
both nullable, the set of applicable conversion operators includes not just user-defined conversion
operators but also lifted conversion operators (§13.7.3). If the set of applicable user-defined conversion
operators is empty then there is no user-defined conversion from the source type to the target type.

o From the set of applicable user-defined operators, determining which operator is unambiguously the
most specific. In general terms, the most specific operator is the operator whose operand type is
“closest” to the source type and whose result type is “closest” to the target type. The exact rules for
establishing the most specific user-defined conversion operator are defined in the following subclauses.

For the purposes of overload resolution, a user-defined conversion from the source type to the target type
exists if and only if the set of applicable user-defined conversion operators is non-empty. If the set of
applicable operators is hon-empty but does not contain a unique most specific operator, the user-defined
conversion is deemed to exist even though application of the conversion will always produce a compile-time
error.

Once a most specific user-defined conversion operator has been identified, the actual execution of the user-
defined conversion involves up to three steps:

o First, if required, performing a standard conversion from the source type to the operand type of the user-
defined conversion operator.

e Next, invoking the user-defined conversion operator to perform the conversion.

o Finally, if required, performing a standard conversion from the result type of the user-defined
conversion operator to the target type.

Evaluation of a user-defined conversion never involves more than one user-defined conversion operator. In
other words, a conversion from type S to type T will never first execute a user-defined conversion from S to
X and then execute a user-defined conversion from X to T.

Exact definitions of evaluation of user-defined implicit or explicit conversions are given in the following
subclauses. The definitions make use of the following terms:

o If astandard implicit conversion (§13.3.1) exists from a type A to a type B, and if neither A nor B are
interface-types, then A is said to be encompassed by B, and B is said to encompass A.

e The most encompassing type in a set of types is the one type that encompasses all other types in the set.
If no single type encompasses all other types, then the set has no most encompassing type. In more
intuitive terms, the most encompassing type is the “largest” type in the set—the one type to which each
of the other types can be implicitly converted.

143

C# LANGUAGE SPECIFICATION

e The most encompassed type in a set of types is the one type that is encompassed by all other types in the
set. If no single type is encompassed by all other types, then the set has no most encompassed type. In
more intuitive terms, the most encompassed type is the “smallest” type in the set—the one type that can
be implicitly converted to each of the other types.

13.4.3 User-defined implicit conversions
A user-defined implicit conversion from type S to type T is processed as follows:

o Determine the types SO and TO that result from removing the trailing ? modifiers, if any, from S and T.

o Find the set of types, D, from which user-defined conversion operators will be considered. This set
consists of SO (if SO is a class or struct), the base classes of SO (if SO is a class), the effective base class
of SO and its base classes (if SO is a type parameter), and TO (if TO is a class or struct).

¢ Find the set of applicable conversion operators, U. This set consists of the user-defined and, if Sand T
are both nullable, lifted implicit conversion operators (813.7.3) declared by the classes or structs in D
that convert from a type encompassing S to a type encompassed by T. If U is empty, there is no
conversion, and a compile-time error occurs.

o Find the most specific source type, SX, of the operators in U:
o If any of the operators in U convert from S, then SX is S.

0 Otherwise, SX is the most encompassed type in the combined set of source types of the operators
in U. If exactly one most encompassed type cannot be found, then the conversion is ambiguous and a
compile-time error occurs.

¢ Find the most specific target type, TX, of the operators in U:
o If any of the operators in U convert to T, then TX is T.

o0 Otherwise, TX is the most encompassing type in the combined set of target types of the operators
in U. If exactly one most encompassing type cannot be found, then the conversion is ambiguous and
a compile-time error occurs.

o Find the most specific conversion operator:

o0 If U contains exactly one user-defined conversion operator that converts from SX to TX, then this is
the most specific conversion operator.

o0 Otherwise, if U contains exactly one lifted conversion operator that converts from SX to TX, then this
is the most specific conversion operator.

0 Otherwise, the conversion is ambiguous and a compile-time error occurs.

o Finally, apply the conversion:
o If Sisnot SX, then a standard implicit conversion from S to SX is performed.
0 The most specific conversion operator is invoked to convert from SX to TX.

o If TXisnotT, then a standard implicit conversion from TX to T is performed.

13.4.4 User-defined explicit conversions
A user-defined explicit conversion from type S to type T is processed as follows:
o Determine the types SO and TO that result from removing the trailing ? modifiers, if any, from S and T.

e Find the set of types, D, from which user-defined conversion operators will be considered. This set
consists of SO (if SO is a class or struct), the base classes of SO (if SO is a class), the effective base class
of SO and its base classes (if SO is a type parameter),TO (if TO is a class or struct), the base classes of TO
(if TO is a class), and the effective base class of TO and its base classes (if TO is a type parameter).

144

13 Conversions

Find the set of applicable conversion operators, U. This set consists of the user-defined and, if Sand T

are both nullable, lifted implicit or explicit conversion operators (§13.7.3) declared by the classes or
structs in D that convert from a type encompassing or encompassed by S to a type encompassing or
encompassed by T. If U is empty, there is no conversion, and a compile-time error occurs.

(0]

(0]

(0]

(0]

Find the most specific source type, SX, of the operators in U:

If any of the operators in U convert from S, then SX is S.

Otherwise, if any of the operators in U convert from types that encompass S, then SX is the most
encompassed type in the combined set of source types of those operators. If exactly one most
encompassed type cannot be found, then the conversion is ambiguous and a compile-time error
occurs.

Otherwise, SX is the most encompassing type in the combined set of source types of the operators
in U. If exactly one most encompassing type cannot be found, then the conversion is ambiguous and
a compile-time error occurs.

Find the most specific target type, TX, of the operators in U:

If any of the operators in U convert to T, then TX is T.

Otherwise, if any of the operators in U convert to types that are encompassed by T, then TX is the
most encompassing type in the combined set of target types of those operators. If exactly one most
encompassing type cannot be found, then the conversion is ambiguous and a compile-time error
occurs.

Otherwise, TX is the most encompassed type in the combined set of target types of the operators
in U. If exactly one most encompassed type cannot be found, then the conversion is ambiguous and a
compile-time error occurs.

e Find the most specific conversion operator:

(0]

(0]

If U contains exactly one user-defined conversion operator that converts from SX to TX, then this is
the most specific conversion operator.

Otherwise, if U contains exactly one lifted conversion operator that converts from SX to TX, then this
is the most specific conversion operator.

Otherwise, the conversion is ambiguous and a compile-time error occurs.

o Finally, apply the conversion:

(0]

(0]

(0]

If S is not SX, then a standard explicit conversion from S to SX is performed.
The most specific conversion operator is invoked to convert from SX to TX.

If TX is not T, then a standard explicit conversion from TX to T is performed.

13.5 Anonymous method conversions

An implicit conversion (813.1) exists from an anonymous-method-expression (814.5.15) to any compatible
delegate type. If D is a delegate type, and A is an anonymous-method-expression, then D is compatible with A
if and only if the following two conditions are met.

o First, the parameter types of D shall be compatible with A:

(0]

If A does not contain an anonymous-method-signature, then D can have zero or more parameters of
any type, as long as no parameter of D has the out parameter modifier.

If A has an anonymous-method-signature, then D shall have the same number of parameters and each
parameter of A shall be compatible with the corresponding parameter of D. A parameter of A is
considered compatible with a parameter of D if they are both of the same type and the presence or
absence of the ref or out modifier on the parameter of A matches the corresponding parameter of
D. Whether the final parameter of D is a parameter-array is not considered when determining the

145

C# LANGUAGE SPECIFICATION

compatibility of A and D. A parameter which has the parameter-array modifier is compatible with a
parameter without the parameter-array modifier if they are both of the same type.

e Second, the return type of D shall be compatible with A. For these rules, A is not considered to contain
the block of any other anonymous methods:

o IfDis declared with a void return type, then any return statement contained in A shall not specify
an expression.

o If Dis declared with a return type of R, then any return statement contained in A shall specify an
expression which is implicitly convertible (§13.1) to R. Furthermore, the end-point of the block of A
shall not be reachable. [Note: The block of an anonymous-method-expression is always considered
reachable, even if it is contained in a statement that is unreachable. See §15.1. end note]

Besides the implicit conversions to compatible delegate types, no other conversions exist from an
anonymous-method-expression, not even to the type object.

[Example: The following examples illustrate these rules:
delegate void D(int x);

D d1 = delegate { }; // Ok

D d2 = delegate() { }: // Error, signature mismatch

D d3 = delegate(long x) { }: // Error, signature mismatch

D d4 = delegate(int x) { }; // Ok

D d5 = delegate(int x) { return; }; // Ok

D d6 = delegate(int x) { return x; }; // Error, return type mismatch
delegate void E(out int x);

E el = delegate { }; // Error, E has an out parameter
E e2 = delegate(out int x) { x = 1; }; // Ok

E e3 = delegate(ref int x) { x = 1; }; // Error, signature mismatch
delegate int P(params int[] a);

P pl = delegate { }; // Error, end of block reachable
P p2 = delegate { return; }; // Error, return type mismatch

P p3 = delegate { return 1; }; // Ok

P p4 = delegate { return "Hello"; }; // Error, return type mismatch

P p5 = delegate(int[] a) { // Ok

return a[0];

}

P p6 = delegate(params int[] a) { // Error, params modifier
return a[0];

}.

P

p7 = delegate(int[] a) { // Error, return type mismatch
if (a.Length > 0) return a[0];
return ""Hello";

};
delegate object Q(params int[] a);
Q gl = delegate(int[] a) { // Ok

if (a.Length > 0) return a[0];
return ""Hello";
};
end example]

A delegate-creation-expression (§14.5.10.3) can be used as an alternate syntax for converting an anonymous
method to a delegate type.

13.6 Method group conversions

Similar to the implicit anonymous method conversions described in §13.5, an implicit conversion exists
from a method group (814.1) to a compatible delegate type. If D is a delegate type, and E is an expression
that is classified as a method group, then D is compatible with E if and only if E contains at least one method

146

13 Conversions

that is applicable in its normal form (§14.4.2.1) to any argument list (§14.4.1) having types and modifiers
matching the parameter types and modifiers of D.

The compile-time application of the conversion from E to D is the same as the compile-time processing of
the delegate creation expression new D(E) (814.5.10.3). Note that the existence of an implicit conversion
from E to D just indicates that the set of applicable methods is not empty, but does not guarantee that the
compile-time application of the conversion will succeed without error.

[Example: In the following code

using System;
using System.Windows.Forms;

class AlertDialog

Label message = new Label();
Button okButton = new Button();
Button cancelButton = new Button();

public AlertDialog() {
okButton.Click += new EventHandler(OkClick);
cancelButton.Click += new EventHandler(CancelClick);

}
void OkClick(object sender, EventArgs e) {

}

void CancelClick(object sender, EventArgs e) {

}
}

the constructor creates two delegate instances using the new operator. Implicit method group conversions
permit this to be shortened to

public AlertDialog() {
okButton.Click += OkClick;
cancelButton.Click += CancelClick;

}

end example]

As with all other implicit and explicit conversions, the cast operator can be used to explicitly perform a
particular conversion. [Example: Thus, the example

object obj = new EventHandler(myDialog.OkClick);
could instead be written

object obj = (EventHandler)myDialog.OkClick;
end example]

Although method groups and anonymous method expressions can influence overload resolution, they do not
participate in type inferencing (825.6.4).

13.7 Conversions involving nullable types
The following terms are used in the subsequent sections:

e The term wrapping denotes the process of packaging a value, of type T, in an instance of type T?. A
value x of type T is wrapped to type T? by evaluating the expression new T?(x).

e The term unwrapping denotes the process of obtaining the value, of type T, contained in an instance of
type T?2. A value x of type T? is unwrapped to type T by evaluating the expression x.Value.
Attempting to unwrap a null instance causes a System. Inval idOperationException to be thrown.

147

C# LANGUAGE SPECIFICATION

13.7.1 Null type conversions

An implicit conversion exists from the null I type (§811.2.7) to any nullable type. This conversion produces
the null value (812.2) of the given nullable type.

13.7.2 Nullable conversions

Nullable conversions permit predefined conversions that operate on non-nullable value types to also be used
with nullable forms of those types. For each of the predefined implicit or explicit conversions that convert
from a non-nullable value type S to a non-nullable value type T (§13.1.1, §13.1.2, §13.1.3, §13.1.7, §13.2.1,
and 813.2.2), the following nullable conversions exist:

e Animplicit or explicit conversion from S? to T?.

e Animplicit or explicit conversion from S to T?.

e An explicit conversion from S? to T.

A nullable conversion is itself classified as an implicit or explicit conversion.

Certain nullable conversions are classified as standard conversions and can occur as part of a user-defined
conversion. Specifically, all implicit nullable conversions are classified as standard implicit conversions
(813.1.1), and those explicit nullable conversions that satisfy the requirements of §13.3.2 are classified as
standard explicit conversions.

Evaluation of a nullable conversion based on an underlying conversion from S to T proceeds as follows:
o If the nullable conversion is from S? to T?:
o If the source value is null (Hasvalue property is false), the result is the null value of type T?2.

o0 Otherwise, the conversion is evaluated as an unwrapping from S? to S, followed by the underlying
conversion from S to T, followed by a wrapping from T to T?.

o If the nullable conversion is from S to T?, the conversion is evaluated as the underlying conversion from
S to T followed by a wrapping from T to T~.

o |f the nullable conversion is from S? to T, the conversion is evaluated as an unwrapping from S? to S
followed by the underlying conversion from S to T.

13.7.3 Lifted conversions

Given a user-defined conversion operator that converts from a non-nullable value type S to a non-nullable
value type T, a lifted conversion operator exists that converts from S? to T?. This lifted conversion operator
performs an unwrapping from S? to S followed by the user-defined conversion from S to T followed by a
wrapping from T to T?, except that a null valued S? converts directly to a null valued T>.

A lifted conversion operator has the same implicit or explicit classification as its underlying user-defined
conversion operator.

148

14 Expressions

14. Expressions

An expression is a sequence of operators and operands. This clause defines the syntax, order of evaluation of
operands and operators, and meaning of expressions.

14.1 Expression classifications
An expression is classified as one of the following:

A value. Every value has an associated type.
A variable. Every variable has an associated type, namely the declared type of the variable.

A namespace. An expression with this classification can only appear as the left-hand side of a member-
access (814.5.4). In any other context, an expression classified as a namespace causes a compile-time
error.

A type. An expression with this classification can only appear as the left-hand side of a member-access
(814.5.4). In any other context, an expression classified as a type causes a compile-time error.

A method group, which is a set of overloaded methods resulting from a member lookup (814.3). A
method group can have an associated instance expression. When an instance method is invoked, the
result of evaluating the instance expression becomes the instance represented by this (§814.5.7). A
method group can be used in an invocation-expression (814.5.5), used in a delegate-creation-expression
(814.5.10.3), or implicitly converted to a compatible delegate type. In any other context, an expression
classified as a method group causes a compile-time error.

An anonymous method. An expression with this classification can be used in a delegate-creation-
expression (814.5.10.3) or implicitly converted to a compatible delegate type. In any other context, an
expression classified as an anonymous method causes a compile-time error.

A property access. Every property access has an associated type, namely the type of the property.
Furthermore, a property access can have an associated instance expression. When an accessor (the get
or set block) of an instance property access is invoked, the result of evaluating the instance expression
becomes the instance represented by this (814.5.7).

An event access. Every event access has an associated type, namely the type of the event. Furthermore,
an event access can have an associated instance expression. An event access can appear as the left-hand
operand of the += and -= operators (814.14.3). In any other context, an expression classified as an event
access causes a compile-time error.

An indexer access. Every indexer access has an associated type, namely the element type of the indexer.
Furthermore, an indexer access has an associated instance expression and an associated argument list.
When an accessor (the get or set block) of an indexer access is invoked, the result of evaluating the
instance expression becomes the instance represented by this (814.5.7), and the result of evaluating the
argument list becomes the parameter list of the invocation.

Nothing. This occurs when the expression is an invocation of a method with a return type of void. An
expression classified as nothing is only valid in the context of a statement-expression (§15.6).

The final result of an expression is never a namespace, type, method group, anonymous method, or event
access. Rather, as noted above, these categories of expressions are intermediate constructs that are only
permitted in certain contexts.

A property access or indexer access is always reclassified as a value by performing an invocation of the get-
accessor or the set-accessor. The particular accessor is determined by the context of the property or indexer

149

C# LANGUAGE SPECIFICATION

access: If the access is the target of an assignment, the set-accessor is invoked to assign a new value
(814.14.1). Otherwise, the get-accessor is invoked to obtain the current value (§14.1.1).

14.1.1 Values of expressions

Most of the constructs that involve an expression ultimately require the expression to denote a value. In such
cases, if the actual expression denotes a namespace, a type, or nothing, a compile-time error occurs.
However, if the expression denotes a property access, an indexer access, or a variable, the value of the
property, indexer, or variable is implicitly substituted:

e The value of a variable is simply the value currently stored in the storage location identified by the
variable. A variable shall be considered definitely assigned (812.3) before its value can be obtained, or
otherwise a compile-time error occurs.

e The value of a property access expression is obtained by invoking the get-accessor of the property. If the
property has no get-accessor, a compile-time error occurs. Otherwise, a function member invocation
(814.4.3) is performed, and the result of the invocation becomes the value of the property access
expression.

e The value of an indexer access expression is obtained by invoking the get-accessor of the indexer. If the
indexer has no get-accessor, a compile-time error occurs. Otherwise, a function member invocation
(814.4.3) is performed with the argument list associated with the indexer access expression, and the
result of the invocation becomes the value of the indexer access expression.

14.2 Operators

Expressions are constructed from operands and operators. The operators of an expression indicate which
operations to apply to the operands. [Example: Examples of operators include +, -, *, /, and new. Examples
of operands include literals, fields, local variables, and expressions. end example]

There are three kinds of operators:

o Unary operators. The unary operators take one operand and use either prefix notation (such as —x) or
postfix notation (such as x++).

e Binary operators. The binary operators take two operands and all use infix notation (such as x + y).

o Ternary operator. Only one ternary operator, ?:, exists; it takes three operands and uses infix notation
(c ?2 x = y).

The order of evaluation of operators in an expression is determined by the precedence and associativity of
the operators (§14.2.1).

The order in which operands in an expression are evaluated, is left to right. [Example: In

F(i) + G(i++) * H(i), method F is called using the old value of &, then method G is called with the old
value of i, and, finally, method H is called with the new value of i. This is separate from and unrelated to
operator precedence. end example]

Certain operators can be overloaded. Operator overloading (814.2.2) permits user-defined operator
implementations to be specified for operations where one or both of the operands are of a user-defined class
or struct type.

14.2.1 Operator precedence and associativity

When an expression contains multiple operators, the precedence of the operators controls the order in which

the individual operators are evaluated. [Note: For example, the expression x + y * zis evaluated as

x + (y * z) because the * operator has higher precedence than the binary + operator. end note] The

precedence of an operator is established by the definition of its associated grammar production. [Note: For

example, an additive-expression consists of a sequence of multiplicative-expressions separated by + or -
operators, thus giving the + and - operators lower precedence than the *, /, and % operators. end note]

[Note: The following table summarizes the operators in order of precedence from highest to lowest:

150

14 Expressions

Subclause | Category Operators

14.5 Primary x.y F(x) a[x] x++ Xx-- new
typeof checked unchecked

14.6 Unary + -~ 4x -—x (DX

14.7 Multiplicative * /%

14.7 Additive +t -

14.8 Shift << >>

14.9 Relational and < > <= >= 1is as

type-testing

14.9 Equality == 1=

14.10 Logical AND &

14.10 Logical XOR ~

14.10 Logical OR |

14.11 Conditional AND | &&

14.11 Conditional OR | 11

14.12 Null Coalescing | ??

14.13 Conditional ?:

14.14 Assignment = *= /= %= 4= = <<= >>= &= = =

end note]

When an operand occurs between two operators with the same precedence, the associativity of the operators
controls the order in which the operations are performed:

o Except for the assignment operators and the null coalescing operator, all binary operators are left-
associative, meaning that operations are performed from left to right. [Example: x + y + zis
evaluated as (x + y) + z.end example]

e The assignment operators, null coalescing operator and the conditional operator (?:) are right-
y = zIis

associative, meaning that operations are performed from right to left. [Example: x

evaluated as x = (y = z). end example]

Precedence and associativity can be controlled using parentheses. [Example: x + y * z first multiplies y
by z and then adds the result to x, but (x + y) * zfirst adds x and y and then multiplies the result by z.

end example]

14.2.2 Operator overloading

All unary and binary operators have predefined implementations that are automatically available in any
expression. In addition to the predefined implementations, user-defined implementations can be introduced
by including operator declarations (817.9) in classes and structs. User-defined operator implementations
always take precedence over predefined operator implementations: Only when no applicable user-defined
operators implementations exist are the predefined operator implementations considered, as described in
814.2.3 and §14.2.4.

The overloadable unary operators are:

+ -

1 ~ ++

-= true

false

151

C# LANGUAGE SPECIFICATION

[Note: Although true and false are not used explicitly in expressions (and therefore are not included in
the precedence table in §14.2.1), they are considered operators because they are invoked in several
expression contexts: Boolean expressions (814.17) and expressions involving the conditional operator
(814.13) and conditional logical operators (§14.11). end note]

The overloadable binary operators are:
+ - * / h & | N >> == I= > < >= <=

Only the operators listed above can be overloaded. In particular, it is not possible to overload member
access, method invocation, or the =, &&, | |, ??, ?:, checked, unchecked, new, typeof, as, and
is operators.

When a binary operator is overloaded, the corresponding assignment operator, if any, is also implicitly
overloaded. [Example: An overload of operator * is also an overload of operator *=. This is described
further in §14.14. end example] The assignment operator itself (=) cannot be overloaded. An assignment
always performs a simple bit-wise copy of a value into a variable.

Cast operations, such as (T)x, are overloaded by providing user-defined conversion operators (813.4).

Element access, such as a[x], is not considered an overloadable operator. Instead, user-defined indexing is
supported through indexers (817.8).

In expressions, operators are referenced using operator notation, and in declarations, operators are referenced
using functional notation. The following table shows the relationship between operator and functional
notations for unary and binary operators. In the first entry, op denotes any overloadable unary prefix
operator. In the second entry, op denotes the unary postfix ++ and -- operators. In the third entry, op
denotes any overloadable binary operator. [Note: For an example of overloading the ++ and -- operators see
817.9.1. end note]

Operator notation | Functional notation
op X operator op(x)
X op operator op(x)
X0py operator op(x, y)

User-defined operator declarations always require at least one of the parameters to be of the class or struct
type that contains the operator declaration. [Note: Thus, it is not possible for a user-defined operator to have
the same signature as a predefined operator. end note]

User-defined operator declarations cannot modify the syntax, precedence, or associativity of an operator.
[Example: The / operator is always a binary operator, always has the precedence level specified in §14.2.1,
and is always left-associative. end example]

[Note: While it is possible for a user-defined operator to perform any computation it pleases,
implementations that produce results other than those that are intuitively expected are strongly discouraged.
For example, an implementation of operator == should compare the two operands for equality and return
an appropriate bool result. end note]

The descriptions of individual operators in 814.5 through 814.14 specify the predefined implementations of
the operators and any additional rules that apply to each operator. The descriptions make use of the terms
unary operator overload resolution, binary operator overload resolution, numeric promotion, and lifted
operators definitions of which are found in the following subclauses.

14.2.3 Unary operator overload resolution

An operation of the form op x or x op, where op is an overloadable unary operator, and x is an expression of
type X, is processed as follows:

152

14 Expressions

The set of candidate user-defined operators provided by X for the operation operator op(x) is
determined using the rules of §14.2.5.

If the set of candidate user-defined operators is not empty, then this becomes the set of candidate
operators for the operation. Otherwise, the predefined unary operator op implementations become the
set of candidate operators for the operation. If type X is not an enum type, then any predefined unary
operator with a parameter type that is an enum type is removed from consideration. The predefined
implementations of a given operator are specified in the description of the operator (§14.5 and
§14.5.14).

The overload resolution rules of §14.4.2 are applied to the set of candidate operators to select the best
operator with respect to the argument list (x), and this operator becomes the result of the overload
resolution process. If overload resolution fails to select a single best operator, a compile-time error
occurs.

14.2.4 Binary operator overload resolution

An operation of the form x op y, where op is an overloadable binary operator, x is an expression of type X,
and y is an expression of type Y, is processed as follows:

The set of candidate user-defined operators provided by X and Y for the operation operator op(x, y)
is determined. The set consists of the union of the candidate operators provided by X and the candidate
operators provided by Y, each determined using the rules of §14.2.5. If X and Y are the same type, or if X
and Y are derived from a common base type, then shared candidate operators only occur in the combined
set once.

If the set of candidate user-defined operators is not empty, then this becomes the set of candidate
operators for the operation. Otherwise, the predefined binary operator op implementations become the
set of candidate operators for the operation. If neither X nor Y is an enum type, then any predefined
binary operator with a parameter type that is an enum type is removed from consideration. Similarly, if
neither X nor Y is a delegate type, then any predefined binary operator with a parameter type that is a
delegate type is removed from consideration. The predefined implementations of a given operator are
specified in the description of the operator (§14.7 through §14.14).

The overload resolution rules of §14.4.2 are applied to the set of candidate operators to select the best
operator with respect to the argument list (x, y), and this operator becomes the result of the overload
resolution process. If overload resolution fails to select a single best operator, a compile-time error
occurs.

14.2.5 Candidate user-defined operators

Given a type T and an operation operator op(A), where op is an overloadable operator and A is an
argument list, the set of candidate user-defined operators provided by T for operator op(A) is determined
as follows:

Determine the type TO that results from removing the trailing ? modifiers, if any, from T.

For all operator op declarations in TO, if at least one operator is applicable (814.4.2.1) with respect to
the argument list A, then the set of candidate operators consists of all applicable operator op
declarations in TO. The lifted forms of the operators (814.2.7) declared in TO are considered to also be
declared by TO.

Otherwise, if TO is object, the set of candidate operators is empty.

Otherwise, the set of candidate operators provided by TO is the set of candidate operators provided by
the direct base class of TO, or the effective base class of TO if TO is a type parameter.

14.2.6 Numeric promotions

This subclause is informative.

153

C# LANGUAGE SPECIFICATION

Numeric promotion consists of automatically performing certain implicit conversions of the operands of the
predefined unary and binary numeric operators. Numeric promotion is not a distinct mechanism, but rather
an effect of applying overload resolution to the predefined operators. Numeric promotion specifically does
not affect evaluation of user-defined operators, although user-defined operators can be implemented to
exhibit similar effects.

As an example of numeric promotion, consider the predefined implementations of the binary * operator:

int operator *(int x, int y);

uint operator *(uint x, uint y);

long operator *(long x, long y);

ulong operator *(ulong x, ulong y);

void operator *(long x, ulong y);

void operator *(ulong x, long y);

float operator *(float x, float y);
double operator *(double x, double y);
decimal operator *(decimal x, decimal y);

When overload resolution rules (814.4.2) are applied to this set of operators, the effect is to select the first of
the operators for which implicit conversions exist from the operand types. [Example: For the operation

b * s,where b isabyte and s is a short, overload resolution selects operator *(int, int) as the
best operator. Thus, the effect is that b and s are converted to int, and the type of the result is int.
Likewise, for the operation i * d, where i isan intand d is a double, overload resolution selects
operator *(double, double) as the best operator. end example]

End of informative text.

14.2.6.1 Unary numeric promotions
This subclause is informative.

Unary numeric promotion occurs for the operands of the predefined +, —, and ~ unary operators. Unary
numeric promotion simply consists of converting operands of type sbyte, byte, short, ushort, or char
to type int. Additionally, for the unary — operator, unary numeric promotion converts operands of type
uint to type long.

End of informative text.

14.2.6.2 Binary numeric promotions
This subclause is informative.

Binary numeric promotion occurs for the operands of the predefined +, —, *, 7, %, &, |, ®, ==, 1=, >, <, >=,
and <= binary operators. Binary numeric promotion implicitly converts both operands to a common type
which, in case of the non-relational operators, also becomes the result type of the operation. Binary numeric
promotion consists of applying the following rules, in the order they appear here:

o |f either operand is of type decimal, the other operand is converted to type decimal, or a compile-
time error occurs if the other operand is of type float or double.

o Otherwise, if either operand is of type double, the other operand is converted to type double.
e Otherwise, if either operand is of type float, the other operand is converted to type float.

e Otherwise, if either operand is of type ulong, the other operand is converted to type ulong, or a
compile-time error occurs if the other operand is of type sbyte, short, int, or long.

o Otherwise, if either operand is of type long, the other operand is converted to type long.

e Otherwise, if either operand is of type uint and the other operand is of type sbyte, short, or int,
both operands are converted to type long.

e Otherwise, if either operand is of type uint, the other operand is converted to type uint.

e Otherwise, both operands are converted to type int.

154

14 Expressions

[Note: The first rule disallows any operations that mix the decimal type with the double and float types.
The rule follows from the fact that there are no implicit conversions between the decimal type and the
double and float types. end note]

[Note: Also note that it is not possible for an operand to be of type ulong when the other operand is of a
signed integral type. The reason is that no integral type exists that can represent the full range of ulong as
well as the signed integral types. end note]

In both of the above cases, a cast expression can be used to explicitly convert one operand to a type that is
compatible with the other operand.
[Example: In the following code

decimal AddPercent(decimal x, double percent) {
return x * (1.0 + percent / 100.0);
}

a compile-time error occurs because a decimal cannot be multiplied by a double. The error is resolved by
explicitly converting the second operand to decimal, as follows:

decimal AddPercent(decimal x, double percent) {
return x * (decimal)(1.0 + percent /7 100.0);

end example]

End of informative text.

14.2.7 Lifted operators

Lifted operators permit predefined and user-defined operators that operate on non-nullable value types to
also be used with nullable forms of those types. Lifted operators are constructed from predefined and user-
defined operators that meet certain requirements, as described in the following:

e For the unary operators

+ ++ - - 1 ~

a lifted form of an operator exists if the operand and result types are both non-nullable value types. The
lifted form is constructed by adding a single ? modifier to the operand and result types. The lifted operator
produces a null value if the operand is null. Otherwise, the lifted operator unwraps the operand, applies the
underlying operator, and wraps the result.

o For the binary operators

+ - * /4 % & | N << >
a lifted form of an operator exists if the operand and result types are all non-nullable value types. The lifted
form is constructed by adding a single ? modifier to each operand and result type. The lifted operator
produces a null value if one or both operands are null (an exception being the & and | operators of the

bool? type, as described in §14.10.4). Otherwise, the lifted operator unwraps the operands, applies the
underlying operator, and wraps the result.

o For the equality operators

a lifted form of an operator exists if the operand types are both non-nullable value types and if the result type
is bool. The lifted form is constructed by adding a single ? modifier to each operand type. The lifted
operator considers two null values equal, and a null value unequal to any non-null value. If both operands
are non-null, the lifted operator unwraps the operands and applies the underlying operator to produce the
bool result.

e For the relational operators

< > <= >=

155

C# LANGUAGE SPECIFICATION

a lifted form of an operator exists if the operand types are both non-nullable value types and if the result type
is bool. The lifted form is constructed by adding a single ? modifier to each operand type. The lifted
operator produces the value false if one or both operands are null. Otherwise, the lifted operator unwraps
the operands and applies the underlying operator to produce the bool result.

The lifted forms of the predefined operators are themselves considered predefined operators.

14.3 Member lookup

A member lookup is the process whereby the meaning of a name in the context of a type is determined. A
member lookup can occur as part of evaluating a simple-name (§14.5.2) or a member-access (814.5.4) in an
expression.

Member lookup considers not only the name of a member but also the number of type parameters the
member has and whether the member is accessible. For the purposes of member lookup, generic methods
and nested generic types have the number of type parameters indicated in their respective declarations and
all other members have zero type parameters.

A member lookup of a name N with K type parameters in a type T is processed as follows:
o First, a set of accessible members named N is determined:

o If T is atype parameter, then the set is the union of the sets of accessible members named N in each
of the types specified as a primary constraint or secondary constraint (825.7) for T, along with the
set of accessible members named N in object.

0 Otherwise, the set consists of all accessible (§10.5) members named N in T, including inherited
members and the accessible members named N in object. If T is a constructed type, the set of
members is obtained by substituting type arguments as described in §25.5.4. Members that include
an override modifier are excluded from the set.

o Next, if the set of accessible members is empty, the member lookup does not produce a match and no
further steps are taken.

e Next, if K is zero, remove all nested types whose declaration included type parameters. If K is not zero,
remove all members with a different number of type parameters. Note that when K is zero, we do not
remove all methods having type parameters, since the type inference process (825.6.4) might be able to
infer the type arguments.

e Next, members that are hidden by other members are removed from the set. Members that are removed
during this step may still cause other members to be removed. For every member S.M in the set, where S
is the type in which the member M is declared, the following rules are applied:

o IfMis a constant, field, property, event, enumeration member, or type declaration then all members
declared in a base type of S are removed from the set.

o IfMisamethod, then all non-method members declared in a base type of S are removed from the
set.

o Next, interface members that are hidden by class members are removed from the set. This step only has
an effect if T is a type parameter and T has both an effective base class other than object and a non-
empty effective interface set (§825.7). For every member S.M in the set, where S is the type in which the
member M is declared, the following rules are applied if S is a class declaration other than object:

o IfMis a constant, field, property, event, enumeration member, or type declaration, then all members
declared in an interface declaration are removed from the set.

o IfMis a method, then all non-method members declared in an interface declaration are removed
from the set.

o Finally, having removed hidden members, the result of the lookup is determined:

156

14 Expressions

0 If the set consists of a single member that is not a method, then this member is the result of the
lookup.

0 Otherwise, if the set contains only methods, then this group of methods is the result of the lookup.
0 Otherwise, the lookup is ambiguous, and a compile-time error occurs.

For member lookups in types other than type parameters and interfaces, and member lookups in interfaces
that are strictly single-inheritance (each interface in the inheritance chain has exactly zero or one direct base
interface), the effect of the lookup rules is simply that derived members hide base members with the same
name. Such single-inheritance lookups are never ambiguous. The ambiguities that can possibly arise from
member lookups in multiple-inheritance interfaces are described in §20.2.5.

14.3.1 Base types
For purposes of member lookup, a type T is considered to have the following base types:

o If Tisobject, then T has no base type.

o If T is an enum-type, the base types of T are the class types System.Enum, System.ValueType, and
object.

e If T is a struct-type, the base types of T are the class types System.ValueType and object.

o If Tis a class-type, the base types of T are the base classes of T, including the class type object.
o If T is an interface-type, the base types of T are the base interfaces of T and the class type object.
e If T is an array-type, the base types of T are the class types System.Array and object.

o If T is a delegate-type, the base types of T are the class types System.Delegate and object.

o If Tis a nullable-type, the base types of T are the class types System.ValueType and object.

14.4 Function members

Function members are members that contain executable statements. Function members are always members
of types and cannot be members of hamespaces. C# defines the following categories of function members:

e Methods

e Properties

e Events

e Indexers

e User-defined operators
e Instance constructors
e Static constructors

e Finalizers

Except for static constructors and finalizers (which cannot be invoked explicitly), the statements contained
in function members are executed through function member invocations. The actual syntax for writing a
function member invocation depends on the particular function member category.

The argument list (814.4.1) of a function member invocation provides actual values or variable references
for the parameters of the function member.

Invocations of methods, indexers, operators, and instance constructors employ overload resolution to
determine which of a candidate set of function members to invoke. This process is described in §14.4.2.

Once a particular function member has been identified at compile-time, possibly through overload
resolution, the actual run-time process of invoking the function member is described in §14.4.3.

157

C# LANGUAGE SPECIFICATION

[Note: The following table summarizes the processing that takes place in constructs involving the six
categories of function members that can be explicitly invoked. In the table, e, x, y, and value indicate
expressions classified as variables or values, T indicates an expression classified as a type, F is the simple
name of a method, and P is the simple name of a property.

Construct

Example

Description

Method
invocation

F(X, y)

Overload resolution is applied to select the best method F in the
containing class or struct. The method is invoked with the
argument list (x, y). If the method is not static, the
instance expression is this.

T.F(X, ¥)

Overload resolution is applied to select the best method F in the
class or struct T. A compile-time error occurs if the method is
not static. The method is invoked with the argument list

x, y).

e.F(x,y)

Overload resolution is applied to select the best method F in the
class, struct, or interface given by the type of e. A compile-time
error occurs if the method is static. The method is invoked
with the instance expression e and the argument list (x, y).

Property
access

The get accessor of the property P in the containing class or
struct is invoked. A compile-time error occurs if P is write-
only. If P is not static, the instance expression is this.

P =value

The set accessor of the property P in the containing class or
struct is invoked with the argument list (value). A compile-
time error occurs if P is read-only. If P is not static, the
instance expression is this.

The get accessor of the property P in the class or struct T is
invoked. A compile-time error occurs if P is not static or if P
is write-only.

T.P=value

The set accessor of the property P in the class or struct T is
invoked with the argument list (value). A compile-time error
occurs if P is not static or if P is read-only.

e.P

The get accessor of the property P in the class, struct, or
interface given by the type of e is invoked with the instance
expression e. A compile-time error occurs if P is static or if
P is write-only.

e.P=value

The set accessor of the property P in the class, struct, or
interface given by the type of e is invoked with the instance
expression e and the argument list (value). A compile-time
error occurs if P is static or if P is read-only.

Event access

E += value

The add accessor of the event E in the containing class or struct
is invoked. If E is not static, the instance expression is this.

E -=value

The remove accessor of the event E in the containing class or
struct is invoked. If E is not static, the instance expression is
this.

T.E += value

The add accessor of the event E in the class or struct T is
invoked. A compile-time error occurs if E is not static.

T.E -=value

The remove accessor of the event E in the class or struct T is
invoked. A compile-time error occurs if E is not static.

158

14 Expressions

Construct Example Description

e.E+=value The add accessor of the event E in the class, struct, or interface
given by the type of e is invoked with the instance expression
e. A compile-time error occurs if E is static.

e.E -=value The remove accessor of the event E in the class, struct, or
interface given by the type of e is invoked with the instance
expression e. A compile-time error occurs if E is static.

Indexer e[x, yl Overload resolution is applied to select the best indexer in the
access class, struct, or interface given by the type of e. The get
accessor of the indexer is invoked with the instance expression
e and the argument list (x, y). A compile-time error occurs if
the indexer is write-only.

e[x, yl =value | Overload resolution is applied to select the best indexer in the
class, struct, or interface given by the type of e. The set
accessor of the indexer is invoked with the instance expression
e and the argument list (x, y, value). A compile-time error
occurs if the indexer is read-only.

Operator —-X Overload resolution is applied to select the best unary operator
invocation in the class or struct given by the type of x. The selected
operator is invoked with the argument list (x).

X+y Overload resolution is applied to select the best binary operator
in the classes or structs given by the types of x and y. The
selected operator is invoked with the argument list (x, y).

Instance new T(X, y) Overload resolution is applied to select the best instance
constructor constructor in the class or struct T. The instance constructor is
invocation invoked with the argument list (x, y).

end note]

14.4.1 Argument lists

Every function member invocation includes an argument list, which provides actual values or variable
references for the parameters of the function member. The syntax for specifying the argument list of a
function member invocation depends on the function member category:

o For instance constructors, methods, and delegates, the arguments are specified as an argument-list, as
described below.

o For properties, the argument list is empty when invoking the get accessor, and consists of the
expression specified as the right operand of the assignment operator when invoking the set accessor.

e For events, the argument list consists of the expression specified as the right operand of the += or -=
operator.

o Forindexers, the argument list consists of the expressions specified between the square brackets in the
indexer access. When invoking the set accessor, the argument list additionally includes the expression
specified as the right operand of the assignment operator. [Note: The additional argument is not used for
overload resolution, just during invocation of the set accessor. end note]

o For user-defined operators, the argument list consists of the single operand of the unary operator or the
two operands of the binary operator.

The arguments of properties (817.6), events (817.7), and user-defined operators (817.9) are always passed as
value parameters (§17.5.1.1). The arguments of indexers (817.8) are always passed as value parameters

159

C# LANGUAGE SPECIFICATION

(817.5.1.1) or parameter arrays (817.5.1.4). Reference and output parameters are not supported for these
categories of function members.

The arguments of an instance constructor, method, or delegate invocation are specified as an argument-list:

argument-list:
argument
argument-list , argument

argument:
expression
ref variable-reference
out variable-reference

An argument-list consists of one or more arguments, separated by commas. Each argument can take one of
the following forms:

e An expression, indicating that the argument is passed as a value parameter (§17.5.1.1).

e The keyword ref followed by a variable-reference (§12.3.3.29), indicating that the argument is passed
as a reference parameter (817.5.1.2). A variable shall be definitely assigned (§12.3) before it can be
passed as a reference parameter.

e The keyword out followed by a variable-reference (§12.3.3.29), indicating that the argument is passed
as an output parameter (817.5.1.3). A variable is considered definitely assigned (812.3) following a
function member invocation in which the variable is passed as an output parameter.

Passing a volatile field (§17.4.3) as a reference parameter or output parameter causes a warning, since the
field may not be treated as volatile by the invoked method.

During the run-time processing of a function member invocation (814.4.3), the expressions or variable
references of an argument list are evaluated in order, from left to right, as follows:

e For a value parameter, the argument expression is evaluated and an implicit conversion (§13.1) to the
corresponding parameter type is performed. The resulting value becomes the initial value of the value
parameter in the function member invocation.

o For areference or output parameter, the variable reference is evaluated and the resulting storage location
becomes the storage location represented by the parameter in the function member invocation. If the
variable reference given as a reference or output parameter is an array element of a reference-type, a
run-time check is performed to ensure that the element type of the array is identical to the type of the
parameter. If this check fails, a System.ArrayTypeMismatchException is thrown.

Methods, indexers, and instance constructors can declare their right-most parameter to be a parameter array
(817.5.1.4). Such function members are invoked either in their normal form or in their expanded form
depending on which is applicable (§14.4.2.1):

o When a function member with a parameter array is invoked in its normal form, the argument given for
the parameter array shall be a single expression of a type that is implicitly convertible (§13.1) to the
parameter array type. In this case, the parameter array acts precisely like a value parameter.

o When a function member with a parameter array is invoked in its expanded form, the invocation shall
specify zero or more arguments for the parameter array, where each argument is an expression of a type
that is implicitly convertible (813.1) to the element type of the parameter array. In this case, the
invocation creates an instance of the parameter array type with a length corresponding to the number of
arguments, initializes the elements of the array instance with the given argument values, and uses the
newly created array instance as the actual argument.

The expressions of an argument list are always evaluated in the order they are written. [Example: Thus, the
example

160

14 Expressions

class Test

static void F(int x, int y, int z) {
System.Console._WriteLine(""x = {0}, v = {1}, z = {2}, X, Y, Z);

static void Main() {

int i = 0;
F(i++, i++, i++);
}
}

produces the output

Xx=0,y=1, z =2
end example]
The array covariance rules (819.5) permit a value of an array type A[] to be a reference to an instance of an
array type B[], provided an implicit reference conversion exists from B to A. Because of these rules, when
an array element of a reference-type is passed as a reference or output parameter, a run-time check is

required to ensure that the actual element type of the array is identical to that of the parameter. [Example: In
the following code

class Test

static void F(ref object x) {.}

static void Main(Q) {
object[] a = new object[10];
object[] b = new string[10];
F(ref a[0]); // 0Ok
F(ref b[1]); // ArrayTypeMismatchException

}

the second invocation of F causes a System.ArrayTypeMismatchException to be thrown because the
actual element type of b is string and not object. end example]

When a function member with a parameter array is invoked in its expanded form, the invocation is
processed exactly as if an array creation expression with an array initializer (814.5.10.2) was inserted around
the expanded parameters. [Example: Given the declaration

void F(int x, Int y, params object[] args);
the following invocations of the expanded form of the method

F(10, 20);
F(10, 20, 30, 40);
F(10, 20, 1, "hello™, 3.0);

correspond exactly to

F(10, 20, new object[] {}):
F(10, 20, new object[] {30, 40});
F(10, 20, new object|[] {1, "hello"™, 3.0});

In particular, note that an empty array is created when there are zero arguments given for the parameter
array. end example]

14.4.2 Overload resolution

Overload resolution is a compile-time mechanism for selecting the best function member to invoke given an
argument list and a set of candidate function members. Overload resolution selects the function member to
invoke in the following distinct contexts within C#:

e Invocation of a method named in an invocation-expression (§14.5.5).

¢ Invocation of an instance constructor named in an object-creation-expression (§14.5.10.1).

161

C# LANGUAGE SPECIFICATION

e Invocation of an indexer accessor through an element-access (814.5.6).
e Invocation of a predefined or user-defined operator referenced in an expression (§14.2.3 and §14.2.4).

Each of these contexts defines the set of candidate function members and the list of arguments in its own
unique way. However, once the candidate function members and the argument list have been identified, the
selection of the best function member is the same in all cases:

o First, the set of candidate function members is reduced to those function members that are applicable
with respect to the given argument list (814.4.2.1). If this reduced set is empty, a compile-time error
occurs.

e Then, given the set of applicable candidate function members, the best function member in that set is
located. If the set contains only one function member, then that function member is the best function
member. Otherwise, the best function member is the one function member that is better than all other
function members with respect to the given argument list, provided that each function member is
compared to all other function members using the rules in 814.4.2.2. If there is not exactly one function
member that is better than all other function members, then the function member invocation is
ambiguous and a compile-time error occurs.

The following subclauses define the exact meanings of the terms applicable function member and better
function member.

14.4.2.1 Applicable function member

A function member is said to be an applicable function member with respect to an argument list A when all
of the following are true:

e The number of arguments in A is identical to the number of parameters in the function member
declaration.

e Foreach argument in A, the parameter passing mode of the argument (i.e., value, ref, or out) is
identical to the parameter passing mode of the corresponding parameter, and

o for avalue parameter or a parameter array, an implicit conversion (813.1) exists from the type of the
argument to the type of the corresponding parameter, or

o fora ref or out parameter, the type of the argument is identical to the type of the corresponding
parameter. [Note: After all, a ref or out parameter is an alias for the argument passed. end note]

For a function member that includes a parameter array, if the function member is applicable by the above
rules, it is said to be applicable in its normal form. If a function member that includes a parameter array is
not applicable in its normal form, the function member might instead be applicable in its expanded form:

e The expanded form is constructed by replacing the parameter array in the function member declaration
with zero or more value parameters of the element type of the parameter array such that the number of
arguments in the argument list A matches the total number of parameters. If A has fewer arguments than
the number of fixed parameters in the function member declaration, the expanded form of the function
member cannot be constructed and is thus not applicable.

e Otherwise, the expanded form is applicable if for each argument in A the parameter passing mode of the
argument is identical to the parameter passing mode of the corresponding parameter, and

o for a fixed value parameter or a value parameter created by the expansion, an implicit conversion
(813.1) exists from the type of the argument to the type of the corresponding parameter, or

o fora ref or out parameter, the type of the argument is identical to the type of the corresponding
parameter.

162

14 Expressions

14.4.2.2 Better function member

Given an argument list A with a sequence of argument types {As, Az, ..., Ay} and two applicable function
members Mp and Mq with parameter types {P1, P2, ..., Pn} and {Q4, Qz, ..., Qu, Mp}, after expansion and type
argument substitution,is defined to be a better function member than Mg if

o for each argument, the implicit conversion from Ay to Px is not worse than the implicit conversion from
Ax to Qx, and

o for at least one argument, the conversion from Ax to Px is better than the conversion from Ax to Qx.

When performing this evaluation, if Mp or Mg is applicable only in its expanded form, then Px or Qx refers to a
parameter in the expanded form of the parameter list.

In case the expanded parameter types {P1, Pz, ..., Pn} and {Qu, Qz, ..., Qu}, are identical, the following tie-
breaking rules are applied to determine the better function member by comparing the given uninstantiated
and unexpanded parameter types {R1, Rz, ..., R} and {Si, Sz, ..., S.} of the function members M» and Mq
respectively. In this case, the better function member is determined by the following rules:

o If one of Meand Mg is non-generic, but the other is generic, then the non-generic is better.

o Otherwise, if one of Mp and Mq is applicable in its non-expanded form (or has no params array) and the
other is applicable only in its expanded form (and has a params array), then the non-expanded method is
better.

e Otherwise, if the numbers of parameters K in Mp and L in Mq are different, then the method with more
parameters is better.Note that this can only occur if both methods have params arrays and are only
applicable in their expanded forms.

e Otherwise, the number of parameters K in Mp and L in Mg are the same, and if one method has more
specific parameter types, then that method is better. The given parameter types {R1, Rz, ..., R} are
defined to be more specific than the given parameter types {S1, Sz, ..., S.} if each given parameter Ry is
not less specific than Sx, and at least one given parameter, Rx is more specific than Sx. A type parameter
is less specific than a non-type parameter. Recursively, a constructed type is more specific than another
constructed type (with the same number of type arguments) if at least one type argument is more
specific and no type argument is less specific than the corresponding type argument in the other. An
array type is more specific than another array type (with the same number of dimensions) if the element
type of the first is more specific than the element type of the second.

e Otherwise, if one member is a lifted operator and the other member is an unlifted operator, then the
unlifted operator is better.

e Otherwise, neither method is better.

14.4.2.3 Better conversion

Given an implicit conversion C, that converts from a type S to a type T, and an implicit conversion C, that
converts from a type S to a type T, the better conversion of the two conversions is determined as follows:

e If T, and T, are the same type, neither conversion is better.
e If Sis Ty, Cy is the better conversion.
e IfSis T, Csis the better conversion.

o If an implicit conversion from T, to T, exists, and no implicit conversion from T, to T, exists, C; is the
better conversion.

o |If an implicit conversion from T, to T, exists, and no implicit conversion from T, to Tz exists, C; is the
better conversion.

e |fT,issbyte and T, is byte, ushort, uint, or ulong, C; is the better conversion.

e [fT,issbyte and T, is byte, ushort, uint, or ulong, C; is the better conversion.

163

C# LANGUAGE SPECIFICATION

If T, is short and T is ushort, uint, or ulong, C; is the better conversion.
If T, is short and T is ushort, uint, or ulong, C; is the better conversion.
If Tois intand T, is uint, or ulong, C; is the better conversion.

If T, is intand Ty is uint, or ulong, C; is the better conversion.

If T1is long and T is ulong, C; is the better conversion.

If T2 is long and T is ullong, C; is the better conversion.

Otherwise, neither conversion is better.

If an implicit conversion C, is defined by these rules to be a better conversion than an implicit conversion C,
then it is also the case that C. is a worse conversion than Ca.

14.4.3 Function member invocation

This subclause describes the process that takes place at run-time to invoke a particular function member. It is
assumed that a compile-time process has already determined the particular member to invoke, possibly by
applying overload resolution to a set of candidate function members.

For

purposes of describing the invocation process, function members are divided into two categories:

Static function members. These are static methods, static property accessors, and user-defined operators.
Static function members are always non-virtual.

Instance function members. These are instance methods, instance constructors, instance property
accessors, and indexer accessors. Instance function members are either non-virtual or virtual, and are
always invoked on a particular instance. The instance is computed by an instance expression, and it
becomes accessible within the function member as this (814.5.7). For an instance constructor, the
instance expression is taken to be the newly allocated object.

The run-time processing of a function member invocation consists of the following steps, where M is the
function member and, if M is an instance member, E is the instance expression:

164

If M is a static function member:

0 The argument list is evaluated as described in §14.4.1.

0 Mis invoked.

If M is an instance function member declared in a value-type:

0 Eis evaluated. If this evaluation causes an exception, then no further steps are executed. For an
instance constructor, this evaluation consists of allocating the storage (typically from an execution
stack) for the new object. In this case E is classified as a variable.

o IfEisnot classified as a variable, then a temporary local variable of E’s type is created and the value
of E is assigned to that variable. E is then reclassified as a reference to that temporary local variable.
The temporary variable is accessible as this within M, but not in any other way. Thus, only when E
is a true variable is it possible for the caller to observe the changes that M makes to this.

0 The argument list is evaluated as described in §14.4.1.
0 Mis invoked. The variable referenced by E becomes the variable referenced by this.
If M is an instance function member declared in a reference-type:

O Eisevaluated. If this evaluation causes an exception, then no further steps are executed. For an
instance constructor, this evaluation consists of allocating (typically from a garbage-collected heap)
the storage for the new object.

0 The argument list is evaluated as described in §14.4.1.

14 Expressions

0 The value of E is checked to be valid: if the type of E is a reference-type, and the value of E is nul I,
a System._Nul IReferenceException is thrown and no further steps are executed.

o0 The function member implementation to invoke is determined:

o If the compile-time type of E is an interface, the function member to invoke is the
implementation of M provided by the run-time type of the instance referenced by E. This
function member is determined by applying the interface mapping rules (820.4.2).

e Otherwise, if M is a virtual function member, the function member to invoke is the
implementation of M provided by the run-time type of the instance referenced by E. This
function member is determined by applying the rules for determining the most derived
implementation (§817.5.3) of M with respect to the run-time type of the instance referenced by E.

e Otherwise, M is a non-virtual function member, and the function member to invoke is M itself.

o0 The function member implementation determined in the step above is invoked. If the type of E is a
value-type, then the variable referenced by E becomes the variable referenced by this; otherwise,
the type of E is a reference-type and the object referenced by E becomes the object referenced by
this.

[Note: If the type of E is a value-type, no boxing occurs even if M is an instance member function
declared in a reference-type. end note]

14.4.3.1 Invocations on boxed instances

A function member implemented in a value-type can be invoked through a boxed instance of that value-type
in the following situations:

o When the function member is an override of a method inherited from type object and is invoked
through an instance expression of type object.

e When the function member is an implementation of an interface function member and is invoked
through an instance expression of an interface-type.

e When the function member is invoked through a delegate.

In these situations, the boxed instance is considered to contain a variable of the value-type, and this variable
becomes the variable referenced by this within the function member invocation. [Note: In particular, this
means that when a function member is invoked on a boxed instance, it is possible for the function member to
modify the value contained in the boxed instance. end note]

14.5 Primary expressions
Primary expressions include the simplest forms of expressions.

primary-expression:
array-creation-expression
primary-no-array-creation-expression

165

C# LANGUAGE SPECIFICATION

primary-no-array-creation-expression:
literal
simple-name
parenthesized-expression
member-access
invocation-expression
element-access
this-access
base-access
post-increment-expression
post-decrement-expression
object-creation-expression
delegate-creation-expression
typeof-expression
checked-expression
unchecked-expression
default-value-expression
anonymous-method-expression

Primary expressions are divided between array-creation-expressions and primary-no-array-creation-
expressions. Treating array-creation-expression in this way, rather than listing it along with the other simple
expression forms, enables the grammar to disallow potentially confusing code such as

object o = new int[3][1];
which would otherwise be interpreted as
object o = (new int[3])[1];

A primary-expression is permitted to reference a static class (§17.1.1.3) if the primary-expression is the E in
a member-access (814.5.4) of the form E. 1.

14.5.1 Literals
A primary-expression that consists of a literal (89.4.4) is classified as a value.

literal::
boolean-literal
integer-literal
real-literal
character-literal
string-literal
null-literal

14.5.2 Simple names
A simple-name consists of an identifier, optionally followed by a type argument list:
simple-name:
identifier type-argument-listoy

A simple-name is either of the form I or of the form 1<A1, ..., Acx>, where 1 is a single identifier and <A1,
..., Ax> is an optional type-argument-list. When no type-argument-list is specified, consider K to be zero.
The simple-name is evaluated and classified as follows:

e IfKis zero and the simple-name appears within a block and if the block’s (or an enclosing block’s) local
variable declaration space (810.3) contains a local variable, parameter or constant with name 1, then the
simple-name refers to that local variable, parameter or constant and is classified as a variable or value.

e [IfKis zero and the simple-name appears within the body of a generic method declaration and if that
declaration includes a type parameter with name I, then the simple-name refers to that type parameter.

166

14 Expressions

Otherwise, for each instance type T (825.1.2), starting with the instance type of the immediately
enclosing type declaration and continuing with the instance type of each enclosing class or struct
declaration (if any):

o0 IfKiszero and the declaration of T includes a type parameter with name 1, then the simple-name
refers to that type parameter.

0 Otherwise, if a member lookup (814.3) of I in T with K type arguments produces a match:

o If T is the instance type of the immediately enclosing class or struct type and the lookup
identifies one or more methods, the result is a method group with an associated instance
expression of this. If a type argument list was specified, it is used in calling a generic method
(825.6.3).

e Otherwise, if T is the instance type of the immediately enclosing class or struct type, if the
lookup identifies an instance member, and if the reference occurs within the block of an instance
constructor, an instance method, or an instance accessor, the result is the same as a member
access (814.5.4) of the form this. 1. This can only happen when K is zero.

o Otherwise, the result is the same as a member access (814.5.4) of the form T.1 or T. I1<A,, ...,
Ac>. In this case, it is a compile-time error for the simple-name to refer to an instance member.

Otherwise, for each namespace N, starting with the namespace in which the simple-name occurs,
continuing with each enclosing namespace (if any), and ending with the global namespace, the following
steps are evaluated until an entity is located:

0 IfKiszeroand I is the name of a namespace in N, then:

o If the location where the simple-name occurs is enclosed by a namespace declaration for N and
the namespace declaration contains an extern-alias-directive or using-alias-directive that
associates the name 1 with a namespace or type, then the simple-name is ambiguous and a
compile-time error occurs.

e Otherwise, the simple-name refers to the namespace named 1 in N.
o0 Otherwise, if N contains an accessible type having name I and K type parameters, then:

e [fKis zero and the location where the simple-name occurs is enclosed by a namespace
declaration for N and the namespace declaration contains an extern-alias-directive or using-
alias-directive that associates the name 1 with a namespace or type, then the simple-name is
ambiguous and a compile-time error occurs.

o Otherwise, the namespace-or-type-name refers to the type constructed with the given type
arguments.

0 Otherwise, if the location where the simple-name occurs is enclosed by a namespace declaration
for N:

e IfKis zero and the namespace declaration contains an extern-alias-directive or using-alias-
directive that associates the name 1 with an imported namespace or type, then the simple-name
refers to that namespace or type.

e Otherwise, if the namespaces imported by the using-namespace-directives of the namespace
declaration contain exactly one type having name 1 and K type parameters, then the simple-
name refers to that type constructed with the given type arguments.

e Otherwise, if the namespaces imported by the using-namespace-directives of the namespace
declaration contain more than one type having name 1 and K type parameters, then the simple-
name is ambiguous and an error occurs.

[Note: This entire step is exactly parallel to the corresponding step in the processing of a namespace-or-
type-name (810.8). end note]

167

C# LANGUAGE SPECIFICATION

e Otherwise, the simple-name is undefined and a compile-time error occurs.

14.5.2.1 Invariant meaning in blocks

For each occurrence of a given identifier as a simple-name in an expression or declarator, every other
occurrence of the same identifier as a simple-name in an expression or declarator within the immediately
enclosing block (815.2) or switch-block (8§15.7.2) shall refer to the same entity. [Note: This rule ensures that
the meaning of a name is always the same within a block. end note]

[Example: The example

class Test

double Xx;

void F(bool b) {
x = 1.0;

it (b) {
int x = 1;
¥

}
}

results in a compile-time error because x refers to different entities within the outer block (the extent of
which includes the nested block in the i f statement). In contrast, the example

class Test

double Xx;

void F(bool b) {
it (b) {

is permitted because the name x is never used in the outer block. end example]

[Note: The rule of invariant meaning applies only to simple names. It is perfectly valid for the same
identifier to have one meaning as a simple name and another meaning as right operand of a member access
(814.5.4). end note] [Example:

struct Point

int x, y;

public Point(int x, int y) {
this.x = X;
this.y = vy;

}

The example above illustrates a common pattern of using the names of fields as parameter names in an
instance constructor. In the example, the simple names x and y refer to the parameters, but that does not
prevent the member access expressions this.x and this.y from accessing the fields. end example]

14.5.3 Parenthesized expressions
A parenthesized-expression consists of an expression enclosed in parentheses.

parenthesized-expression:
(expression)

168

14 Expressions

A parenthesized-expression is evaluated by evaluating the expression within the parentheses. If the
expression within the parentheses denotes a namespace or type, a compile-time error occurs. Otherwise, the
result of the parenthesized-expression is the result of the evaluation of the contained expression.

14.5.4 Member access

A member-access consists of a primary-expression, a predefined-type, or a qualified-alias-member, followed
by a “.” token, followed by an identifier, optionally followed by a type-argument-list.

member-access:

primary-expression . identifier type-argument-listoy
predefined-type . identifier type-argument-list,y
qualified-alias-member . identifier type-argument-listoy
predefined-type: one of
bool byte char decimal double float int long
object shyte short string uint ulong ushort

qualified-alias-member is defined in §16.7.

A member-access is either of the form E. 1 or of the form E. 1<A,, ..., Ax>, where E is a primary-
expression, predefined-type or qualified-alias-member, 1 is a single identifier and <A;, ..., Ac>is an
optional type-argument-list. When no type-argument-list is specified, consider K to be zero. The member-
access is evaluated and classified as follows:

e [fKiszeroand E is a namespace and E contains a nested namespace with name 1, then the result is that
namespace.

e Otherwise, if E is a namespace and E contains an accessible type having name 1 and K type parameters,
then the result is that type constructed with the given type arguments.

e IfEisaclassified as a type, if E is not a type parameter, and if a member lookup (814.3) of 1 in E with K
type parameters produces a match, then E. I is evaluated and classified as follows: [Note: When the
result of such a member lookup is a method group and K is zero, the method group can contain methods
having type parameters. This allows such methods to be considered for type argument inferencing. end
note]

o If 1 identifies a type, then the result is that type constructed with the given type and any inferred
arguments.

o If I identifies one or more methods, then the result is a method group with no associated instance
expression.

o If I identifies a static property, then the result is a property access with no associated instance
expression.

o If 1 identifies a static field:

o [f the field is readonly and the reference occurs outside the static constructor of the class or
struct in which the field is declared, then the result is a value, namely the value of the static
field 1 in E.

e Otherwise, the result is a variable, namely the static field I in E.
o If I identifies a static event:

e If the reference occurs within the class or struct in which the event is declared, and the event
was declared without event-accessor-declarations (817.7), then E. 1 is processed exactly as if 1
were a static field.

e Otherwise, the result is an event access with no associated instance expression.

o If I identifies a constant, then the result is a value, namely the value of that constant.

169

C# LANGUAGE SPECIFICATION

(0]

(0]

If 1 identifies an enumeration member, then the result is a value, namely the value of that
enumeration member.

Otherwise, E. 1 is an invalid member reference, and a compile-time error occurs.

o If Eis a property access, indexer access, variable, or value, the type of which is T, and a member lookup
(814.3) of 1 in T with K type arguments produces a match, then E. I is evaluated and classified as
follows:

(0]

First, if E is a property or indexer access, then the value of the property or indexer access is obtained
(814.1.1) and E is reclassified as a value.

If 1 identifies one or more methods, then the result is a method group with an associated instance
expression of E. If a type argument list was specified, the method group consists only of generic
methods having K type parameters and the type argument list is implicitly applied to each method in
the method group (825.6.3). If no type argument list was specified, the method group may contain
both generic and non-generic methods.

If I identifies an instance property, then the result is a property access with an associated instance
expression of E.

If T is a class-type and 1 identifies an instance field of that class-type:
e [f the value of E is nul I, then a System.Nul IReferenceException is thrown.

e Otherwise, if the field is readonly and the reference occurs outside an instance constructor of
the class in which the field is declared, then the result is a value, namely the value of the field I
in the object referenced by E.

e Otherwise, the result is a variable, namely the field 1 in the object referenced by E.
If T is a struct-type and 1 identifies an instance field of that struct-type:

e [fEisavalue, or if the field is readonly and the reference occurs outside an instance
constructor of the struct in which the field is declared, then the result is a value, namely the
value of the field I in the struct instance given by E.

e Otherwise, the result is a variable, namely the field 1 in the struct instance given by E.
If 1 identifies an instance event:

e |f the reference occurs within the class or struct in which the event is declared, and the event
was declared without event-accessor-declarations (817.7), then E_ 1 is processed exactly as if I
was an instance field.

e Otherwise, the result is an event access with an associated instance expression of E.

e Otherwise, E. 1 is an invalid member reference, and a compile-time error occurs.

14.5.4.1 Identical simple names and type names

In a member access of the form E_ 1, if E is a single identifier, and if the meaning of E as a simple-name
(814.5.2) is a constant, field, property, local variable, or parameter with the same type as the meaning of E as
a type-name (810.8), then both possible meanings of E are permitted. The two possible meanings of E. I are
never ambiguous, since 1 shall necessarily be a member of the type E in both cases. In other words, the rule
simply permits access to the static members and nested types of E where a compile-time error would
otherwise have occurred. [Example:

170

struct Color

new Color(..);

public static readonly Color White
new Color(..);

public static readonly Color Black

public Color Complement() {.}
}

14 Expressions

class A
public Color Color; // Field A_Color of type Color
void FQO {
Color = Color.Black; // References Color.Black
Color = Color.Complement(); // Invokes Complement() on A_Color
s
static void GO {
Color c = Color.White; // References Color.White
3
3

Within the A class, those occurrences of the Color identifier that reference the Color type are underlined,
and those that reference the Collor field are not underlined. end example]

14.5.5 Invocation expressions
An invocation-expression is used to invoke a method.

invocation-expression:
primary-expression (argument-listoy;)

The primary-expression of an invocation-expression shall be a method group or a value of a delegate-type. If
the primary-expression is a method group, the invocation-expression is a method invocation (§14.5.5.1). If
the primary-expression is a value of a delegate-type, the invocation-expression is a delegate invocation
(814.5.5.2). If the primary-expression is neither a method group nor a value of a delegate-type, a compile-
time error occurs.

The optional argument-list (§14.4.1) provides values or variable references for the parameters of the method.
The result of evaluating an invocation-expression is classified as follows:

o |f the invocation-expression invokes a method or delegate that returns void, the result is nothing. An
expression that is classified as nothing cannot be an operand of any operator, and is permitted only in the
context of a statement-expression (§15.6).

e Otherwise, the result is a value of the type returned by the method or delegate.

14.5.5.1 Method invocations

For a method invocation, the primary-expression of the invocation-expression shall be a method group. The
method group identifies the one method to invoke or the set of overloaded methods from which to choose a
specific method to invoke. In the latter case, determination of the specific method to invoke is based on the
context provided by the types of the arguments in the argument-list.

The compile-time processing of a method invocation of the form M(A), where M is a method group (possibly
including a type-argument-list), and A is an optional argument-list, consists of the following steps:

e The set of candidate methods for the method invocation is constructed. For each method F associated
with the method group M:

o If Fis non-generic, F is a candidate when:
e M has no type argument list, and
e Fisapplicable with respect to A (814.4.2.1).
o If Fisgeneric and M has no type argument list, F is a candidate when:
e Type inference (825.6.4) succeeds, inferring a list of type arguments for the call, and

e Once the inferred type arguments are substituted for the corresponding method type parameters,
all constructed types in the parameter list of F satisfy their constraints (§25.7.1), and the
parameter list of F is applicable with respect to A (814.4.2.1), and

171

C# LANGUAGE SPECIFICATION

o If Fisgeneric and M includes a type argument list, F is a candidate when:

e F has the same number of method type parameters as were supplied in the type argument list,
and

o Once the type arguments are substituted for the corresponding method type parameters, all
constructed types in the parameter list of F satisfy their constraints (§25.7.1), and the parameter
list of F is applicable with respect to A (§14.4.2.1).

e The set of candidate methods is reduced to contain only methods from the most derived types: For each
method C.F in the set, where C is the type in which the method F is declared, all methods declared in a
base type of C are removed from the set. Furthermore, if C is a class type other than object, all methods
declared in an interface type are removed from the set. [Note: This latter rule only has affect when the
method group was the result of a member lookup on a type parameter having an effective base class
other than object and a non-empty effective interface set (825.7). end note]

o |f the resulting set of candidate methods is empty, then no applicable methods exist, and a compile-time
error occurs.

e The best method of the set of candidate methods is identified using the overload resolution rules of
814.4.2. If a single best method cannot be identified, the method invocation is ambiguous, and a
compile-time error occurs. When performing overload resolution, the parameters of a generic method
are considered after substituting the type arguments (supplied or inferred) for the corresponding method
type parameters.

o Final validation of the chosen best method is performed:

0 The method is validated in the context of the method group: If the best method is a static method,
the method group shall have resulted from a simple-name or a member-access through a type. If the
best method is an instance method, the method group shall have resulted from a simple-name, a
member-access through a variable or value, or a base-access. If neither of these requirements is true,
a compile-time error occurs.

o0 If the best method is a generic method, the type arguments (supplied or inferred) are checked against
the constraints (§25.7.1) declared on the generic method. If any type argument does not satisfy the
corresponding constraint(s) on the type parameter, a compile-time error occurs.

Once a method has been selected and validated at compile-time by the above steps, the actual run-time
invocation is processed according to the rules of function member invocation described in §14.4.3.

[Note: The intuitive effect of the resolution rules described above is as follows: To locate the parti