
C E R T I F I C AT I O N

Developing and Implementing Windows-
Based Applications with Microsoft Visual
C# .NET and Microsoft Visual Studio .NET

Windows Programming (Level 1) (C#1)

Contents

PART I Developing Windows Applications

1 Introducing Windows Forms ..21

2 Controls ..113

3 Error Handling for the User Interface ..229

4 Creating and Managing .NET Components and Assemblies ..283

5 Data Binding ..353

6 Consuming and Manipulating Data ..427

7 Web Services ..565

8 Globalization ..599

9 Working with Legacy Code ..641

10 User Assistance and Accessibility ..677

11 Printing ..729

12 Testing and Debugging a Windows Application..775

00 0789728230 FM 11/21/02 1:22 PM Page v

Appendix A: C# Language Fundamentals

Appendix B: Conversions

Appendix C: Math Class

Appendix D: String Theory

Appendix E: Files and Streams

Part II Appendix

PART I: Developing Window Applications

1 Introducing Windows Forms 21

Introduction ..24

Key Concepts ..24
An Overview of the .NET Framework ..25
An Overview of the Development Tools ..27
Understanding Classes, Inheritance, and Namespaces ..29

Creating a Windows Forms Application ..32
Using the System.Windows.Forms.Form Class ..33
Designing a Windows Form by Using the Windows Forms Designer34
Exploring the Generated Code ..37
Running a Windows Form ..40
Using the Application Class ..42
Using the MessageBox Class ..46

Setting and Adding Properties to a Windows Form ..48
Using the Visual Designer to Set Windows Form Properties48
Setting Windows Form Properties Programmatically ..51
Adding New Properties to a Windows Form ..57

Using Visual Inheritance ..61

Event Handling ..64
Handling Events by Attaching a Delegate ..65
Handling Events by Overriding a Protected Method of a Base Class71

Building Graphical Interface Elements by Using the System.Drawing
Namespace ..76

Understanding the Graphics Objects ..77
Understanding the Windows Forms Coordinate System ..78
Drawing Text on a Form ..79
Drawing Shapes ..85
Working with Images ..94
Exercises ..102

00 0789728230 FM 11/21/02 1:22 PM Page ix

Table of Contents

X MCAD/MCSD TRAINING GUIDE EXAM (70-316)

2 Controls 113

Introduction ..116

Adding Controls to a Windows Form ..116
Adding Controls by Using the Windows Forms Designer117
Adding Controls Programmatically ..118

Setting Properties of Controls ..120
Important Common Properties of Controls ..121
Configuring the Order of Tabs ..125

Handling Control Events ..126

Dialog Boxes ..135
Common Dialog Boxes ..135
Creating a Custom Dialog Box ..139

Common Windows Forms Controls ..142
The Label and LinkLabel Controls ..143
The TextBox and RichTextBox Controls ..146
The PictureBox Control ..148
The GroupBox and Panel Controls ..149
The Button, CheckBox, and RadioButton Controls ..151
The ListBox, CheckedListBox, and ComboBox Controls ..155
The DomainUpDown and NumericUpDown Controls ..165
The MonthCalendar and DateTimePicker Controls ..168
The Timer..172
The rackBar, and ProgressBar Controls ..177
The HScrollBar and VScrollBar Controls ..180
The TabControl Control ..183

Creating Menus and Menu Items ..187
The MainMenu Control ..189
The ContextMenu Control ..197
The StatusBar Control ..203
The ToolBar Control ..207

Creating MDI Applications ..210
Exercises ..218
Review Questions ..220

00 0789728230 FM 11/21/02 1:22 PM Page x

CONTENTS XI

3 Error Handling for the User Interface 229

Introduction ..231

Understanding Exceptions ..231

Handling Exceptions ..234
The try Block ..235
The catch Block ..235
The throw Statement ..239
The finally Block ..240

Creating and Using Custom Exceptions ..244

Managing Unhandled Exceptions ..250

Validating User Input ..255
Keystroke-Level Validation ..256
Field-Level Validation ..258
Enabling Controls Based on Input ..263
Other Properties for Validation ..264
Exercises ..270

00 0789728230 FM 11/21/02 1:22 PM Page xi

12 Testing and Debugging a Windows Application

Introduction ..778

Testing ..778
Creating a Test Plan ..779
Executing Tests ..779
Testing International Applications ..782

Tracing ..783
Using Trace and Debug to Display Information ..786
Trace Listeners ..789
Trace Switches ..793
Conditional Compilation ..797

Debugging ..802
Stepping Through Program Execution ..803
Setting Breakpoints ..806
Analyzing Program State to Resolve Errors ..809
Debugging on Exceptions ..813
Debugging a Running Process ..815

1C H A P T E R

Introducing Windows
Forms

This chapter covers the following Microsoft-specified
objectives for the “Creating User Services” section of
Exam 70-316, “Developing and Implementing
Windows-Based Applications with Microsoft Visual
C# .NET and Microsoft Visual Studio .NET”:

Create a Windows form by using the Windows
Forms Designer:

• Add and set properties on a Windows form.

• Create a Windows form by using visual
inheritance.

• Build graphical interface elements by using
the System.Drawing namespace.

. Windows forms are the basic user interface element
of a Windows application. The exam objectives
addressed in this chapter cover the basics of design-
ing a Windows form by using the Windows Forms
Designer. This exam objective addresses the follow-
ing specific topics:

• How to create a Windows form and change its
behavior and appearance through its built-in
properties and through custom-added properties.

• How to use visual inheritance to rapidly design
a Windows form by inheriting it from an exist-
ing Windows form.

• How to build various graphical interface ele-
ments by using the System.Drawing namespace.

Create, implement, and handle events.

. Event handling is the core part of programming a
user interface. This chapter describes how to make
a Windows form respond to user actions. You’ll
find further coverage of this exam objective in
Chapter 4, “Creating and Managing .NET
Components and Assemblies.”

OBJECT IVES

04 0789728230 CH01 11/21/02 1:24 PM Page 21

Introduction 24

Key Concepts 24

An Overview of the .NET Framework 25
The Common Language Runtime 25
The Framework Class Library 26

An Overview of the Development Tools 27
The .NET Framework SDK 27
Visual Studio .NET 28

Understanding Classes, Inheritance, and
Namespaces 29

Classes 29
Inheritance 31
Namespaces 31

Creating a Windows Forms Application 32

Using the System.Windows.Forms.
Form Class 33

Designing a Windows Form by Using the
Windows Forms Designer 34

Exploring the Generated Code 37

Running a Windows Form 40

Using the Application Class 42

Using the MessageBox Class 46

OUTL INE

Setting and Adding Properties to a
Windows Form 48

Using the Visual Designer to Set
Windows Form Properties 48

Setting Windows Form Properties
Programmatically 51

Adding New Properties to a Windows
Form 57

Using Visual Inheritance 61

Event Handling 64

Handling Events by Attaching a
Delegate 65

Handling Events by Overriding a
Protected Method of a Base Class 71

Building Graphical Interface Elements
by Using the System.Drawing
Namespace 76

Understanding the Graphics Objects 77

Understanding the Windows Forms
Coordinate System 78

Drawing Text on a Form 79

Drawing Shapes 85

Working with Images 94

Chapter Summary 101

Apply Your Knowledge 102

04 0789728230 CH01 11/21/02 1:24 PM Page 22

STUDY STRATEGIES

. Make yourself comfortable with the major prop-
erties of Windows forms. This chapter’s exam-
ples and exercises introduce the most impor-
tant form properties.

. Invest time looking at and understanding the
code that is automatically generated by Visual
Studio .NET for you.

. Make sure you fully understand event handling.
This will enable you to write interactive
Windows applications.

. Experiment with classes in the System.Drawing
namespace. In addition to the completing the
examples and exercises in this chapter, it would
be a good idea for you to create a small sam-
ple program to test the behavior of a class or a
property whenever you are in doubt.

. If you are new to object-oriented programming,
consider reading all or some of the recommend-
ed material listed in the “Suggested Readings
and Resources” section at the end of this
chapter.

04 0789728230 CH01 11/21/02 1:24 PM Page 23

24 Par t I DEVELOPING WINDOWS APPLICATIONS

INTRODUCTION

In this chapter, the first step toward passing Exam 70-316, you will
complete a lot of the groundwork required to build the foundation
for the rest of this book.

This chapter starts with an overview of the .NET Framework and
various development tools for developing applications for the .NET
Framework. This overview will be enough to get you started; I’ll
continually cover advanced features as they become important for
meeting exam objectives.

Next, this chapter talks about designing Windows forms, both by
using a visual designer and by manually writing code. The visual
designer that is built inside Visual Studio .NET helps you rapidly
develop forms. As you design forms, you will also learn about many
useful classes that are available in the System.Windows.Forms
namespace. You will also learn how to visually inherit a Windows
form from an existing form.

A user can generally interact with a Windows application.
Applications can respond to users’ actions thanks to event handling.
In this chapter you will learn how to make programs interactive by
using event handling.

Finally, this chapter talks about the various classes in the
System.Drawing namespace. These classes allow you to add typogra-
phy, 2-D graphics, and imaging features to applications.

KEY CONCEPTS

In this book, you will develop Windows application using Visual
Studio .NET. Under the hood, you will be using the Framework
Class Libraries (FCL) to write applications that run on the
Common Language Runtime (CLR). Both FCL and CLR are part
of a larger framework called the .NET Framework. In this section,
I’ll give you an overview of the .NET Framework, various develop-
ment tools, and basic object-oriented concepts that you will need
right from the beginning.

04 0789728230 CH01 11/21/02 1:24 PM Page 24

Chapter 1 INTRODUCING WINDOWS FORMS 25

An Overview of the .NET Framework
The Microsoft .NET Framework is a new computing platform for
developing distributed applications. It provides several new features
that enhance application development. The following are some of
these features:

á Consistent development model—The .NET Framework
proves an object-oriented and consistent development model.
When you learn programming in the .NET Framework, you
can use your skills in developing different types of applica-
tions, such as Windows Forms applications, Web applications,
and Web services.

á Robust execution environment—The .NET Framework pro-
vides an execution environment that maximizes security,
robustness, and performance of applications while minimizing
deployment and versioning conflicts.

á Support for standards—The .NET Framework is built
around industry standards such as Extensible Markup
Language (XML), Simple Object Access Protocol (SOAP),
Common Language Infrastructure (CLI), and C#.

Because the .NET Framework provides new execution environments
for running the applications designed for the .NET Framework, you
need to install the .NET Framework on the target machine. The
.NET Framework can be installed using the .NET Framework redis-
tributable file (approximately 21MB). You can find the link to
download this file from the Microsoft official Windows Forms
Community site (www.windowsforms.net).

The .NET Framework has two main components:

á The Common Language Runtime (CLR)

á The Framework Class Library (FCL)

The Common Language Runtime
The CLR provides a managed and language agnostic environment
for executing applications designed for the .NET Framework.

04 0789728230 CH01 11/21/02 1:24 PM Page 25

26 Par t I DEVELOPING WINDOWS APPLICATIONS

The managed runtime environment provides several services to the
executing code: compilation, code safety verification, code execution,
automatic memory management, and other system services. The
applications designed to run under the CLR are known as managed
applications because they enjoy the benefit of services offered by the
managed execution environment provided by the CLR.

The CLR is based on the Common Language Infrastructure (CLI).
CLI provides a rich type system that supports the types and opera-
tions found in many programming languages. If a language compiler
adheres to the CLI specifications, it can generate code that can run
and interoperate with other code that executes on the CLR. This
allows programmers to write applications using a development lan-
guage of their choice and at the same time take full advantage of the
CLR, FCL, and components written by other developers.

Microsoft provides five language compilers for the .NET
Framework: Visual C# .NET, Visual Basic .NET, Managed C++
.NET, Jscript .NET, and J# .NET. When you install the .NET
Framework, you get only command-line compilers for C#, Visual
Basic .NET, and Jscript .NET. The Managed C++ compiler is part
of .NET Framework SDK and Visual Studio .NET, whereas the J#
.NET compiler can be downloaded separately from the Microsoft
Web site. Visual J# .NET will ship as a component of Visual Studio
.NET starting with version 1.1. In addition to the compilers avail-
able from Microsoft, you can obtain CLI-compliant compilers for
languages such as COBOL, Delphi, Eiffel, Perl, Python, Smalltalk,
and Haskell from various independent vendors or organizations.

The CLI-compliant language compilers compile the source language
to an intermediate format known as the Common Intermediate
Language (CIL). At runtime, the CLR compiles the CIL code to the
machine-specific native code using a technique called just-in-time
(JIT) compilation. Microsoft’s implementation of CIL is the
Microsoft Intermediate Language (MSIL).

The Framework Class Library
The FCL is an extensive collection of reusable types that allows you
to develop a variety of applications, including

á Console applications

á Scripted or hosted applications

N
O

T
E C# and CLI Are ECMA Standards

The C# programming language, as
well as the CLI, are ECMA standards.
The standardization has motivated
several vendors to support and
extend the .NET Framework in various
ways. Some example includes the
Mono project (www.go-mono.com),
which is an open-source implementa-
tion of the .NET Framework; the
Delphi 7 Studio (www.borland.com/
delphi), which brings Delphi language
to the .NET Framework; and Covalent
Enterprise Ready Servers
(www.covalent.net), which supports
ASP.NET on the Apache Web server.

04 0789728230 CH01 11/21/02 1:24 PM Page 26

Chapter 1 INTRODUCING WINDOWS FORMS 27

á Desktop applications (Windows Forms)

á Web applications (ASP.NET applications)

á XML Web services

á Windows services

The FCL organizes its classes in hierarchical namespaces so that they
are logically grouped and easy to identify. You will learn about sever-
al of these namespaces and the classes that relate to the Windows
Forms applications in this book.

An Overview of the Development Tools
Two development tools are available from Microsoft to help you
design the Windows applications that run on the .NET Framework:

á The .NET Framework SDK

á Visual Studio .NET

I discuss these tools in the following sections.

The .NET Framework SDK
The Microsoft .NET Framework Software Development Kit (SDK)
is available as a free download (about 131MB). You can find the link
to download it from www.windowsforms.net. When you install the
.NET Framework SDK you get a rich set of resources to help you
develop applications for the Microsoft .NET Framework. This
includes

á The .NET Framework—This installs the necessary infrastruc-
ture of the .NET Framework, including the CLR and the FCL.

á Language compilers—The command-line–based compilers
allow you to compile your applications. The language compil-
ers installed with the SDK are Visual C# .NET, Visual Basic
.NET, Jscript .NET, and a non-optimizing compiler for
Managed C++ .NET.

á Tools and debuggers—Various tools installed with the .NET
Framework SDK make it easy to create, debug, profile, deploy,
configure, and manage applications and components. I discuss
most of these tools as I progress through this book.

04 0789728230 CH01 11/21/02 1:24 PM Page 27

28 Par t I DEVELOPING WINDOWS APPLICATIONS

á Documentation—The .NET Framework SDK installs a rich
set of documentation to quickly get you up to speed on devel-
opment using the .NET Framework. These include the
QuickStart tutorials, product documentation, and samples.

It’s possible to develop all your programs by using just a text editor
and the command-line compilers and tools provided by the .NET
Framework SDK. However, Visual Studio .NET provides a much
more productive development environment.

Visual Studio .NET
Visual Studio .NET provides developers with a full-service
Integrated Development Environment (IDE) for building Windows
Forms applications, ASP.NET Web applications, XML Web services,
and mobile applications for the .NET Framework. Visual Studio
.NET supports multiple languages—Visual C# .NET, Visual Basic
.NET, Visual C++ .NET, and Visual J# .NET—and provides trans-
parent development and debugging facilities across these languages
in a multilanguage solution. Additional languages from other ven-
dors can also be installed seamlessly into the Visual Studio .NET
shell.

Visual Studio .NET installs the .NET Framework SDK as a part of
its installation. In addition to the SDK features, some important
features of Visual Studio .NET are

á IDE—Supports development, compilation, debugging, and
deployment, all from within the development environment.

á Editing tools—Supports language syntaxes for multiple lan-
guages. The IntelliSense feature provides help with syntax.
Visual Studio .NET also supports editing of XML, Extensible
Stylesheet Language (XSL), Hypertext Markup Language
(HTML), and Cascading Style Sheets (CSS) documents,
among other types.

á Integrated debugging—Supports cross-language debugging,
including debugging of SQL Server stored procedures. It can
seamlessly debug applications that are running locally or on a
remote server.

04 0789728230 CH01 11/21/02 1:24 PM Page 28

Chapter 1 INTRODUCING WINDOWS FORMS 29

á Deployment tools—Support Windows Installer. These tools
also provide graphical deployment editors that allow you to
visually control various deployment settings for Visual Studio
.NET projects.

á Automation—Provides tools for extending, customizing, and
automating the Visual Studio .NET IDE.

You will learn about all of these features in the course of this book.
As an exam requirement, this book uses Visual Studio .NET as its
preferred tool for developing Windows Forms applications.

Understanding Classes, Inheritance,
and Namespaces
The .NET Framework is designed to be object oriented from the
ground up. I’ll cover the different elements of object-oriented pro-
gramming as they come up, but before I start, you should know a
few terms, such as class, inheritance, and namespace that are impor-
tant right from the beginning. The following sections briefly explain
these terms and their meaning.

Classes
C# is an object-oriented programming language. One of the tasks of
a C# developer is to create user-defined types called classes. A class is
a reference type that encapsulates data (such as constants and fields)
and defines its behaviors using programming contructs such as
methods, properties, constructors, and events.

A class represents an abstract idea that you would like to include in an
application. For example, the .NET Framework includes a Form class,
which includes data fields for storing information such as the size of
the form, the form’s location, the form’s background color, title bar
text, and so on. The Form class also contains methods that define how
a form behaves, such as a Show() method that shows the form
onscreen and an Activate() method that activates the form by
giving it the focus.

T
IP

Using the IDE Exam 70-316
requires you to know Visual Studio
.NET and Visual C# .NET program-
ming language for Windows-based
application development. You might
be asked questions about specific
Visual Studio .NET features.

E
X

A
M

04 0789728230 CH01 11/21/02 1:24 PM Page 29

30 Par t I DEVELOPING WINDOWS APPLICATIONS

A class functions as the blueprint of a concept. When you want to
work with a class in a program, you create instances of the class, which
are called objects. Objects are created from the blueprint defined by the
class, but they physically exist in the sense that they have memory
locations allocated to them and they respond to messages. For exam-
ple, to create an actual form in a program, you create an instance of
the Form class. After you have that instance available, you can actually
work on it—you can set its properties and call methods on it.

Each object maintains its own copy of the data that is defined by the
class. This allows different instances of a class to have different data
values. For example, if you have two instances of the class Human—
objYou and objMe—these two objects can each have a different value
for their EyeColor properties. You access the member of an object by
using ObjectName.MemberName syntax, where ObjectName is name of the
class instance and MemberName can be a field, a property, a method, or
an event. When an object is created, it creates its members in a special
area in memory called the heap, and it stores a pointer to that memo-
ry. Because classes use pointers to refer to their data, they are some-
times also called reference types.

In contrast with the reference types, C# also has a structure type
(called a struct), which is defined by using the struct keyword.
Structs are similar to classes, but rather than store a pointer to the
memory location, a struct uses the memory location to store its
members. A struct is also referred to as a value type.

Among the members of classes, properties warrant special attention.
A property provides access to the characteristics of a class or an
instance of that class (that is, an object). Examples of properties
include the caption of a window, the name of an item, and the font
of a string.

To the programs using a class, a property looks like a field—that is,
a storage location. Properties and fields have the same usage syntax,
but their implementations differ. In a class, a property is not a stor-
age location; rather, it defines accessors that contain code to be exe-
cuted when the property value is being read or written. This piece of
code allows properties to preprocess the data before it is read or writ-
ten, to ensure integrity of a class. Using properties is the preferred
way of exposing attributes or characteristics of a class, and various
classes in this chapter use properties extensively.

N
O

T
E Static Members of a Class A class

can have static members (fields,
methods, and so on). Static members
belong to the class itself rather than
to a particular instance. No instance
of a class is required in order to
access its static members. When you
access a static member of a class,
you do so by prefixing its name with
the name of the class—for example,
ClassName.StaticMemberName.

04 0789728230 CH01 11/21/02 1:24 PM Page 30

Chapter 1 INTRODUCING WINDOWS FORMS 31

Inheritance
Object-oriented programming languages such as C# provide a fea-
ture called inheritance. Inheritance allows you to create new types
that are based on types that already exist. The original type is called
a base class, and the inherited class is called a derived class. When one
class inherits from another class, the derived class gets all the func-
tionality of the base class. The derived class can also choose to
extend the base class by introducing new data and behavioral ele-
ments. In developing Windows forms, you will frequently inherit
from the Form class to create your own custom forms; these custom
forms will be at least as functional as an object of the Form class,
even if you do not write any new code in the derived class. Value
types such as structs cannot be used for inheritance.

It is interesting to note that every single type (other than the Object
class itself) that you create or that is already defined in the frame-
work is implicitly derived from the Object class of the System
namespace. This is the case to ensure that all classes provide a com-
mon minimum functionality. Also note that a C# type can inherit
from only a single parent class at a time.

Inheritance is widely used in the FCL, and you will come across
classes (for example, the Form class) that get their functionality from
other classes (for example, the Control class) as a result of a chain of
inheritances.

Namespaces
Several hundred classes are available in the FCL. In addition, an
increasingly large number of classes are available through indepen-
dent component vendors. Also, you can develop classes on your
own. Having a large number of classes not only makes organization
impossible but can also create naming conflicts between various ven-
dors. The .NET Framework provides a feature called a namespace
that allows you to organize classes hierarchically in logical groups
based on what they do and where they originate. Not only does a
namespace organize classes, but it also helps avoid naming conflicts
between vendors because each classname is required to be unique
only within its namespace. A general convention is to create a name-
space like this:

CompanyName.ApplicationName

N
O

T
E Access Modifiers A class can define

the accessibility of its member by
including an access modifier in its
declaration. C# has four different
access modifiers:

• ppuubblliicc—Allows the member to be
globally accessible.

• pprriivvaattee—Limits the member’s
access to only the containing
type.

• pprrootteecctteedd—Limits the member’s
access to the containing type and
all classes derived from the con-
taining type.

• iinntteerrnnaall—Limits the member’s
access to within the current
project.

04 0789728230 CH01 11/21/02 1:24 PM Page 31

32 Par t I DEVELOPING WINDOWS APPLICATIONS

In this case CompanyName is your unique company name and
ApplicationName is a unique application name within the company.
All classes related to this application then belong to this namespace.
A class is therefore identified, for example, as
QueCertifications.Exam70316.ExamQuestions, where
QueCertifications is the unique name for a company, Exam70316 is
a unique application within that company, and ExamQuestions is the
name of a specific class. QueCertifications could have another class
with the same name, ExamQuestions, as long as it belongs to a differ-
ent application, such as QueCertifications.Exam70306. The objec-
tive of namespaces is to keep the complete naming hierarchy unique
so that there are no naming conflicts.

A namespace is a string in which dots help create a hierarchy. In the
namespace QueCertifications.Exam70316, Exam70316 is called a child
namespace of QueCertifications. You could organize classes at two
levels here: at the level of QueCertifications and also at the level of
Exam70316. You can create a hierarchy with as many levels as you
want.

A System namespace in the FCL acts as the root namespace for all
the fundamental and base classes defined inside the FCL. One of
the fundamental classes defined in the System namespace is Object
class (uniquely identified as System.Object). This class acts as the
ultimate base class for all other types in the .NET Framework.

The System.Windows.Forms namespace organizes classes for working
with Windows forms. The System.Drawing namespace organizes
classes for creating graphical elements. You will make use of many
classes from these two namespaces in this chapter.

CREATING A WINDOWS FORMS
APPLICATION

In this section, you will learn how to use Visual Studio .NET to
create a Windows Forms application. In the process, you will
become familiar with the development environment and a few com-
mon classes you will use with Windows Forms applications.

N
O

T
E Namespace Hierarchies Versus

Inheritance Hierarchy A namespace
hierarchy has nothing to do with inher-
itance hierarchy. When one class
inherits from another, the base class
and the derived class may belong to
different and unrelated namespaces.

04 0789728230 CH01 11/21/02 1:24 PM Page 32

Chapter 1 INTRODUCING WINDOWS FORMS 33

Using the
System.Windows.Forms.Form Class
A Windows application generally consists of one or more Windows
forms. A Windows form is an area on the screen (usually rectangular)
over which you design the user interface of a Windows application.
This area acts as a placeholder for various user interface elements,
such as text boxes, buttons, lists, grids, menus, and scrollbars.

Programmatically speaking, a Windows form is an instance of the
Form class of the System.Windows.Forms namespace. The Form class
derives from the inheritance hierarchy shown in Figure 1.1.

System.Windows.Forms.Form

System.Windows.Forms.ContainerControl

System.Windows.Forms.ScrollableControl

System.Windows.Forms.Control

System.ComponentModel.Component

System.MarshalByRefObject

System.Object
F IGURE 1 .1
The Form class ultimately inherits from the
Object class through an inheritance hierarchy.

The following points relate to the inheritance hierarchy shown in
Figure 1.1 and the Form class:

á The Form class inherits from the ContainerControl class. By
virtue of this inheritance, the Form class becomes capable of
acting as a placeholder for various user interface elements or
controls, such as text boxes, labels, buttons, and toolbars.

á A form is also a control, but it is a special type of control that
is both scrollable and capable of acting as a container control.
This is because the Form class inherits from Control class via
the ScrollableControl and ContainerControl classes.

á The Form class is ultimately derived from the Object class of
the System namespace, just like any other class. As a result of
this inheritance, you can also say that a form is of type Object.

04 0789728230 CH01 11/21/02 1:24 PM Page 33

34 Par t I DEVELOPING WINDOWS APPLICATIONS

á As a result of inheritance, the Form class has access to several
members (methods, properties, events, and so on) that are
available to it through its parent classes. The Form class also
adds a set of new members for its specific functionality. This is
typical of the way that inheritance hierarchies work.

You can use the properties of a Form object (such as Size, BackColor,
and Opacity) to modify the way a form appears onscreen. Methods
of a Form object can be used to perform on the form actions such as
Show and Hide. You can also attach to the form custom code that
acts as event handlers; this enables the form to respond to different
actions performed on the form.

Designing a Windows Form by Using
the Windows Forms Designer
Visual Studio .NET provides the Windows Forms Designer (some-
times also called the designer or the visual designer) for designing
Windows forms. To get started with the designer, you can use it to
create a simple Windows form. The simple exercise shown in Step
by Step 1.1 helps you become familiar with different pieces of the
development environment you use to create Windows forms.

S T E P B Y S T E P
1.1 Creating a Windows Form

1. Launch Visual Studio .NET. On the start page, click the
New Project button (alternatively, you can select File,
New, Project). In the New Project dialog box, select Visual
C# Project as the project type and Windows Application
as the template. Name the project 316C01, as shown in
Figure 1.2.

04 0789728230 CH01 11/21/02 1:24 PM Page 34

Chapter 1 INTRODUCING WINDOWS FORMS 35

2. The development environment is now in the design view
(see Figure 1.3), and you are shown an empty form. The
Solution Explorer window (see Figure 1.4) allows you to
see all files that Visual Studio .NET includes in the pro-
ject. If the Solution Explorer is not already visible, you
can invoke it by selecting View, Solution Explorer.
Form1.cs is the file that stores the C# code for the default
Windows form that’s created as part of a new project.
Right-click Form1.cs and select Rename from the context
menu. Rename the file StepByStep1_1.cs.

F IGURE 1 .2
You can create a new Visual C# Windows appli-
cation by choosing the Windows Application
template for your Visual C# project.

F IGURE 1 .3,
The Windows Forms Designer Environment enables
you to visually develop a Windows application.

F IGURE 1 .4▲
You can use the Solution Explorer to manage
files within a Visual Studio .NET solution.

04 0789728230 CH01 11/21/02 1:24 PM Page 35

36 Par t I DEVELOPING WINDOWS APPLICATIONS

3. The form’s title bar displays the text Form1. Title is a
property of a form, and you can manipulate Title
through the Properties window. Click the form so that it
gets the focus, and then press F4 or select View, Properties
Window. Change the Text property of the form in the
Properties window to StepByStep1_1, as shown in Figure
1.5. The form’s title bar now displays StepByStep1_1.

4. Select Debug, Start or click F5 to execute the project; this
displays your very first Windows form. You should see
something similar to Figure 1.6. Try positioning this form
anywhere onscreen by dragging its title bar. You can
increase or decrease the form size by dragging the form’s
border.

5. Click the close button of the form to end the execution of
this application and return to the design view.

6. Right-click anywhere on the form and select View Code
from the context menu. This opens a new window in the
Visual Studio .NET environment, showing the code cor-
responding to the Windows form. Click the + sign next to
the Windows Form Designer Generated Code region and
observe all the code that the designer automatically gener-
ated for you.

In Step by Step 1.1, when you create a new Windows application,
Visual Studio .NET automatically includes a Windows form inside
it. The Windows form contains the code to launch itself when you
run the project.

Each Windows form resides in a code file whose filename extension
depends on the language you are using (for example, .cs for C#).
Visual Studio .NET originally assigned the name Form1.cs to the
code file, but you changed it to StepByStep1_1.cs through the
Solution Explorer. This code file contains the definition of the
Windows form that you saw when you executed the project.

In the Windows Forms Designer, a Windows form can be seen in
two views: the design view (see Figure 1.3) and the code view (see
Figure 1.7). What you see in the design view is nothing but a visual
representation of the code. When you manipulate the form by using
the designer, this code is automatically generated or modified based

F IGURE 1 .5
The Properties window shows the properties of
an object.

F IGURE 1 .6
This simple Windows form shows customized
title bar text.

04 0789728230 CH01 11/21/02 1:25 PM Page 36

Chapter 1 INTRODUCING WINDOWS FORMS 37

on your actions. You can also write the complete code yourself in
the code view. When you switch back to the design view, the design-
er reads the code in order to draw the corresponding form onscreen.

F IGURE 1 .7
The code view allows you to view and modify
the code associated with a Windows form.

N
O

T
E Projects and Solutions A solution is

used to group one or more projects.
In a typical application you first create
a solution and then add projects to it.
If you directly create a project, Visual
Studio .NET automatically creates a
solution for it. In that case, the name
of the solution defaults to the name
of project. For example, the project
316C01 is automatically created in
solution 316C01.

Exploring the Generated Code
While exploring the code in Step by Step 1.1 you probably noticed
that Visual Studio .NET groups code into blocks. This feature is
called code outlining. You can expand and collapse code blocks by
using the + and - signs near the left margin of the window in code
view (see Figure 1.7). Code outlining is especially helpful when you
are working with large code files. You can collapse certain areas of
code that you don’t want to focus on at that time and continue edit-
ing the expanded sections in which you are interested.

Step by Step 1.1 also shows a rectangular block marked Windows Form
Designer Generated Code. This is a block of collapsed code that has a
name. When you expand the block, you see a set of statements included
between #region and #endregion directives. These directives mark the
beginning and end of a named code block. You can specify a name after
the #region directive to identify the code block with a name. When you
collapse this region, you can easily figure out what the collapsed code
block does by looking at the name associated with the region. These
directives are only useful in the visual designers such as Visual Studio
.NET, for effective presentation of your code. When code is compiled,
these directives are not present in the executable code.

04 0789728230 CH01 11/21/02 1:25 PM Page 37

38 Par t I DEVELOPING WINDOWS APPLICATIONS

If you collapse the Windows Form Designer Generated Code block
and look at the other code that is present in the code view, you can
see that almost all the code, other than a few using directives at the
top, is enclosed in a namespace (I talk about using directives a bit
later in this chapter). Using namespaces is a good practice because it
helps you organize classes and other programming elements. Visual
Studio .NET automatically organizes the classes for a new form in a
namespace whose name is the same as the name of the project.
(Because the project name in this case starts with a digit, Visual
Studio .NET adds an underscore [_] at the beginning to make it a
valid identifier.) When you create a Windows form using Visual
Studio .NET, Visual Studio .NET defines a class that inherits its
functionality from the standard Form class in the
System.Windows.Forms namespace. In Step by Step 1.1, although you
change the name of the code file containing the class from Form1.cs
to StepByStep1_1.cs, the name of the class itself is not changed.
Here’s the class definition:

public class Form1 : System.Windows.Forms.Form
{

//Form implementation goes here
}

Form1 is the classname that Visual Studio .NET automatically gener-
ates for you when you create a Windows application. If you want to
change it, you can either change it right in the code or you can
modify the Name property of the form in the design view.

The : System.Windows.Forms.Form part of the code specifies that the
Form1 class inherits from the Form class that belongs to the
System.Windows.Forms namespace. All the basic functionality of the
Form1 class (such as moving and resizing) comes from the base Form
class.

Any class can have a constructor definition. A constructor is a
method that is used to create new instances of a class. You can easily
recognize a constructor because it has the same name as the class and
is defined with syntax similar to that of a method definition, but it
has no return type. Here’s the constructor for the Form1 class:

public Form1()
{

// Required for Windows Form Designer support
InitializeComponent();

// TODO: Add any constructor code
//after InitializeComponent call

}

Windows Form Designer Generated
Code The code enclosed in the
code block titled Windows Form
Designer Generated Code is
required for Windows Forms
Designer support, and you should
not generally modify it.

W
A

R
N

IN
G

N
O

T
E Names Can Differ It’s a good con-

vention to keep the same names for
both the form’s class and the file that
contains the class definition, but in
the .NET Framework, it’s not a law
that you do so.

N
O

T
E Static Constructors A class can

have a static constructor, which is
called automatically before any of the
members of the class are accessed.
A common use of static constructors
is to initialize static fields and proper-
ties of the class.

04 0789728230 CH01 11/21/02 1:25 PM Page 38

Chapter 1 INTRODUCING WINDOWS FORMS 39

Visual Studio .NET ignores the lines that start with // (they are
comments and do not generate any code). The Windows Forms
Designer puts just one line of code inside the default Form1 con-
structor: a call to the InitializeComponent() method of the class.
The Windows Forms Designer uses the InitializeComponent()
method for storing the customizations done to the form through the
design view. This method is defined in the Windows Form Designer
Generated Code region. When you expand this region, you see code
similar to this:

private void InitializeComponent()
{

//
// Form1
//
this.AutoScaleBaseSize =

new System.Drawing.Size(5, 13);
this.ClientSize =

new System.Drawing.Size(292, 266);
this.Name = “Form1”;
this.Text = “StepByStep1_1”;

}

You can see here that the Text property of Form1, which you manip-
ulate by using the Properties window, has been inserted as a code
statement. Note the use of the this keyword to qualify the property
names. The this keyword refers to the current instance of the class
for which the method is called.

The next piece of code after the form’s constructor is the Dispose()
method. In its simple form it looks like this:

protected override void Dispose(bool disposing)
{

if(disposing)
{

if (components != null)
{

components.Dispose();
}

}
base.Dispose(disposing);

}

The Dispose() method is an ideal place to put any cleanup code
that you would like to be executed when you’re done with the class.

N
O

T
E Calling DDiissppoossee(()) The CLR features

automatic garbage collection. All
memory resources that are no longer
required are automatically garbage
collected. Dispose() is not necessary
for managed code, but it is a good
place for cleanup code for any of the
non-managed or non-memory
resources that you create in a
program.

04 0789728230 CH01 11/21/02 1:25 PM Page 39

40 Par t I DEVELOPING WINDOWS APPLICATIONS

Running a Windows Form
Finally in our code exploration comes the method that is making
everything happen: the Main() method. Visual Studio .NET auto-
matically generates the Main() method for you in the form’s code. In
this particular case, Main() is generated because you specified that
the project should be created as a Windows form application. An
application must have an execution starting point that is defined by
the Main() method. When you execute the form, Main() is the
method that receives the control first.

The Main() method for our simple Windows form example looks
like this:

[STAThread]
static void Main()
{

Application.Run(new Form1());
}

The first line in this code is an attribute associated with the Main()
method. Attributes are used to specify runtime behavior of a code ele-
ment. The STAThread attribute specifies that the default threading
model for this application is Single-Threaded Apartment (STA). It’s a
good idea to use this attribute with the Main() method because it is
used when your application participates in Component Object Model
(COM)-interoperability or does anything that requires Object Linking
and Embedding, such as drag-and-drop or Clipboard operations.

The Main() method has a single line of code that invokes the Run()
method of the Application class. The Application class provides
methods and properties for managing a Windows application. The
Run() method starts the application by creating the specified form
onscreen and sends the application into a message loop. The applica-
tion stays in the loop and responds to user messages (generated by
such actions as moving or resizing the form) until the message loop
is terminated because the form is closed.

Using Form1() inside the Application.Run statement calls the Form1
constructor, to return an instance of the newly created form. This
displays the form when the application starts.

Any form that will initiate a Windows application by launching
itself should have a Main() method, similar to the one discussed pre-
viously, defined in it. Normally only one form in a project (the form
that acts as the starting form) has a Main() method.

Keeping Things Synchronized If
you modify the name of a form,
either by using the code view or by
using the Windows Forms Designer
via the Name property, Visual Studio
.NET does not automatically change
the name of the form in the
Application.Run() method. You
have to change it manually.

W
A

R
N

IN
G

04 0789728230 CH01 11/21/02 1:25 PM Page 40

Chapter 1 INTRODUCING WINDOWS FORMS 41

If you refer to the .NET FCL documentation, you will see that the
Application class belongs to the System.Windows.Forms namespace.
But rather than uniquely referring to it as
System.Windows.Forms.Application, the code refers to it as just
Application. How is this possible? The language designers noted that
typing the full namespace with a class every time it is used is a lot of
typing, so they provided a shortcut for this via the using directive.
Near the beginning of a program file, Visual Studio .NET typically
includes the following using statements for a Windows application:

using System;
using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;

Inclusion of these using directives tells the C# compiler to look for
each class you are using in the namespaces specified in the using
statement. The compiler looks up each namespace one-by-one, and
when it finds the given class in one of the namespaces, it internally
replaces the reference of the class with NamespaceName.ClassName in
the code.

What happens when code uses two classes that have the same name
but belong to different namespaces? The usage of the using directive
discussed so far can’t handle that situation; fortunately, there is
another way you can use using directives. You can create aliases for a
namespaces with the using directive. These aliases save you typing
and qualify classes appropriately. Here is an example:

//Create namespace alias here
using Q316 = QueCertifications.Exam70316;
using Q306 = QueCertifications.Exam70315;

//use aliases to distinctly refer to classes
Q316.ExamQuestions.Display();
Q306.ExamQuestions.Display();

When you instruct Visual Studio .NET to run the form, it first
compiles the form’s code, using an appropriate language compiler
(C# in this case for a C# Windows application). If there are no
errors at compile time, the compiler generates an executable file with
the name of the project and the extension .exe (for example,
316C01.exe). The default location of the file is the bin\debug direc-
tory in the project’s directory. You can explore where this file is
located in the project through the Solution Explorer by following
the steps in Step by Step 1.2.

04 0789728230 CH01 11/21/02 1:25 PM Page 41

42 Par t I DEVELOPING WINDOWS APPLICATIONS

S T E P B Y S T E P
1.2 Using the Solution Explorer to See Hidden Files

1. Open the Solution Explorer window if it is not already
open by selecting View, Solution Explorer.

2. Click on the Project name 316C01 to select it. From the tool-
bar in the Solution Explorer, click the Show All Files icon.

3. A dimmed folder icon named bin becomes visible in the
project’s file hierarchy. Expand this folder fully by clicking
the + signs (see Figure 1.8). You should see a file named
316C01.exe. This is the project’s executable file. The other
file, named 316C01.pdb (pdb stands for program database),
stores debugging and project information.

4. Click the project name again to select it. From the toolbar
in the Solution Explorer window click Show All Files. The
bin folder is now hidden.

You might be wondering whether the little code that you are seeing
in the form is enough for all of its functionality. Where is the code
to actually draw the form onscreen? Where is the code that responds
to dragging or resizing of the form? This form is inheriting its func-
tionality from other classes. But where is the code for those classes?
Code for various classes in the FCL is packaged as libraries (that is,
.dll files), and Visual Studio .NET is smart enough to automatically
include references to them in your project. It selects a few common
libraries, depending on the project type, and it lets you include refer-
ences to other libraries. You can see what libraries are included with
a project by opening the Solution Explorer and navigating to the
References hierarchy within the project (refer to Figure 1.8).

Using the Application Class
The Application class is responsible for managing a Windows
Application. It provides a set of properties to get information
about the current application (see Table 1.1). It also provides
methods to start an application, end an application, and process
the Windows messages (see Table 1.2). It is important to note here
that all methods and properties of the Application class are static.

F IGURE 1 .8
You can show all files in the Solution Explorer.

N
O

T
E Don’t Confuse Library Names with

Namespaces Sometimes the name
of a library may look similar to the
name of a namespace. For example,
earlier in this chapter I talked about a
namespace System.Windows.Forms,
and there is a library by the same
name that exists as System.Windows.
Forms.dll. Don’t be mistaken: They
are totally different concepts. A library
exists as a file and can contain code
for one or more classes. Those class-
es may belong to different name-
spaces. A namespace is a logical
organization of classes and has no
physical form. A library is a physical
unit that stores classes as a single
deployment unit. Creation of code
libraries is discussed in more detail in
Chapter 4.

04 0789728230 CH01 11/21/02 1:25 PM Page 42

Chapter 1 INTRODUCING WINDOWS FORMS 43

Because they’re static, you need not create an instance of the
Application class in order to use them. You can directly call these
methods by prefixing them with the name of the class. As a matter
of fact, creating an instance of the Application class is not possible.
The class designers assigned a private access modifier to the con-
structor of the Application class to prevent you from creating
instances of the class. If a constructor is not accessible for a class, it
cannot be instantiated.

TABLE 1.1

SOME IMPORTANT STAT IC PROPERT IES OF THE

Application CLASS

Property Name Description

CompanyName Specifies the company name associated with the appli-
cation

CurrentCulture Specifies the culture information for the current thread

CurrentInputLanguage Specifies the current input language for the current
thread

ExecutablePath Specifies the path of the executable file that started the
application

ProductName Specifies the product name for the current application

ProductVersion Specifies the product version for the current application

TABLE 1.2

SOME IMPORTANT STAT IC METHODS OF THE

Application CLASS

Method Name Description

DoEvents() Processes all Windows messages currently in the message queue

Exit() Terminates the application

ExitThread() Exits the message loop on the current thread and closes all
windows on the thread

Run() Begins a standard application message loop on the current
thread

04 0789728230 CH01 11/21/02 1:25 PM Page 43

44 Par t I DEVELOPING WINDOWS APPLICATIONS

S T E P B Y S T E P
1.3 Using Application Class Properties

1. Launch Visual Studio .NET. Select File, Open, Project.
Navigate to the existing project 316C01 and open it.

2. In the Solution Explorer, right-click the project name and
select Add, Add Windows Form. (Alternatively, you can
do this by selecting Project, Add Windows Form). Name
the new form StepByStep1_3.cs.

3. Switch to the code view, and just after the Windows Form
Designer Generated Code region, insert the following
Main() method:

[STAThread]
static void Main()
{

Application.Run(new StepByStep1_3());
//Display a MessageBox
MessageBox.Show(Application.ExecutablePath,
“Location of Executable”, MessageBoxButtons.OK,

MessageBoxIcon.Information);
}

4. In the Solution Explorer, right-click the project name and
select Properties from the context menu. In the Property
Pages window, set the startup object to
_316C01.StepByStep1_3 (see Figure 1.9). Click OK to
close the Property Pages window.

F IGURE 1 .9
You can change the startup object by using the
Property Pages window.

04 0789728230 CH01 11/21/02 1:25 PM Page 44

Chapter 1 INTRODUCING WINDOWS FORMS 45

5. Select Debug, Run. The application displays the new
form. When you close the form, the application displays a
message box that shows the application’s executable path
(see Figure 1.10).

Because in Step by Step 1.3 you add another form to an existing
Windows form project, the Main() method that starts the applica-
tion is not automatically inserted in the form. The newly created
form has its Name property properly set to StepByStep1_3 because
you explicitly specify the classname at the time of form creation. In
Step by Step 1.3 you want to run the newly created form when the
application starts. To accomplish this, you can manually add a
Main() method in code and designate the newly added form as the
startup object. Even though the project then contains two forms,
each with a Main() method, only the Main() method of the startup
object is executed when you start the project. The other form
(StepByStep1_1) just exists there, doing nothing.

When you run the project, the form StepByStep1_3 is displayed.
When you close the form, it internally sends an exit message to the
active application, which takes the control out of the
Application.Run() method; the message box gets a chance to display
itself.

StepByStep1_3 uses the Show() method of the MessageBox class to
display a message box to the user. The message box displays the
value of the ExecutablePath property of the Application class.

Because you’re calling the Show() method prefixed by the name of
the class (MessageBox), Show() must be a static method. Note that as
you type the code, Visual Studio .NET helps you with syntax, meth-
ods, and properties of various code items, by using a feature called
IntelliSense (see Figure 1.11).

F IGURE 1 .10
You can display an executable’s path by using
the Application.ExecutablePath property.

04 0789728230 CH01 11/21/02 1:25 PM Page 45

46 Par t I DEVELOPING WINDOWS APPLICATIONS

As a quick exercise, try placing the MessageBox.Show() method
before Application.Run(), and note the difference in execution.

Using the MessageBox Class
The MessageBox class belongs to the System.Windows.Forms name-
space and inherits from the Object class. In addition to the methods
that it has as a result of its inheritance from Object, it provides a
Show() method that you can use in 12 different variations (as you
can see with the help of IntelliSense) to display different kinds of
message boxes to the user. Some of the arguments of the Show()
method are values of enumeration types such as MessageBoxButtons
and MessageBoxIcons. Enumeration types (also known as enums) pro-
vide a set of named constants called the enumerator list. You will see
an extensive usage of enumeration types in .NET FCLs. They are
the preferred, type-safe, and object-oriented way of referring to a list
of constant values. For example, the MessageBoxButtons enumeration
type provides a list of enumerators. Each of these values specifies a
set of buttons that can be displayed in a message box. Table 1.3 lists
the values of the MessageBoxButtons enumeration type and their
meanings.

F IGURE 1 .11
IntelliSense helps you easily complete state-
ments.

04 0789728230 CH01 11/21/02 1:25 PM Page 46

Chapter 1 INTRODUCING WINDOWS FORMS 47

TABLE 1.3

MessageBoxButtons ENUMERATORS

Enumerator Value The Message Box Shows These Buttons

AbortRetryIgnore Abort, Retry, and Ignore

OK OK

OKCancel OK and Cancel

RetryCancel Retry and Cancel

YesNo Yes and No

YesNoCancel Yes, No, and Cancel

The MessageBoxIcons enumeration determines the icon on a message
box. Table 1.4 lists the values of the MessageBoxIcons enumerators
and their meanings. (Note that some of the names have identical
meanings.)

TABLE 1.4

MessageBoxIcons ENUMERATORS

Enumerator Value The Message Box Contains This Symbol

Asterisk A lowercase letter i in a circle

Error A white X in a circle with a red background

Exclamation An exclamation point in a triangle with a yellow background

Hand A white X in a circle with a red background

Information A lowercase letter i in a circle

None No symbol

Question A question mark in a circle

Stop A white X in a circle with a red background

Warning An exclamation point in a triangle with a yellow background

N
O

T
E Using Message Boxes Message

boxes can help you quickly debug
code in some instances. For example,
you can use a message box to display
the values of variables, fields, and
properties at different stages in pro-
gram execution.

04 0789728230 CH01 11/21/02 1:25 PM Page 47

48 Par t I DEVELOPING WINDOWS APPLICATIONS

. Each form definition is contained in a class. Forms generally
derive their functionality from the standard
System.Windows.Forms.Form class.

. The Solution Explorer window allows you to manage all the
files in a project.

. The Main() method acts as an entry point for a class.
Execution of code inside a class begins from the Main()
method.

. The Application.Run() method sends a form to a message
loop that allows the form to listen to user interactions until
the form is closed.

. The MessageBox class can be used to display various types of
messages to the user.

SETTING AND ADDING PROPERTIES
TO A WINDOWS FORM

Create a Windows form by using the Windows Forms
Designer:

• Add and set properties on a Windows form.

The properties of an object provide a mechanism through which
objects can expose their characteristics to the external world. In the
following sections you will learn how to customize a form’s appear-
ance by using its properties. You will also learn how you can add
your own properties to a form.

Using the Visual Designer to Set
Windows Form Properties
A Windows form derives from several other classes, such as
Object, Control, and so on, through a chain of inheritances.

R E V I E W B R E A K

04 0789728230 CH01 11/21/02 1:25 PM Page 48

Chapter 1 INTRODUCING WINDOWS FORMS 49

As a result of this inheritance, the Windows form inherits the prop-
erties of its parent classes in addition of its own specific properties.
All these properties are available for easy manipulation through the
Properties window in Visual Studio .NET. Step by Step 1.4 shows
you how to manipulate some of these properties to get a feel for
how they affect the behavior of a form.

S T E P B Y S T E P
1.4 Working with Windows Form Properties

1. Open the project 316C01. In the Solution Explorer right-
click the project name and select Add, Add Windows
Form from the context menu. Name the new form
StepByStep1_4.

2. Right-click the form and select Properties from the con-
text menu. Find the BackColor property and click the
down arrow of the drop-down list. This invokes a tabbed
list of colors in which three categories of colors are avail-
able: Custom, Web, and System. Click the tab titled Web
and select AntiqueWhite from the list. Note that the form’s
surface immediately changes color to reflect this property
change.

3. In the Properties window, locate the property named
FormBorderStyle and change its value from Sizable to
FixedSingle.

4. In the Properties window, look for the property named
Size. Expand this property by clicking the + sign next to
it. Change the Width subproperty to 400 and the Height
subproperty to 200.

5. Go to the StartPosition property in the list of properties
and change its value to CenterScreen.

6. Change the MinimizeBox property to False.

7. Right-click anywhere on the form and select View Code
from the context menu. In the code view, insert the fol-
lowing code just after the Windows Form Designer
Generated Code region:

continues

04 0789728230 CH01 11/21/02 1:25 PM Page 49

50 Par t I DEVELOPING WINDOWS APPLICATIONS

[STAThread]
static void Main()
{

Application.Run(new StepByStep1_4());
}

8. In the Solution Explorer, right-click the project name and
select Properties from the context menu. In the Property
Pages window, set _316C01.StepByStep1_4 as the startup
object. Click OK to close the Property Pages window.

9. Select Debug, Run. The application displays the form,
showing the effect of the property settings that you made.
The result looks similar to that shown in Figure 1.12.

In Step by Step 1.4, you manipulate various properties of a form to
change its visual appearance. When you invoke the Properties win-
dow for the form, you see a big list of properties that are available to
you. These properties provide significant control over the character-
istics of the form. Table 1.5 lists some of the important properties of
the Form class.

TABLE 1.5

SOME IMPORTANT PROPERTIES OF THE Form CLASS

Property Name Description

BackColor Specifies the background color of the form

BackgroundImage Specifies the background image displayed in the form

ClientSize Specifies the size of the client area of the form

ControlBox Indicates whether a control box needs to be displayed in the
caption bar of the form

DesktopLocation Specifies the location of the form on the Windows desktop

Enabled Indicates whether a control can respond to user interaction

FormBorderStyle Specifies the border style of the form

Handle Gets the Window Handle (HWND) of the form

HelpButton Indicates whether a Help button is to be displayed on the
caption bar of the form

continued

F IGURE 1 .12
You can change a form’s properties—such as
BackColor, Size, and FormBorderStyle—to
customize its appearance.

04 0789728230 CH01 11/21/02 1:25 PM Page 50

Chapter 1 INTRODUCING WINDOWS FORMS 51

Icon Specifies the icon for the form

MaximizeBox Indicates whether a maximize button is to be displayed on
the caption bar of the form

MaximumSize Specifies the maximum size to which the form can be resized

MinimizeBox Indicates whether a minimize button is to be displayed in the
caption bar of the form

MinimumSize Specifies the minimum size to which the form can be resized

Modal Indicates whether the form is to be displayed modally

Name Specifies the name of the form

Opacity Specifies the opacity level of the form

ShowInTaskbar Indicates whether the form is to be displayed in the
Windows taskbar

Size Specifies the size of the form

StartPosition Specifies the starting position of the form at runtime

TopMost Indicates whether the form should be displayed as the top-
most form of the application

The properties in Table 1.5 have various data types. You will find
that some properties, such as FormBorderStyle, are enumeration
types; some properties, such as Size, are of type struct, and their val-
ues are determined by the values of their contained members (for
example, X and Y); other properties, such as MinimizeBox, accept a
simple Boolean value. The Properties window provides a nice user
interface for working with these values.

To increase your understanding about what’s going on behind the
scenes, it would be a good idea to switch to the code view, expand
the Windows Form Designer Generated Code region, and analyze
the generated code.

Setting Windows Form Properties
Programmatically
Using the Windows Forms Designer is a quick and easy way to manip-
ulate control properties, but the designer can only set the properties at
design time. What would you do if wanted to change the appearance
of a form at runtime? You could write your own code in the code view.

Property Name Description

04 0789728230 CH01 11/21/02 1:25 PM Page 51

52 Par t I DEVELOPING WINDOWS APPLICATIONS

In complex projects, as you need more functionality in an application,
you will find yourself switching frequently to the code view. Sometimes
you can learn a lot about the .NET Framework by using the code view
because it gives you an opportunity to directly play with .NET
Framework data structures.

Step by Step 1.5 lets you explore some more properties of a
Windows form and programmatically code the properties that are
used in Step by Step 1.4. Step by Step 1.5 also shows you how to
create a form programmatically.

S T E P B Y S T E P
1.5 Setting Windows Form Properties

Programmatically

1. Open the project 316C01. In the Solution Explorer right-
click the project name and select Add, Add Windows
Form from the context menu. Name the new form
StepByStep1_5.

2. Right-click anywhere on the form and select View Code
from the context menu. In the code view, insert the fol-
lowing code just after the Windows Form Designer
Generated Code region:

[STAThread]
static void Main()
{

// Create StepByStep1_5 object
// and set its properties
StepByStep1_5 frm1_5 = new StepByStep1_5();
frm1_5.BackColor = Color.AntiqueWhite;
frm1_5.FormBorderStyle =

FormBorderStyle.FixedSingle;
frm1_5.Size = new Size(400,200);
frm1_5.StartPosition =

FormStartPosition.CenterScreen;
frm1_5.MinimizeBox = false;
Application.Run(frm1_5);

}

3. In the Solution Explorer, right-click the project name and
select Properties from the context menu. In the Property
Pages window, select _316C01.StepByStep1_5 as the startup
object. Click OK to close the Property Pages window.

04 0789728230 CH01 11/21/02 1:25 PM Page 52

Chapter 1 INTRODUCING WINDOWS FORMS 53

4. Select Debug, Run. The form that is displayed looks simi-
lar to the form that you created in Step by Step 1.4 (refer
to Figure 1.12).

In Step by Step 1.5, when you add a new Windows form to a pro-
ject, a new class representing that form is created. As you can see in
the code in Step by Step 1.5, you first create an object of the class so
that you can later modify the object’s properties. The modified form
object is then passed as a parameter to the Application.Run()
method that invokes the form.

While you are typing code in the code view, you see Visual Studio
.NET helping you with the properties and syntaxes via IntelliSense.
You should also note that values for properties such as BackColor
and FormBorderStyle are encapsulated in enumerated types. You can
find out what enumerated type to use for a property by hovering
your mouse pointer over a property name in the code view. This dis-
plays a ToolTip that helps you identify the type of a property.

If you compare the code that you write manually in Step by Step 1.5
with the code that is generated by the Windows Forms Designer in
Step by Step 1.4, you should see that the most significant difference
is that the designer includes all its code for setting form properties in
the InitializeComponent() method.

You can alternatively place the code inside the form’s constructor
after the call to the InitializeComponent() method. Including the
code in the constructor ensures that the code is executed every time
an instance of the form is created. The effect in this case would be
the same as the effect of placing the code in the
InitializeComponent() method.

So far you have seen how to get and set properties for a Windows
form. The Form class also provides a set of methods, and Step by
Step 1.6 demonstrates how to use them.

N
O

T
E Leaving the Autogenerated Code

Alone The Windows Forms Designer
manages the InitializeComponent()
method. Putting your own code within
that method might interfere with the
designer’s working. It is therefore gen-
erally recommended that you avoid
modifying this method.

04 0789728230 CH01 11/21/02 1:25 PM Page 53

54 Par t I DEVELOPING WINDOWS APPLICATIONS

S T E P B Y S T E P
1.6 Invoking Methods of Windows Forms

1. Open the project 316C01. In the Solution Explorer right-
click the project name and select Add, Add Windows
Form from the context menu. Name the new form
StepByStep1_6.

2. Right-click anywhere on the form and select View Code
from the context menu. In the code view, insert the fol-
lowing code just after the Windows Form Designer
Generated Code region:

[STAThread]
static void Main()
{

// Create StepByStep1_6 object
// and set its properties
StepByStep1_6 frmBottom = new StepByStep1_6();
frmBottom.BackColor = Color.AntiqueWhite;
frmBottom.FormBorderStyle =

FormBorderStyle.FixedSingle;
frmBottom.Size = new Size(400,200);
frmBottom.StartPosition =

FormStartPosition.CenterScreen;
frmBottom.MinimizeBox = false;

// Create a new form and set its
// properties to stay on top
Form frmOnTop = new Form();
frmOnTop.TopMost = true;
frmOnTop.Opacity = 0.7;
frmOnTop.Show();

Application.Run(frmBottom);
}

3. In the Solution Explorer, right-click the project name and
select Properties from the context menu. In the Property
Pages window, select _316C01.StepByStep1_6 as the startup
object. Click OK to close the Property Pages window.

4. Select Debug, Run. The application displays two forms.
The top form is transparent and stays on the top, even
when you click the other form (see Figure 1.13).

N
O

T
E The OOppaacciittyy Property Transparent

forms are supported only on operating
systems that can display layered win-
dows. Such operating systems include
Windows 2000, Windows XP and later
versions of Windows. The Opacity
property has no effect when you run a
program on older operating systems
such as Windows 98.

04 0789728230 CH01 11/21/02 1:25 PM Page 54

Chapter 1 INTRODUCING WINDOWS FORMS 55

In Step by Step 1.6 you create a new form by creating an instance of
the Form class. You set the properties of the new form so that it is the
topmost form in the application and then you reduce the opacity to
make the form slightly transparent. Finally, you invoke the Show()
method of the form to actually display the form onscreen.

There are two forms in Step by Step 1.6, but you are calling the
Show() method for only one of them. When you run the program,
you actually see both forms onscreen. How? It happens because
frmBottom is passed as a parameter to the Application.Run()
method. When the Application.Run() method starts the application
by launching frmBottom onscreen, in the process it internally calls
the Show() method for frmBottom. In the running program, if you
close frmOnTop, you close just that form, but if you close frmBottom,
you close all open forms and quit the application.

G U I D E D P R A C T I C E
E X E R C I S E 1 . 1
You are a Windows developer for SpiderWare, Inc. In one of your
applications you are required to create a form that enables users to
set various options of the application. You want the form to have the
following characteristics:

. It should have a thin title bar showing the text Options and a
close button. The user should not be able to resize, minimize,
or maximize this form.

F IGURE 1 .13
The Show() method sets the Visible property
of a form to true.

T
IP

FFoorrmm..CClloossee(()) Versus FFoorrmm..HHiiddee(())
When you close a form by using its
Close() method, all resources
related to that form are released.
You cannot call the Show() method
to make the form visible again
because the form itself does not
exist anymore. If you want to tem-
porarily hide a form and show it at
a later time, you can use the form’s
Hide() method. Using the Hide()
method is equivalent to setting the
form’s Visible property to false.
The form still exists in memory, and
you can make it visible any time by
calling the Show() method of the
form or by setting the form’s
Visible property to true.

E
X

A
M

continues

04 0789728230 CH01 11/21/02 1:25 PM Page 55

56 Par t I DEVELOPING WINDOWS APPLICATIONS

. It should always appear on top of the other forms in the appli-
cation.

. It should be always displayed in the center of the screen.

How would you create such a form?

You should try working through this problem on your own first. If
you get stuck, or if you’d like to see one possible solution, follow
these steps:

1. Open the project 316C01. Add a Windows form with the name
GuidedPracticeExercise1_1 to the project.

2. Open the Properties window for the form. Change the value
of the Text property to Options.

3. Change the FormBorderStyle property to FixedToolWindow.

4. Change the StartPosition property to CenterScreen.

5. Change the TopMost property to true.

6. Switch to the code view, and insert the following Main()
method:

[STAThread]
static void Main()
{

Application.Run(new GuidedPracticeExercise1_1());
}

7. Set the form as the startup object and execute the program.

If you have difficulty following this exercise, review the section
“Designing a Windows Form by Using Windows Forms Designer,”
earlier in this chapter. Also spend some time looking at the various
properties that are available for a form in the Properties window.
Experimenting with them in addition to reading the text and exam-
ples in this chapter should help you relearn this material. After doing
that review, try this exercise again.

continued

04 0789728230 CH01 11/21/02 1:25 PM Page 56

Chapter 1 INTRODUCING WINDOWS FORMS 57

Adding New Properties to a Windows
Form
In addition to using the existing properties, you can add custom
properties to a Windows form. You can use a custom property to
store application-specific data.

S T E P B Y S T E P
1.7 Adding New Properties to a Windows Form

1. Open the project 316C01. In the Solution Explorer right-
click the project name and select Add, Add Windows
Form from the context menu. Name the new form
StepByStep1_7.

2. Right-click anywhere on the form and select View Code
from the context menu. In the code view, insert the fol-
lowing code just after the Windows Form Designer
Generated Code region:

//define constant values for State
public enum State{Idle, Connecting, Processing}

//use this field as storage location
//for FormState property
private State formState;

//set attributes for FormState property
[Browsable(true),
EditorBrowsable(EditorBrowsableState.Never),
Description(“Sets the custom Form state”),
Category(“Custom”)]

//Creating FormState property
public State FormState
{

get
{

return formState;
}
set
{

formState = value;
switch (formState)

continues

04 0789728230 CH01 11/21/02 1:25 PM Page 57

58 Par t I DEVELOPING WINDOWS APPLICATIONS

{
case State.Idle:

this.BackColor = Color.Red;
this.Text = “Idle”;
break;

case State.Connecting:
this.BackColor = Color.Orange;
this.Text = “Connecting...”;
break;

case State.Processing:
this.BackColor = Color.Green;
this.Text = “Processing”;
break;

}
}

}

3. Change the form’s constructor so that it looks like this:

public StepByStep1_7()
{

// Default code of the Constructor
//set the FormState property of this form
this.FormState = State.Processing;

}

4. Add the following Main() method to the form:

[STAThread]
public static void Main()
{

Application.Run(new StepByStep1_7());
}

5. In the Solution Explorer, right-click the project name and
select Properties from the context menu. In the Property
Pages window, select _316C01.StepByStep1_7 as the startup
object. Click OK to close the Property Pages window.

6. Select Debug, Run. The project shows a green-colored
form onscreen.

The most important thing to note in Step by Step 1.7 is that you
add a custom property named FormState to a form. The property
that you create is even visible in the IntelliSense list when you try to
access the members of this form object by typing a period (.) after
the form’s name in the form’s constructor code.

continued

04 0789728230 CH01 11/21/02 1:25 PM Page 58

Chapter 1 INTRODUCING WINDOWS FORMS 59

To a program that uses the properties, the properties in Step by Step
1.7 look just like data fields, but properties by themselves do not
have any storage locations, and their definitions look almost like
method definitions. Properties provide two accessors (get and set)
that would be called when a program would like to read from or
write to the property. In Step by Step 1.7 you use a private field
formState that works as a storage location for the FormState proper-
ty; because formState is private, the rest of the world can access it
only through the FormState public property. The data type of
FormState is the enumerated type State, defined with a limited set
of named constant values at the beginning of the code segment.

If you go to the design view and inspect the properties of form
StepByStep1_7 through Properties window, you will not find the
FormState property listed along with other properties. This is
because the Properties window shows only the properties of the base
class. You can think of it like this: The Properties window helps you
design a new class (StepByStep1_7) in terms of a class that already
exists (System.Windows.Forms.Form). So while you are designing the
StepByStep1_7 class, if the Properties window would rather show the
properties of the StepByStep1_7 class, then it’s similar to defining a
class in terms of a class that is itself under construction.

If you instead define a form by using the completely created class
StepByStep1_7, it would make sense to have the FormState property
available in the derived form through the Properties window. (I talk
about this in a moment.)

Note that the FormState property has a big list of attributes. Such a
big list isn’t required to create a property, but it helps you specify the
runtime behavior of the property. Table 1.6 describes how attributes
can control the behavior of a property.

TABLE 1.6

ATTRIBUTES THAT CONTROL THE BEHAVIOR OF A

PROPERTY

Attribute Name Description

Browsable Indicates whether the property is displayed in the Properties
window. Its default value is true.

T
IP

Read-Only and Write-Only
Properties The get and set
accessors allow both read and
write access to a property. If you
want to make a property read-only,
you should not include a set acces-
sor in its property definition. On the
other hand, if you want a write-only
property, you should not include a
get accessor in the property defini-
tion.

E
X

A
M

N
O

T
E Using the ggeett and sseett Accessors

Accessors of a property can contain
executable statements. The code con-
tained in the get accessor executes
when a program reads the value of a
property. Similarly, when a program
writes a value to a property, it executes
the set accessor of the property.

continues

04 0789728230 CH01 11/21/02 1:25 PM Page 59

60 Par t I DEVELOPING WINDOWS APPLICATIONS

EditorBrowsable Indicates whether the property should appear in the
IntelliSense list of an object in the code view. Its value is of
the EditorBrowsableState enumeration type, with three
possible values—Advanced, Always, and Never. Its default
value is Always, which means “always list this property.” If
you change the value to Never, the property is hidden from
the IntelliSense feature.

Description Specifies a description string for the property. When the
Description property is specified, it is displayed in the
description area of the Properties window when the property
is selected.

Category Specifies the category of the property. The category is used in
the Properties window to categorize the property list.

You cannot see the effect of using the attributes listed in Table 1.6 in
the form you have been creating. However, you would see their
effects if you inherited a form from that form. You’ll learn more
about this in the next section of this chapter.

. Properties let you customize the appearance and behavior of a
Windows form.

. The Windows Forms Designer lets you define a form based on
the properties that are available in its base class (which is usu-
ally the Form class).

. You can add custom properties to a form.

. Attributes let you define the runtime behavior of a property.

TABLE 1.6

ATTRIBUTES THAT CONTROL THE BEHAVIOR OF A

PROPERTY

Attribute Name Description

continued

R E V I E W B R E A K

04 0789728230 CH01 11/21/02 1:25 PM Page 60

Chapter 1 INTRODUCING WINDOWS FORMS 61

USING VISUAL INHERITANCE

Create a Windows form by using the Windows Forms
Designer:

• Create a Windows form by using visual inheritance

Earlier in this chapter, in the section “Understanding Classes,
Inheritance, and Namespaces,” you learned that when a class inher-
its from its base class, it derives a basic set of functionality from the
base class. No additional programming needs to be done in the
derived class to enable that functionality. You are free to add extra
functionality to the derived class to make it yet more useful.

Because a Windows form is a class, inheritance applies to it. In some
cases you will find yourself creating new forms that are almost like
ones you have previously created, but the new forms need some
additional functionality. In such a case, rather than create a new
form from scratch, you can inherit it from a form that has similar
functionality and later customize the inherited form to add extra
functionality to it.

When inheritance is applied to a Windows form, it is known as
visual inheritance because it results in the inheritance of the visual
characteristics of the form, such as its size, color, and any compo-
nents placed on the form. You can also visually manipulate the prop-
erties that you inherit from the base class.

Step by Step 1.8 shows how to inherit from an existing form by
using visual inheritance.

S T E P B Y S T E P
1.8 Using Visual Inheritance

1. Open the project 316C01. In the Solution Explorer right-
click the project name and select Add, Add Inherited
Form from the context menu. Name the new form
StepByStep1_8 and click the Open button.

2. From the Inheritance Picker dialog box (see Figure 1.14),
select the component named StepByStep1_7 and click OK.

F IGURE 1 .14
The Inheritance Picker dialog box allows you to
choose a base class for a form.

continues

04 0789728230 CH01 11/21/02 1:25 PM Page 61

62 Par t I DEVELOPING WINDOWS APPLICATIONS

3. Open the Properties window. Click the Categorized icon
on its toolbar. In the category Custom, change the
FormState property within that category to Idle (see
Figure 1.15).

4. Add the following Main() method to the form:

[STAThread]
public static void Main()
{

Application.Run(new StepByStep1_8());
}

5. In the Solution Explorer, right-click the project name and
select Properties from the context menu. In the Property
Pages window, select _316C01.StepByStep1_8 as the startup
object. Click OK to close the Property Pages window.

6. Select Debug, Run. Because you have set the FormState
property to Idle, the form displays in red.

When you run the form in Step by Step 1.8, note that the newly
created form has the same behavior as the form created in Step by
Step 1.7. The new form inherits its behavior from the form that
already existed. In other words, the form named StepByStep1_8 is
based on the form named StepByStep1_7. You have access to all
browsable properties of the base form through the Properties win-
dow. When you select the FormState property of the form, you have
access to its possible values in a drop-down list. Because of the run-
time attribute applied to the FormState property in the base class,
this property is filed in the Custom category. You are able to see the
description of this property at the bottom of the Properties window
when the property is selected.

After you inherit a form, you can add extra functionality to it. This
functionality is available only in the newly created class and the
classes you later derive from it, but it does not affect any of the base
classes.

F IGURE 1 .15
The FormState property is available in the
Properties window in the proper category, and it
has the proper description.

continued

T
IP

Inheriting Private Members A
derived class inherits all the mem-
bers of a base class, but the private
members of the base class are not
accessible in the derived class
because the variables with private
modifiers in the base class are hid-
den from the derived classes.

E
X

A
M

04 0789728230 CH01 11/21/02 1:25 PM Page 62

Chapter 1 INTRODUCING WINDOWS FORMS 63

G U I D E D P R A C T I C E
E X E R C I S E 1 . 2
You are a Windows developer for SpiderWare, Inc. In one of your
applications, you recently created a form that will be used to set var-
ious options of the application (refer to Guided Practice Exercise
1.1). Your application now requires another form such as the one
you designed earlier. However, the color of this form should always
be the same as the color of the user’s desktop.

How would you create such a form?

You should try working through this problem on your own first. If
you get stuck, or if you’d like to see one possible solution, follow
these steps:

1. Open the project 316C01. Add an inherited form with the
name GuidedPracticeExercise1_2 to this project.

2. From the Inheritance Picker dialog box select the component
named GuidedPracticeExercise1_1 and click OK.

3. Open the Properties window for the form, and change the
BackColor property to Desktop.

4. Switch to the code view, and insert the following Main()
method:

[STAThread]
static void Main()
{

Application.Run(new GuidedPracticeExercise1_2());
}

5. Set the form as the startup object and execute the program.

If you have difficulty following this exercise, review the sections
“Designing a Windows Form by Using Windows Forms Designer”
and “Using Visual Inheritance.” Make sure you work through
Guided Practice Exercise 1 before you attempt this one. The text
and examples presented in these sections should help you relearn
this material. After doing that review, try this exercise again.

N
O

T
E The EEddiittoorrBBrroowwssaabbllee Bug If you are

inheriting a form from the same pro-
ject, even though you have set the
EditorBrowsable attribute for a prop-
erty to be Never, you can see this
property via IntelliSense help in the
derived form. This feature works fine
with Visual Basic .NET but is a known
bug with Visual C# .NET.

The EditorBrowsable attribute works
fine, however, if you are visually inher-
iting from a form that is present in a
separate assembly. You will learn
more about creating assemblies in
Chapter 4.

04 0789728230 CH01 11/21/02 1:25 PM Page 63

64 Par t I DEVELOPING WINDOWS APPLICATIONS

. Form inheritance allows you to create a new form by inherit-
ing it from a base form. This allows you to reuse and extend
earlier coding efforts.

. The Windows Forms Designer lets you visually inherit a form
from an existing form through the Inheritance Picker dialog
box. You can also visually manipulate the inherited properties
through the Properties window.

EVENT HANDLING

Create, implement, and handle events.

When you perform an action with an object, the object in turn rais-
es events in the application. Dragging the title bar of a form and
moving it around, for example, generates an event; resizing a form
generates another event. A large portion of code for any typical
Windows application is the code that is responsible for handling var-
ious events that the application responds to. Events are at the heart
of graphical user interface (GUI)–based programming. An event
handler is a method that is executed as a response to an event.

Not all events are triggered by user actions. Events may be triggered
by changes in the environment such as the arrival of an email mes-
sage, modifications to a file, changes in the time and completion of
program execution, and so on.

With C#, you can define your own custom events that a class will
listen to (you’ll see how to do this in Chapter 4). You can also han-
dle an event by executing custom code when the event is fired. The
following sections discuss two different ways to handle events:

á Handling events by attaching a delegate

á Handling events by overriding a protected method of a base
class

R E V I E W B R E A K

04 0789728230 CH01 11/21/02 1:25 PM Page 64

Chapter 1 INTRODUCING WINDOWS FORMS 65

Handling Events by Attaching a
Delegate
When you create a Windows form, it inherits from the Form class.
The Form class has a set of events that are already defined and that
you can access through the Properties window (see Figure 1.16). If
your program needs to take actions when one of those events is
fired, it must define an appropriate event handler. The event handler
must be registered with the event source so that when the event
occurs, the handler will be invoked (this is also referred to as event-
wiring). It is possible to have multiple event handlers interested in
responding to an event. It is also possible to have a single event han-
dler respond to multiple events.

The visual designer uses event wiring through delegates for handling
events, so for most of the book it is also the preferred approach to
event handling.

S T E P B Y S T E P
1.9 Handling the MouseDown Event

1. Open the project 316C01. In the Solution Explorer right-
click the project name and select Add, Add Windows
Form from the context menu. Name the new form
StepByStep1_9 and click the Open button.

2. Open the Properties window of the form. Change the
Text property to Event Handling Form.

3. In the Properties window, click the Events icon (which
looks like a lightning bolt; refer to Figure 1.16) on the
toolbar.

4. Look for an event named MouseDown(), and double-click
the row containing the MouseDown event. This takes you to
the code view, where Visual Studio .NET inserts a tem-
plate for the MouseDown event handler. Add code to the
event handler so that it looks like this:

F IGURE 1 .16
The Properties window lets you access events
that are defined for an object.

continues

04 0789728230 CH01 11/21/02 1:25 PM Page 65

66 Par t I DEVELOPING WINDOWS APPLICATIONS

private void StepByStep1_9_MouseDown(
object sender, System.Windows.Forms.MouseEventArgs e)
{

MessageBox.Show(
String.Format(“X ={0}, Y={1}”, e.X, e.Y),
String.Format(“The {0} mouse button hit me at:”,
e.Button.ToString()));

}

5. Insert the following Main() method after the event han-
dling code you just added:

[STAThread]
static void Main()
{

Application.Run(new StepByStep1_9());
}

6. Set the form as the startup object. Run the project.
Observe that whenever you click the form area, a message
box appears, displaying the position of the click and
whether the left or right mouse button is pressed (see
Figure 1.17).

Step by Step 1.9 involves responding to the MouseDown event of a
form. The form inherits the MouseDown event (and many others)
from its base class Form. The Properties window lets you see all the
events that are available for a control or another object. You choose
MouseDown from that list, and when you double-click the event name,
the designer switches to the code view and inserts a template for the
MouseDown event handler. You insert a line of code that generates a
message box, showing the coordinates of the point at which the
mouse button is pressed. This information comes from the
MouseEventArgs parameter, passed to the event handling method.

The name of the event handler is StepByStep1_9_MouseDown (that is, it
uses the form ClassName_EventName). Visual Studio .NET follows this
general naming convention for naming event handlers. An event han-
dler normally has a void return type and accepts two arguments: the
object on which the event occurred and an argument of type EventArgs
(or a type derived from it, such as MouseEventArgs) that contains event-
related data. In the StepByStep1_9_MouseDown event handler, the second
argument is of type MouseEventArgs, and it contains data that is specific
to mouse events (such as the position where the button was pressed).

continued

F IGURE 1 .17
The event handler displays a message box
showing event-related data.

04 0789728230 CH01 11/21/02 1:25 PM Page 66

Chapter 1 INTRODUCING WINDOWS FORMS 67

Table 1.7 shows the kind of information that can be retrieved from the
MouseEventArgs object. The type of the second argument depends on
the nature of event. Visual Studio .NET automatically determines it for
you, but if you write the event handler manually, you have to look in
the documentation to find its correct type. The code inside the event
handler is straightforward; it displays a message box that shows coordi-
nates of the mouse location as well as which mouse button is pressed.

TABLE 1.7

MouseEventArgs PROPERTIES

Member Description

Button Returns a value of type MouseButtons that specifies which mouse
button is pressed

Clicks Returns the number of times the mouse button is pressed and
released

Delta Acts as a signed count of the number of detents (that is, notches of
the mouse wheel) the mouse wheel has rotated

X Specifies the x-coordinate of a mouse click

Y Specifies the y-coordinate of a mouse click

How does the event handler get wired up with the actual event? The
designer does it for you, when you double-click the event name in
the Properties window. You can expand the designer-generated code
to find the following line of code:

this.MouseDown +=
new System.Windows.Forms.MouseEventHandler(
this.StepByStep1_9_MouseDown);

This looks like a complex statement. If you break it down to under-
stand it properly, however, you’ll see that there are three parts to it:

á MouseDown is the name of an event.

á MouseEventHandler is the delegate of the MouseDown event.

á StepByStep1_9_MouseDown is the name of an event handler.

And here is the role each of them is playing:

á The MouseDown event is raised when a mouse button is
pressed. A set of event handlers can be attached to this event.

04 0789728230 CH01 11/21/02 1:25 PM Page 67

68 Par t I DEVELOPING WINDOWS APPLICATIONS

When the event is fired, it invokes all the attached event han-
dlers. An event handler can be attached to this event only
through its delegate object.

á The delegate type of the MouseDown event is
MouseEventHandler. You can add event handlers to a MouseDown
event only by adding new instances of the delegate to it. A del-
egate is a special type that is capable of storing a reference to a
method with a specific signature (that is, the arguments and
return type). Because it stores references of methods, a delegate
can also invoke the methods dynamically when the event
occurs. In the Visual Studio .NET documentation, the defini-
tion of MouseEventHandler delegate looks like this:

public delegate void MouseEventHandler(
object sender, MouseEventArgs e);

This means that MouseEventHandler is capable of storing refer-
ences to any method whose return type is void and that
accepts two arguments: the first one of type System.Object
and the other one of type MouseEventArgs. The
StepByStep1_9_MouseDown event handler signature matches the
criteria of this delegate, and hence its reference can be stored
in an instance of a delegate of type MouseEventHandler.

When you have an instance of the MouseEventHandler delegate,
you can attach it to the event by using the addition syntax.
+= is used in the example, so if any event handlers are already
attached to this event by the base class, they remain in the list.

á StepByStep1_9_MouseDown is the name of the method that is
responding to this event. The keyword qualifies it for the cur-
rent instance of the form. When a method name is used alone,
without any argument list, it works as a reference to the actual
method definition. That reference is passed to the delegate. At
a later stage, when the event occurs, that method is invoked
through its reference that is maintained by the delegate object.

To manually write code to handle an event, you would follow these
steps:

1. Look up the Visual Studio .NET documentation to find the
appropriate event for a class.

2. Find out the delegate type for this event.

N
O

T
E Detaching an Event Handler You

can detach an event handler from an
event by using the -= syntax that is
similar to the += syntax. Although
detaching an event handler is general-
ly not required, you might want to
detach an event if at runtime, you are
no longer interested in responding to
a particular event.

T
IP

Adding Versus Replacing
Delegates When you are attaching
delegates, you should usually use
the += syntax rather than the = syn-
tax. This is because = attaches the
current delegate, and any other pre-
viously attached delegates are lost.
Using += ensures that you preserve
the list of previously attached event
handlers.

E
X

A
M

04 0789728230 CH01 11/21/02 1:25 PM Page 68

Chapter 1 INTRODUCING WINDOWS FORMS 69

3. Based on the delegate signature, create an event handler.

4. Create an instance of the event’s delegate that contains a refer-
ence to the event handler method.

5. Add to the event the delegate instance from step 4.

From these steps, you can see that the designer takes a lot of details
away from you, and what you are required to do is simply write the
actual code that will be executed when the event occurs.

As mentioned earlier in this chapter, it is possible to attach multiple
event handlers to an event. Step by Step 1.10 shows how to attach a
second event handler to the MouseDown event from Step by Step 1.9.
When you execute the code and press the mouse button on the
form, both event handlers are executed.

S T E P B Y S T E P
1.10 Attaching Multiple Event Handlers to the

MouseDown Event

1. Open the project 316C01. In the Solution Explorer right-
click the project name and select Add, Add Windows
Form from the context menu. Name the new form
StepByStep1_10 and click on the Open button.

2. Open the Properties window for the form. Change the
form’s Text property to Multiple Events Handling Form.

3. Search for the MouseDown event, and double-click on the
row that contains the MouseDown event. Modify its event
handler to look like this:

private void StepByStep1_10_MouseDown(object sender,
System.Windows.Forms.MouseEventArgs e)

{
MessageBox.Show(
String.Format(“X ={0}, Y={1}”, e.X, e.Y),
String.Format(“The {0} mouse button hit me at:”,
e.Button.ToString()));

}

continues

04 0789728230 CH01 11/21/02 1:25 PM Page 69

70 Par t I DEVELOPING WINDOWS APPLICATIONS

4. Switch to the design view, and look again for the
MouseDown event in Properties window. If you again dou-
ble-click the row that contains the MouseDown event, you
see that a new event handler is not inserted. Therefore,
you need to switch to the code view and add the following
code for a second event handler:

private void SecondEventHandler(
object sender, MouseEventArgs e)

{
Form frm1_10 = (Form) sender;
if (frm1_10.BackColor== Color.AntiqueWhite)

frm1_10.BackColor = Color.LightCoral;
else

frm1_10.BackColor = Color.AntiqueWhite;
}

5. Insert the following Main() method after the event han-
dling code from step 4:

[STAThread]
static void Main()
{

StepByStep1_10 frm1_10= new StepByStep1_10();
frm1_10.MouseDown += new MouseEventHandler(
frm1_10.SecondEventHandler);

Application.Run(frm1_10);
}

6. Set the form as the startup object. Run the project. Try
clicking on the form with the left and right mouse but-
tons, and the form changes background color in addition
to responding with a message box on every click.

In Step by Step 1.10 you add an event handler to the newly created
instance of the form StepByStep1_10. The form then has two event
handlers registered with the MouseDown event. The first event handler,
inserted through the Properties window, is attached to the event
when the InitializeComponent event is fired as part of the creation
of a new instance of StepByStep1_10. The order in which both event
handlers are executed is the order in which they were attached to the
event.

continued

04 0789728230 CH01 11/21/02 1:25 PM Page 70

Chapter 1 INTRODUCING WINDOWS FORMS 71

Handling Events by Overriding a
Protected Method of a Base Class
When you create a Windows form, it inherits from the Form class.
By virtue of this inheritance, it has a set of public and protected
methods and properties available to it from one of its base classes.
The class view lets you see all the inherited members (see Figure
1.18). Some of the classes provide sets of protected methods that
raise events. You can easily identify these classes because their nam-
ing convention is the word On followed by the name of the event.
For example, OnMouseDown() is the protected method of the Form
class that raises the MouseDown event. The Form class gets this protect-
ed method from the Control class.

The section “Handling Events by Attaching a Delegate” describes
how to wire events through the use of delegate objects. An alterna-
tive way is to override the On method and write the event handling
code there. Step by Step 1.11 demonstrates how to do that.

S T E P B Y S T E P
1.11 Handling Events by Overriding the OnMouseDown

Event

1. Open the project 316C01. In the Solution Explorer right-
click the project name and select Add, Add Windows
Form from the context menu. Name the new form
StepByStep1_11 and click the Open button.

2. Open the Properties window of the form. Change the
Text property of the form to Event Handling through
OnMouseDown.

3. Open the class view by selecting View, Class View (or by
pressing Ctrl+Shift+C). Navigate to the StepByStep1_11
node. Expand the Bases and Interfaces node. You should
see a node corresponding to the base class Form. Keep
expanding until you see members of the Control class (see
Figure 1.18).

continues

04 0789728230 CH01 11/21/02 1:25 PM Page 71

72 Par t I DEVELOPING WINDOWS APPLICATIONS

4. In the expanded tree, look for a method in the Control
class named OnMouseDown(). Right-click the method name
and select Add, Override from the context menu. This
generates a template for the OnMouseDown() method in
your program and switches to code view. Modify the
OnMouseDown() method so that it looks like this:

protected override void OnMouseDown(
System.Windows.Forms.MouseEventArgs e)

{
MessageBox.Show(
String.Format(“X ={0}, Y={1}”, e.X, e.Y),
String.Format(“The {0} mouse button hit me at:”,
e.Button.ToString()));

}

5. Enter the following code for the Main() method after the
OnMouseDown() method:

[STAThread]
static void Main()
{

Application.Run(new StepByStep1_11());
}

6. Set the form as the startup object. Run the project and
click on the form surface with the left and right mouse
buttons. You see the form respond to the MouseDown event
by displaying a message box.

continued

F IGURE 1 .18
The class view lets you explore the complete
inheritance hierarchy.

04 0789728230 CH01 11/21/02 1:25 PM Page 72

Chapter 1 INTRODUCING WINDOWS FORMS 73

The result of Step by Step 1.11 is similar to the result of Step by
Step 1.9, in which you handle an event by attaching a delegate to it.
Only the implementation is different.

What makes the code in Step by Step 1.11 work? It works because
the OnMouseDown() method (similar to other On methods) is the core
method that is invoked when the mouse button is pressed. This
method is responsible for notifying all registered objects about the
MouseDown event. This method is not new; it was in place and work-
ing hard even when you were using the delegate-based event-
handling scheme. How is that possible when you didn’t code the
method in your earlier programs? Recall from the section “Using
Visual Inheritance” that the derived class inherits all members from
its base classes in its inheritance tree. Step by Step 1.11 gets the
OnMouseDown event from the Control class. In the base class Control,
the OnMouseDown() method is declared as follows:

protected virtual void OnMouseDown(
System.Windows.Forms.MouseEventArgs e);

Because the method is protected, it is available in all classes derived
from Control, such as a Form and the delegate-based event-handling
form StepByStep1_9. This method actually invokes the calls to dele-
gates when the event takes place. The event-handling scheme dis-
cussed earlier keeps that fact hidden from you for the sake of sim-
plicity.

The virtual modifier in the original declaration means that if the
derived classes are not satisfied by the definition of this method in
the original base class and if they need to extend it, they can do so
by overriding its definition. That’s what you do in Step by Step
1.11. When you override the method in a derived class, its base class
version is not called. Instead, the overriding member in the most-
derived class (which is StepByStep1_11 in this case) is called. That’s
how the version of the method that you write in Step by Step 1.11 is
executed when the mouse button is pressed.

The sections “Handling Events by Attaching a Delegate” and
“Handling Events by Overriding a Protected Method of a Base
Class” discuss two schemes for event handling. Can these schemes
exist together? To answer this question, try Step by Step 1.12.

04 0789728230 CH01 11/21/02 1:25 PM Page 73

74 Par t I DEVELOPING WINDOWS APPLICATIONS

S T E P B Y S T E P
1.12 Mixing the Two Event Handling Schemes

1. Open the project 316C01. In the Solution Explorer right-
click the project name and select Add, Add Windows
Form from the context menu. Name the new form
StepByStep1_12 and click the Open button.

2. Open the Properties window. Change the Text property of
the form to Mixing Event Handling Techniques.

3. Search for the MouseDown event, and double-click the row
that contains the MouseDown event. Modify its event han-
dler to look like this:

private void StepByStep1_12_MouseDown(object sender,
System.Windows.Forms.MouseEventArgs e)

{
MessageBox.Show(
String.Format(“X ={0}, Y={1}”, e.X, e.Y),
String.Format(“The {0} mouse button hit me at:”,
e.Button.ToString()));

}

4. Add the following code after the event handling code
from step 3:

protected override void OnMouseDown(MouseEventArgs e)
{

if (this.BackColor== Color.AntiqueWhite)
this.BackColor = Color.LightCoral;

else
this.BackColor = Color.AntiqueWhite;

}
[STAThread]
static void Main()
{

Application.Run(new StepByStep1_12());
}

5. Set the form as the startup object and execute it. When
you click the form area, the background color changes but
the message box is not displayed.

It seems that in Step by Step 1.12 you do not achieve quite what you
wanted to achieve. Don’t the two event handling techniques coexist?

04 0789728230 CH01 11/21/02 1:25 PM Page 74

Chapter 1 INTRODUCING WINDOWS FORMS 75

When you click the mouse button, only the event handler code writ-
ten inside the OnMouseDown() method executes, and the other handler
that is wired with the help of designer does not execute. That is
because Step by Step 1.12 does not code the OnMouseDown() method
properly. To understand the mistake, you need to take a look at how
the OnMouseDown() method works in its original form, if you hadn’t
overridden it. Its base class version would look something like this:

public event MouseEventHandler MouseDown;
protected virtual void OnMouseDown(MouseEventArgs e)
{

if (MouseDown != null)
{
//Invokes the delegates.
MouseDown(this, e);
}

}
}

The OnMouseDown() method is invoked when the mouse button is
pressed. In its code, it checks whether the associated MouseDown event
has a delegate list associated with it. If the list is not empty, it raises
the MouseDown event that actually fires all attached event handlers
with the help of their respective delegate objects. (Recall from earlier
discussions that a delegate object holds a reference to the method
name and can invoke it dynamically.)

In Step by Step 1.12 , because you override the definition of the
OnMousedown() method, its old base class logic that used to call other
event handlers no longer executes. As a result, the events added
through the delegate list are not executed. How can you fix the
problem? The solution to this problem also teaches you a good pro-
gramming practice: You should call the base class implementation of
the protected On method whenever you override it. The modified
OnMouseDown() method in Step by Step 1.12 would look like this:

protected override OnMouseDown(MouseEventArgs e)
{

//fixes the problem by also calling base
//class version of OnMouseDown method
base.OnMouseDown(e);
if (this.BackColor== Color.AntiqueWhite)

this.BackColor = Color.LightCoral;
else

this.BackColor = Color.AntiqueWhite;}

This modification allows the base class implementation of the
OnMouseDown() method to be executed; this is the method where the
delegates are processed.

T
IP

Overriding Protected Methods of a
Base Class A derived class
extends the functionality of its base
class. It is generally a good idea to
call the base class version of a
method when you override a
method in a derived class. That
way, the derived class has at least
the level of functionality offered by
the base class. You can of course
write more code in the overridden
method to achieve extended func-
tionality of the derived class.

On the other hand, if a derived
class does not call the base class
version of a method from an over-
ridden method in derived class, you
are not able to access all the func-
tionality provided by the base class
in the derived class.

E
X

A
M

04 0789728230 CH01 11/21/02 1:25 PM Page 75

76 Par t I DEVELOPING WINDOWS APPLICATIONS

. Events allow a program to respond to changes in the code’s
environment.

. Custom code can be executed when an event fires if the code
is registered with the event. The pieces of code that respond to
an event are called event handlers.

. Event handlers are registered with events through delegate
objects.

. It is possible to respond to an event by overriding the On
method corresponding to an event. When you use this
method, you should be sure to call the corresponding On
method for the base class so that you don’t miss any of the
event handlers registered through delegates when the event is
raised.

BUILDING GRAPHICAL INTERFACE
ELEMENTS BY USING THE
SYSTEM.DRAWING NAMESPACE

Create a Windows form by using the Windows Forms
Designer:

• Build graphical interface elements by using the
System.Drawing namespace.

The FCLs provide an advanced implementation of the Windows
Graphics Design Interface (also known as GDI+). The GDI+ classes
can be used to perform a variety of graphics-related tasks such as
working with text, fonts, lines, shapes, and images. One of the main
benefits of using GDI+ is that it allows you to work with Graphics
objects without worrying about the specific details of the underlying
platform. The GDI+ classes are distributed among four namespaces:

á System.Drawing

á System.Drawing.Drawing2D

R E V I E W B R E A K

04 0789728230 CH01 11/21/02 1:25 PM Page 76

Chapter 1 INTRODUCING WINDOWS FORMS 77

á System.Drawing.Imaging

á System.Drawing.Text

All these classes reside in a file named System.Drawing.dll.

Understanding the Graphics Objects
The Graphics class is one of the most important classes in the
System.Drawing namespace. It provides methods for doing various
kinds of graphics manipulations. The Graphics class is a sealed class
and cannot be further inherited (unlike the Form class, for example).
The only way you can work with the Graphics class is through its
instances (that is, Graphics objects). A Graphics object is a GDI+
drawing surface that you can manipulate by using the methods of
the Graphics class.

When you look in the documentation of the Graphics class, you see
that there is no constructor available for this class, and hence a
Graphics object cannot be directly created. Despite this, there are at
least four ways you can get a Graphics object:

á Through the Graphics property of the PaintEventArgs argu-
ment passed to the Paint event handler of a control or a form.
The Graphics object thus received represents the drawing sur-
face of the object that was the source of the event.

á By calling the CreateGraphics() method of a control or form.

á By calling the Graphics.FromHwnd() method and passing it the
handle of the current form.

á By calling the static Graphics.FromImage() method. This
method takes an image object and returns a Graphics object
that corresponds to that image. You can then use this Graphics
object to manipulate the image.

When you have a Graphics object available, you have access to a
drawing surface. You can use this surface to draw lines, text, curves,
shapes, and so on. But before you can draw, you must understand
the Windows forms coordinate system, which is discussed in the
following section.

04 0789728230 CH01 11/21/02 1:25 PM Page 77

78 Par t I DEVELOPING WINDOWS APPLICATIONS

Understanding the Windows Forms
Coordinate System
The Windows Forms library treats a Windows form as an object that
has a two-dimensional coordinate system, as shown in Figure 1.19.
Therefore, when you write text on the form or put controls on the
form, the position is identified by a set of points. A point is a pair of
numbers that is generally represented as (x, y) where x and y, respec-
tively, denote horizontal and vertical distance from the origin of the
form. The origin of the form is the top-left corner of the client area
of the form. (The client area is the inner area of the form that you
get after excluding the space occupied by title bar, sizing borders,
and menu, if any.) The point of the origin is treated as (0, 0). The
value of x increases to the right of the point of origin, and the value
of y increases below the point of origin.

Two structures are available to represent points in a program—Point

and PointF. These structures each represent an ordered pair of values
(x and y). Point stores a pair of int values, whereas PointF stores a
pair of float values. In addition to these values, these structures also
provide a set of static methods and operators to perform basic opera-
tion on points.

Table 1.8 summarizes all the structures defined in the
System.Drawing namespace.

TABLE 1.8

System.Drawing Namespace STRUCTURES

Structure Description

CharacterRange Specifies a range of character positions within a string.

Color Specifies a color structure that has 140 static properties, each
representing the name of a color. In addition, it also has four
properties—A, R, G, and B—which specify the value for the
Alpha (level of transparency), Red, Green, and Blue portions
of the color. A Color value can be created by using any of its
three static methods: FromArgb(), FromKnownColor(), and
FromName().

Point Stores an ordered pair of integers, x and y, that defines a point
in a two-dimensional plane. You can create a Point value by
using its constructor. The Point structure also provides a set of
methods and operators for working with points.

X-Axis

Y-
A

xi
s

Origin (0, 0)

F IGURE 1 .19
The Windows Forms Coordinate system is a
two-dimensional coordinate system.

04 0789728230 CH01 11/21/02 1:25 PM Page 78

Chapter 1 INTRODUCING WINDOWS FORMS 79

PointF Specifies a float version of the Point structure.

Rectangle Stores the location and size of a rectangular region. You can
create a Rectangle structure by using a Point structure and a
Size structure. Point represents the top-left corner, and Size
specifies the width and height from the given point.

RectangleF Specifies a float version of the Rectangle structure.

Size Represents the size of a rectangular region with an ordered pair
of width and height.

SizeF Specifies a float version of the Size structure.

Drawing Text on a Form
The Graphics class provides a DrawString() method that can be
invoked on a Graphics object to render a text string on the drawing
surface. There are six different forms in which the DrawString()
method can be used. In this section, I discuss three of them; the
other three forms are the same, but with one extra argument of
StringFormat type that specifies alignment and line spacing informa-
tion.

S T E P B Y S T E P
1.13 Drawing Text on a Form

1. Open the project 316C01. In the Solution Explorer right-
click the project name and select Add Windows Form
from the context menu. Name the new form
StepByStep1_13 and click the Open button.

2. Open the Properties window. Search for the Paint event
of the form, and double-click the row that contains the
Paint event. Modify its event handler to look like this:

private void StepByStep1_13_Paint(object sender,
System.Windows.Forms.PaintEventArgs e)

{
Graphics grfx = e.Graphics;
String str = String.Format(

Structure Description

continues

04 0789728230 CH01 11/21/02 1:25 PM Page 79

80 Par t I DEVELOPING WINDOWS APPLICATIONS

“Form Size is: Width={0}, Height={1}”,
Width, Height);

grfx.DrawString(str, Font, Brushes.Black, 0, 0);
}

3. Add the following code for the Main() method:

[STAThread]
static void Main()
{

Application.Run(new StepByStep1_13());
}

4. Set the form as the startup object. Run the project. The
form displays a string of text in black, showing the width
and height of the form. Figure 1.20 shows the result.

In Step by Step 1.13, why did I choose to write the code within an
event handler? There are two reasons, the foremost being that the
Paint event handler provides access to the Graphics object. Second,
the Paint event is fired whenever the form is redrawn, which
includes when the form is first shown and when the form is restored
from its minimized state, as well as when the form is shown after a
window overlapping it is removed. Therefore, a Paint event handler
is an appropriate place to put the code that you want to be executed
whenever a form is redrawn.

The code gets the Graphics object through the Graphics property of
the PaintEventArgs argument of the Paint event handler. The next
step is to call the DrawString() method to draw text on the form.
The DrawString() method used in Step by Step 1.13 takes five argu-
ments and has the following signature:

public void DrawString(
string, Font, Brush, float, float);

The first argument, string, is the string to be displayed. I use the
String.Format() method to format the string.

The second argument, Font, is the font of the string. In Step by Step
1.13 I chose to display the string by using the default font of the
current form through the Font property.

The third parameter, Brush, is the type of brush. The Brushes enu-
meration provides a variety of Brush objects, each with a distinct
color. I chose the Brushes.Black value to draw text in black.

continued

F IGURE 1 .20
You can draw text on a Windows form by using
the DrawString method of the Graphics class.

04 0789728230 CH01 11/21/02 1:25 PM Page 80

Chapter 1 INTRODUCING WINDOWS FORMS 81

The fourth and fifth properties, float and float, specify the x and y
locations for the point that marks the start of the string on the form.
Both of these values are required to be of float type. The 0 value
that the code contains is implicitly converted to a float value.

You might have noticed that when you resize the form in Step by
Step 1.13, the Paint event is not triggered. An obvious idea for
improving this form is to have it dynamically reflect the size of the
form as you resize it. What event should you handle to do that? The
Resize event. Step by Step 1.14 explains how to do this.

S T E P B Y S T E P
1.14 Using the Invalidate() Method

1. Open the project 316C01. In the Solution Explorer right-
click the project name and select Add Windows Form
from the context menu. Name the new form
StepByStep1_14 and click on the Open button.

2. Follow steps 2 and 3 from Step by Step 1.13 to include
the Paint event handler code and Main() method to run
the form StepByStep1_14.

3. Open the Properties window of the form StepByStep1_14.
Search for the Resize event, and double-click on the row
that contains the Resize event. Modify its event handler
so that it looks like this:

private void StepByStep1_14_Resize(
object sender, System.EventArgs e)

{
// Call the Invalidate method
Invalidate();

}

4. Set the form as the startup object. Run the project and
notice that the form constantly modifies the text as it is
resized.

After you complete Step by Step 1.14, the program works as
desired. What’s the deal with the Invalidate() method? The
Invalidate() method causes the paint message to be sent to the form.

T
IP

Unicode Support and DDrraawwSSttrriinngg
GDI+ and hence the Windows
Forms library have full support for
Unicode. This means that you can
draw text in any language support-
ed by the operating system.E

X
A

M

04 0789728230 CH01 11/21/02 1:25 PM Page 81

82 Par t I DEVELOPING WINDOWS APPLICATIONS

As a result, the Paint event handler is called. So this handy method
can be called whenever the code in the Paint event handler needs to
be executed. In Step by Step 1.14, the code makes a call to the
Invalidate() method whenever the form is resized. The Invalidate()
method is available in various forms, and you can refresh a specific
portion of a form by using one of these forms.

Given the frequent requirement of calling Paint whenever Resize is
fired, the Windows Forms library designers created a useful proper-
ty: ResizeRedraw. This is a protected property that the Form class
inherits from the Control class. When ResizeRedraw is set to true, it
instructs a control (or a form, in this case) to redraw itself when it is
resized. Its default value is false. Step by Step 1.15 shows how to
use ResizeRedraw.

S T E P B Y S T E P
1.15 Using the ResizeRedraw Property

1. Open the project 316C01. In the Solution Explorer right-
click the project name and select Add Windows Form
from the context menu. Name the new form
StepByStep1_15 and click the Open button.

2. Follow steps 2 and 3 from Step by Step 1.13 to include
the Paint event handler code and Main() method to run
the form StepByStep1_15.

3. Switch to the code view. Modify the constructor of the
form so that the modified version looks like this:

public StepByStep1_15()
{

//
// Required for Windows Form Designer support
//
InitializeComponent();

// Paint when resized
this.ResizeRedraw = true;

}

4. Run the project and notice that the form paints its draw-
ing surface whenever you resize the form (just as it does
in Step by Step 1.14, although the implementation is
different).

T
IP

IInnvvaalliiddaattee(()) Method Calls When
you call the Invalidate() method
without any parameters, the Paint
event is called for the entire area. If
only a particular portion of the con-
trol needs to be refreshed, then
calling Invalidate() for the entire
area is rather taxing on application
performance. In such a case you
should call Invalidate() with a
Rectangle parameter that specifies
the portion of the control that you
are interested in refreshing.

E
X

A
M

04 0789728230 CH01 11/21/02 1:25 PM Page 82

Chapter 1 INTRODUCING WINDOWS FORMS 83

The form’s constructor is a good place to set the ResizeRedraw prop-
erty. You could alternatively write it inside the Main() method itself.

As one more enhancement to Step by Step 1.15, you can center the
text programmatically within the form. To do so, first you need to find
the coordinates of the center of the form. You can find the horizontal
distance by dividing the width of the client area (ClientSize.Width) by
2, and you can find the vertical distance by dividing the height of the
client area (ClientSize.Height) by 2. The ClientSize properties give
you access to a Size structure that represents the size of the client area
of the form. But this does not really center the text onscreen because it
simply causes the text to start from the center, and depending on how
long it is, it might appear toward the right of the center. You need to
adjust the coordinates of the center point according to the size of the
string. Keep in mind that the size of the string can vary depending on
what font you use for the text. A safe way to determine string size is to
use the MeasureString() method of the Graphics object, as shown in
the following code segment:

SizeF stringSize = grfx.MeasureString(str, Font);

You can then calculate the modified coordinates for placing the
string as x = (ClientSize.Width–stringSize.Width)/2 and y =
(ClientSize.Height–stringSize.Height)/2.

There is an alternative approach, however. You can use the
StringFormat object in the following signature of the DrawString()
method:

public void DrawString(
string, Font, Brush, PointF, StringFormat);

The StringFormat argument lets you specify the text alignment and
spacing options for the text. Step by Step 1.16 uses this form of
DrawString() to center text onscreen.

S T E P B Y S T E P
1.16 Drawing Text on a Form

1. Open the project 316C01. In the Solution Explorer right-
click the project name and select Add Windows Form
from the context menu. Name the new form
StepByStep1_16 and click the Open button.

continues

04 0789728230 CH01 11/21/02 1:25 PM Page 83

84 Par t I DEVELOPING WINDOWS APPLICATIONS

2. Open the Properties window of the form. Search for the
Paint event, and double-click the row that contains the
Paint event. Modify its event handler so that it looks like
this:

private void StepByStep1_16_Paint(object sender,
System.Windows.Forms.PaintEventArgs e)

{
Graphics grfx = e.Graphics;
String strText = String.Format(

“Form Size is: Width={0}, Height={1}”,
Width, Height);

PointF pt = new PointF(ClientSize.Width/2,
ClientSize.Height/2);

// Set the horizontal and vertical alignment
//using StringFormat object
StringFormat strFormat = new StringFormat();
strFormat.Alignment = StringAlignment.Center;
strFormat.LineAlignment = StringAlignment.Center;

// Create Font and Brush objects
Font fntArial = new Font(“Arial”, 12);
Brush brushColor = new SolidBrush(this.ForeColor);
// Call the DrawString method
grfx.DrawString(

strText, fntArial, brushColor, pt, strFormat);
}

3. Modify the constructor of the form so that the modified
version looks like this:

public StepByStep1_16()
{

// Default Code in the constructor
// Paint when resized
this.ResizeRedraw = true;

}

4. Add the following code for the Main() method:

[STAThread]
static void Main()
{

Application.Run(new StepByStep1_16());
}

5. Set the form as the startup object. Run the project and
resize the form. Notice that the text is displayed in the
center of the form.

continued

04 0789728230 CH01 11/21/02 1:25 PM Page 84

Chapter 1 INTRODUCING WINDOWS FORMS 85

The code begins by calculating the center coordinates of the form.
When you have the coordinates of the center, you want the string to
be horizontally centered at that point. Calling
StringAlignment.Center does this job. StringAlignment is an enu-
meration that is available in the System.Drawing namespace that
specifies the location of the alignment of the text.

By default, when the DrawString() method draws a string, it aligns
the top of the string with its x-coordinate value. This does not make
much difference if the height of the text itself is not great, but as
you increase the size of the font, text begins to hang down, starting
from the x-axis. To center the text vertically within its own line, you
can set the LineAlignment property of the StringFormat object to
StringAlignment.Center.

Note the use of Font and Brush objects in Step by Step 1.16. The
code creates a new Font object and specifies a font name and size. I
recommend that you change its value and experiment with it.
Rather than use the brush specified by the Brushes.Black value, the
code in Step by Step 1.16 creates a Brush object that takes the value
of its color from the current form’s ForeColor property. If you
change the ForeColor property of the form by using the Properties
window, the change is automatically reflected here. Using a brush
based on the ForeColor property of the form is a good idea as com-
pared to using an absolute value such as Brushes.Black for a brush.
For example, if the form designer has set the BackColor property of
the form to black and the ForeColor property to white, text drawn
using Brushes.Black would not be visible, but the brush made from
the ForeColor property would be visible.

Drawing Shapes
The Graphics class allows you to draw various graphical shapes such
as arcs, curves, pies, ellipses, rectangles, images, paths, and polygons.
Table 1.9 lists some important drawing methods of the Graphics
class.

04 0789728230 CH01 11/21/02 1:25 PM Page 85

86 Par t I DEVELOPING WINDOWS APPLICATIONS

TABLE 1.9

SOME IMPORTANT DRAWING METHODS OF THE Graphics
CLASS

Method Description

DrawArc() Draws an arc that represents a portion of an ellipse

DrawBezier() Draws a Bézier curve defined by four points

DrawBeziers() Draws a series of Bézier curves

DrawClosedCurve() Draws a closed curve defined by an array of points

DrawCurve() Draws a curve defined by an array of points

DrawEllipse() Draws an ellipse defined by a bounding rectangle specified
by a pair of coordinates, a height, and a width

DrawIcon() Draws the image represented by the specified Icon object
at the given coordinates

DrawImage() Draws an Image object at the specified location, preserving
its original size

DrawLine() Draws a line that connects the two points

DrawLines() Draws a series of line segments that connect an array of
points

DrawPath() Draws a GraphicsPath object

DrawPie() Draws a pie shape defined by an ellipse and two radial lines

DrawPolygon() Draws a polygon defined by an array of points

DrawRectangle() Draws a rectangle specified by a point, a width, and a
height

DrawRectangles() Draws a series of rectangles

DrawString() Draws the given text string at the specified location, with
the specified Brush and Font objects

In Step by Step 1.17 you use some of the methods shown in Table
1.9 to draw shapes on a form’s surface.

04 0789728230 CH01 11/21/02 1:25 PM Page 86

Chapter 1 INTRODUCING WINDOWS FORMS 87

S T E P B Y S T E P
1.17 Using the Draw Methods of the Graphics Class

1. Open the project 316C01. In the Solution Explorer right-
click the project name and select Add Windows Form
from the context menu. Name the new form
StepByStep1_17 and click the Open button.

2. Open the Properties window. Search for the Paint event,
and double-click the row that contains the Paint event.
You are taken to the code view.

3. On the top of the code view, along with the list of other
using directives, add the following line of code:

using System.Drawing.Drawing2D;

4. Modify the code in the Paint event handler to look like
this:

private void StepByStep1_17_Paint(object sender,
System.Windows.Forms.PaintEventArgs e)

{
Graphics grfx = e.Graphics;

// Set the Smoothing mode
// to SmoothingMode.AntiAlias

grfx.SmoothingMode = SmoothingMode.AntiAlias;
// Create Pen objects

Pen penYellow = new Pen(Color.Blue, 20);
Pen penRed = new Pen(Color.Red, 10);
// Call Draw methods
grfx.DrawLine(Pens.Black, 20, 130, 250, 130);
grfx.DrawEllipse(penYellow, 20, 10, 100, 100);
grfx.DrawRectangle(penRed, 150, 10, 100, 100);

}

5. Add the following code to insert the Main() method:

[STAThread]
static void Main()
{

Application.Run(new StepByStep1_17());
}

6. Set the form as the startup object. Run the project, and
you see the form as displayed in Figure 1.21.

F IGURE 1 .21
You can call Draw methods of the Graphics
class to draw various graphic shapes.

04 0789728230 CH01 11/21/02 1:25 PM Page 87

88 Par t I DEVELOPING WINDOWS APPLICATIONS

The Draw methods used in Step by Step 1.17 take five arguments:

á The first argument of each method is the Pen object that is
used to draw the shape. There are several ways you can create a
Pen object. The simplest way is to use a readymade Pen object
from the Pens class. Or you can create a Pen object by using
the Pen class constructor. Table 1.10 lists the different pen-
related classes that are available in the System.Drawing name-
space.

á The second and third arguments are the x- and y-coordinates
of the upper-left corner where the desired shape is to be
drawn.

á The fourth and fifth parameters indicate the width and height
of the desired shape to be drawn. In the case of DrawLine, these
indicate the x- and y-coordinates of the ending point of the
line drawn.

TABLE 1.10

PEN-RELATED CLASSES IN THE System.Drawing
NAMESPACE

Class Description

Pen Defines an object used to draw lines and curves.

Pens Provides 140 static properties, each representing a pen of a color
supported by Windows Forms.

SystemPens Provides a set of static properties, each named after a Windows
display element such as ActiveCaption, WindowText, and so on.
Each of these properties returns a Pen object with a width of 1.

The reason you must include a reference to the
System.Drawing.Drawing2D namespace in the program shown in Step
by Step 1.17 is that you are using an enumeration named
SmoothingMode. This enumeration class is defined in the namespace
System.Drawing.Drawing2D, so a reference to the namespace must
be present in the program if the C# compiler is to uniquely
identify it.

04 0789728230 CH01 11/21/02 1:25 PM Page 88

Chapter 1 INTRODUCING WINDOWS FORMS 89

The Graphics object has a property named SmoothingMode that can
take the values of the SmoothingMode enumeration type. Table 1.11
summarizes these values. The SmoothingMode property specifies the
quality of rendering. The Windows Forms library supports antialias-
ing, which produces text and graphics that appear to be smooth.

TABLE 1.11

SmoothingMode ENUMERATION MEMBERS

Member Name Description

AntiAlias Specifies an antialiased rendering.

Default Specifies no antialiasing. Same as None.

HighQuality Specifies a high-quality, low-performance rendering. Same as
AntiAlias.

HighSpeed Specifies a high-performance, low-quality rendering. Same as
None.

Invalid Specifies an invalid mode, raises an exception.

None Specifies no antialiasing.

In addition to the Draw methods, the Graphics class also provides a
variety of Fill methods (see Table 1.12). You can use these methods
to draw a solid shape on a form.

TABLE 1.12

Fill METHODS OF THE Graphics CLASS

Method Name Description

FillClosedCurve() Fills the interior of a closed curve defined by an array of
points

FillEllipse() Fills the interior of an ellipse defined by a bounding
rectangle

FillPath() Fills the interior of a GraphicsPath object

FillPie() Fills the interior of a pie section defined by an ellipse and
two radial lines

FillPolygon() Fills the interior of a polygon defined by an array of points

N
O

T
E Antialiasing Antialiasing is a tech-

nique for rendering images where par-
tially transparent pixels are drawn
close to the opaque pixels present at
the edges of a drawing. This actually
makes the edges kind of fuzzy, but
this effect makes the edges appear
smoother to human eyes than the
original form. Because there are extra
efforts involved in antialiasing, it
makes rendering of graphics slower
than not using antialiasing.

continues

04 0789728230 CH01 11/21/02 1:25 PM Page 89

90 Par t I DEVELOPING WINDOWS APPLICATIONS

FillRectangle() Fills the interior of a rectangle specified by a point, a width,
and a height

FillRectangles() Fills the interiors of a series of rectangles

FillRegion() Fills the interior of a Region object

S T E P B Y S T E P
1.18 Using the Fill Methods of the Graphics Class

1. Open the project 316C01. In the Solution Explorer right-
click the project name and select Add Windows Form
from the context menu. Name the new form
StepByStep1_18 and click the Open button.

2. Open the Properties window of the form. Search for the
Paint event, and double-click the row that contains the
Paint event. You are taken to the code view.

3. Modify the code in the Paint event handler to look like
this:

private void StepByStep1_18_Paint(object sender,
System.Windows.Forms.PaintEventArgs e)

{
Graphics grfx = e.Graphics;
// Create Brush objects
Brush brushRed = new SolidBrush(Color.Red);
Brush brushYellow = new SolidBrush(

Color.FromArgb(200, Color.Yellow));
// Call Fill methods
grfx.FillEllipse(brushRed, 20, 10, 80, 100);
grfx.FillRectangle(brushYellow, 60, 50, 100, 100);

}

TABLE 1.12

FILL METHODS OF THE GRAPHICS CLASS

Method Name Description

continued

04 0789728230 CH01 11/21/02 1:25 PM Page 90

Chapter 1 INTRODUCING WINDOWS FORMS 91

4. Add the following code to insert the Main() method:

[STAThread]
static void Main()
{

Application.Run(new StepByStep1_18());
}

5. Set the form as the startup object. Run the project. An
overlapping red ellipse and yellow rectangle appear on the
form, as shown in Figure 1.22.

The syntax of the Fill methods is somewhat similar to that of
corresponding Draw methods. The only difference is that the Fill
methods use a Brush object to fill a drawing object with a color.

Creating the yellow brush in Step by Step 1.18 looks interesting.
While creating this color, you do an “alpha-blending” with the
yellow color, to get a kind of transparent yellow color that is used to
produce an overlay effect.

You use a SolidBrush object in Step by Step 1.18 to fill shapes.
Other types of brushes can be used to create fancy filling effects;
Table 1.13 lists them.

TABLE 1.13

TYPES OF BRUSHES IN THE System.Drawing AND

System.Drawing.Drawing2D NAMESPACES

Class Description

Brush Is an abstract base class that is used to create brushes such
as SolidBrush, TextureBrush, and
LinearGradientBrush. These brushes are used to fill
the interiors of graphical shapes such as rectangles,
ellipses, pies, polygons, and paths.

Brushes Provides 140 static properties, one for the name of each
color supported by Windows forms.

HatchBrush Allows you to fill the region by using one pattern from a
large number of patterns available in the HatchStyle
enumeration.

LinearGradientBrush Is used to create two-color gradients and multicolor gra-
dients. By default the gradient is a linear gradient that
moves from one color to another color along the speci-
fied line.

F IGURE 1 .22
You can use Fill methods of the Graphics
class to draw solid shapes.

continues

04 0789728230 CH01 11/21/02 1:25 PM Page 91

92 Par t I DEVELOPING WINDOWS APPLICATIONS

SolidBrush Defines a brush of a single color. Brushes are used to fill
graphics shapes, such as rectangles, ellipses, pies, poly-
gons, and paths.

SystemBrushes Provides a set of static properties, each named after a
Windows display element, such as ActiveCaption,
WindowText, and so on. Each of these properties returns
a SolidBrush object that represents the color for its
matching Windows display element.

TextureBrush A class that contains properties for the Brush object that
use images to fill the interior of shapes.

S T E P B Y S T E P
1.19 Using Different Brush Types

1. Open the project 316C01. In the Solution Explorer right-
click the project name and select Add Windows Form
from the context menu. Name the new form
StepByStep1_19 and click the Open button.

2. Open the Properties window. Search for the Paint event,
and double-click the row that contains the Paint event.
You are taken to the code view.

3. On the top of the code view, along with the list of other
using directives, add the following lines of code:

using System.Drawing.Drawing2D;

4. Modify the code in the Paint event handler so that it
looks like this:

private void StepByStep1_19_Paint(object sender,
System.Windows.Forms.PaintEventArgs e)

{
Graphics grfx = e.Graphics;

TABLE 1.13

TYPES OF BRUSHES IN THE System.Drawing AND

System.Drawing.Drawing2D NAMESPACES

Class Description

continued

04 0789728230 CH01 11/21/02 1:25 PM Page 92

Chapter 1 INTRODUCING WINDOWS FORMS 93

// Create a HatchBrush object
// Call FillEllipse method by passing
// the created HatchBrush object
HatchBrush hb = new HatchBrush(

HatchStyle.HorizontalBrick,
Color.Blue, Color.FromArgb(100, Color.Yellow));

grfx.FillEllipse(hb, 20, 10, 100, 100);

// Create a TextureBrush object
// Call FillEllipse method by passing the
// created TextureBrush object
Image img = new Bitmap(“sunset.jpg”);
Brush tb = new TextureBrush(img);
grfx.FillEllipse(tb, 150, 10, 100, 100);

// Create a LinearGradientBrush object
// Call FillEllipse method by passing
// the created LinearGradientBrush object
LinearGradientBrush lb = new LinearGradientBrush(

new Rectangle(80, 150, 100, 100),
Color.Red, Color.Yellow,

LinearGradientMode.BackwardDiagonal);
grfx.FillEllipse(lb, 80, 150, 100, 100);

}

5. Add the following code to insert the Main() method:

[STAThread]
static void Main()
{

Application.Run(new StepByStep1_19());
}

6. Set the form as the startup object. Run the project. Notice
that ellipses filled in various styles are displayed in the
form, as shown in Figure 1.23.

In Step by Step 1.19 you use three different Brush objects. The
TextureBrush class is part of the System.Drawing namespace, and the
other two classes (HatchBrush and LinearGradientBrush) are mem-
bers of the System.Drawing.Drawing2D namespace.

Using HatchBrush, you filled the ellipse with the HatchStyle named
HorizontalBrick. The TextureBrush class uses an image to fill the
interior of a shape, and in Step by Step 1.19, the image is assumed
to be in the same directory as the .exe file. If you have the image in
some other directory, you need to change the path in the Bitmap
constructor. The Bitmap name is a bit misleading, as it is actually
capable of creating images from a variety of image formats, includ-
ing BMP, GIF, JPG, and PNG.

F IGURE 1 .23
You can create fancy objects by using different
brush types.

04 0789728230 CH01 11/21/02 1:25 PM Page 93

94 Par t I DEVELOPING WINDOWS APPLICATIONS

In Step by Step 1.19 the code sets the gradient direction from the
upper-right corner to the lower-left corner of the rectangle encapsu-
lating the ellipse. Table 1.14 lists the enumeration values for
LinearGradientMode.

TABLE 1.14

LinearGradientMode ENUMERATION VALUES

Member Name Description

BackwardDiagonal Specifies a gradient from upper-right to lower-left

ForwardDiagonal Specifies a gradient from upper-left to lower-right

Horizontal Specifies a gradient from left to right

Vertical Specifies a gradient from top to bottom

Working with Images
The System.Drawing.Image class provides the basic functionality for
working with images. However, the Image class is abstract, which
means you can create an instance of it in your class. Instead of using
the Image class directly, you can use the following classes that imple-
ment the Image class functionality:

á BBiittmmaapp This class is used to work with graphic files that store
information in pixel-based data such as BMP, GIF, and JPEG
formats.

á IIccoonn This class creates a small bitmap that represents an
Windows icon.

á MMeettaaFFiillee This class contains embedded bitmaps and/or
sequences of binary records that represent a graphical opera-
tion such as drawing a line.

Step by Step 1.20 shows how to do basic operations with the Bitmap
class.

04 0789728230 CH01 11/21/02 1:25 PM Page 94

Chapter 1 INTRODUCING WINDOWS FORMS 95

S T E P B Y S T E P
1.20 Creating and Rendering Images

1. Open the project 316C01. In the Solution Explorer right-
click the project name and select Add Windows Form
from the context menu. Name the new form
StepByStep1_20 and click the Open button.

2. Open the Properties window. Search for the Paint event,
and double-click the row that contains the Paint event.
You are taken to the code view.

3. On the top of the code view, along with the list of other
using directives, add the following lines of code:

using System.Drawing.Drawing2D;
using System.Drawing.Imaging;

4. Modify the code in the Paint event handler to look like
this:

private void StepByStep1_20_Paint(object sender,
System.Windows.Forms.PaintEventArgs e)

{
Graphics grfx = e.Graphics;
grfx.DrawImage(new Bitmap(“SampleImage.png”),

ClientRectangle);
}

5. Add the following code after the event handling code
from step 4:

[STAThread]
static void Main()
{

// Create a Bitmap object
Bitmap bmp = new Bitmap(

800,600,PixelFormat.Format32bppArgb);
// Create a Graphics object using FromImage method
Graphics grfx = Graphics.FromImage(bmp);
// Call the Fill Rectangle method
// to create an outer rectangle
grfx.FillRectangle(new SolidBrush(Color.White),

new Rectangle(0,0,800,600));
// Create Font and RectangleF object
Font fntText = new Font(“Verdana”, 20);
RectangleF rect = new RectangleF(

100, 100, 250, 300);

continues

04 0789728230 CH01 11/21/02 1:25 PM Page 95

96 Par t I DEVELOPING WINDOWS APPLICATIONS

// Fill the InnerRectangle
grfx.FillRectangle(

new SolidBrush(Color.AliceBlue), rect);
// Add the text to the Inner Rectangle
grfx.DrawString(“Sample Text”, fntText,
new SolidBrush(Color.Blue), rect);

// Draw a closed curve
Pen penBlack = new Pen(Color.Black, 20);
penBlack.DashStyle = DashStyle.Dash;
penBlack.StartCap = LineCap.Round;
penBlack.EndCap = LineCap.Round;
grfx.DrawClosedCurve(penBlack, new Point[] {

new Point(50, 50),
new Point(400, 50),
new Point(400, 400),
new Point(50, 400)});

// Save the newly created image file
bmp.Save(“SampleImage.png”, ImageFormat.Png);
Application.Run(new StepByStep1_20());

}

6. Set the form as the startup object. Run the project. The
code should create an image and render it in the form, as
shown in Figure 1.24.

In Step by Step 1.20 you first create an image and then render it on
the form’s surface. The image creation code is written in the Main()
method, which means it is executed before the application creates
the Form object. Three key steps are related to image manipulation:

1. You need to create a Bitmap object that can be used to work on
images. The code for this creates the object by specifying its
size in pixels and also specifying a format value from the
PixelFormat enumeration, which belongs to the
System.Drawing.Imaging namespace. The value
Format32bppArgb specifies that there are 32 bits of data associ-
ated with each pixel in the image. Out of these 32 bits, 8 bits
each are used for the alpha, red, green, and blue components
of the pixel.

2. You need to get a Graphics object from the Bitmap object. This
Graphics object can be used to draw on the surface of the
drawing.

continued

F IGURE 1 .24
You can use the Bitmap class to work with a
variety of image formats.

04 0789728230 CH01 11/21/02 1:25 PM Page 96

Chapter 1 INTRODUCING WINDOWS FORMS 97

3. You need to call the Save() method on the Bitmap object. This
method supports a variety of formats for saving graphics; these
formats are available as static public properties of the
ImageFormat class. The ImageFormat class is a member of the
System.Drawing.Imaging namespace. Some of the possible
properties are Bmp, Gif, Icon, Jpeg, Png, Tiff, and Wmf.

The rest of the code in Step by Step 1.20 draws a piece of text and a
curved line on the image before saving it. Note the various proper-
ties of the Pen object that are used in this program. The code uses
the customized Pen object to create a boundary around the image.
Table 1.15 summarizes some important properties of the Pen class.

TABLE 1.15

SOME IMPORTANT PROPERTIES OF THE Pen CLASS

Property Description

Alignment Specifies the alignment for the Pen object

Brush Specifies a Brush object that determines the attributes of the Pen
object

Color Specifies the color of the Pen object

DashCap Specifies the cap style used at the end of the dashes that make up
dashed lines

DashPattern Specifies the array of custom dashes and spaces

DashStyle Specifies the style used for dashed lines

EndCap Specifies the cap style used at the end of lines

LineJoin Specifies the join style for the ends of two consecutive lines

PenType Specifies the style of lines

StartCap Specifies the cap style used at the beginnings of lines

Width Specifies the width of the Pen object

04 0789728230 CH01 11/21/02 1:25 PM Page 97

98 Par t I DEVELOPING WINDOWS APPLICATIONS

G U I D E D P R A C T I C E
E X E R C I S E 1 . 3
You are a Windows developer for SpiderWare, Inc. The Windows
application you are working on should have a form that allows users
to create new designs for Spider-Webs. The requirement itself is sim-
ple: The form must have a white background, where users can
design using a thin black pen. Users often make mistakes while they
are designing, so there should be a mechanism to erase part of the
design. Users say that they will be comfortable using the left mouse
button for drawing and the right mouse button for erasing. You also
noted that users of the application all have high-end machines, and
they want sharper-looking designs.

How would you design such a form?

You should try working through this problem on your own first. If
you get stuck, or if you’d like to see one possible solution, follow
these steps:

1. Open the project 316C01. Add a Windows form with the name
GuidedPracticeExercise1_3 to this project.

2. Open the Properties window for the form. Change the form’s
BackColor property to White.

3. Look for the event named MouseMove and double-click it. This
inserts a MouseMove event handler for you and switches you to
the code view. In the code view, add the following statement at
the top of the program:

using System.Drawing.Drawing2D;

4. Before the MouseMove event handler code add the following
line:

Point ptPrevPosition = new Point(-1, -1);

5. Modify the MouseMove event handler to look like this:

private void GuidedPracticeExercise1_3_MouseMove(
object sender, System.Windows.Forms.MouseEventArgs e)

{
if(ptPrevPosition.X == -1)
{

04 0789728230 CH01 11/21/02 1:25 PM Page 98

Chapter 1 INTRODUCING WINDOWS FORMS 99

// Set the previous position x-y co-ordinate
// to the current x-y co-ordinate
ptPrevPosition = new Point(e.X, e.Y);

}
Point ptCurrPosition = new Point(e.X,e.Y);
// Get the Graphics object by calling
// Graphics.FromHwnd() method
Graphics g = Graphics.FromHwnd(this.Handle);
g.SmoothingMode = SmoothingMode.AntiAlias;
// Check if the left mouse button is pressed
if(e.Button == MouseButtons.Left)
{

// Draw a line from the previous position to
// current position using Black color
g.DrawLine(new Pen(Color.Black),

ptPrevPosition, ptCurrPosition);
}
// Check whether right mouse button is pressed
else if(e.Button == MouseButtons.Right)
{

// Draw a line from the previous position to
// current position using Form’s BackColor
g.DrawLine(new Pen(this.BackColor, 4),

ptPrevPosition, ptCurrPosition);
}
// Set the Previous position to current position
ptPrevPosition = ptCurrPosition;

}

6. Insert the following Main() method just after the event han-
dling code:

[STAThread]
static void Main()
{

Application.Run(new GuidedPracticeExercise1_3());
}

7. Set the form as the startup object and execute the program.

If you have difficulty following this exercise, review the sections
“Event Handling” and “Drawing Shapes.” The text and examples
presented in those sections should help you relearn this material.
After doing that review, try this exercise again.

04 0789728230 CH01 11/21/02 1:25 PM Page 99

100 Par t I DEVELOPING WINDOWS APPLICATIONS

. Windows forms follow a two-dimensional coordinate system.
A point is an addressable location in this coordinate system.

. The Graphics object gives you access to a drawing surface. You
can use it to draw lines, text, curves, and a variety of shapes.

. The ResizeRedraw property, when set to true, instructs the
form to redraw itself when it is resized. It’s a good program-
ming practice to design forms that resize their contents based
on their size. The Resize event of a form can also be used to
program the resizing logic.

. The Graphics class provides a set of Draw methods that can be
used to draw shapes such as rectangles, ellipses, and curves on
a drawing surface. The Graphics class also provides a set of
Fill methods that can be used to create solid shapes.

. An object of the Bitmap class gives you access to image manip-
ulation. The System.Drawing namespace classes can understand
a variety of image formats.

R E V I E W B R E A K

04 0789728230 CH01 11/21/02 1:25 PM Page 100

Chapter 1 INTRODUCING WINDOWS FORMS 101

The .NET Framework is a standards-based multilanguage platform
for developing next-generation applications. Visual Studio .NET
provides a productive IDE for developing .NET Framework applica-
tions.

The .NET FCLs include classes for developing Windows-based
desktop and distributed applications. Visual Studio .NET provides
the Windows Forms Designer, which allows you to visually drag and
drop components and create applications. Various Step by Step exer-
cises in this chapter help you familiarize yourself with the develop-
ment environment and its key concepts.

A Windows form is the place where you assemble the user interface
of an application. Form is a class that provides various properties
through which you can get or set a form’s characteristics. In this
chapter you have learned how to manipulate a form’s properties and
how to add a custom property to a form. You have also learned how
to derive from an existing form and extend the functionality of an
existing form by adding your own properties and methods.

Event handling plays a key role in user interface–based program-
ming; through event handling, you respond to various events that
are fired as a result of user actions and that make programs interac-
tive. This chapter discusses various ways to handle events. In
Chapter 4 you will learn how to define your own events.

In this chapter you have also learned how to use the classes from the
.NET Framework that implement graphics functionality. You have
seen how to draw text, lines, and shapes, and you have learned how
to work with other key graphics elements such as brushes, colors,
and pens.

Chapter 2 talks more about various user interface elements that
allow rapid development of powerful and interactive Windows appli-
cations.

CHAPTER SUMMARY

KEY TERMS
• application

• attribute

• class

• constructor

• delegate

• enumeration

• event

• event handling

• FCL

• field

• garbage collection

• GDI

• inheritance

• IL

• JIT compilation

• managed code

• namespace

• .NET Framework

• property

• structure

• visual inheritance

• Windows Forms Designer

04 0789728230 CH01 11/21/02 1:25 PM Page 101

102 Par t I DEVELOPING WINDOWS APPLICATIONS

A P P LY YO U R K N O W L E D G E

Exercises

1.1 Responding to Keyboard Input

The Windows forms libraries provide controls such as
TextBox and RichTextBox that you can use to process
keyboard input from users. But sometimes you might
want to program the keyboard yourself. In this exercise
you will learn how to capture keyboard events and
respond to them. You will design a very basic text edi-
tor named NEN (Not Even Notepad) that will let you
type on a form surface and also let you edit the text by
using the Backspace key.

Estimated time: 20 minutes

1. Create a new Visual C# .NET Windows applica-
tion in the Visual Studio .NET IDE.

2. Add a new form to the Visual C# .NET project.
Change the Text property of the form to Not
Even Notepad and change the BackColor property
to White.

3. In the code view, add the following using direc-
tive at the top:

using System.Text;

4. Declare a private variable just before the form’s
constructor code:

private StringBuilder text;

5. In the constructor, initialize the private variable
from step 4 by including the following line of
code:

this.text = new StringBuilder();

6. Add the following code in the KeyPress event
handler of the form:

private void Exercise1_1_KeyPress(
object sender,
System.Windows.Forms.KeyPressEventArgs e)

{
// Check which key is pressed
switch(e.KeyChar)
{

case ‘\b’:
// Backspace key is pressed
if (sbText.Length > 0)

sbText.Remove(
sbText.Length-1, 1);

break;
case ‘\r’:
case ‘\n’:

// Enter key is pressed
sbText.Append(‘\n’);
break;

default:
// Other keys are pressed
sbText.Append(e.KeyChar);
break;

}
// Paint the form
Invalidate();

}

7. In the form’s Paint event handler, add the follow-
ing code:

private void Exercise1_1_Paint(
object sender,
System.Windows.Forms.PaintEventArgs e)

{
Graphics grfx =
((Form) sender).CreateGraphics();

grfx.DrawString(text.ToString(), Font,
Brushes.Black,ClientRectangle);

}

8. Insert the Main() method and set the form as the
startup object of the project. Execute the applica-
tion. You should see a form onscreen that shows
no blinking cursor on it, but when you start typ-
ing, the form should show text. You can press the
Enter key to start a new paragraph and press the
Backspace key to make any changes (see
Figure 1.25).

04 0789728230 CH01 11/21/02 1:25 PM Page 102

Chapter 1 INTRODUCING WINDOWS FORMS 103

A P P LY YO U R K N O W L E D G E

F IGURE 1 .25
The KeyPress event allows you to capture keystrokes.

The KeyPress event is fired when you press a key on
the keyboard. In its event handler, the code uses these
keypresses to modify a StringBuilder object that stores
the text for the small text editor. Then it calls the
Invalidate() method, which in turn generates a call to
the Paint event handler that is actually drawing the
text onscreen. So in fact every keypress results in a total
repainting of the form. Chapter 2 talks about better
ways of doing this task.

1.2 Getting a List of Installed Fonts

Several Windows applications allow you to change the
font of displayed text. They normally give you a list of
fonts installed on your system to choose from. How do
they get this list? This exercise shows you how you can
work with font-related classes in the System.Drawing
namespace to display a list of installed fonts.

Estimated time: 15 minutes

1. Add a new form to your Visual C# .NET project.

2. Change the Text property of the form to List of
Installed Fonts and change the BackColor prop-
erty to White.

3. Add a Paint event handler to the form, and add
the following code to it:

private void Exercise1_2_Paint(
object sender,
System.Windows.Forms.PaintEventArgs e)

{
// Set the y coordinate to 0
int intYCoord=0;

// Create a Black color SolidBrush
SolidBrush brush =

new SolidBrush(Color.Black);

// Iterate through the
// FontFamily.Families
for(int intI=0;intI <
FontFamily.Families.Length; intI++)

{
FontStyle fontStyle =
FontStyle.Regular;

// Check whether Regular style
// is available
if (!FontFamily.Families[

intI].IsStyleAvailable(
FontStyle.Regular))
fontStyle = FontStyle.Italic;

// Check whether Italic style
// is available
if (!FontFamily.Families[

intI].IsStyleAvailable(
FontStyle.Italic))
fontStyle = FontStyle.Bold;

// Create a Font object and
// Draw the Font Name
Font font = new Font(
FontFamily.Families[intI].Name,
12, fontStyle);

string strFontName =
FontFamily.Families[intI].Name;

e.Graphics.DrawString(strFontName,
font, brush, 0, intYCoord);

// Increase the Y Coordinate
// with the Font Height
intYCoord += font.Height;

}

}

04 0789728230 CH01 11/21/02 1:25 PM Page 103

104 Par t I DEVELOPING WINDOWS APPLICATIONS

A P P LY YO U R K N O W L E D G E

4. Insert the Main() method and set the form as the
startup object of the project. Execute the applica-
tion. You should see a form that displays a list of
fonts, with each font name displayed in its own
font. When you increase the height of the form,
you see more lines that list the fonts (see
Figure 1.26).

In Figure 1.26 you cannot see all the fonts because the
list of fonts usually contains more fonts than the num-
ber of lines that can be displayed, even on a maximized
form. You’ll learn how to make the contents of a form
scroll in Chapter 2.

1.3 Creating Nonrectangular Forms

All the forms that you have created in this chapter so
far have been rectangular forms. The Windows Forms
library also allows you to create nonrectangular forms.
Nonrectangular forms can be used in various applica-
tions, such as games, device simulations, and multime-
dia applications. In this exercise you will see how to
create a nonrectangular form.

Estimated time: 10 minutes

1. Add a new form to your Visual C# .NET project.

2. In the Properties window for the form, change
the FormBorderStyle property to None and change
the BackColor property to FireBrick.

3. Switch to the code view and include the follow-
ing using directive at the top of the code:

using System.Drawing.Drawing2D;

4. In the constructor of the form, include the fol-
lowing lines of code:

public Exercise1_3()
{

//
// Default code of the constructor
//
// Create a GraphicsPath object
// AddEllipse to the GraphicsPath object
// Set the Form’s Region property for
// the Graphics Path region
GraphicsPath gp = new GraphicsPath();
gp.AddEllipse(25,25,250,250);
this.Region = new Region(gp);

}

F IGURE 1 .26
You can use the FontFamily.Families property to get all
the FontFamily objects associated with the current
Graphics context.

The FontFamily.Families property stores an array of
FontFamily objects. The code iterates over this array to
display each font name in its own font style. If you
remove the two if statements that are used in this pro-
gram, you get a runtime error because not all fonts
support all font styles.

04 0789728230 CH01 11/21/02 1:25 PM Page 104

Chapter 1 INTRODUCING WINDOWS FORMS 105

A P P LY YO U R K N O W L E D G E

5. Insert the Main() method and set the form as the
startup object of the project. Run the application.
You should see a circular red form.

This code first defines an elliptical region, using the
GraphicsPath object. The GraphicsPath object is then
used to set the Region property of the form. The Region
property instructs the operating system to hide any
portion of the form that lies outside the elliptical
region. As a result, the form is displayed as an ellipse.

Review Questions
1. Describe the difference between a public field

and a public property.

2. What is the purpose of organizing classes in
namespaces?

3. What property would you use to control the
shape of the mouse pointer when it enters the
client area of a Windows form?

4. How can you add a custom property to a form?

5. What is visual inheritance?

6. What are the two different approaches for event
handling? What is the difference between them?

7. What is the ResizeRedraw property? When would
you want to set it to true for a Windows form?

8. Describe at least two ways by which you can cre-
ate a Graphics object for a Windows form.

9. What is the difference between a Pen object and a
Brush object?

04 0789728230 CH01 11/21/02 1:25 PM Page 105

2C H A P T E R

Controls

This chapter covers the following Microsoft-specified
objectives for the “Creating User Services” section of
Exam 70-316, “Developing and Implementing
Windows-Based Applications with Microsoft Visual
C# .NET and Microsoft Visual Studio .NET”:

Add controls to a Windows form.

• Set properties on controls.

• Load controls dynamically.

• Write code to handle control events and
add the code to a control.

• Create menus and menu items.

. Controls are the most visible part of a Windows
application. The purpose of this objective is to test
your knowledge of working with the most com-
mon Windows forms controls, including working
with their properties, methods, and events.

Implement navigation for the user
interface (UI).

• Configure the order of tabs

. When you place controls on a form, you need to
provide a logical order of keyboard-based naviga-
tion for the controls. This exam objective covers
how to achieve this logical order by using Visual
Studio .NET.

OBJECT IVES

05 0789728230 CH02 11/21/02 1:20 PM Page 113

Introduction 116

Adding Controls to a Windows Form 116

Adding Controls by Using the Windows
Forms Designer 117

Adding Controls Programmatically 118

Setting Properties of Controls 120

Important Common Properties of
Controls 121

The Anchor Property 121
The Dock Property 122
The Enabled Property 123
The Font Property 123
The Location Property 123
The Name Property 123
The Size Property 124
The TabIndex and TabStop

Properties 124
The Text Property 124
The Visible Property 125

Configuring the Order of Tabs 125

Handling Control Events 126

Dialog Boxes 135

Common Dialog Boxes 135

Creating a Custom Dialog Box 139

Common Windows Forms Controls 142

The Label and LinkLabel Controls 143

The TextBox and RichTextBox Controls 146

OUTL INE

The PictureBox Control 148

The GroupBox and Panel Controls 149

The Button, CheckBox, and RadioButton
Controls 151

The ListBox, CheckedListBox, and
ComboBox Controls 155

The DomainUpDown and NumericUpDown
Controls 165

The MonthCalendar and DateTimePicker
Controls 168

172

The Timer, TrackBar, and ProgressBar
Controls 177

The HScrollBar and VScrollBar Controls 180

The TabControl Control 183

Creating Menus and Menu Items 187

The MainMenu Control 189

The ContextMenu Control 197

The StatusBar Control 203

The ToolBar Control 207

Creating MDI Applications 210

Chapter Summary 217

Apply Your Knowledge 218

05 0789728230 CH02 11/21/02 1:20 PM Page 114

STUDY STRATEGIES

. Experiment with the common Windows controls
that are available in the Windows Forms
Designer toolbox. Knowing their properties,
methods, and events well will help you answer
several exam questions. You will find several
important members of various controls listed in
tables throughout the chapter.

. Know how to handle events for Windows Forms
controls. Make sure you read the section
“Event Handling” in Chapter 1, “Introducing
Windows Forms.”

. Understand how to create controls dynamically.
See Step by Step 2.2 and Step by Step 2.4 to
get hands-on experience in loading controls
dynamically.

. Know how to create menus and menu items.
This includes creating both a main menu and
context menus for an application.

05 0789728230 CH02 11/21/02 1:20 PM Page 115

116 Par t I DEVELOPING WINDOWS APPLICATIONS

INTRODUCTION

This chapter extends the concepts presented in Chapter 1,
“Introducing Windows Forms,” and discusses various aspects of user
interface programming in more detail.

Windows forms controls are reusable components that encapsulate
graphical user interface (GUI) functionality in Windows-based
applications. The chapter starts by teaching you how to add various
controls to a Windows form, how to set the properties of the con-
trols, and how to program various events associated with the
controls.

This discussion is followed by text that explains how to use common
dialog boxes in applications and how to create custom dialog boxes
for specific requirements.

This chapter also covers most of the commonly used controls that
are available in the Visual Studio .NET toolbox. Controls are
explained with examples that help you understand and appreciate
how they function.

Next, the chapter teaches how to create a main menu and a context
menu for Windows applications and how to associate menu items
with specific actions.

ADDING CONTROLS TO A WINDOWS
FORM

You can place controls on the surface of any container object.
Container objects include Windows forms and panels and group
box controls.

You can add controls to a form either programmatically or by using
the Windows Forms Designer. Although the Windows Forms
Designer provides an easy-to-use interface for adding controls to a
form, you are likely to need to do some work in the code view to
make programs more functional.

05 0789728230 CH02 11/21/02 1:20 PM Page 116

Chapter 2 CONTROLS 117

Adding Controls by Using the Windows
Forms Designer

Add controls to a Windows form.

The Windows Forms Designer provides a toolbox that contains a
variety of commonly used controls. You can drag and drop controls
from the toolbox to a form and arrange them as required. You can
activate the toolbox by selecting View, Toolbox or by pressing
Ctrl+Alt+X. You see a rich set of controls on the Windows Forms
tab of the Toolbox (see Figure 2.1). From the toolbox you can use
different ways to add controls to a form or another container object,
including the following:

á Method 1—You can select a control and draw it on the con-
tainer surface by following these steps:

1. Select a control by clicking on the control’s icon in the
toolbox (refer to Figure 2.1).

2. Release the mouse button and move the mouse pointer to
the position on the container where you want to draw the
control.

3. Hold down the mouse button and draw a rectangle on the
container surface to indicate the size and position for the
control instance.

á Method 2—You can drag a control onto the form at the
desired location by following these steps:

1. Select a form or another container control where you want
to add a control.

2. Drag the control’s icon from the toolbox and drop it at the
desired location on the container control. The control is
added with its default size.

á Method 3—You can add a control to a form by double-
clicking it, as in the following steps:

1. Select a form or another container control where you want
to add a control.

F IGURE 2 .1
The Windows Forms Designer toolbox displays a
variety of items for use in Visual Studio .NET
projects.

05 0789728230 CH02 11/21/02 1:20 PM Page 117

118 Par t I DEVELOPING WINDOWS APPLICATIONS

2. Double-click the control’s icon in the toolbox. This adds
the control to the top-left corner of the form or other con-
tainer control in its default size. You can now drag the con-
trol to its desired location on the container control.

S T E P B Y S T E P
2.1 Adding Controls to a Windows Form by Using

the Windows Forms Designer

1. Create a new C# Windows application project in the
Visual Studio .NET Integrated Development
Environment (IDE). Name the project 316C02.

2. Add a new Windows form to the project. Name it
StepByStep2_1.

3. Select the toolbox. On the Windows Forms tab place two
controls of type Label and TextBox, and then place a con-
trol of type Button on the form’s surface. Arrange the con-
trols as shown in Figure 2.2.

4. Insert a Main() method to launch the form and set the
form as the startup object for the project.

5. Run the project. You should see a Windows form that
looks like the form shown in Figure 2.3. Navigate among
the controls by using the Tab key.

Adding Controls Programmatically
Add controls to a Windows form.

• Load controls dynamically.

It is possible to add controls to a form programmatically. When you
do so, you must remember to follow these three steps:

1. Create a private variable to represent each of the controls you
want to place on the form.

F IGURE 2 .2
You can use the Windows Forms Designer to
add controls to a form.

F IGURE 2 .3
What you see at design time is what you get at
runtime.

05 0789728230 CH02 11/21/02 1:20 PM Page 118

Chapter 2 CONTROLS 119

2. In the form, place code to instantiate each control and to cus-
tomize each control, using its properties, methods, or events.

3. Add each control to the form’s control collection.

Step by Step 2.2 demonstrates this process.

S T E P B Y S T E P
2.2 Adding Controls to a Windows Form

Programmatically

1. Add a Windows form to existing project 316C02. Name
the form StepByStep2_2.

2. Switch to the code view and add the following variables
just above the form’s constructor code:

//create variables to hold controls
private Label lblName, lblPassword;
private TextBox txtName, txtPassword;
private Button btnLogin;

3. Add the following code to the form’s constructor:

//specify the form’s size
this.ClientSize = new System.Drawing.Size(272, 182);

//set up the label for prompting Name
lblName = new Label();
lblName.Text = “Name: “;
//Specify the location for proper placement
//the default location will be (0, 0) otherwise
lblName.Location = new Point(16, 16);

//set up label for prompting Password
lblPassword = new Label();
lblPassword.Text = “Password: “;
lblPassword.Location = new Point(16, 80);

//setup a text box that allows user to enter Name
txtName = new TextBox();
txtName.Location = new Point(152, 16);

//setup text box for entering password
txtPassword = new TextBox();
txtPassword.Location = new Point(152, 80);
txtPassword.PasswordChar = ‘*’;

continues

05 0789728230 CH02 11/21/02 1:20 PM Page 119

120 Par t I DEVELOPING WINDOWS APPLICATIONS

//set up a command button
btnLogin = new Button();
btnLogin.Text = “Login”;
btnLogin.Location = new Point(96, 128);

//Add control to the form
//Method 1: Specify the current form as
//parent container for a control
lblName.Parent = this;

//Method 2: Add a control to form’s control collection
this.Controls.Add(txtName);

//Method 3: Add an array of controls to
//form’s control collection
this.Controls.AddRange(
new Control[] {lblPassword, txtPassword, btnLogin});

4. Insert the Main() method to launch the form. Set the
form as the startup object for the project.

5. Run the project. The form is displayed, as shown in
Figure 2.4.

When you create controls programmatically, more effort is involved
in finding the exact location where you would like to display the
controls on the form than in plotting the controls via the Windows
Forms Designer. In exchange for this small inconvenience, the code
view allows you to add more functionality and power to a Windows
form; typically in a project you would use a combination of the two.

This section uses examples that involve adding control to forms
because the Form control is the container control with which you are
most familiar from Chapter 1. You can easily apply these concepts to
any of the container controls. A container control has a property
named Controls that is a collection of Control objects. When you
add or remove a control from a form, the control is added to or
removed from the form’s control collection.

SETTING PROPERTIES OF CONTROLS

Add controls to a Windows form.

• Set properties on controls.

continued

F IGURE 2 .4
You can programmatically add controls to a
Windows form.

T
IP

Adding Control to a Container
Control While you are creating a
control programmatically, you must
remember to associate it with a
parent container control. If you
don’t do this, the control is created
but not displayed.

E
X

A
M

05 0789728230 CH02 11/21/02 1:20 PM Page 120

Chapter 2 CONTROLS 121

Chapter 1 discussed how to work with properties of a Form object.
You learned how to manipulate these properties through both the
Properties window at design time and a program at runtime. The
same concept carries over to Windows forms controls. Recall from
the section “Using the System.Windows.Forms.Form Class” in
Chapter 1 that a form is also a control that derives from the Control
class.

Although this section discusses the properties of controls, some of
the properties and their behaviors are similar to those of forms.
Controls may also have additional properties, depending on their
specific functionality.

To set a property for a control by using the Properties window, fol-
low these steps:

1. Select the control by clicking it. This makes it the active
object.

2. Activate the Properties window, and then select a property
from the list and modify it.

To set a property for a control within code, follow these steps:

1. Switch to the code view. Select the method or property in
which you want to write the code.

2. Use the ControlObject.PropertyName syntax to access the
property for a control’s object. ControlObject is an instance of
the control, and PropertyName is any valid property name for
the given control. In the code view, IntelliSense helps you
access the list of properties associated with a control.

Important Common Properties of
Controls
The following sections discuss several important properties that are
shared by many of the standard controls.

The Anchor Property
When a form is resized, you might want its controls to move
along with it, keeping a constant distance from the form’s edges.

05 0789728230 CH02 11/21/02 1:20 PM Page 121

122 Par t I DEVELOPING WINDOWS APPLICATIONS

You can achieve this by anchoring the control with the edges of its
container control (see Figures 2.5 and 2.6). The default value of
Anchor is Top, Left; this specifies that the control is anchored to the
top and left edge of the container. (Refer to Step by Step 2.4 later in
this chapter for an example of how the Anchor property is used.)

F IGURE 2 .5.
You can click the down arrow in the Anchor
property to display an anchoring window.

F IGURE 2 .6▲
The dark bars indicate the sides to which the
control is anchored.

The Dock Property
At some point you might need a control to span an entire side (left,
right, top, or bottom) of its parent control. You can use the Dock
property of a control to achieve this behavior (see Figures 2.7 and
2.8). The default value of the Dock property is None. This property is
specially used with controls such as StatusBar and ToolBar, but it is
not limited to them. (To see an example of docking with a Label
control, see Step by Step 2.4 later in this chapter.)

F IGURE 2 .7.
You can click the down arrow in the Dock
property to display a docking window.

F IGURE 2 .8▲
You can click the edge at which you want a con-
trol to be docked.

05 0789728230 CH02 11/21/02 1:20 PM Page 122

Chapter 2 CONTROLS 123

The Enabled Property
The Enabled property of a control has a Boolean value (true/false)
that can be used to determine whether a control can respond to user
interactions. A disabled control (with the Enabled property set to
false) does not receive the focus, does not generate any events, and
appears dimmed, or “grayed out.” The default value of the Enabled
property is true, except for a Timer control, whose Enabled property
is false by default.

The Font Property
You use the Font property to set the font of the text displayed by the
control. The value of this property is an object of the Font class.
When you select the Font property in the Properties window for a
control, you see an ellipsis (…) button. Clicking this button invokes
a Font dialog box (see Figure 2.9) that can be used to conveniently
manipulate the Font property.

The Location Property
The Location property specifies the location of the top-left corner of
the control with respect to the top-left corner of its container con-
trol. Its value is of type Point.

Four other properties depend on Location: Left, Right, Top, and
Bottom. Left is the same as Location.X, Right is the same as
Location.X + Width, Top is the same as Location.Y, and Bottom is
the same as Location.Y + Height.

The Name Property
A control’s Name property can be used to manipulate a control pro-
grammatically. When you place a control on a container object by
using the Windows Forms Designer, it names the control automati-
cally based on the type of control (for example, label1, label2). If
you create a control programmatically, its name is by default an
empty string. It’s a good programming practice to give a meaningful
name to a control. Most programmers use Hungarian notation for
naming controls; in this scheme, the name of each control begins
with a lowercase prefix that is an abbreviation for the name of the
control. For example, an instance of a TextBox control storing a cus-
tomer name would be named txtCustomerName.

F IGURE 2 .9
The Font dialog box allows you to set the Font
property of a control.

N
O

T
E Programmatically Setting the FFoonntt

Property The Font object is said to
be immutable because its value can-
not be modified after the control has
been created. If you try to program-
matically set one of its properties, you
get the compilation error Property or
indexer cannot be assigned to--it

is read only.

Therefore, the only way you can
change the Font property of a control
is by assigning a newly created Font
object to the Font property.

05 0789728230 CH02 11/21/02 1:20 PM Page 123

124 Par t I DEVELOPING WINDOWS APPLICATIONS

The Size Property
The Size property sets or gets the height and width of a control.
The value of this property is of data type Size. Size is a struct that
has properties named Height and Width that, respectively, store the
height and width of the control, in pixels.

You can also individually manipulate the height and width of a con-
trol by using a control’s Height and Width properties.

The Control class has a protected property named DefaultSize that
specifies the default size of the control. The default size is used to
draw a control if the size of the control is not explicitly specified.
You can override this property in a program to specify a different
default size for a control.

The TabIndex and TabStop Properties
The Tab key is used for keyboard navigation from one control to
another on a Windows form. The TabIndex property of a control is
an integer value that specifies the order in which controls receive
focus when the user presses the Tab key.

If you do not want a control to receive focus when the user uses the
Tab key, you can set the control’s TabStop property to false. Its
default value is true, and it allows the control to participate in key-
board navigation through the Tab key.

The TabIndex property is effective only when the TabStop property
of the control is set to true.

The Text Property
The Text property is a string that indicates the text associated with
the control. Different controls use the Text property in different
ways: For example, a Form control displays its Text property in its
title bar and a Label control displays its Text property on the face of
the control. Unlike with a Form or a Label control, users can manip-
ulate the Text property of some controls, such as TextBox and
RichTextBox, at runtime by changing the contents of the controls’
input boxes.

05 0789728230 CH02 11/21/02 1:20 PM Page 124

Chapter 2 CONTROLS 125

The Text property can also be used to provide a keyboard shortcut
to a control. An ampersand (&) in front of a character marks it as
the hotkey for that control. If you assign &Save to the Text property
of a Button control, the S in the name is underlined. Because this is
a standard Windows convention, when users see it, they know that
they can press the button by pressing the Alt+S key combination.

Some controls such as Label controls cannot receive focus. If you
assign a hotkey for such a control, the focus instead goes to a control
with the next higher TabIndex property. You can in fact use this
behavior in your favor. To identify controls such as TextBox,
RichTextBox, TreeView, or ListView, you would place a Label con-
trol beside them. You can associate a hotkey with the Label control
and keep the TabIndex property of Label and the corresponding con-
trol in immediate succession. This way, when you press the hotkey
for the Label control, it transfers focus to the control that has the
next higher TabIndex property, and the corresponding control
receives focus.

The Visible Property
The Visible property is set to true by default. When you set it to
false, you still see the control in the Windows Forms Designer, but
users of the application cannot see the control at runtime. Be aware
that setting the Visible property to false does not remove the con-
trol from its container’s controls collection.

Configuring the Order of Tabs
Implement navigation for the user interface.

• Configure the order of tabs

Many people find it convenient to use the keyboard to navigate
among the controls on a form. A Windows user expects to move
from one control to another in a logical order by using the Tab key.
The Windows Forms Designer provides a Tab Order Wizard that
allows you to conveniently set the order in which the controls
should receive focus when the Tab key is pressed. Step by Step 2.3
describes how to use this wizard.

N
O

T
E Visually Displaying an Ampersand in

the TTeexxtt Property What if you want
to display an ampersand in a control’s
text property rather than have it func-
tion as a hotkey?

If you’re working with a Label control,
you can set its UseMnemonic property
to false. When UseMnemonic is false,
the control does not interpret the
ampersand as a hotkey modifier.

But only the Label and LinkLabel
controls have a UseMnemonic property.
What about other controls, such as
Button? With all those other controls,
you can use a double ampersand
(&&) in the Text property to represent
a single ampersand.

N
O

T
E Control Transparency No property

directly allows you to set transparency
for a control. However, you can use
the BackColor property of a control
and set a color by using the
Color.FromArgb() method. The
Color.FromArgb() method lets you
specify an alpha component that con-
trols transparency.

05 0789728230 CH02 11/21/02 1:20 PM Page 125

126 Par t I DEVELOPING WINDOWS APPLICATIONS

S T E P B Y S T E P
2.3 Configuring the Order of Tabs

1. Add a Windows form to existing project 316C02. Name
the form StepByStep2_3.

2. Place two Label controls on the form and set their Text
properties to &Name and &Department.

3. Place two TextBox controls and two CheckBox controls on
the form. Empty the Text property for each of the TextBox
controls. Change the Text properties for the CheckBox con-
trols as &Bachelor’s degree and “&Master’s degree.

4. Add two Button controls to the form and change their
Text properties to &Save and Save && &Close. Resize and
arrange all the controls as shown in Figure 2.10.

5. Select View, Tab Order and number the controls as shown
in Figure 2.11. You can change a tab order number by
clicking it.

6. Insert the Main() method to launch the form. Set the
form as the startup object for the project.

7. Run the project. Use the Tab key to navigate from one
control to another. Use hotkeys to directly jump to a
control.

HANDLING CONTROL EVENTS

Add controls to a Windows form.

• Set properties on controls.

• Load controls dynamically.

• Write code to handle control events and add the code
to a control.

Event handling for a control is very similar to event handling
for a Windows form (refer to Chapter 1). Each control inherits a
number of events from the System.Windows.Forms.Control class.

F IGURE 2 .10
A hotkey allows you to jump to a control by
using the keyboard.

F IGURE 2 .11
The Tab Order Wizard allows you to configure
the order of tabs.

05 0789728230 CH02 11/21/02 1:20 PM Page 126

Chapter 2 CONTROLS 127

Each control type also has a set of events that is specific to its
unique functionality. Every control has a default event associated
with it (for example, the Click event for a Button control, Load for a
Form control, and CheckedChanged for a CheckBox control). When
you double-click a control in the Windows Forms Designer, the
designer automatically creates an event handler for the default event
and opens the code view, which allows you to add custom code
inside the event handler. You can also handle an event by double-
clicking the name of the event in the Properties window; doing this
creates an event handler for the selected event of the control.

Step by Step 2.4 is an example of event handling as applied to con-
trols. Step by Step 2.4 creates a Windows form that presents two
buttons—Add and Remove. When you click the Add button, the
code in its Click event handler dynamically adds a new Button
object to the form, forming a stack of buttons. When you click the
Remove button, the code in its Click event handler removes the
most recently created Button object (see Figure 2.12).

Step by Step 2.4 illustrates the following points related to handling
events:

á How to attach an event handler with a control’s event

á How to add custom code to an event handler

á How to attach a single event handler to provide common
behavior to several controls

á How to attach an event handler programmatically at runtime

Therefore, you should carefully watch the steps and the comments
in the code in Step by Step 2.4.

S T E P B Y S T E P
2.4 Programming Control Events

1. Add a Windows form to existing project 316C02. Name
the form StepByStep2_4.

F IGURE 2 .12
You can add and remove controls dynamically.

continues

05 0789728230 CH02 11/21/02 1:20 PM Page 127

128 Par t I DEVELOPING WINDOWS APPLICATIONS

2. Place a Label control on the form; change the Dock prop-
erty to Top, change the Name property to lblStatus,
change the Font property to make it italic and size 12,
change the Text property to be empty, and change the
TextAlign property to MiddleCenter.

3. Place another Label control on the form; change the Dock
property to Bottom, change the Name property to lblStack,
change the Font property to make it bold and size 16,
change the Text property to A Button Stack, and change
the TextAlign property to MiddleCenter.

4. Place a Button control on the form. Change the Name
property to btnAdd, change the Text property to &Add, and
change the Anchor property to Bottom, Left.

5. Place another Button control on the form. Change the
Name property to btnRemove, change the Text property to
&Remove, and change the Anchor property to Bottom,
Right.

6. Switch to the code view and add the following code before
the form’s constructor code:

//Stores the top of stack value
private int intTos;
//stores initial control count
private int intInitCtrlCount;

7. Add the following code in the form’s constructor code
after the call to the InitializeComponent() method:

//Initially the stack is empty
intTos = 0;
//Get the initial control count. Be sure to put this
//statement after the call to
//InitializeComponent method
intInitCtrlCount = this.Controls.Count;
//Redraw form if it is resized
this.ResizeRedraw=true;

8. Using the Properties window, add an event handler for the
form’s Paint event. Add the following code to the event
handler:

private void StepByStep2_4_Paint(object sender,
System.Windows.Forms.PaintEventArgs e)

{

N
O

T
E Setting a Property for Multiple

Controls To set a property for multi-
ple controls simultaneously, click each
of the controls while pressing the Ctrl
key; then invoke the Properties win-
dow and set the property. The proper-
ty you set is applied to all the select-
ed controls. When you invoke the
Properties window while multiple con-
trols are selected, it shows only the
properties that all the selected con-
trols have in common. You can use
the same steps to set a common
event handler for multiple controls.

continued

05 0789728230 CH02 11/21/02 1:20 PM Page 128

Chapter 2 CONTROLS 129

//Gets the Graphics object for the form
Graphics grfx = e.Graphics;
//Draw a line, end-to-end on the form
grfx.DrawLine(Pens.Black, 0,

this.lblStack.Location.Y -5, this.Width,
this.lblStack.Location.Y - 5);

//Set the location for Add and remove buttons
// so that they get repositioned
// after the form is resized
this.btnAdd.Location = new Point(
0, this.lblStack.Location.Y - 40);

this.btnRemove.Location =
new Point(this.Width-this.btnRemove.Width - 7,
this.lblStack.Location.Y - 40);

}

9. Insert the following event handler in the code; you will
later attach it programmatically to the dynamically created
Button objects:

// A custom event handler that I will attach to
// Click event of all buttons added to the stack
private void Button_Click(

object sender, System.EventArgs e)
{

//Type cast the object to a Button
Button btnSender = (Button)sender;
// Change the lblStatus to show
// that this button was clicked
lblStatus.Text = “Status: “ +

btnSender.Text + “ is clicked.”;
}

10. In the design view, double-click the Add button. This
attaches an event handler for the Click event (the default
event for a button). In the event handler code, insert the
following lines:

private void btnAdd_Click(
object sender, System.EventArgs e)

{
//If stack is not yet full
if (intTos < 8)
{

Button btnSender = (Button) sender;
//Create a new Button to add to the Stack
Button btnNew = new Button();
btnNew.Name=”Element” + intTos;
btnNew.Text = “Element “ + intTos;
btnNew.Location =
new Point((this.Width-btnNew.Width)/2,

btnSender.Location.Y - btnSender.Height * intTos);

continues

05 0789728230 CH02 11/21/02 1:20 PM Page 129

130 Par t I DEVELOPING WINDOWS APPLICATIONS

//Attach a event handler to the Click
//event of newly created button
btnNew.Click += new System.EventHandler(

this.Button_Click);

//Add the Button to the Container’s
//Control collection
this.Controls.Add(btnNew);
lblStatus.Text = “Status: Element “ +

intTos + “ added.”;
intTos++;

}
else

//Stack is full, can’t add a button
lblStatus.Text = “Status: Stack is full!”;

}

11. In the design view, double-click the Remove button. In its
Click event handler code, insert the following lines:

private void btnRemove_Click(
object sender, System.EventArgs e)

{
Button btnSender = (Button) sender;
//Current control count in the
//Form’s Control collection
int intCtrlCount = this.Controls.Count;
//If any new buttons were created in the stack
if (intCtrlCount > intInitCtrlCount)
{

//Remove the most recently added
//control in the collection
this.Controls.Remove(

this.Controls[this.Controls.Count-1]);
//Adjust the top of stack
intTos--;
lblStatus.Text = “Status: Element “ +

intTos + “ removed.”;
}
else

//Stack is empty, Can’t remove a button
lblStatus.Text = “Status: Stack is empty!”;

}

12. Insert the Main() method to launch the form. Set the
form as the startup object for the project.

13. Run the project. Click the Add and Remove buttons. You
will see that the Button controls are dynamically created
and removed. When you click one of the dynamically cre-
ated button controls, its Click event is fired and it displays
a message on the top Label control (refer to Figure 2.12).

continued

05 0789728230 CH02 11/21/02 1:20 PM Page 130

Chapter 2 CONTROLS 131

Step by Step 2.4 illustrates these important aspects of dynamic con-
trol creation:

á You can dynamically add or remove controls to a container by
using the Add() and Remove() methods of the container
object’s controls collection.

á You can access the dynamically added control objects by iterat-
ing through the controls collection.

á By attaching a single event handler to a group of controls, you
can provide the group with a common behavior.

Because event handling is so integrated with the nature of Windows
applications, this chapter includes several examples of handling
events that are associated with controls.

. You can add controls to a form in two ways: by using the
Windows Forms Designer or by hand-coding them in the
code.

. The Windows Forms Designer of the Microsoft Visual Studio
.NET IDE allows you to add controls to a form and design a
form in a very simple manner.

. The Visual Studio .NET toolbox provides a varierty of con-
trols and components to create common Windows GUI ele-
ments.

. When you create controls programmatically, be sure to add
them to their parent containers’ controls collections.

. You can set the properties on controls at design time by using
the Properties window or at runtime by accessing them as
ControlName.PropertyName in the code.

. Some of the important properties of the controls Anchor, Dock,
Enabled, Font, Location, Name, Size, TabIndex, TabStop, and
Visible are shared by most common Windows forms controls.

. The Tab Order Wizard provides a convenient way to set the
tab order of controls to implement logical keyboard-based nav-
igation of the controls in the form via Tab key.

T
IP

Control Arrays in Visual C# .NET
Visual Basic 6.0 has a concept of
control arrays that is often handy
when you’re working with a group of
similar controls. Neither Visual
Basic .NET nor Visual C# .NET has
any built-in support for control
arrays; you can instead achieve the
same functionality by manipulating
the controls collection of a form or
any other container control.

E
X

A
M

R E V I E W B R E A K

continues

05 0789728230 CH02 11/21/02 1:20 PM Page 131

132 Par t I DEVELOPING WINDOWS APPLICATIONS

. Controls are event driven. Events are fired when the user inter-
acts with a control. To cause a control to take specific action
when an event occurs, you need to write an event handler
method and attach that to an event of a control via the con-
trol’s delegate.

. You can attach an event handler to a control’s event either by
using the Properties window or programmatically by adding
an event handler’s delegate object to a control’s event
(ControlName.EventName) by using the += operator.

G U I D E D P R A C T I C E
E X E R C I S E 2 . 1
One of the common features of Windows-based applications is that
they show or hide controls to make their user interface effective.
One common example is the Find and Replace dialog box in
Microsoft Word, where controls showing advance options are initial-
ly hidden but can be shown if the user wants. How would you create
such an interface, where users can control visibility of controls?

In this exercise, you will create the Windows form shown in Figure
2.13. The controls on this form are grouped in two GroupBox con-
tainer controls. The Console group box allows you to manipulate
the controls in the Playground group box. When you choose a type
of control from the combo box in the Console group box and click
the Hide button, all controls of that type in the Playground contain-
er should be hidden. Similarly, when you click the Show button, the
visibility of all controls of the selected type should be restored.

This exercise gives you practice on working with the controls collec-
tion of a container control. You should try working through this
problem on your own first. If you get stuck, or if you’d like to see
one possible solution, follow these steps:

1. Add a new form to your Visual C# .NET project. Name the
form GuidedPracticeExercise2_1.cs.

continued

F IGURE 2 .13
You can work with the Controls collection of a
form to hide and show its controls dynamically
at runtime.

05 0789728230 CH02 11/21/02 1:20 PM Page 132

Chapter 2 CONTROLS 133

2. Place two GroupBox controls on the form. Change the Name
property of one to grpConsole and change the Name property of
the other to grpPlayground. Add and arrange controls on these
GroupBox controls as shown in Figure 2.13. To easily arrange
and align the controls, you can use various options that are
available in the Format menu (see Figure 2.14).

F IGURE 2 .14
Format menu options allow you to arrange con-
trols.

3. Name the combo box inside the Console group box
cboControls and name the buttons btnHide and btnShow.

4. Invoke the Properties window for the cboControls control and
select its Items property. Click the ellipsis (…) button. This
invokes the String Collection Editor (see Figure 2.15). Add the
following values to the editor and then close it:

Button
CheckBox
ComboBox
Label
TextBox
RadioButton

5. Attach Click event handlers with both Hide and Show buttons
and enter the following code to manage the Click event for
them:

private void btnShow_Click(
object sender, System.EventArgs e)

{

F IGURE 2 .15
The String Collection Editor allows you to view
and change the list of strings for a
ListControl object such as ComboBox.

continues

05 0789728230 CH02 11/21/02 1:20 PM Page 133

134 Par t I DEVELOPING WINDOWS APPLICATIONS

//check each control in the grpPlayground
//container control
foreach (Control ctrl in

this.grpPlayground.Controls)
{

//If the type of control is what selected
//by user in the combobox
if (ctrl.GetType().ToString() ==

“System.Windows.Forms.” +
this.cboControls.SelectedItem)
//Show the control
this.grpPlayground.Controls[

this.grpPlayground.Controls.IndexOf(ctrl)].Visible =
true;

}
}

private void btnHide_Click(
object sender, System.EventArgs e)

{
//check each control in the
//grpPlayground container control
foreach (Control ctrl in

this.grpPlayground.Controls)
{

//If the type of control is what
//selected by user in the combobox
if (ctrl.GetType().ToString() ==

“System.Windows.Forms.” +
this.cboControls.SelectedItem)
//Hide the control
this.grpPlayground.Controls[

this.grpPlayground.Controls.IndexOf(ctrl)].Visible =
false;

}
}

6. Insert the Main() method and set the form as the startup
object for the project.

7. Run the project and experiment with the user interface. You’ll
find that when you click the Hide button after selecting a con-
trol type from the combo box, all controls of that type are hid-
den from the Playground group box. Similarly, clicking on the
Show button displays the control of selected type again.

continued

05 0789728230 CH02 11/21/02 1:20 PM Page 134

Chapter 2 CONTROLS 135

If you have difficulty following this exercise, review the sections
“Handling Control Events” and “Important Common Properties of
Controls” earlier in this chapter. Also, complete Step by Step 2.2
and Step by Step 2.4. Experimenting with those exercises and read-
ing the specified sections should help you relearn this material. After
doing that review, try this exercise again.

DIALOG BOXES

A dialog box is used to prompt the user for input. The application
can then use the user input for its own processing. You can either
use one of the existing dialog box components provided by the
Windows Forms library or you can create a dialog box to meet your
custom application requirements. The following sections cover both
of these scenarios.

Common Dialog Boxes
The Windows Forms library provides the following dialog box class-
es that are ready to use in Windows applications:

á CCoolloorrDDiiaalloogg—Displays a list of colors and returns a property
that contains the color selected by user.

á FFoonnttDDiiaalloogg—Displays a dialog box that allows the user to
select a font and other text properties, such as size, style, and
special effects.

á OOppeennFFiilleeDDiiaalloogg—Allows the user to browse files and folders
on his or her computer and select one or more files.

á PPaaggeeSSeettuuppDDiiaalloogg—Allows the user to select various settings
related to page layout.

á PPrriinnttDDiiaalloogg—Allows the user to select various print-related
options and sends specified documents to selected printers.

05 0789728230 CH02 11/21/02 1:20 PM Page 135

136 Par t I DEVELOPING WINDOWS APPLICATIONS

á PPrriinnttPPrreevviieewwDDiiaalloogg—Allows the user to preview a file before
printing.

á SSaavveeFFiilleeDDiiaalloogg—Allows the user to browse the files and fold-
ers on his or her computer and select files that need to be
saved.

These classes are also referred to as Windows Forms dialog
components. These dialog boxes provide the same functionality found
in several of the common dialog boxes that are used by the Windows
operating system. Each of these dialog box classes is derived from the
CommonDialog class, which provides the basic functionality for dis-
playing a dialog box.

The dialog box classes provide a method named ShowDialog that pre-
sents a dialog box to the user. Each of the dialog box classes has a set
of properties that store data that is relevant to the particular dialog
box.

S T E P B Y S T E P
2.5 Using Common Dialog Boxes

1. Add a Windows Form to existing project 316C02. Name
this form StepByStep2_5.

2. Place five Button controls on the form. Name them
btnOpen, btnSave, btnClose, btnColor, and btnFont and
change their Text properties to &Open..., &Save...,
Clos&e..., &Color..., and &Font..., respectively.

3. Place a RichTextBox control on the form and name it
rtbText. Arrange all the controls as shown in Figure 2.16.

4. Drag and drop the following components from the tool-
box to the form: OpenFileDialog, SaveFileDialog,
ColorDialog, and FontDialog. Because these are compo-
nents, they are not added to the form, but they appear on
the component tray in the lower area of the form (see
Figure 2.16).

05 0789728230 CH02 11/21/02 1:20 PM Page 136

Chapter 2 CONTROLS 137

5. Switch to the code view and add the following using
directive at the top of the program:

using System.IO;

6. Double-click the Open button to attach an event handler
to the Click event. Add the following code to the event
handler:

private void btnOpen_Click(
object sender, System.EventArgs e)

{
//Allow to select only *.rtf files
openFileDialog1.Filter =

“Rich Text Files (*.rtf)|*.rtf”;
if(openFileDialog1.ShowDialog() == DialogResult.OK)
{

//Load the file contents in the RichTextBox
rtbText.LoadFile(openFileDialog1.FileName,

RichTextBoxStreamType.RichText);
}

}

7. Add the following code to handle the Click event of the
Save button:

private void btnSave_Click(
object sender, System.EventArgs e)

{

Component Tray

F IGURE 2 .16
The component tray represents components
that do not otherwise provide visible surfaces
at runtime.

N
O

T
E Nonvisual Controls and the

Component Tray Controls such as
common dialog box controls do not
provide a runtime user interface.
Instead of being displayed on the
form’s surface, they are displayed on
a component tray at the bottom of the
form. After a control has been added
to the component tray, you can select
the component and set its properties
just as you would with any other con-
trol on the form. These nonvisual con-
trols implement the IComponent inter-
face and therefore are also some-
times referred to as components.

continues

05 0789728230 CH02 11/21/02 1:20 PM Page 137

138 Par t I DEVELOPING WINDOWS APPLICATIONS

//Default choice to save file is *.rtf
//but user can select
//All Files to save with other extension
saveFileDialog1.Filter =
“Rich Text Files (*.rtf)|*.rtf|All Files (*.*)|*.*”;
if(saveFileDialog1.ShowDialog() == DialogResult.OK)
{

//Save the RichText content to a file
rtbText.SaveFile(saveFileDialog1.FileName,

RichTextBoxStreamType.RichText);
}

}

8. Add the following code to handle the Click event of the
Close button:

private void btnClose_Click(
object sender, System.EventArgs e)

{
//close the form
this.Close();

}

9. Add the following code to handle the Click event of the
Color button:

private void btnColor_Click(
object sender, System.EventArgs e)

{
if(colorDialog1.ShowDialog() == DialogResult.OK)
{

//Change the color of selected text
//If no text selected, change the active color
rtbText.SelectionColor = colorDialog1.Color;

}
}

10. Add the following code to handle the Click event of the
Font button:

private void btnFont_Click(
object sender, System.EventArgs e)

{
if(fontDialog1.ShowDialog() == DialogResult.OK)
{

//Change the font of selected text
//If no text selected, change the active font
rtbText.SelectionFont = fontDialog1.Font;

}
}

continued

T
IP

The FFiilltteerrIInnddeexx Property The
FilterIndex property of the
OpenFileDialog and
SaveFileDialog components deter-
mines the index of the currently
selected filter in the list of filters
specified by the dialog box’s Filter
property. Be aware that this index is
one based; that is, the first filter in
the list of filters has an index of
one instead of zero.

E
X

A
M

05 0789728230 CH02 11/21/02 1:20 PM Page 138

Chapter 2 CONTROLS 139

11. Insert the Main() method to launch the form. Set the
form as the startup object.

12. Run the project. Click the Open button, select a Rich
Text Format (RTF) file to open, experiment with chang-
ing the color and font, and save the file (see Figure 2.17).

The Filter property of the OpenFileDialog and SaveFileDialog
components specifies the choices that appear in the Files of Type
drop-down list boxes of these dialog boxes. You can use this property
to filter the type of files that the user can select from the dialog box.

You will learn about the printing-related dialog box components in
Chapter 11, “Printing.”

Creating a Custom Dialog Box
If you need to create dialog boxes other than those already provided
by the Windows Forms library, you can do so by creating a form and
setting it up to behave as a dialog box. You can make the dialog box
as rich as your requirements dictate by adding various controls to it.

S T E P B Y S T E P
2.6 Creating a Custom Dialog Box

1. Add a Windows form to existing project 316C02. Name
the form frmDialog.

2. Set the ControlBox property of the form to false, set
FormBorderStyle to FixedDialog, set ShowIntaskBar to
False, set StartPosition to CenterParent, and set Text to
A Custom Dialog Box.

3. Place two Button controls and a TextBox control on the
form, set the Name property of the Button controls to btnOK
and btnCancel and change their Text properties to &OK and
&Cancel, respectively. Change the TextBox control’s Name
property to txtDialogText and its Text property to Dialog
Text.

F IGURE 2 .17
The OpenFileDialog and SaveFile dialog
boxes, respectively, allow you to select a file for
opening and saving; the ColorDialog and
FontDialog dialog boxes, respectively, allow
you to select color and font.

N
O

T
E Getting the File Extension The

OpenFileDialog and SaveFileDialog
components have a property named
FileName that returns the name of the
selected file. How can you get just the
extension for this file? You can do so
by using the Extension property of
the FileInfo class:

FileInfo fiFileInfo = new
FileInfo(openFileDialog1.

FileName);
MessageBox.Show(fiFileInfo.
Extension);

Similarly if you want just the name of
the file, without any extensions, you
can use the Name property of the
FileInfo class:

FileInfo fiFileInfo = new
FileInfo(openFileDialog1.

FileName);
MessageBox.Show(fiFileInfo.Name);

continues

05 0789728230 CH02 11/21/02 1:20 PM Page 139

140 Par t I DEVELOPING WINDOWS APPLICATIONS

4. Change the form’s constructor code to the following:

public frmDialog()
{

//
// Required for Windows Forms Designer support
//
InitializeComponent();

//Configure OK button
btnOK.DialogResult =

System.Windows.Forms.DialogResult.OK;
//Configure Cancel button
btnCancel.DialogResult =

System.Windows.Forms.DialogResult.Cancel;
}

5. Add the following code just after the constructor to create
a property that holds the text entered by the user:

private string message;
//Stores the message entered by user
public string Message
{

get
{

return message;
}
set
{

message = value;
}

}

6. Add an event handler for the Click event of the OK but-
ton and add the following code in it:

private void btnOK_Click(
object sender, System.EventArgs e)

{
this.Message = this.txtDialogText.Text;

}

7. Add a new Windows form to the project. Name it
StepByStep2_6.

8. Place a Button control and a Label control on the form.
Name the Button control btnInvokeDialog, and change
the Text property to Invoke Dialog. Name the Label con-
trol lblDialogResult, and change the Text property to
Click the button to invoke a custom dialog box.

continued

N
O

T
E Modal and Modeless Dialog Boxes

When a modal dialog box is open, an
application can only receive input for
the modal dialog box. If you want to
work with other windows, you must
close the modal dialog box first. An
example of a modal dialog box is the
one that opens when you select Help,
About in Visual Studio .NET. On the
other hand, a modeless dialog box
allows an application to receive input
for other windows and controls. An
example of a modeless dialog box is
the Find & Replace dialog box of
Visual Studio .NET.

05 0789728230 CH02 11/21/02 1:20 PM Page 140

Chapter 2 CONTROLS 141

9. Attach an event handler to the Click event of
btnInvokeDialog and add the following code to it:

private void btnInvokeDialog_Click(
object sender, System.EventArgs e)

{
//Create the custom dialog box
frmDialog dlgCustom = new frmDialog();
//Present dialog box to the user
dlgCustom.ShowDialog();

if(dlgCustom.DialogResult == DialogResult.OK)
{

//Display the message in label
//if user pressed OK
this.lblDialogResult.Text = dlgCustom.Message;

}
else

//Indicate that user cancelled the dialog box
this.lblDialogResult.Text =

“Dialog box was cancelled”;
}

10. Insert a Main() method in StepByStep2_6 to launch the
form. Set the form as the startup object for the project.

11. Run the project. Click the Invoke Dialog button, and the
custom dialog box is displayed. Enter some text in the text
box and click the OK button. The text you enter is then
displayed on the parent form’s label control (see Figure
2.18).

The ShowDialog() method displays a form as a modal dialog box. All
the buttons on the form that need to return results have their
DialogResult properties set to any of the DialogResult enumeration
values except DialogResult.None. When the user clicks one of these
buttons, the button sets the form’s DialogResult property with the
DialogResult property of the button and closes the form automati-
cally after running the Click event handler (if any).

. DialogBox is used to prompt the user for input. There are a
few built-in dialog boxes available, such as ColorDialog,
FontDialog, OpenFileDialog, and SaveFileDialog, that func-
tion just like the Windows operating system’s dialog boxes.

F IGURE 2 .18
You can use the ShowDialog method to display
a form as a dialog box.

T
IP

The SShhooww(()) and SShhoowwDDiiaalloogg(())
Methods When you use the
ShowDialog() method of the Form
class, the form is displayed as a
modal dialog box. If you want to dis-
play the form as a modeless dialog
box, you should use the Show()
method.

E
X

A
M

R E V I E W B R E A K

continues

05 0789728230 CH02 11/21/02 1:20 PM Page 141

142 Par t I DEVELOPING WINDOWS APPLICATIONS

. You can build custom dialog boxes to meet custom require-
ments. You can create such a dialog box by creating a form
and setting a few properties of the form that enable the form
to behave like a dialog box.

. Dialog boxes can be of two types: modal and modeless. You
call the ShowDialog() and Show() methods of the Form class to
create modal and modeless dialog boxes, respectively.

COMMON WINDOWS FORMS
CONTROLS

Add controls to a Windows form.

• Set properties on controls.

• Write code to handle control events and add the code
to a control.

The Windows Forms library includes an array of commonly used
GUI elements that you can assemble on a Windows form to create
Windows applications. These GUI elements (or Windows forms
controls) are mostly derived from the System.Windows.Forms.Control
class. By virtue of this inheritance, these controls share a number of
common properties, methods, and events; in addition, these controls
may also have their own specific sets of properties, methods, and
events that give them distinct behaviors. Figure 2.19 shows a hierar-
chy of important classes in the Control class.

The following sections discuss some important controls that are
available in the Windows Forms Designer toolbox. The discussion
and examples presented here will help you appreciate the specific
nature of these controls.

continued

05 0789728230 CH02 11/21/02 1:20 PM Page 142

Chapter 2 CONTROLS 143

The Label and LinkLabel Controls
A Label control is used to display read-only information to the user.
It is generally used to label other controls and to provide the user
with any useful runtime messages or statistics. You can display both
text and images on Label controls by using the Text and Image prop-
erties, respectively. Table 2.1 shows some of the properties of the
Label object with which you should be familiar.

TABLE 2.1

IMPORTANT MEMBERS OF THE Label CLASS

Member Type Description

Image Property Specifies an image that is displayed on a label.

Font Property Specifies the font in which the text is displayed on a label.

Text Property Specifies the text displayed on a label.

TextAlign Property Specifies the alignment of the text displayed on a label.
It can have one of three horizontal positions (Center,
Left, or Right) and one of three vertical positions
(Bottom, Middle, or Top).

ListView

MonthCalendar

PictureBox

PrintPreviewControl

ProgressBar

ScrollableControl

ContainerControl

Form

PropertyGrid

UpDownBase

DomainUpDown

NumericUpDown

Panel

ButtonBase

Control

Button

CheckBox

RadioButton

DataGrid

DateTimePicker

GroupBox

Label

LinkLabel

ListControl

ComboBox

ListBox

CheckedListBox

ScrollBar

HScrollBar

VScrollBar

Splitter

StatusBar

TabControl

TextBoxBase

RichTextBox

TextBox

ToolBar

TrackBar

TreeView

F IGURE 2 .19
System.Windows.Forms.Control is the base
class for all controls.

05 0789728230 CH02 11/21/02 1:20 PM Page 143

144 Par t I DEVELOPING WINDOWS APPLICATIONS

The LinkLabel control is derived from the Label control and is very
similar to it. However, it has an added functionality: It can also
show one or more hyperlinks. Table 2.2 summarizes important prop-
erties and events for the LinkLabel control.

TABLE 2.2

IMPORTANT MEMBERS OF THE LinkLabel CLASS

Member Type Description

ActiveLinkColor Property Specifies the color used to display an active
link.

DisabledLinkColor Property Specifies the color used to display a disabled
link.

Links Property Gets the collection of Link objects in the
LinkLabel control. The Link class contains
information about the hyperlink. Its
LinkData property allows you to associate a
uniform resource locator (URL) with the
hyperlink.

LinkArea Property Specifies which portion of text in the
LinkLabel control is treated as part of the
link.

LinkBehavior Property Specifies how the link appears when the
mouse pointer is placed over it.

LinkClicked Event Occurs when a link in the LinkLabel con-
trol is clicked. Inside its event handler, the
LinkLabelLinkClickedEventArgs object
provides data for the event. LinkClicked is
the default event for LinkLabel class.

LinkColor Property Specifies the color used to display a link.

VisitedLinkColor Property Specifies the color used to display a visited
link

S T E P B Y S T E P
2.7 Using LinkLabel Controls

1. Add a Windows form to existing project 316C02. Name
the form StepByStep2_7.

05 0789728230 CH02 11/21/02 1:20 PM Page 144

Chapter 2 CONTROLS 145

2. Place two LinkLabel controls on the form. Change their
Name properties to lnkWinForms and lnkPrograms and their
Text properties to Windows Forms Community Website and
Launch Calculator | Open C: Drive, respectively.

3. Switch to the code view, and add the following code in
the form’s constructor, after the InitializeComponent()
method call:

//Add a link for Calculator in
//the first half of LinkLabel
lnkPrograms.Links.Add(

0, “Launch Calculator”.Length, “calc.exe “);
//Add a link for C: Drive in
//the second half of LinkLabel
lnkPrograms.Links.Add(lnkPrograms.Text.IndexOf(

“Open C: Drive”), “Open C: Drive”.Length, “c:\\”);

//Autosize the control based on its contents
lnkPrograms.AutoSize = true;

4. Double-click the lnkWinForms link label to attach a
LinkClicked event handler to it. Add the following code
to the event handler:

private void lnkWinForms_LinkClicked(object sender,
System.Windows.Forms.LinkLabelLinkClickedEventArgs e)
{

lnkWinForms.LinkVisited = true;
//Go to Windows Forms Community Website
System.Diagnostics.Process.Start(

“IExplore”, “http://www.windowsforms.net”);
}

5. Double-click the lnkPrograms link label to attach a
LinkClicked event handler to it. Add the following code
to the event handler:

private void lnkPrograms_LinkClicked(object sender,
System.Windows.Forms.LinkLabelLinkClickedEventArgs e)
{

//Launch the program stored in the hyperlink
System.Diagnostics.Process.Start(

e.Link.LinkData.ToString());
}

6. Insert the Main() method to launch form StepByStep2_7.
Set this form as the startup object for the project.

7. Run the project and click the links. The form takes an
appropriate action by either navigating to the Web site,
launching the Calculator, or opening the folder (see
Figure 2.20).

F IGURE 2 .20
A LinkLabel control can be used to link to a
Web page, an application, or a folder.

05 0789728230 CH02 11/21/02 1:20 PM Page 145

146 Par t I DEVELOPING WINDOWS APPLICATIONS

The System.Diagnostic.Process class lets you start and stop process-
es that are running on your computer. Its Start() method actually
starts a given process. The Start() method is static and therefore lets
you create the process without creating an object of
System.Diagnostic.Process class. The
LinkLabelLinkClickedEventArgs object passed to the LinkClicked
event handler contains a Link object that corresponds to the link
being clicked. The LinkData property of this Link object represents
the data associated with the link.

The TextBox and RichTextBox Controls
TextBox and RichTextBox both derive from the TextBoxBase class.
The TextBoxBase class implements the basic functionality used by
both the TextBox and RichTextBox classes.

A TextBox control provides an area that the user can use to input
text. Depending on how you set the properties of this control, you
can use it for multiline text input or you can use it like a password
box that masks the characters entered by the user with a specific
character (such as *). Table 2.3 summarizes the important members
of the TextBox class.

TABLE 2.3

IMPORTANT MEMBERS OF THE TextBox CLASS

Member Type Description

AcceptReturn Property Represents a Boolean value, where true indi-
cates that pressing the Enter key in a multiline
text box inserts a new line. This property is
applicable only if the text box accepts multi-
line input.

CharacterCasing Property Specifies whether the TextBox control needs
to modify the case of the characters as they are
entered. The value of this property can be
Lower, Normal, or Upper. The Default value
is Normal, which means the characters are not
modified.

MultiLine Property Indicates whether the text box can accept
multiple lines of input. The default value is
false.

05 0789728230 CH02 11/21/02 1:20 PM Page 146

Chapter 2 CONTROLS 147

PasswordChar Property Masks each character in the text box by the
specified character. It is usually set when the
text box inputs sensitive information such as a
password, where the characters need to be
masked. If no character is specified, the nor-
mal text is displayed.

ReadOnly Property Makes the text box appear with a gray back-
ground and text cannot be edited when set to
true.

ScrollBars Property Specifies which scrollbars (none, horizontal,
vertical, or both) should appear in a multiline
textbox.

Text Property Specifies the text contained in the textbox.

TextChanged Event Occurs when the value of the Text property
changes. TextChanged is the default event for
the TextBox class.

WordWrap Property Specifies whether the control can automatical-
ly wrap words to the next line. The default
value is true. Works only if the MultiLine
property is set to true.

As its name suggests, the RichTextBox control is a TextBox control
with rich formatting capabilities. It can upload an RTF file. It can
display its contents in rich character and paragraph formatting. Any
portion of the control can be displayed in various formats, depend-
ing on the settings of its properties. Table 2.4 summarizes the
important members of the RichTextBox class.

TABLE 2.4

IMPORTANT MEMBERS OF THE RichTextBox CLASS

Member Type Description

DetectUrls Property Specifies whether the control automatically
detects and formats URLs

Rtf Property Specifies the text of the RichTextBox control,
including all RTF codes

SelectionColor Property Specifies the color of the currently selected text

SelectionFont Property Specifies the font of the currently selected text

Member Type Description

continues

05 0789728230 CH02 11/21/02 1:20 PM Page 147

148 Par t I DEVELOPING WINDOWS APPLICATIONS

SelectedRtf Property Specifies the currently selected RTF text

TextChanged Event Occurs when the value of the Text property
changes. TextChanged is the default event for
RichTextBox class.

WordWrap Property Specifies whether the control can automatically
wrap words to the next line if required

ZoomFactor Property Specifies the current zoom level.

Step by Steps 2.5 and 2.18, later in this chapter, describe good usage
of the RichTextBox control.

The PictureBox Control
PictureBox controls display images and graphics from metafile, icon,
bitmap, JPEG, PNG, and GIF files. Table 2.5 summarizes the
important members of the PictureBox class.

TABLE 2.5

IMPORTANT MEMBERS OF THE PictureBox CLASS

Member Type Description

Click Event Occurs when the control is clicked. Click is the default
event for the PictureBox class.

Image Property Represents the image that the picture box displays.

SizeMode Property Indicates how the image is displayed. Holds one of the
PictureBoxSizeMode enumeration values—AutoSize

(picture box is autosized to the image size),
CenterImage (image is displayed in the center of the
picture box), Normal (image is placed in the upper-left
corner of the picture box), and StretchImage (image
is stretched or reduced to fit the picture box size).

TABLE 2.4

IMPORTANT MEMBERS OF THE RichTextBox CLASS

Member Type Description

continued

05 0789728230 CH02 11/21/02 1:20 PM Page 148

Chapter 2 CONTROLS 149

Step by Steps 2.8 and 2.16, later in this chapter, show good usage of
PictureBox control.

The GroupBox and Panel Controls
GroupBox is a container control that contains other controls. It is
mostly used to arrange controls and group similar controls. It does
not include scrollbars. Table 2.6 summarizes the important members
of the GroupBox class.

TABLE 2.6

IMPORTANT MEMBERS OF THE GroupBox CLASS

Member Type Description

Controls Property Specifies a collection of controls contained in a
group box

Text Property Specifies a caption for a group box

Similar to GroupBox, Panel is a container control that contains other
controls. It is mostly used to arrange controls and group similar con-
trols. It has built-in support for scrollbars. You cannot provide a cap-
tion for the Panel control. Table 2.7 summarizes the important
members of the Panel class.

TABLE 2.7

IMPORTANT MEMBERS OF THE Panel CLASS

Member Type Description

AutoScroll Property Indicates whether scrollbars should be displayed when
the display of all the controls exceeds the area of a panel

Controls Property Specifies a collection of controls contained in a panel

05 0789728230 CH02 11/21/02 1:20 PM Page 149

150 Par t I DEVELOPING WINDOWS APPLICATIONS

S T E P B Y S T E P
2.8 Using GroupBox and Panel Controls

1. Add a Windows form to existing project 316C02. Name
the form StepByStep2_8.

2. Place on the form a Label control with the Text property
set to Click button to open a picture file: and a
Button control with the Text property set to Browse...
and the Name property set to btnBrowse. Also, add to the
form an OpenFileDialog control with the Name property
set to ofdPicture.

3. Place a GroupBox control on the form and add three label
controls to it. Name the three label controls lblSize,
lblDateModified, and lblDateAccessed. Set the GroupBox
control’s Name property to grpFile and Text property to
File Statistics.

4. Place a Panel control in the form and add a PictureBox
control to it. Set the Panel control’s Name property to
pnlImage and AutoScroll property to true. Set the
PictureBox control’s Name property to pbImage and
SizeMode property to AutoSize.

5. Switch to the code view and add the following using
directive at the top of the program:

using System.IO;

6. Double-click the btnBrowse button to attach a Click event
handler to it. Add the following code to the event handler:

private void btnBrowse_Click(
object sender, System.EventArgs e)

{
//Set filters for graphics files
ofdPicture.Filter=
“Image Files (BMP, GIF, JPEG, etc.)|” +
“*.bmp;*.gif;*.jpg;*.jpeg;*.png;*.tif;*.tiff|” +
“BMP Files (*.bmp)|*.bmp|” +
“GIF Files (*.gif)|*.gif|” +
“JPEG Files (*.jpg;*.jpeg)|*.jpg;*.jpeg|” +
“PNG Files (*.png)|*.png|” +
“TIF Files (*.tif;*.tiff)|*.tif;*.tiff|” +
“All Files (*.*)|*.*”;

if(ofdPicture.ShowDialog() == DialogResult.OK)
{

05 0789728230 CH02 11/21/02 1:20 PM Page 150

Chapter 2 CONTROLS 151

//Get file information
FileInfo file = new FileInfo(

ofdPicture.FileName);
lblSize.Text = String.Format(

“File Size: {0} Bytes”,
file.Length.ToString());

lblDateModified.Text = String.Format(
“Date last modified: {0}”,
file.LastWriteTime.ToLongDateString());

lblDateAccessed.Text = String.Format(
“Date last accessed: {0}”,
file.LastAccessTime.ToLongDateString());

//Load the file contents in the PictureBox
this.pbImage.Image = new Bitmap(

ofdPicture.FileName);
}

}

7. Insert the Main() method to launch form StepByStep2_8.
Set this form as the startup object for the project.

8. Run the project. Click the Browse button. The Open dia-
log box prompts you to open an image file. Select an
appropriate image file and click OK. The Panel control
shows the image, and the GroupBox control shows the file
statistics (see Figure 2.21). The Panel control includes
scrollbars if the image size exceeds the panel area.

The Button, CheckBox, and
RadioButton Controls
A Button object is used to initiate a specific action when a user clicks
it. The Button class derives from the ButtonBase class. The
ButtonBase class provides common functionality to the Button,
CheckBox, and RadioButton classes.

In contrast to the Button class, CheckBox and RadioButton are used to
maintain state. They can be on or off (that is, selected or not selected,
checked or unchecked). These controls are generally used in groups.
A CheckBox control allows you to select one or more options from a
group of options, and a group of RadioButton controls are used to
select one out of several mutually exclusive options. If you want to
place two groups of RadioButton controls on a form and have each
group allow one selection, you need to place them in different con-
tainer controls, such as GroupBox or Panel controls, on the form.

F IGURE 2 .21
The Panel and GroupBox controls show the
image and file statistics.

05 0789728230 CH02 11/21/02 1:20 PM Page 151

152 Par t I DEVELOPING WINDOWS APPLICATIONS

These container controls, as discussed earlier in the chapter, are used
to group controls that have similar functionality. The GroupBox con-
trol is a popular choice for grouping RadioButton controls.

Tables 2.8, 2.9, and 2.10 summarize the important members of the
Button, CheckBox, and RadioButton classes, respectively.

TABLE 2.8

IMPORTANT MEMBERS OF THE Button CLASS

Member Type Description

Image Property Specifies the image displayed on a button.

Text Property Specifies the text displayed on a button.

Click Event Occurs when the Button control is clicked. Click is
the default event for the Button class.

TABLE 2.9

IMPORTANT MEMBERS OF THE CheckBox CLASS

Member Member Description

Checked Property Returns true if the check box has been
checked. Otherwise, it returns false.

CheckedChanged Event Occurs every time a check box is checked or
unchecked. CheckedChanged is the default
event for the CheckBox class

CheckState Property Specifies the state of the check box. Its value is
one of the three CheckState enumeration val-
ues: Checked, Unchecked, or
Indeterminate.

ThreeState Property Indicates whether the check box allows three
states: Checked, Unchecked, or
Indeterminate. If it is set to false,
CheckState can be set to Indeterminate
only in code and not through the user inter-
face.

Text Property Specifies the text displayed along with the
check box.

T
IP

A Checked Property Doesn’t
Always Indicate the Checked
State If the ThreeState property
of a CheckBox control is true, the
Checked property returns true for
Checked as well as for the
Indeterminate check state.
Therefore, the CheckState property
should be used to determine the
current state of the check state.

E
X

A
M

05 0789728230 CH02 11/21/02 1:20 PM Page 152

Chapter 2 CONTROLS 153

TABLE 2.10

IMPORTANT MEMBERS OF THE RadioButton CLASS

Member Type Description

Checked Property Indicates whether the radio button is selected.
Returns true if the button is selected and false
otherwise.

CheckedChanged Event Occurs every time the control is either selected
or deselected. CheckedChanged is the default
event of the RadioButton class.

Text Property Specifies the text displayed along with the radio
button.

S T E P B Y S T E P
2.9 Using CheckBox and RadioButton Controls

1. Add a Windows form to existing project 316C02. Name
the form StepByStep2_9.

2. Add three GroupBox controls to the form. Change their
Name properties to grpSampleText, grpEffects, and
grpFontSize. To grpSampleText, add a Label control, and
then add two CheckBox controls to grpEffects and three
RadioButton controls to grpFontSize. Arrange the controls
and change their Text properties as shown in Figure 2.22.

3. Change the Name property of the Label control to
lblSampleText. Change the Name properties of the two
CheckBox controls to cbStrikeout and cbUnderline.
Change the Name properties of RadioButton controls to
rb12Point, rb14Points, and rb16Points.

4. Double-click the CheckBox and RadioButton controls and
add the following code to the default event handlers:

private void cbStrikeout_CheckedChanged(
object sender, System.EventArgs e)

{
//toggle the Strikeout FontStyle of lblSampleText
lblSampleText.Font = new Font(
lblSampleText.Font.Name, lblSampleText.Font.Size,
lblSampleText.Font.Style ^ FontStyle.Strikeout);

}

F IGURE 2 .22
You use the CheckBox control to select a com-
bination of options and the RadioButton con-
trol to select one of several mutually exclusive
options.

continues

N
O

T
E The AAuuttooCChheecckk Property When the

AutoCheck property of a CheckBox or a
RadioButton control is true, the
Checked property (even the
CheckState property, in the case of a
CheckBox control) and the appearance
of the control are automatically
changed when the user clicks the con-
trol. You can set the AutoCheck prop-
erty to false and then write code in
the Click event handler to have these
controls behave in a different manner.

05 0789728230 CH02 11/21/02 1:20 PM Page 153

154 Par t I DEVELOPING WINDOWS APPLICATIONS

private void cbUnderline_CheckedChanged(
object sender, System.EventArgs e)

{
//toggle the Underline FontStyle of lblSampleText
lblSampleText.Font = new Font(
lblSampleText.Font.Name, lblSampleText.Font.Size,
lblSampleText.Font.Style ^ FontStyle.Underline);

}

private void rb12Points_CheckedChanged(
object sender, System.EventArgs e)

{
//Change the font size of lblSampleText to 12
lblSampleText.Font = new Font(
lblSampleText.Font.Name, 12,
lblSampleText.Font.Style);

}

private void rb14Points_CheckedChanged(
object sender, System.EventArgs e)

{
//Change the font size of lblSampleText to 14
lblSampleText.Font = new Font(

lblSampleText.Font.Name, 14,
lblSampleText.Font.Style);

}

private void rb16Points_CheckedChanged(
object sender, System.EventArgs e)

{
//Change the font size of lblSampleText to 16
lblSampleText.Font = new Font(

lblSampleText.Font.Name, 16,
lblSampleText.Font.Style);

}

5. Insert a Main() method to launch the form StepByStep2_9.
Set the form as the startup object for the project.

6. Run the project. Click the CheckBox controls, and you see
that the font style of sample text changes. Then click the
RadioButton controls, and you are able to select only one
of three radio buttons, and when you click one, the
CheckedChanged event handler immediately increases or
decreases the font size (refer to Figure 2.22).

continued

T
IP

The FFoonnttSSttyyllee Enumeration and
Bitwise Operations The
FontStyle enumeration has a
Flags attribute that allows bitwise
operations on FontStyle values.
For example, look at the following
statement:

lblSampleText.Font.Style |
FontStyle.Underline

Here the | operator will turn on all
the bits representing the Underline
style, returning a FontStyle value
that adds Underline to the existing
font style of lblSampleText.

The following expression involves a
bitwise exclusive OR (XOR) operation:

lblSampleText.Font.Style ^
FontStyle.Underline

This expression returns a
FontStyle value that toggles the
Underline font style of the label. If
the label was already underlined,
the new value has the underline
removed; if the label was not under-
lined already, the Underline bits
are set in the new value.

The following expression involving a
bitwise AND does not have any
effect because using AND with 1
always returns the original value:

lblSampleText.Font.Style &
FontStyle.Underline

E
X

A
M

05 0789728230 CH02 11/21/02 1:20 PM Page 154

Chapter 2 CONTROLS 155

The ListBox, CheckedListBox, and
ComboBox Controls
A ListBox control allows you to select one or more values from a
given list of values. It derives from the ListControl class, which
provides common functionality for both the ListBox and ComboBox
controls. Table 2.11 summarizes the important members of the
ListBox class.

TABLE 2.11

IMPORTANT MEMBERS OF THE ListBox CLASS

Member Type Description

ColumnWidth Property Specifies the width of a column in a multi-
column list box.

ItemHeight Property Specifies the height of an item in a list
box.

Items Property Specifies a collection of objects represent-
ing the list of items in a list box.

FindString() Method Finds the first item in a list box that starts
with the specified string.

FindStringExact() Method Finds the first item in a list box that exact-
ly matches the specified string.

MultiColumn Property Indicates whether a list box supports mul-
tiple columns.

SelectedIndex Property Specifies an index of the currently selected
item.

SelectedIndexChanged Event Occurs when the selected index property
changes. SelectedIndexChanged is the
default event for the ListBox class.

SelectedIndices Property Specifies a collection of indexes of the cur-
rently selected items.

SelectedItem Property Specifies a currently selected item.

SelectedItems Property Specifies a collection of currently selected
items.

continues

05 0789728230 CH02 11/21/02 1:20 PM Page 155

156 Par t I DEVELOPING WINDOWS APPLICATIONS

SelectionMode Property Indicates the number of items that can be
selected. The values are specified by the
SelectionMode enumeration and can be
MultiSimple (allows multiple selections),
MultiExtended (allows multiple selec-
tions, with the help of the Ctrl, Shift, and
arrow keys), None (allows no selection),
and One (allows a single selection).

Sorted Property Indicates whether the items in a list box
are sorted alphabetically.

The CheckedListBox control derives from the ListBox control and
inherits most of the features of the ListBox class. A CheckedListBox
control displays a list of items to be selected, along with a check box
for each item. The user selects an item by clicking the check box
associated with the item. Because a CheckedListBox control contains
check boxes, it implies that zero or more items can be selected from
a CheckedListBox control. Table 2.12 summarizes important mem-
bers of the CheckedListBox class.

TABLE 2.12

IMPORTANT MEMBERS OF THE CheckedListBox CLASS

Member Type Description

CheckedIndices Property Specifies a collection of indexes of the currently
checked items.

CheckedItems Property Specifies a collection of currently checked items.

ItemCheck Event Occurs when an item is checked or unchecked.

SelectionMode Property Indicates the number of items that can be
checked. The values are specified by the
SelectionMode enumeration and can be only
None (allow no selection) or One (allow multiple
selections).

TABLE 2.11

IMPORTANT MEMBERS OF THE ListBox CLASS

Member Type Description

continued

N
O

T
E The SSeelleeccttiioonnMMooddee Property of the

CChheecckkeeddLLiissttBBooxx Class Unlike the
ListBox class, the CheckedListBox
class allows only two values of the
SelectionMode enumeration for its
SelectionMode property. The value
None does not allow any selection,
and the value One allows you to make
zero or more selections. It is invalid to
use the other values of the
SelectionMode enumeration, such as
MultiSimple and MultiExtended, with
the SelectionMode property of the
CheckedListBox control.

05 0789728230 CH02 11/21/02 1:20 PM Page 156

Chapter 2 CONTROLS 157

S T E P B Y S T E P
2.10 Using ListBox and CheckedListBox Controls

1. Add a Windows form to existing project 316C02. Name
the form StepByStep2_10.

2. Add two Label controls, a CheckedListBox control, a
ListBox control, and a Button control, and arrange them
as shown in Figure 2.23. Change the Label control’s Text
properties to Select Scripts and Selected Scripts.
Change the Button control’s Name property to btnDone and
change its Text property to Done.

3. Change the ListBox control’s Text property to
lbSelectedScripts and SelectionMode to MultiExtended.
Name the CheckedListBox control clbScripts, select its
Items property, and click the ellipsis (…) button. Add the
following scripts in the String Collection Editor:

Latin
Greek
Cyrillic
Armenian
Hebrew
Arabic
Devanagari
Bengali
Gurmukhi
Gujarati
Oriya
Tamil
Telugu
Kannada
Malayalam
Thai
Lao
Georgian
Tibetan
Japanese Kana

4. Switch to the code view and add the following using
directive:

using System.Text;

continues

05 0789728230 CH02 11/21/02 1:20 PM Page 157

158 Par t I DEVELOPING WINDOWS APPLICATIONS

5. Invoke the Properties window and click the Events icon.
Double-click the ItemCheck event to add an event handler
for the event. Add the following code to the event han-
dler:

private void clbScripts_ItemCheck(object sender,
System.Windows.Forms.ItemCheckEventArgs e)

{
//Get the item that was just checked or unchecked
string item = clbScripts.SelectedItem.ToString();
if (e.NewValue == CheckState.Checked)

//Checked: Add to the ListBox
lbSelectedScripts.Items.Add(item);

else
//Unchecked: Remove from the ListBox
lbSelectedScripts.Items.Remove(item);

}

6. Double-click the btnDone control and add the following
code to handle the Click event of the Button control:

private void btnDone_Click(
object sender, System.EventArgs e)

{
//Be sure to have a using directive for System.Text
//at top of the program
StringBuilder sbLanguages = new StringBuilder();
if (lbSelectedScripts.SelectedItems.Count>0)
{

sbLanguages.Append(“You Selected:\n\n”);
//If there were items selected in ListBox
//create a string of their names
foreach (string item in

lbSelectedScripts.SelectedItems)
sbLanguages.Append(item + “\n”);

}
else
{

//No items selected
sbLanguages.Append(

“No items selected from ListBox”);
}
MessageBox.Show(sbLanguages.ToString(),

“Selection Status”,
MessageBoxButtons.OK,
MessageBoxIcon.Information);

}

continued

05 0789728230 CH02 11/21/02 1:20 PM Page 158

Chapter 2 CONTROLS 159

7. Insert the Main() method to launch the form
StepByStep2_10. Set the form as the startup object for the
project.

8. Run the project. Double-click the CheckBox control to
select items from the CheckedListBox control. The selected
scripts are then added to the ListBox control. Select some
items from the ListBox control and then click the Done
button. A message box is displayed, showing the selected
scripts from the ListBox control (see Figure 2.23).

A ComboBox control is similar to a ListBox control, except that it has
an editing field. A combo box appears with an editing text box with
a down arrow at the right side of the box. When the down arrow is
clicked, a drop-down list containing the predefined items to be dis-
played by the combo box appears. You can select only a single item
from the combo box. A ComboBox control allows you to enter new
text or select from the list of existing items in the combo box. Table
2.13 summarizes the important members of the ComboBox class with
which you should be familiar.

TABLE 2.13

IMPORTANT MEMBERS OF THE ComboBox CLASS

Member Type Description

DrawMode Property Specifies how combo box items are drawn.
It has one of the values from the
DrawMode enumeration, Normal, which
specifies that the list of items is drawn by
the system itself. The other two values,
OwnerDrawFixed and
OwnerDrawVariable, specify that the ele-
ments are drawn by your own program
(preferably in the DrawItem event han-
dler). OwnerDrawFixed specifies that
elements be of the same size, and
OwnerDrawVariable specifies a variable
size.

F IGURE 2 .23
The ListBox and CheckedListBox controls
allow the user to select a combination of values
from a list of items.

continues

05 0789728230 CH02 11/21/02 1:20 PM Page 159

160 Par t I DEVELOPING WINDOWS APPLICATIONS

DropDownStyle Property Represents the style of the combo box. Its
values are specified by the DropDownStyle
enumeration values DropDown (default
style, click the arrow button to display the
items, and the text portion is editable),
DropDownList (click the arrow button to
display the items, but the text portion is
not editable), and Simple (no arrow but-
ton, the list portion is always visible, and
the text portion is also editable).

DropDownWidth Property Specifies the width of the drop-down list
portion of the combo box.

Items Property Specifies a collection of items in the combo
box control.

MaxDropDownItems Property Represents the maximum number of items
the drop-down list portion can display. If
the number of items is greater than this
property, a scrollbar appears.

MaxLength Property Indicates the maximum length of text
allowed to be entered in the editable por-
tion of the combo box.

SelectedIndex Property Specifies an index of the currently selected
item.

SelectedIndexChanged Event Occurs when the SelectedIndex proper-
ty changes. SelectedIndexChanged is the
default event for the ComboBox class.

SelectedItem Property Specifies the currently selected item.

SelectedText Property Specifies the currently selected text in the
editable portion.

Sorted Property Indicates whether the items are sorted
alphabetically in the combo box.

TABLE 2.13

IMPORTANT MEMBERS OF THE ComboBox CLASS

Member Type Description

continued

T
IP

The SSeelleecctteeddIInnddeexx Property The
SelectedIndex property in the
ListBox, CheckedListBox, and
ComboBox controls returns –1 if no
item is selected.

E
X

A
M

05 0789728230 CH02 11/21/02 1:20 PM Page 160

Chapter 2 CONTROLS 161

S T E P B Y S T E P
2.11 Using ComboBox Controls

1. Add a Windows form to existing project 316C02. Name
the form StepByStep2_11.

2. Place a Label control with the Text property Select or
Enter a Color, a ComboBox control with the Name property
cboColor, and a Button control with the Name property
btnSet and the Text property Set Form’s Back Color.

3. Change the ComboBox control’s Sorted property to true
and add the following scripts to the items collection via
the String Collection Editor:

Violet
Indigo
Blue
Green
Yellow
Orange
Red
White

4. Double-click the btnSet control and add the following
code to handle the Click event of the Button control:

private void btnSet_Click(
object sender, System.EventArgs e)

{
this.BackColor = Color.FromName(cboColor.Text);

}

5. Insert a Main() method to launch the form
StepByStep2_11. Set the form as the startup object for the
project.

6. Run the project. Select a color from the list of colors in
the combo box or enter a new color in the combo box.
Click the button. The form’s background color is changed
to the color that is selected or entered in the combo box.
Figure 2.24 shows the output when a desired color is
entered in the combo box and the button is clicked.

F IGURE 2 .24
The ComboBox control allows you to either
select from a list or enter new text.

05 0789728230 CH02 11/21/02 1:20 PM Page 161

162 Par t I DEVELOPING WINDOWS APPLICATIONS

G U I D E D P R A C T I C E
E X E R C I S E 2 . 2
Some Windows-based applications use sophisticated combo boxes
that have rich user interfaces that can display things such as images
and text in various fonts. Ever wonder how you would do such cus-
tomization in applications?

In this exercise you will create the Windows form shown in Figure
2.25. The idea is to create a font sampler such as those used by many
word processing applications. The form contains a combo box that
displays a list of fonts installed on the system. But the interesting
thing here is that the items in the combo box are displayed in their
respective fonts. The form also contains a label control that displays a
sample of the font that the user chooses from the combo box.

This exercise gives you practice on working with controls that have
customized rendering. If you are looking for a starting point, try
experimenting with the DrawMode property and the DrawItem event of
the ComboBox control and then proceed with this exercise. You should
try working through this problem on your own first. If you get
stuck, or if you’d like to see one possible solution, follow these steps:

1. Add a new form to your Visual C# .NET project. Name the
form GuidedPracticeExercise2_2.cs.

2. Place two Label controls on the form—one with the Text
property Select a Font and the other with the Name property
lblSampleText, the Text property Sample Text, and the Font
property Microsoft Sans Serif, Regular, 14.

3. Place a ComboBox control on the form. Change the Name proper-
ty to cboFont, change DrawMode to OwnerDrawVariable, and
change DropDownStyle to DropDownList.

4. Double-click the form and add the following code to handle
the Load event of the form:

private void GuidedPracticeExercise2_2_Load(
object sender, System.EventArgs e)

{
//Add a list of System Fonts to ComboBox
cboFont.Items.AddRange(FontFamily.Families);

}

F IGURE 2 .25
You can create an owner-drawn ComboBox
control by programming the DrawItem event
handler.

05 0789728230 CH02 11/21/02 1:20 PM Page 162

Chapter 2 CONTROLS 163

5. Add the following code in the code view:

private FontStyle GetFontStyle(FontFamily ff)
{

FontStyle fontStyle = FontStyle.Regular;
// Check whether Regular style is available
if (!ff.IsStyleAvailable(FontStyle.Regular))

fontStyle = FontStyle.Italic;
// Check whether Italic style is available
if (!ff.IsStyleAvailable(FontStyle.Italic))

fontStyle = FontStyle.Bold;
return fontStyle;

}

6. Invoke the Properties window, click the Events icon, select the
DrawItem event, and double-click to add an event handler to
DrawItem. Add the following code to the event handler:

// This DrawItem event handler is invoked
// to draw an item in a ComboBox if that
// ComboBox is in an OwnerDraw DrawMode.
private void cboFont_DrawItem(object sender,

System.Windows.Forms.DrawItemEventArgs e)
{

ComboBox cboFont = (ComboBox) sender;
// do nothing if there is no data
if (e.Index == -1)

return;
if (sender == null)

return;

//Make a FontFamily object from the name
//of the font currently being drawn
FontFamily fontFamily =

(FontFamily) cboFont.Items[e.Index];

// Create a Font object that will be used
// to draw the text in ComboBox
Font font = new Font(fontFamily.Name, 12,
GetFontStyle(fontFamily));

// If the item is selected,
// draw the correct background color
e.DrawBackground();
e.DrawFocusRectangle();

// DrawItemEventArgs gives access to
// the ComboBox Graphics object
Graphics g = e.Graphics;

// Draw the name of the font in the same font
g.DrawString(fontFamily.Name, font,
new SolidBrush(e.ForeColor),
e.Bounds.X, e.Bounds.Y+4);

}

continues

05 0789728230 CH02 11/21/02 1:20 PM Page 163

164 Par t I DEVELOPING WINDOWS APPLICATIONS

7. Double-click the combo box and add the following code to
handle the SelectedIndexChanged event of the ComboBox con-
trol:

private void cboFont_SelectedIndexChanged(
object sender, System.EventArgs e)

{
// Get the FontFamily object for
// current ComboBox selection
FontFamily fontFamily =

(FontFamily)((ComboBox) sender).SelectedItem;
// Create a Font object and draw the Font Name
lblSampleText.Font = new Font(fontFamily.Name,
lblSampleText.Font.Size, GetFontStyle(fontFamily));

}

8. Insert the Main() method to launch the form and set the form
as the startup object for the project.

9. Run the project. The combo box displays all the available
fonts, drawn in their own fonts. The label’s text is also updated
to display the text in the selected font (refer to Figure 2.25).

If you have difficulty following this exercise, review the section “The
ListBox, CheckedListBox and ComboBox Controls,” earlier in this
chapter. After doing that review, try this exercise again

. The LinkLabel control is derived from the Label control. It
allows you to add links to a control. The Links property of the
LinkLabel control contains a collection of all the links refer-
enced by the control.

. You can display a TextBox control as an ordinary text box, a
password text box (in which each character is masked by the
character provided in the PasswordChar property), or a multi-
line text box by setting the TextBox control’s MultiLine proper-
ty to true. The RichTextBox control provides enriched format-
ting capabilities to a text box control. It can also be drawn as a
single-line or multiline text box. By default, it has its
MultiLine property set to true, unlike the TextBox control.

continued

R E V I E W B R E A K

05 0789728230 CH02 11/21/02 1:20 PM Page 164

Chapter 2 CONTROLS 165

. GroupBox and Panel controls are container controls. They can
be used to group similar controls. The Controls property of
these controls contains a collection of the controls’ child
controls.

. The CheckBox control allows multiple check boxes to be
checked from a group of check boxes, and a RadioButton con-
trol allows only one radio button to be selected from a group
of mutually exclusive radio buttons.

. The CheckBox control can allow you to set three check states—
Checked, Unchecked, and Indeterminate—if the ThreeState
property is set to true.

. The ComboBox control allows you to select a value from a list of
predefined values or to enter a value in the combo box. The
ListBox control allows you to select a value from a list of
values displayed.

. The CheckedListBox control derives from the ListBox control
and inherits its functionality. However, a CheckedListBox con-
trol displays a check box along with a list of items to be
checked. It allows only two selection modes: None (allows no
selection) and One (allows multiple selections).

The DomainUpDown and NumericUpDown
Controls
The DomainUpDown and NumericUpDown controls inherit from the
System.Windows.Forms.UpDownBase class. You use them to select val-
ues from the (generally) ordered collection of values by pressing the
control’s up and down buttons. You can also enter values in these
controls, unless the ReadOnly property is set to true.

The DomainUpDown control allows you to select from a collection of
objects. When an item is selected, the object is converted to String
and is displayed. If you want a control that displays numeric values,
you instead use the NumericUpDown control. Table 2.14 summarizes
the important members of the DomainUpDown class.

05 0789728230 CH02 11/21/02 1:20 PM Page 165

166 Par t I DEVELOPING WINDOWS APPLICATIONS

TABLE 2.14

IMPORTANT MEMBERS OF THE DomainUpDown CLASS

Member Type Description

Items Property Represents a collection of objects
assigned to a control.

ReadOnly Property Indicates whether you can change the
value in a way other than by pressing the
up and down buttons.

SelectedIndex Property Specifies the index value of the selected
item in the items collection.

SelectedItem Property Specifies the value of the selected item.

SelectedItemChanged Event Occurs when the SelectedIndex prop-
erty is changed. SelectedItemChanged
is the default event of the DomainUpDown
class.

Sorted Property Indicates whether the items collection is
sorted.

Wrap Property Indicates whether the SelectedIndex
property resets to the first or the last item
if the user continues past either end of
the list.

The NumericUpDown control contains a single numeric value that can
be increased or decreased when you click the up or down buttons of
the control. You can specify the Minimum, Maximum, or Increment value
to control the range of values in this control. Table 2.15 summarizes
the important members of the NumericUpDown class.

TABLE 2.15

IMPORTANT MEMBERS OF THE NumericUpDown CLASS

Member Type Description

Increment Property Indicates to increase or decrease the Value
property by the specified amount when the
up or down button is clicked

Maximum Property Specifies the maximum allowed value

Minimum Property Specifies the minimum allowed value

05 0789728230 CH02 11/21/02 1:20 PM Page 166

Chapter 2 CONTROLS 167

ReadOnly Property Indicates whether you can change the
value in a way other than by pressing the
up and down buttons

ThousandsSeparator Property Indicates whether the thousands separator
should be used when appropriate

Value Property Specifies a value assigned to a control

ValueChanged Event Occurs when the Value property is
changed. ValueChanged is the default
event of the NumericUpDown class.

S T E P B Y S T E P
2.12 Using DomainUpDown and NumericUpDown

Controls

1. Add a Windows form to existing project 316C02. Name
the form StepByStep2_12.

2. Add three Label controls, one DomainUpDown control, and
one NumericUpDown control to the form and arrange them
as shown in Figure 2.26.

3. Name the DomainUpDown control dudColor. Set its Text
property to Black, UpDownAlign property to Left, and Wrap
property to true. Select its Items property and click the
ellipsis (…) button. In the String Collection Editor add
the following values:

Violet
Indigo
Blue
Green
Yellow
Orange
Red
Black
White

4. Name the NumericUpDown control nudSize. Set its Maximum
property to 30, Minimum to 2, Increment to 2 , Value to 12,
and ReadOnly to true.

Member Type Description

F IGURE 2 .26
The DomainUpDown and NumericUpDown con-
trols allow the user to select a value from a
given list of values, by clicking up or down but-
tons or by directly entering a value.

continues

05 0789728230 CH02 11/21/02 1:20 PM Page 167

168 Par t I DEVELOPING WINDOWS APPLICATIONS

5. Name the Label placed at the bottom of the form
lblSampleText, and then change its Text property to
sample Text and its TextAlign property to MiddleCenter.

6. Attach the event handlers to the default events of the
DomainUpDown and NumericUpDown controls. Add the follow-
ing code to the event handlers:

private void dudColor_SelectedItemChanged(
object sender, System.EventArgs e)

{
//Typecast the object to DomainUpDown
DomainUpDown dudColor = (DomainUpDown) sender;
//Change color of lblsampleText to selected color
lblSampleText.ForeColor =

Color.FromName(dudColor.Text);
}

private void nudSize_ValueChanged(
object sender, System.EventArgs e)

{
//Typecast the object to NumericUpDown
NumericUpDown nudSize = (NumericUpDown) sender;
//Change the font of lblSampleText to selected font
lblSampleText.Font = new Font(
lblSampleText.Font.FontFamily,
(float) nudSize.Value);

}

7. Insert the Main() method to launch form StepByStep2_12.
Set the form as the startup object for the project.

8. Run the project. Click the up and down buttons of the
UpDown controls. Their respective event handlers are fired
and change the appearance of the Text property of the
lblSampleText control (refer to Figure 2.26). You can
enter a desired color in the DomainUpDown control because
its ReadOnly property is false.

The MonthCalendar and
DateTimePicker Controls
The MonthCalendar control provides a user-friendly interface to select
a date or a range of dates. Table 2.16 summarizes the important mem-
bers of the MonthCalendar class with which you should be familiar.

continued

05 0789728230 CH02 11/21/02 1:20 PM Page 168

Chapter 2 CONTROLS 169

TABLE 2.16

IMPORTANT MEMBERS OF THE MonthCalendar CLASS

Member Type Description

CalendarDimensions Property Specifies the number of columns and rows
of months to display.

DateChanged Event Occurs when the date that is selected in the
control changes. DateChanged is the default
event of the MonthCalendar class.

DateSelected Event Occurs when a date is selected in the con-
trol.

FirstDayOfWeek Property Represents the first day of the week dis-
played in the calendar.

MaxDate Property Specifies the latest allowable date that can be
selected.

MaxSelectionCount Property Specifies the maximum number of days that
can be selected.

MinDate Property Specifies the earliest allowable date that can
be selected.

SelectionEnd Property Specifies the end date of the selected range
of dates.

SelectionRange Property Specifies the selected range of dates.

SelectionStart Property Specifies the start date of the selected range
of dates.

ShowToday Property Indicates whether today’s date should be
displayed in the bottom of the control.

ShowTodayCircle Property Indicates whether today’s date should be
circled.

ShowWeekNumbers Property Indicates whether the week numbers (1–52)
should be displayed at the beginning of each
row of days.

TodayDate Property Represents today’s date.

The DateTimePicker control allows the user to select the date and
time in different formats. The Format property determines the for-
mat in which the control displays the date and time. You can also
use the DateTimePicker control to display a custom date/time format
by setting the Format property to DateTimePickerFormat.Custom and
the CustomFormat property to the custom format desired. Table 2.17
summarizes the important members of the DateTimePicker class.

05 0789728230 CH02 11/21/02 1:20 PM Page 169

170 Par t I DEVELOPING WINDOWS APPLICATIONS

TABLE 2.17

IMPORTANT MEMBERS OF THE DateTimePicker CLASS

Member Type Description

CustomFormat Property Represents the custom date/time format string.

Format Property Specifies the format of the date and time that are dis-
played in the control. The values are specified by the
DateTimePickerFormat enumeration—Custom,
Long (the default), Short, and Time. Long, Short,
and Time display the date in the value formats set by
the operating system. The Custom value lets you
specify a custom format.

FormatChanged Event Occurs when the Format property changes.

MaxDate Property Specifies the latest allowable date and time to be
selected.

MinDate Property Specifies the soonest allowable date and time to be
selected.

ShowCheckBox Property Indicates whether the check box should be displayed
to the left of the selected date.

ShowUpDown Property Indicates whether an UpDown control, rather than the
default calendar control, should be displayed to allow
the user to make selections.

Value Property Represents the value of the date and time selected.

ValueChanged Event Occurs when the Value property changes.
ValueChanged is the default event of the
DateTimePicker class.

S T E P B Y S T E P
2.13 Using MonthCalendar and DateTimePicker

Controls

1. Add a Windows form to existing project 316C02. Name
the form StepByStep2_13.

05 0789728230 CH02 11/21/02 1:20 PM Page 170

Chapter 2 CONTROLS 171

2. Place three Label controls, one MonthCalendar control
(mcTravelDates), one DateTimePicker control
(dtpLaunchDate), and two RadioButton controls
(rbLongDate and rbShortDate) on the form and arrange
them as shown in Figure 2.27. Name the Label control
that is placed adjacent to the MonthCalendar control
lblTravelDates.

3. Switch to the code view and add the following using
directive:

using System.Text;

4. Add an event handler for the DateSelected event for the
MonthCalendar control. Add the following code to the
event handler:

private void mcTravelDates_DateSelected(object sender,
System.Windows.Forms.DateRangeEventArgs e)

{
StringBuilder sbMessage = new StringBuilder();
sbMessage.Append(“StartDate:\n”);
sbMessage.Append(e.Start.ToShortDateString());
sbMessage.Append(“\n\nEnd Date:\n”);
sbMessage.Append(e.End.ToShortDateString());
this.lblTravelDates.Text = sbMessage.ToString();

}

5. Attach the event handlers to the default events of the
RadioButton controls. Add the following code to the event
handlers:

private void rbLongDate_CheckedChanged(
object sender, System.EventArgs e)

{
if(rbLongDate.Checked)

dtpLaunchDate.Format =
DateTimePickerFormat.Long;

}

private void rbShortDate_CheckedChanged(
object sender, System.EventArgs e)

{
if(rbShortDate.Checked)

dtpLaunchDate.Format =
DateTimePickerFormat.Short;

}

6. Insert a Main() method to launch form StepByStep2_13.
Set the form as the startup object for the project.

F IGURE 2 .27
You can perform date selections using the
MonthCalendar and DateTimePicker
controls.

continues

05 0789728230 CH02 11/21/02 1:20 PM Page 171

172 Par t I DEVELOPING WINDOWS APPLICATIONS

7. Run the project. Select a range of dates from the
MonthCalendar control and a date from the
DateTimePicker control. The label adjacent to the
MonthCalendar control displays the start date and end date
from the range of the dates selected (refer to Figure 2.27).
You can also change the format of the date shown by the
DateTimePicker control by selecting radio buttons.

continued

05 0789728230 CH02 11/21/02 1:20 PM Page 172

Chapter 2 CONTROLS 177

The Timer, TrackBar, and
ProgressBar Controls

The Timer control is used when an event needs to be generated at
user-defined intervals. Table 2.20 summarizes the important mem-
bers of the Timer class.

TABLE 2.20

IMPORTANT MEMBERS OF THE Timer CLASS

Member Type Description

Enabled Property Indicates whether the timer is currently running.

Interval Property Represents the time, in milliseconds, between ticks of the
timer.

Start() Method Starts the Timer control.

Stop() Method Stops the Timer control.

Tick Event Occurs when the timer interval elapses and the timer is
enabled.

A TrackBar control provides an intuitive way to select a value from a
given range by providing a scroll box and a scale of value. The user
can slide the scroll box on the scale to point to the desired value.
Table 2.21 summarizes the important members of the TrackBar class.

TABLE 2.21

IMPORTANT MEMBERS OF THE TrackBar CLASS

Member Type Description

LargeChange Property Indicates the number of ticks by which the Value
property changes when the scroll box is moved a
large distance.

T
IP

Syysstteemm..WWiinnddoowwss..FFoorrmmss..TTiimmeerr

Versus SSyysstteemm..TTiimmeerrss..TTiimmeerr You
should always use the Timer class
from the System.Windows.Forms
namespace in Windows Forms
because this class is optimized to
work with forms. The
System.Timers.Timer class fires
Tick events from another thread
and may cause indeterminate
results in applications.

S

E
X

A
M

continues

05 0789728230 CH02 11/21/02 1:20 PM Page 177

178 Par t I DEVELOPING WINDOWS APPLICATIONS

Maximum Property Specifies the upper bound of the TrackBar control’s
range.

Minimum Property Specifies the lower bound of the TrackBar control’s
range.

Orientation Property Represents the horizontal or vertical orientation of
the control.

Scroll Event Occurs when the scroll box is moved by a keyboard
or mouse action. Scroll is the default event for the
TrackBar class.

SmallChange Property Indicates the number of ticks by which the Value
property changes when the scroll box is moved a
small distance.

TickFrequency Property Represents the frequency within which ticks are
drawn in the control.

TickStyle Property Represents the way the control appears. The values
are specified by the TickStyle enumeration—Both,
BottomRight, None, and TopLeft.

Value Property Represents the scroll box’s current position in the
control.

ValueChanged Property Occurs when the Value property changes via the
Scroll event or programmatically.

A ProgressBar control is usually displayed to indicate the status of a
lengthy operation such as installing an application, copying files, or
printing documents. Table 2.22 summarizes the important members
of the ProgressBar class.

TABLE 2.22

IMPORTANT MEMBERS OF THE ProgressBar CLASS

Member Type Description

Maximum Property Specifies the upper bound of the progress bar’s range.

Minimum Property Specifies the lower bound of the progress bar’s range.

Value Property Represents the current position of the control.

TABLE 2.21

IMPORTANT MEMBERS OF THE TrackBar CLASS

Member Type Description

continued

05 0789728230 CH02 11/21/02 1:20 PM Page 178

Chapter 2 CONTROLS 179

Step by Step 2.15 gives an example of using the TrackBar and
ProgressBar controls. The example simulates a lengthy operation
with the help of a Timer control. You can control the speed with
which the process works by using a TrackBar control that changes
the Interval property of the Timer control to set the time at which
it will generate Tick events.

S T E P B Y S T E P
2.15 Using Timer, TrackBar, and ProgressBar

Controls

1. Add a Windows form to existing project 316C02. Name
the form StepByStep2_15.

2. Place a Timer control on the form. This control is added
to the component tray. Name the Timer control tmrTimer
and set its Enabled property to true.

3. Place four Label controls, one ProgressBar control, and
one TrackBar control on the form and arrange them as
shown in Figure 2.30.

4. Name the ProgressBar control prgIndicator and the
TrackBar control trkSpeed. For the TrackBar control,
change the Maximum property to 1000, TickFrequency to
100, TickStyle to Top,Left, and Value to 100.

5. Name a Label control lblMessage. Change the label’s Size
– Height property to 1 and BorderStyle property to
Fixed3D, to represent it as a line.

6. Double-click the Timer and TrackBar controls to attach
default event handlers to their default events—Tick and
Scroll, respectively. Add the following code to the event
handlers:

private void tmrTimer_Tick(
object sender, System.EventArgs e)

{
if (prgIndicator.Value < prgIndicator.Maximum)

//Increase the progress indicator
prgIndicator.Value += 5;

else

F IGURE 2 .30
The Timer control updates the progress bar on
every tick, and the TrackBar control controls
the interval of Tick events for the Timer
control.

N
O

T
E No Line and Shape Controls Unlike in

earlier versions of Visual Studio, you
won’t find any Line or Shape control in
Visual Studio .NET. This is because all
controls in the Visual Studio .NET tool-
box must be windowed. The Line and
Shape controls are window-less, and
hence they were removed. What can
you do about it? For drawing a simple
line, you can use a Label control in
which you can set the Height property
to 1 (or more, if you want a thicker line)
and set the BorderStyle property. For
more advanced lines and shapes, you
can use powerful GDI+ classes that are
available in the Windows Forms library
(refer to Chapter 1 for discussion on
the System.Drawing namespace).

continues

05 0789728230 CH02 11/21/02 1:20 PM Page 179

180 Par t I DEVELOPING WINDOWS APPLICATIONS

//Reset the progress bar indicator
prgIndicator.Value = prgIndicator.Minimum;

lblMessage.Text = “Percentage Complete: “ +
prgIndicator.Value + “%”;

}

private void trkSpeed_Scroll(
object sender, System.EventArgs e)

{
TrackBar trkSpeed = (TrackBar) sender;
if (trkSpeed.Value >= 1)

//Set timer value based on user’s selection
tmrTimer.Interval = trkSpeed.Value;

}

7. Insert the Main() method to launch form StepByStep2_15.
Set the form as the startup object for the project.

8. Run the project. Slide the TrackBar control, and the
progress bar progresses at different speeds, depending on
the time interval set by the TrackBar control (refer to
Figure 2.30).

The HScrollBar and VScrollBar
Controls
The HScrollBar and VScrollBar controls display horizontal and ver-
tical scrollbars, respectively. The HScrollBar and VScrollBar classes
inherit their properties and other members from the ScrollBar class,
which provides the basic scrolling functionality.

Usually, controls such as Panel, TextBox, and ComboBox include their
own scrollbars. But some controls, such as PictureBox, do not have
built-in scrollbars. You can use HScrollBar and VScrollBar to associ-
ate scrollbars with such controls. Table 2.23 summarizes the impor-
tant members of ScrollBar class, from which the HScrollBar and
VScrollBar controls inherit.

continued

05 0789728230 CH02 11/21/02 1:20 PM Page 180

Chapter 2 CONTROLS 181

TABLE 2.23

IMPORTANT MEMBERS OF THE ScrollBar CLASS

Member Type Description

LargeChange Property Indicates the number by which the Value property
changes when the scroll box is moved a large distance.

Maximum Property Specifies the upper bound of the scrollbar’s range.

Minimum Property Specifies the lower bound of the scrollbar’s range.

Scroll Event Occurs when the scroll box is moved by a keyboard or
mouse action. Scroll is the default event for the
ScrollBar class.

SmallChange Property Indicates the number by which the Value property
changes when the scroll box is moved a small distance.

Value Property Represents the current position of the control.

ValueChanged Event Occurs when the Value property changes either via
the Scroll event or programmatically.

S T E P B Y S T E P
2.16 Using HScrollBar and VScrollBar Controls

1. Add a Windows form to existing project 316C02. Name
the form StepByStep2_16.

2. Place a PictureBox control, an HScrollBar control, and a
VScrollBar control on the form. Name the PictureBox
control pbImage and set the SizeMode property to
AutoSize. Select the Image property and click the ellipsis
(…) button. This causes an Open File dialog box to
appear. Select the image you want to have uploaded in the
form.

3. Name the HScrollBar control hScroll and set its Dock
property to Bottom. Change the Name property of the
VScrollBar control to vScroll and set its Dock property to
Right.

continues

05 0789728230 CH02 11/21/02 1:20 PM Page 181

182 Par t I DEVELOPING WINDOWS APPLICATIONS

4. Double-click the HScrollBar and VScrollBar controls to
attach event handlers to their default Scroll events. Add
the following code to the event handlers:

private void vScroll_Scroll(object sender,
System.Windows.Forms.ScrollEventArgs e)

{
//Scroll the image vertically
pbImage.Top = vScroll.Bottom - pbImage.Height -

(int)getVScrollAdjustment();
}
private float getVScrollAdjustment()
{

//Calculate vertical scroll bar changes
float vPos =
(float)(vScroll.Value - vScroll.Minimum);

float vDiff =
(float)(vScroll.Height - pbImage.Height);

float vTicks =
(float)(vScroll.Maximum - vScroll.Minimum);

return (vDiff/vTicks)*vPos;
}

private void hScroll_Scroll(object sender,
System.Windows.Forms.ScrollEventArgs e)

{
//Scroll the image horizontally
pbImage.Left = hScroll.Right - pbImage.Width -

(int)getHScrollAdjustment();
}
private float getHScrollAdjustment()
{

//Calculate horizontal scrollbar changes
float hPos =

(float)(hScroll.Value - hScroll.Minimum);
float hDiff =

(float)(hScroll.Width - pbImage.Width);
float hTicks =

(float)(hScroll.Maximum - hScroll.Minimum);

return (hDiff/hTicks)*hPos;
}

5. Insert the Main() method to launch form StepByStep2_16.
Set the form as the startup object for the project.

6. Run the project. The form displays the image, and the
scrollbars that are on the right and bottom can be used to
scroll through the image if the image size exceeds the
allotted space, as in Figure 2.31.

continued

F IGURE 2 .31
The HScrollBar and VScrollBar classes allow
you to implement scrolling functionality in an
application.

05 0789728230 CH02 11/21/02 1:20 PM Page 182

Chapter 2 CONTROLS 183

The TabControl Control
The TabControl control displays a collection of tabbed pages. Each
tabbed page can contain its own controls. The TabControl control
can be useful in organizing large number of controls because when
the controls are organized into various tabbed pages they occupies
less space on the form. Tabbed pages appear mostly in wizards and
IDEs. For example, the Visual Studio .NET IDE displays all the
open files in tabbed pages. Table 2.24 summarizes the important
members of the TabControl class.

TABLE 2.24

IMPORTANT MEMBERS OF THE TabControl CLASS

Member Type Description

Alignment Property Represents the area where the tabs will
be aligned—Bottom, Left, Right, or
Top (the default).

ImageList Property Represents the ImageList control from
which images are displayed on tabs.

MultiLine Property Indicates whether tabs can be displayed
in multiple rows.

SelectedIndex Property Represents the index of the selected
tabbed page.

SelectedIndexChanged Event Occurs, when the selected index changes.
SelectedIndexChanged is the default
event of the TabControl class.

SelectedTab Property Specifies the selected tabbed page.

TabCount Property Specifies a count of the tabs in a control.

TabPages Property Specifies a collection of tabbed pages in a
control.

Step by Step 2.17 displays a TabControl control to build a message
box by accepting the values for the caption and the message in one
tab page, the message box buttons in the second tab page, and the
icon to be displayed in the third tab page.

05 0789728230 CH02 11/21/02 1:20 PM Page 183

184 Par t I DEVELOPING WINDOWS APPLICATIONS

S T E P B Y S T E P
2.17 Using TabControl Controls

1. Add a Windows form to existing project 316C02. Name
the form StepByStep2_17.

2. Place a TabControl control (tabDemo) on the form. Select
the TabPages property and click the ellipsis (…) button.
This invokes the TabPage Collection Editor. Click the
Add button and a TabPage control is added to the collec-
tion, with its index. Name the TabPage control tbpMessage
and change its Text property to Message. Add two more
TabPage controls: tbpButtons with Text property Buttons
and tbpIcons with Text property Icons. Figure 2.32 shows
the TabPage Collection editor after you add the tab pages.
Click OK to close the TabPage Collection Editor.

3. Place two Label controls and two TextBox controls
(txtMessage and txtCaption) on the Message tab page,
five RadioButton controls (rbOK, rbOKCCancel,
rbRetryCancel, rbYesNo, and rbYesNoCancel) on the
Buttons tab page, and five RadioButton controls (rbError,
rbInformation, rbNone, rbQuestion, and rbWarning) on the
Icons tab page. Place a GroupBox control on the form and
four RadioButton controls (rbLeft, rbRight, rbTop, and
rbBottom) inside it. Place a Button control (btnShow) on
the form. Arrange all the controls and set their Text prop-
erties as shown in Figure 2.33.

4. Switch to the code view and add the following code before
the constructor definition:

private MessageBoxButtons mbbButtons;
private MessageBoxIcon mbiIcon;

5. Add the following code in the constructor:

public StepByStep2_17()
{

//
// Required for Windows Forms Designer support
//
InitializeComponent();

F IGURE 2 .32
You can use the TabPage Collection Editor to
add tab pages to a TabControl control.

05 0789728230 CH02 11/21/02 1:20 PM Page 184

Chapter 2 CONTROLS 185

//Initial setting for MessageBox button
mbbButtons = MessageBoxButtons.OK;
//Initial setting for MessageBox icon
mbiIcon = MessageBoxIcon.Information;

}

6. Add the following code in the code view:

//This event handler is used by the RadioButtons
//that control TabControl’s alignment
private void rbAlign_CheckedChanged(

object sender, System.EventArgs e)
{

//Typecast sender object to a RadioButton
RadioButton rbAlign = (RadioButton) sender;

//Only if the radio button was checked
if(rbAlign.Checked)
{

//Set the alignment of TabControl based
//on which RadioButton was checked.
if (rbAlign == rbLeft)

tabDemo.Alignment = TabAlignment.Left;
else if (rbAlign == rbRight)

tabDemo.Alignment = TabAlignment.Right;
else if (rbAlign == rbBottom)

tabDemo.Alignment = TabAlignment.Bottom;
else

tabDemo.Alignment = TabAlignment.Top;
}

}

private void rbButtons_CheckedChanged(
object sender, System.EventArgs e)

{
//find the RadioButton that was checked
//from the Buttons tab and create a
//MessageBoxButtons objects corresponding to it.
if(sender == rbOKCancel)

mbbButtons = MessageBoxButtons.OKCancel;
else if (sender == rbRetryCancel)

mbbButtons = MessageBoxButtons.RetryCancel;
else if (sender == rbYesNo)

mbbButtons = MessageBoxButtons.YesNo;
else if (sender == rbYesNoCancel)

mbbButtons = MessageBoxButtons.YesNoCancel;
else

mbbButtons = MessageBoxButtons.OK;
}

private void rbIcon_CheckedChanged(
object sender, System.EventArgs e)

{
F IGURE 2 .33
You can organize various controls on each tab
page of a TabControl control.

continues

05 0789728230 CH02 11/21/02 1:20 PM Page 185

186 Par t I DEVELOPING WINDOWS APPLICATIONS

//find the RadioButton that was checked
//from the Icon tab and create a
//MessageBoxIcon objects corresponding to it.
if(sender == rbError)

mbiIcon = MessageBoxIcon.Error;
else if (sender == rbWarning)

mbiIcon = MessageBoxIcon.Warning;
else if (sender == rbNone)

mbiIcon = MessageBoxIcon.None;
else if (sender == rbQuestion)

mbiIcon = MessageBoxIcon.Question;
else

mbiIcon = MessageBoxIcon.Information;
}

7. Select all the RadioButton controls in the Buttons tab
page. Invoke the Properties window and click the Events
icon. Select the CheckedChanged event and select the
rbButtons_CheckChanged event handler from the list.
Repeat the same steps for the Icon tab page by selecting all
the RadioButton controls in the Icon tab page, and select
the rbIcon_CheckedChanged event handler. Select all the
RadioButton controls in the group box and then again
select the CheckedChanged event and select the
rbAlign_CheckChanged event handler from the list of event
handlers.

8. Double-click the Button control and add the following
code to handle the Click event of the Button control:

private void btnShow_Click(
object sender, System.EventArgs e)

{
MessageBox.Show(txtMessage.Text,

txtCaption.Text, mbbButtons, mbiIcon);
}

9. Insert the Main() method to launch form StepByStep2_17.
Set the form as the startup object for the project.

10. Run the project. Enter the message and caption of the
message in the Message tab page, select the desired button
from the Buttons tab page, and select the desired icon
from the Icons tab page. Click the Show! button. A mes-
sage box appears, with the desired message, caption, but-
ton, and icon. You can align tabs to different directions,
depending on the alignment side selected from the Tab
Layout group box.

continued

05 0789728230 CH02 11/21/02 1:20 PM Page 186

Chapter 2 CONTROLS 187

. DomainUpDown and NumericUpDown allow you to select from a list
of defined values by pressing up and down buttons. You can
also directly enter values in these controls unless their ReadOnly
properties are set to true.

. The DateTimePicker control allows you to select a date and
time, and the MonthCalendar control allows you to select a date
or range of dates. The SelectionStart, SelectionEnd, and
SelectionRange properties of the MonthCalendar control return
the start date, end date, and range of dates selected.

. ScrollBar controls can be associated with controls to provide
scrolling functionality.

. The TabControl control provides a user interface that can be
used to save space as well as organize large numbers of con-
trols. You often see TabControl controls used in wizards.

CREATING MENUS AND MENU ITEMS

Add controls to a Windows form.

• Create menus and menu items.

Windows applications use menus to provide organized collections of
commands that can be performed by the user. Menus can inform
the user of an application’s capabilities as well as its limitations. If a
program has properly organized menus, users can easily find com-
mon commands as well as less familiar features. Users can also learn
shortcut keys from a well-designed menu structure.

R E V I E W B R E A K

05 0789728230 CH02 11/21/02 1:20 PM Page 187

188 Par t I DEVELOPING WINDOWS APPLICATIONS

Because menus have so many benefits to the user, you should be well
versed in their creation and the function they can provide. The fol-
lowing sections discuss the menu-related classes MainMenu, MenuItem,
and ContextMenu. They also discuss two controls, the StatusBar and
ToolBar controls, that are often used with menus.

All three of the menu-related classes MainMenu, MenuItem, and
ContextMenu derive from the Menu class, which provides common
functionality to these classes. The MainMenu class is used to create an
application’s top-level menu and the ContextMenu class is used to cre-
ate a shortcut menu that appears when the user right-clicks a con-
trol. Both MainMenu and ContextMenu have MenuItems properties.
MenuItems is a collection of MenuItem objects, each representing an
individual menu item. It is interesting to note that MenuItem itself
also has a menu items collection that can be used to store submenus,
thereby creating a hierarchical menu structure. Table 2.25 summa-
rizes the important members of the MenuItem class with which you
should be familiar.

TABLE 2.25

IMPORTANT MEMBERS OF THE MenuItem CLASS

Member Type Description

Checked Property Indicates whether a checkmark or a radio button
should appear near the menu item.

Click Event Occurs when the user selects the menu item.

DrawItem Event Occurs when a request is made to draw an owner-
drawn menu item. DrawItem occurs only when
the OwnerDraw property is set to true.

Enabled Property Indicates whether the menu item is enabled.

MenuItems Property Specifies the collection of MenuItem objects asso-
ciated with the menu. This property can be used
to create hierarchical submenus.

OwnerDraw Property Indicates whether you can provide your own cus-
tom code to draw a menu item instead of letting
Windows handle it in a standard way.

Parent Property The parent with which the menu item is associat-
ed. You must specify a parent for a MenuItem
object; otherwise, it is not displayed.

PerformClick Method Generates the Click event for the menu item as if
the user had clicked it.

05 0789728230 CH02 11/21/02 1:20 PM Page 188

Chapter 2 CONTROLS 189

Popup Event Occurs just before a submenu corresponding to
the menu item is displayed. This event handler is
generally used to add, remove, enable, disable,
check, or uncheck menu items, depending on the
state of an application just before these menu
items are displayed.

RadioCheck Property Indicates whether the menu item should display a
radio button instead of a checkmark when its
Checked property is true.

Select Event Occurs when the user selects a menu item by nav-
igating to it.

Shortcut Property Specifies the shortcut key combination associated
with the menu item.

Text Property Specifies the caption of the menu item.

The MainMenu Control
The MainMenu control is a container control for a form’s main menu,
which is displayed just below its title bar. Visual Studio .NET pro-
vides an easy-to-use menu designer that helps you quickly design a
main menu for a form.

A Windows form can have only one MainMenu object associated with
it, and it is identified by the Menu property of the Form object. After
you create a menu, you should be sure to set the Menu property of
the form to the name of the menu you want to display on it.

The most important member of the MainMenu class is MenuItems,
which is a collection of MenuItem objects.

In Step by Step 2.18 you create a simple word processing program
that provides little functionality but gives a good overview of how
menus are used in a Windows application. Later in this chapter you
use the information from Step by Step 2.18 along with extra features
such as status bars and toolbars.

You will learn the following from Step by Step 2.18:

á How to add menus and submenus to a form

á How to use Checked and RadioButton menu items, and how to
select and deselect them based on user actions

Member Type Description

05 0789728230 CH02 11/21/02 1:20 PM Page 189

190 Par t I DEVELOPING WINDOWS APPLICATIONS

á How to associate hotkeys and shortcuts with menu items

á How to write event handlers for performing actions when a
user selects a menu item

S T E P B Y S T E P
2.18 Creating a Main Menu for a Form

1. Add a Windows form to existing project 316C02. Name
the form StepByStep2_18.

2. Place a panel on the form and set the Dock property to
Fill and AutoScroll to true.

3. Add a RichTextBox control to the panel. Name it rbText
and change its Dock property to Fill.

4. From the toolbox drag a MainMenu control onto the form.
Change the control’s Name property to mnuMainMenu and
change the form’s Menu property to mnuMainMenu.

5. Using the menu designer (see Figure 2.34), add a top-level
menu item. Set its Text as &File and name it mnuFile.
Add the menu items listed in Table 2.26 to it.

TABLE 2.26

FILE MENU ITEMS

Text Control Name Shortcut

&New mnuFileNew Ctrl+N

&Open... mnuFileOpen Ctrl+O

Save &As... mnuFileSaveAs Ctrl+S

E&xit mnuFileExit None

6. Create the second top-level menu item, with its Text
property as F&ormat and Name property as mnuFormat. Add
the menu items listed in Table 2.27 to it.

F IGURE 2 .34
The Menu Designer allows you to create
structured menus within the Windows Forms
Designer.

05 0789728230 CH02 11/21/02 1:20 PM Page 190

Chapter 2 CONTROLS 191

TABLE 2.27

FORMAT MENU ITEMS

Text Control Name Shortcut

&Color mnuFormatColor None

&Font mnuFormatFont None

7. Set up the Format, Color menu according to the items
listed in Table 2.28.

TABLE 2.28

FORMAT, COLOR MENU ITEMS

RadioCheck

Text Control Name Shortcut Setting

&All Colors... mnuFormatAllColors None false

&Black mnuFormatColorBlack Ctrl+Shift+B true

Bl&ue mnuFormatColorBlue Ctrl+Shift+U true

&Green mnuFormatColorGreen Ctrl+Shift+G true

&Red mnuFormatColorRed Ctrl+Shift+R true

8. Set up the Format, Font menu according to the items list-
ed in Table 2.29.

TABLE 2.29

FORMAT, FONT MENU ITEMS

Text Control Name Shortcut

&All Fonts... mnuFormatFontAllFonts None

&Bold mnuFormatFontBold Ctrl+B

&Italic mnuFormatFontItalic Ctrl+I

&Underline mnuFormatFontUnderline Ctrl+U

continues

05 0789728230 CH02 11/21/02 1:20 PM Page 191

192 Par t I DEVELOPING WINDOWS APPLICATIONS

9. Name the third top-level menu mnuHelp and set its Text
property to &Help. This menu has only one menu item in
it: mnuHelpAbout. Set the Text property of mnuHelpAbout to
&About.

10. In the menu designer, right-click the Exit menu and select
Insert Separator from the context menu. Insert separators
after the All Colors… and All Fonts… menu items.

11. From the toolbox drop four dialog box components:
OpenFileDialog, SaveFileDialog, FontDialog, and
ColorDialog. Change their Name properties to dlgOpenFile,
dlgSaveFile, dlgFont, and dlgColor, respectively.

12. Select File, New. In the Properties window double-click
the menu item’s Click event to add an event handler to it.
Add the following code to the event handler:

private void mnuFileNew_Click(
object sender, System.EventArgs e)

{
rtbText.Clear();

}

13. Add the following code to the Click event handler of the
File, Open menu item:

private void mnuFileOpen_Click(
object sender, System.EventArgs e)

{
//Allow to select only *.rtf files
dlgOpenFile.Filter =

“Rich Text Files (*.rtf)|*.rtf”;
if(dlgOpenFile.ShowDialog() == DialogResult.OK)
{

//Load the file contents in the RichTextBox
rtbText.LoadFile(dlgOpenFile.FileName,

RichTextBoxStreamType.RichText);
}

}

14. Double-click the File, Save As… menu item to attach a
Click event handler to it. Add the following code to the
event handler:

private void mnuFileSaveAs_Click(
object sender, System.EventArgs e)

{

continued

05 0789728230 CH02 11/21/02 1:20 PM Page 192

Chapter 2 CONTROLS 193

//Default choice to save file is *.rtf
//but user can select
//All Files to save with other extension
dlgSaveFile.Filter =

“Rich Text Files (*.rtf)|*.rtf|All Files (*.*)|*.*”;
if(dlgSaveFile.ShowDialog() == DialogResult.OK)
{

//Save the RichText content to a file
rtbText.SaveFile(dlgSaveFile.FileName,

RichTextBoxStreamType.RichText);
}

}

15. Double-click the File, Exit menu item to attach a Click
event handler to it. Add the following code to the event
handler:

private void mnuFileExit_Click(
object sender, System.EventArgs e)

{
//close the form
this.Close();

}

16. Double-click the Format, Color, All Colors… menu item
to attach a Click event handler to it. Add the following
code to the event handler:

private void mnuFormatColorAllColors_Click(
object sender, System.EventArgs e)

{
if(dlgColor.ShowDialog() == DialogResult.OK)
{

//Change the color of selected text
//If no text selected, change the active color
rtbText.SelectionColor = dlgColor.Color;

}
}

17. Insert the following event handler in the code and associ-
ate it with the Click event of the Format, Color, Black;
Format, Color, Blue; Format, Color, Green; and Format,
Color, Red menu items:

private void mnuFormatColorItem_Click(
object sender, System.EventArgs e)

{
MenuItem mnuItem = (MenuItem) sender;
//Get color name, before that also get rid of
//the ‘&’ character in Control’s Text
rtbText.SelectionColor = Color.FromName(

mnuItem.Text.Replace(“&”, “”));

continues

05 0789728230 CH02 11/21/02 1:20 PM Page 193

194 Par t I DEVELOPING WINDOWS APPLICATIONS

//uncheck all menu items inside color menu
foreach(MenuItem m in mnuItem.Parent.MenuItems)

m.Checked = false;
//just check the clicked menu
mnuItem.Checked = true;

}

18. Insert the following event handler in the code and associ-
ate it with the Popup event of Format, Color menu item:

private void mnuFormatColor_Popup(
object sender, System.EventArgs e)

{
MenuItem mnuItem = (MenuItem) sender;

//for all menu items inside color menu
foreach(MenuItem m in mnuItem.MenuItems)
{

if (m.Text.Replace(“&”, “”) ==
rtbText.SelectionColor.Name)
//If it is the selected color, check it
m.Checked = true;

else
//otherwise uncheck it
m.Checked = false;

}
}

19. Double-click the Format, Font, All Fonts… menu item to
attach a Click event handler to it. Add the following code
to the event handler:

private void mnuFormatFontAllFonts_Click(
object sender, System.EventArgs e)

{
if(dlgFont.ShowDialog() == DialogResult.OK)
{

//Change the font of selected text
//If no text selected, change the active font
rtbText.SelectionFont = dlgFont.Font;

}
}

20. Insert the following event handler in the code and associ-
ate it with the Click event of the Format, Font, Bold;
Format, Font, Italic; and Format, Font, Underline menu
items:

private void mnuFormatFontItem_Click(
object sender, System.EventArgs e)

{

continued

05 0789728230 CH02 11/21/02 1:20 PM Page 194

Chapter 2 CONTROLS 195

MenuItem mnuItem = (MenuItem) sender;
mnuItem.Checked = !mnuItem.Checked;
FontStyle fsStyle;
//Set the FontStyle selected by user in fsStyle
switch (mnuItem.Text.Replace(“&”,””))
{

case “Bold”:
fsStyle = FontStyle.Bold;
break;

case “Italic”:
fsStyle = FontStyle.Italic;
break;

case “Underline”:
fsStyle = FontStyle.Underline;
break;

default:
fsStyle = FontStyle.Regular;
break;

}
//Create a font object, toggle the FontStyle
//and set the new font on selection
rtbText.SelectionFont = new Font(

rtbText.SelectionFont.FontFamily,
rtbText.SelectionFont.Size,
rtbText.SelectionFont.Style^fsStyle);

}

21. Insert the following event handler in the code and associate
it with the Popup event of the Format, Font menu item:

private void mnuFormatFont_Popup(
object sender, System.EventArgs e)

{
//Set the check boxes on format menu to reflect
//users selection of Font
mnuFormatFontBold.Checked =

rtbText.SelectionFont.Bold;
mnuFormatFontItalic.Checked =

rtbText.SelectionFont.Italic;
mnuFormatFontUnderline.Checked =

rtbText.SelectionFont.Underline;
}

22. Double-click the Help, About menu item to attach a
Click event handler to it. Add the following code to the
event handler:

private void mnuHelpAbout_Click(
object sender, System.EventArgs e)

{
Form frm = new frmAbout();
//Display an About dialog box.
frm.ShowDialog(this);

}

continues

05 0789728230 CH02 11/21/02 1:20 PM Page 195

196 Par t I DEVELOPING WINDOWS APPLICATIONS

23. Add a new Windows form, named frmAbout, to the project.
Change its ControlBox property to false, FormBorderStyle
to FixedDialog, ShowInTaskbar to false, and Text to About.

24. Place a RichTextBox control and a Button control on the
form and name them rtbText and btnClose, respectively.
Arrange the controls as shown in Figure 2.35.

25. Add the following code to the form’s Load event handler:

private void frmAbout_Load(
object sender, System.EventArgs e)

{
if (File.Exists(“About.rtf”))

//Load content from a file
rtbText.LoadFile(“About.rtf”);

else
//When file not available,
//just link to a Web site
rtbText.Text =
“Please visit http://www.microsoft.com/net” +
“ to learn how this product was developed”;

}

26. Add the following code to the LinkClicked event handler
of rtbText:

private void rtbText_LinkClicked(object sender,
System.Windows.Forms.LinkClickedEventArgs e)

{
//Start internet explorer to open the link
System.Diagnostics.Process.Start(

“IExplore”, e.LinkText);
}

27. Add the following code to the Close event handler of
btnClose:

private void btnClose_Click(
object sender, System.EventArgs e)

{
//get rid of this form.
this.Close();

}

28. Insert the Main() method to launch the form
StepByStep2_18. Set the form as the startup object for the
project.

29. Run the project. Open or create a rich text file and use the
Format menu to format the text. Also use hotkeys and
shortcut keys to select menu items (see Figure 2.36).

continued

F IGURE 2 .35
The About dialog box uses a RichTextBox con-
trol to display the contents of an RTF file.

F IGURE 2 .36
You can use either the mouse or hotkeys or
shortcut keys to access menu commands.

T
IP

The WWoorrddWWrraapp Property and
Scrollbars When the WordWrap
property of a RichTextBox control is
true (the default value), the hori-
zontal scrollbars are not displayed,
regardless of the setting of the
ScrollBars property.

E
X

A
M

05 0789728230 CH02 11/21/02 1:20 PM Page 196

Chapter 2 CONTROLS 197

In Step by Step 2.18, you place a panel on the form and place the
RichTextBox control on the panel. Actually, this example works fine
even without using the panel. However, the panel is helpful if you
want to use other controls, such as StatusBar and Toolbar, in the
application. By using a Panel control, it is easy to divide a form’s real
estate and avoid overlap problems.

The ContextMenu Control
A context menu is typically used to provide users with a small con-
text-sensitive menu based on the application’s current state and the
user’s current selection. A context menu is invoked when the user
right-clicks a control.

You use the ContextMenu class to create a context menu. A context
menu is simpler than a main menu because it has only one top-level
menu that displays all the menu items. In addition, you can have
submenus and other functionality, such as hide, show, enable, dis-
able, check, and uncheck available in a context menu.

A context menu is associated with a control or a form, so you can
have several ContextMenu objects in an application, each working in a
different context. You must associate a ContextMenu object with a
control by assigning it to the control’s ContextMenu property.

The process of creating a context menu is similar to the process of
creating a main menu. Step by Step 2.19 extends the application
created in Step by Step 2.18 by adding a context menu for basic
editing operations such as cut, copy, and paste. You will learn the
following in Step by Step 2.19:

á How to create a context menu and its items

á How to associate a context menu with a control

á How to enable and disable menu items based on application
state

á How to work with the Clipboard class

T
IP

The RRaaddiiooCChheecckk Property Setting
the RadioCheck property to true
does not implicitly set mutual exclu-
sion for menu items; you are still
able to check several of them at
the same time. You have to set
mutual exclusion programmatically.
The Popup event is an appropriate
place to check a menu item and
uncheck all other menu items in
that group.

E
X

A
M

N
O

T
E Docking Controls in a Scrollable

Container When docking controls
within a scrollable control such as a
form, you should add a child scrol-
lable control such as the Panel con-
trol to contain any other controls,
such as a RichTextBox control, that
might require scrolling. You should
also set the Dock property to
DockStyle.Fill and the AutoScroll
property to true for the child panel
control. The AutoScroll property of
the parent scrollable control such as
a form should be set to false.

05 0789728230 CH02 11/21/02 1:20 PM Page 197

198 Par t I DEVELOPING WINDOWS APPLICATIONS

S T E P B Y S T E P
2.19 Creating a Context Menu for a Form

1. Add a Windows form to existing project 316C02. Name
the form StepByStep2_19.

2. Follow steps 2 to 27 from Step by Step 2.18.

3. From the toolbox, drag and drop a ContextMenu control
onto the form. It is added to the component tray. Select
its properties and change its name to mnuContextMenu.

4. Change the ContextMenu property of the rtbText object to
mnuContextMenu.

5. Select the ContextMenu control. Notice that the context
menu appears in place of the main menu. Create menu
items in the context menu as shown in Figure 2.37, and
define their properties as shown in Table 2.30.

TABLE 2.30

CONTEXT MENU ITEMS

Text Control Name Shortcut

Cu&t mnuContextCut Ctrl+X

&Copy mnuContextCopy Ctrl+C

&Paste mnuContextpaste Ctrl+V

6. Double-click the Cut menu item to add an event handler
to it, and then add the following code to it:

private void mnuContextCut_Click(
object sender, System.EventArgs e)

{
//Set the clipboard with current selection
Clipboard.SetDataObject(rtbText.SelectedRtf,true);
//Delete the current selection
rtbText.SelectedRtf = “” ;

}

F IGURE 2 .37
The Menu Designer allows you to create context
menus within the Windows Forms Designer.

05 0789728230 CH02 11/21/02 1:20 PM Page 198

Chapter 2 CONTROLS 199

7. Add the following event handler for the Click event
handler of the Copy menu item:

private void mnuContextCopy_Click(
object sender, System.EventArgs e)

{
//Set the clipboard with current selection
Clipboard.SetDataObject(rtbText.SelectedRtf,true);

}

8. Add the following code to the Click event handler of the
Paste menu item:

private void mnuContextPaste_Click(
object sender, System.EventArgs e)

{
//DataObject provides format-independent data
//transfer mechanism
//Get data from clipboard and store
//it in a DataObject object
DataObject doClipboard =

(DataObject)Clipboard.GetDataObject();
//only if clipboard had any data
if (doClipboard.GetDataPresent(DataFormats.Text))
{

//get the string data from DataObject object
string text =
(string)doClipboard.GetData(DataFormats.Text);
if (!text.Equals(“”))

//If there was some text to paste
//paste it in RTF format
rtbText.SelectedRtf = text;

}
}

9. Double-click the mnuContextMenu object in the component
tray. This adds an event handler for its Popup event, to
which you should add the following code:

private void mnuContext_Popup(
object sender, System.EventArgs e)

{
//Initially disable all menu items
mnuContextCut.Enabled = false;
mnuContextCopy.Enabled = false;
mnuContextPaste.Enabled = false;
//If there was any selected text
if (!rtbText.SelectedText.Equals(“”))
{

//enable the cut and copy menu items
mnuContextCut.Enabled = true;
mnuContextCopy.Enabled = true;

}

continues

05 0789728230 CH02 11/21/02 1:20 PM Page 199

200 Par t I DEVELOPING WINDOWS APPLICATIONS

DataObject doClipboard =
(DataObject)Clipboard.GetDataObject();

//if there is text data on clipboard,
//enable the Paste menu item
if (doClipboard.GetDataPresent(DataFormats.Text))

mnuContextPaste.Enabled = true;
}

10. Insert the Main() method to launch form StepByStep2_19.
Set the form as the startup object for the project.

11. Run the project. Open or create an RTF file, select some
text, and right-click and copy it to the Clipboard (see
Figure 2.38). Paste it at a different location. You should
also see that the Cut, Copy, and Paste menu items are
enabled and disabled depending on the context. For
example, if there is no text selected, the Cut and Copy
menu items are disabled.

Although the Clipboard operations implemented here would work
fine within this application, they might fail if you are pasting differ-
ent types of data from some other application. This is because you
have not implemented error handling here. Error handling is covered
in detail in Chapter 3, “Error Handling for the User Interface.”

G U I D E D P R A C T I C E
E X E R C I S E 2 . 3
The Edit main menu is one of the most common features of all
Windows-based applications. Typically, the Edit menu contains
commands such as Cut, Copy, Paste, Undo, and Redo.

In this exercise, you extend the application created in Step by Step
2.19 by adding an Edit menu as a top-level menu in the form’s main
menu. In addition to Cut, Copy, and Paste, you also need to imple-
ment Undo and Redo menu items that allow you to undo or redo
the changes made to the RichTextBox control. You should try work-
ing through this problem on your own first reusing as much code as
you can from Step by Step 2.19. If you get stuck, or if you’d like to
see one possible solution, follow these steps:

continued

F IGURE 2 .38
Menu options in the context menu are enabled
or disabled based on the current context.

05 0789728230 CH02 11/21/02 1:20 PM Page 200

Chapter 2 CONTROLS 201

1. Add a new form to your Visual C# .NET project. Name the
form GuidedPracticeExercise2_3.cs.

2. Follow steps 2 through 9 from Step by Step 2.19.

3. Select mnuContextMenu from the component tray and then in
the context menu, select all menu items by pressing the Ctrl
key while selecting items. Right-click and then select Copy to
copy these menu items to the Clipboard. Select mnuMainMenu,
right-click the top-level Format menu, and select Insert New
from the shortcut menu. This creates a new menu item just
before Format Menu. Change its Text property to &Edit and
name the control mnuEdit. Right-click in the menu list of this
newly created menu, and select Paste from the shortcut menu.
All the context menu items are copied here.

4. Change the Name properties of the menu items Cut, Copy, and
Paste to mnuEditCut, mnuEditCopy, and mnuEditPaste, respec-
tively. Also change their Shortcut properties to CtrlX, CtrlC,
and CtrlV, respectively.

5. Select the mnuEditCut menu item and choose
mnuContextCut_Click as its Click event handler. Similarly,
choose mnuContextCopy_Click and mnuContextPaste_Click as
the event handlers for the mnuEditCopy and mnuEditPaste
menus, respectively.

6. Insert another menu item just before the Edit, Cut menu
item. Change its Text property to &Undo, change its Name prop-
erty to mnuEditUndo, and change its Shortcut property to
CtrlZ. Similarly, add another menu item for Redo and set Text
as &Redo, Name as mnuEditRedo, and Shortcut as CtrlY. Insert a
separator bar between Undo, Redo, and the other menu items
in the Edit menu.

7. Create event handlers for the Click event of the mnuEditUndo
and mnuEditRedo menu items. Modify the code as shown here:

private void mnuEditUndo_Click(
object sender, System.EventArgs e)

{
//Undo the last edit operation
rtbText.Undo();

}

private void mnuEditRedo_Click(
object sender, System.EventArgs e)

continues

05 0789728230 CH02 11/21/02 1:20 PM Page 201

202 Par t I DEVELOPING WINDOWS APPLICATIONS

{
//Redo the last operation that was undone
rtbText.Redo();

}

8. Select mnuEdit and add the following code to its Popup event
handler:

private void mnuEdit_Popup(
object sender, System.EventArgs e)

{
//Initially disable all menu items
mnuEditUndo.Enabled = false;
mnuEditRedo.Enabled = false;
mnuEditCut.Enabled = false;
mnuEditCopy.Enabled = false;
mnuEditPaste.Enabled = false;

//If there was any selected text
if (!rtbText.SelectedText.Equals(“”))
{

//enable the cut and copy menu items
mnuEditCut.Enabled = true;
mnuEditCopy.Enabled = true;

}
DataObject doClipboard =

(DataObject)Clipboard.GetDataObject();
//if there is text data on clipboard,
//enable the Paste menu item
if (doClipboard.GetDataPresent(DataFormats.Text))

mnuEditPaste.Enabled = true;
//Check if Undo is possible
if (rtbText.CanUndo)

mnuEditUndo.Enabled = true;
//Check if Redo is possible
if (rtbText.CanRedo)

mnuEditRedo.Enabled = true;
}

9. Insert the Main() method to launch form
GuidedPracticeExercise2_3.cs. Set the form as the startup
object for the project.

10. Run the project. Open or create an RTF file, select some text
and select Edit, Copy to copy text to the Clipboard. Perform
some cut, copy, and paste operations. Select Edit, Undo to
undo the changes in the document (see Figure 2.39).

continued

F IGURE 2 .39
The Edit menu provides standard editing com-
mands such as Undo, Redo, Cut, Copy, and
Paste.

05 0789728230 CH02 11/21/02 1:20 PM Page 202

Chapter 2 CONTROLS 203

If you have difficulty following this exercise, review the sections
“The MainMenu Control” and “The ContextMenu Control” earlier in
this chapter. Also, spend some time looking at the various methods
and properties that are available for a RichTextBox control in the
Properties window. Reading the text and examples in this chapter
should help you relearn this material. After doing that review, try
this exercise again.

The StatusBar Control
The StatusBar control is used to display information such as help
messages and status messages. A StatusBar control is normally
docked at the bottom of a form. When you add a StatusBar control
to a form from the toolbox, make sure to set the z-order of the con-
trol by right-clicking the status bar and selecting Send to Back from
the shortcut menu. When you do this, you do not see the status bar
overlapping other controls at the bottom of the form.

One of the most important properties for a StatusBar control is the
Panels property. Panels is a collection of StatusBarPanel objects.
Panels divide a status bar area so that you can use each area to dis-
play a different type of information, such as the status of the date
and time, page number, download progress, and the Caps Lock,
Num Lock, and Insert keys. Table 2.31 summarizes the important
members of the StatusBarPanel class.

TABLE 2.31

IMPORTANT MEMBERS OF THE StatusBarPanel CLASS

Member Type Description

Alignment Property Specifies the alignment of the text and icons within
the panel. Can be one of the Center, Left, or
Right values of the HorizontalAlignment enu-
meration.

N
O

T
E Layering Controls: Z-order Z-order

specifies the visual layering of con-
trols on a form along the form’s
z-axis, which specifies its depth.
Controls are stacked in descending
z-order value, with the control with the
greatest z-order at the top of the
stack and the control with the small-
est z-order on the bottom of the
stack. You can set the z-order of a
control relative to its container control
by right-clicking the control and select-
ing either Send to Back or Bring to
Front from the shortcut menu.

continues

05 0789728230 CH02 11/21/02 1:20 PM Page 203

204 Par t I DEVELOPING WINDOWS APPLICATIONS

AutoSize Property Specifies how the panel should size itself. This prop-
erty can take the values None, Contents, and
Spring from the StatusBarPanelAutosize enu-
meration.

BorderStyle Property Specifies the border style. BorderStyle can have
the values None, Raised, and Sunken from the
StatusBarPanelBorderStyle enumeration.

Icon Property Specifies the icon to be displayed in the status bar.

Style Property Specifies whether the StatusBarPanel object is set
to OwnerDraw or Text (that is, system drawn). The
OwnerDraw style can be use to give custom render-
ing to the StatusBarPanel object.

ToolTipText Property Specifies the ToolTip to show for the
StatusBarPanel object.

S T E P B Y S T E P
2.20 Creating a Status Bar for a Form

1. Add a Windows form to existing project 316C02. Name
the form StepByStep2_20.

2. Follow steps 2 through 8 from Guided Practice Exercise 2.3.

3. Select the form StepByStep2_20 by clicking its title bar.
From the toolbox, double-click the StatusBar control to
add it to the form. Name the StatusBar object sbStatus
and clear its Text property. Change its ShowPanels
property to true.

4. Select the status bar. Right-click it and select Send to Back
from the shortcut menu.

TABLE 2.31

IMPORTANT MEMBERS OF THE StatusBarPanel CLASS

Member Type Description

continued

N
O

T
E The AAuuttooSSiizzee Property The

StatusBarPanel objects that have
their AutoSize properties set to
StatusBarPanelAutoSize.Contents

have priority placement over the
StatusBarPanel objects that have
their AutoSize properties set to
StatusBarPanelAutoSize.Spring.
That is, a StatusBarPanel object with
AutoSize set to Spring is shortened
if a StatusBarPanel object with
AutoSize set to Contents resizes itself
to take more space on the status bar.

N
O

T
E Icon Positioning on a Status Bar

Panel An icon is always positioned
on the left side of the text in a panel,
regardless of the text’s alignment.

05 0789728230 CH02 11/21/02 1:20 PM Page 204

Chapter 2 CONTROLS 205

5. Select the Panels property of the status bar. Click the
ellipsis (…) button and create three StatusBarPanel
objects, using the StatusBarPanel Collection Editor, as
shown in Figure 2.40. Name the first object sbpHelp,
change its AutoSize property to Spring, and empty its
Text property. Name the second object sbpDate, change its
Alignment property to Right, change AutoSize to
Contents, change ToolTipText to Current System Date,
and empty the Text property. Name the third object
sbpTime, change its Alignment property to Right, change
AutoSize to Contents, change ToolTipText to Current
System Time, and empty the Text property.

6. Add a Timer control to the form, name it tmrTimer,
change its Enabled property to true, and set the Interval
property to 1000. Double-click the tmrTimer object to add
an event handler for its Tick event, and then add the fol-
lowing code to it:

private void tmrTimer_Tick(
object sender, System.EventArgs e)

{
DateTime dtNow = DateTime.Now;
//display current date in the status bar panel
sbpDate.Text = dtNow.ToLongDateString();
//display current time in the status bar panel
sbpTime.Text = dtNow.ToShortTimeString();

}

7. Insert the following event handling code in the program:

private void mnuItem_Select(
object sender, System.EventArgs e)

{
//Get the menu item sending the event
MenuItem mnuItem = (MenuItem) sender;
string strHelp;
//Check which menu it is
//and set the appropriate help text.
switch(mnuItem.Text.Replace(“&”, “”))
{

case “New”:
strHelp = “Create a new document”;
break;

case “Open...”:
strHelp = “Open an existing document”;
break;

case “Save As...”:
strHelp = “Save the active document” +
“ with a new name”;

F IGURE 2 .40
The StatusBarPanel Collection Editor allows
you to create and edit panels in a status bar.

continues

05 0789728230 CH02 11/21/02 1:20 PM Page 205

206 Par t I DEVELOPING WINDOWS APPLICATIONS

break;
case “Exit”:

strHelp = “Quit the application”;
break;

case “Undo”:
strHelp = “Undo the last action”;
break;

case “Redo”:
strHelp = “Redo the last undone action”;
break;

case “Cut”:
strHelp = “Cut the selection to the clipboard”;

break;
case “Copy”:

strHelp = “Copy the selection to the clipboard”;
break;

case “Paste”:
strHelp = “Insert clipboard contents”;
break;

case “Color”:
strHelp = “Select a color”;
break;

case “Font”:
strHelp = “Select a font”;
break;

default:
strHelp = “”;
break;

}
sbpHelp.Text = strHelp;

}

8. Select mnuItem_Select as the event handler for the Select
events of all the menu items, including the top-level
menus.

9. Add the following event handler in the code view:

//Reset the help text on status bar after the
//Menu is closed
protected override void OnMenuComplete(EventArgs e)
{

sbpHelp.Text = “”;
}

10. Insert the Main() method to launch form StepByStep2_20.
Set the form as the startup object for the project.

11. Run the project. You should see the system date and time
on the status bar. As you navigate through various menu
items, you should see the description of menu items in the
status bar (see Figure 2.41).

continued

F IGURE 2 .41
The StatusBar control is used to display vari-
ous kinds of status information for an applica-
tion.

05 0789728230 CH02 11/21/02 1:20 PM Page 206

Chapter 2 CONTROLS 207

The ToolBar Control
The ToolBar control can be used to create a Windows toolbar. It is
normally docked on the top of the form, just below the menu bar.
When you add a ToolBar control to form the toolbox, you should
make sure to set the z-order of the control by right-clicking the tool-
bar and selecting Send to Back from the shortcut menu. When you
do this, you do not see the toolbar overlapping other controls at the
top of the form. Table 2.32 summarizes the important members of
ToolBar class.

TABLE 2.32

IMPORTANT MEMBERS OF THE ToolBar CLASS

Member Type Description

Buttons Property Specifies a collection of ToolBarButton objects.
Each ToolbarButton object represents a button
on the ToolBar object.

ButtonClick Event Occurs when the toolbar button is clicked.

ImageList Property Specifies the ImageList object that stores the
icons that will be displayed on the
ToolBarButton objects.

SendToBack() Method Sends the toolbar to the back of the z-order.

ShowToolTips Property Specifies whether the toolbar should show
ToolTips.

Normally the toolbar buttons represent shortcuts to tasks that could
otherwise be done by selecting a menu option. When you respond
to the ButtonClick event of a ToolBar object, you can simply invoke
a corresponding menu item to accomplish a task, thereby reusing
the efforts already invested in programming the menus. You can
programmatically invoke a menu item by calling the PerformClick()
method on a MenuItem object. So all you need to know is what menu
to invoke for a particular toolbar button. The ToolBarButton control
provides a useful property for this: the Tag property. You can use it
to store any object that needs to be associated with a toolbar button.
At program startup, you can use the Tag property of a ToolBarButton
object to assign each button to a corresponding menu item. Step by
Step 2.21 describes how to do this.

05 0789728230 CH02 11/21/02 1:20 PM Page 207

208 Par t I DEVELOPING WINDOWS APPLICATIONS

S T E P B Y S T E P
2.21 Creating a Toolbar for a Form

1. Add a Windows form to existing project 316C02. Name
the form StepByStep2_21.

2. Follow steps 2 through 9 from Step by Step 2.20.

3. Select the form StepByStep2_21 by clicking its title bar.
From the toolbox, double-click the ToolBar control to add
it to the form. Name the ToolBar object tbarToolBar and
change both the height and width of its ButtonSize prop-
erty to 16. Change the ShowToolTips property to true.

4. Drop an ImageList (imgToolBarIcons) object on the form.
To its Images property, add images for New, Open, Save,
Cut, Copy, Paste, Undo, and Redo operations. Change
the ImageList property of the ToolBar control to
imgToolBarIcons.

5. Select the ToolBar control’s Buttons property. Click the
ellipsis (…) button to open the ToolBarButton Collection
Editor Window. Using this window, add the buttons New,
Open, Save, Cut, Copy, Paste, Undo, and Redo, and
name them tbarFileNew, tbarFileOpen, tbarFileSaveAs,
tbarEditCut, tbarEditCopy, tbarEditPaste, tbarEditUndo,
and tbarEditRedo, respectively (see Figure 2.42). Select an
image for each button from the ImageIndex property and
give each button an appropriate ToolTipText setting. You
can also add separators between the toolbar buttons by
adding a ToolBarButton control and setting its Style prop-
erty to Separator. The completed toolbar should look like
the one shown in Figure 2.43.

6. Add the following code to the form’s constructor:

public StepByStep2_21()
{

//
// Required for Windows Forms Designer support
//
InitializeComponent();

F IGURE 2 .42
The ToolBarButton Collection Editor allows you
to create and edit buttons in a toolbar.

F IGURE 2 .43
A toolbar contains buttons that carry out asso-
ciated menu commands.

05 0789728230 CH02 11/21/02 1:20 PM Page 208

Chapter 2 CONTROLS 209

// Store the references to menu items
// in the toolbar buttons
tbarFileNew.Tag = mnuFileNew;
tbarFileOpen.Tag = mnuFileOpen;
tbarFileSaveAs.Tag = mnuFileSaveAs;
tbarEditCut.Tag = mnuEditCut;
tbarEditCopy.Tag = mnuEditCopy;
tbarEditPaste.Tag = mnuEditPaste;
tbarEditUndo.Tag = mnuEditUndo;
tbarEditRedo.Tag = mnuEditRedo;

}

7. Double-click the toolbar to add the following event han-
dler for its Click event:

private void tbarToolBar_ButtonClick(object sender,
System.Windows.Forms.ToolBarButtonClickEventArgs e)

{
ToolBarButton tbarButton = e.Button;
//Get related menu item from the
//toolbar buton’s tag property
MenuItem mnuItem = (MenuItem) tbarButton.Tag;

//Generate the click event for related menu item
mnuItem.PerformClick();

}

8. Insert the Main() method to launch form StepByStep2_21.
Set this form as the startup object for the project.

9. Run the project, and you should see the toolbar. Click the
various toolbar buttons to do desired tasks (refer to Figure
2.43).

Menu toolbar buttons map directly to menu items. Clicking a menu
toolbar button is the same as clicking on its corresponding menu
item (or pressing the hotkey for that item).

Disabling a menu item disables its toolbar button as well, but it does
not change the appearance of the button. If you want the button to
“look” disabled, you must do it programmatically.

05 0789728230 CH02 11/21/02 1:20 PM Page 209

210 Par t I DEVELOPING WINDOWS APPLICATIONS

CREATING MDI APPLICATIONS

So far in this chapter, you have created only single-document inter-
face (SDI) applications. These applications allow a user to work with
only one window at a time. Several large Windows applications,
such as Microsoft Excel and Visual Studio .NET, allow users to work
with several open windows at the same time. These applications are
called multiple-document interface (MDI) applications. The main
application window of an MDI application acts as the parent win-
dow, which can open several child windows. You need to know the
following main points about an MDI application:

á Child windows are restricted to their parent window (that is,
you cannot move a child window outside its parent window).

á The parent window can open several types of child windows.
As an example of an MDI application, Visual Studio .NET
allows you to work with several types of document windows at
the same time.

á The child windows can be opened, closed, maximized, or min-
imized independently of each other, but when the parent win-
dow is closed, the child windows are automatically closed.

á The MDI frame should always have a menu; one of the menus
that a user always expects to see in an MDI application is the
Window menu (see Figure 2.44), which allows the user to
manipulate various windows that are open in an MDI
container form.

The Windows Forms in an MDI application are also created by
using the standard System.Windows.Forms.Form class. To create an
MDI parent form, you create a regular Windows form and change
its IsMdiContainer property to true. To create an MDI child form,
you create a regular Windows form and assign the name of the par-
ent MDI object to the MdiParent property. Table 2.33 summarizes
the important members of the Form class that are related to the MDI
applications.

F IGURE 2 .44
An MDI application typically has a Window
menu item.

05 0789728230 CH02 11/21/02 1:20 PM Page 210

Chapter 2 CONTROLS 211

TABLE 2.33

IMPORTANT MEMBERS OF THE Form CLASS THAT ARE

RELATED TO MDI APPL ICAT IONS

Member Type Description

ActiveMdiChild Property Identifies the currently active MDI child win-
dow

IsMdiContainer Property Indicates whether the form is a container for
MDI child forms

MdiChildActivate Event Occurs when anMDI child form is activated or
closed within an MDI application

MdiChildren Property Specifies an array of forms that represent the
MDI child form of the form

MdiParent Property Specifies the MDI parent form for the current
form

LayoutMdi() Method Arranges the MDI child forms within an MDI
parent form

Step by Step 2.22 shows how to create an MDI application. In it
you can create a form that is similar to the one created in Step by
Step 2.18 and you can use it as an MDI child window.

You learn the following from Step by Step 2.22:

á How to create an MDI parent form

á How to create MDI child forms

á How to convert an existing SDI application to an MDI appli-
cation

á How to merge menus between MDI parent and child windows

á How to create Windows menus that allow users to load and
rearrange MDI child forms

05 0789728230 CH02 11/21/02 1:20 PM Page 211

212 Par t I DEVELOPING WINDOWS APPLICATIONS

S T E P B Y S T E P
2.22 Creating an MDI Application

1. Add a Windows form to existing project 316C02. Name
the form MdiChild.

2. Follow steps 2 to 27 from Step by Step 2.18.

3. Select the main menu of the form and change the
MergeType property of the File menu to MergeItems. Select
the File, New and File, Open menus and change their
MergeType properties to Remove.

4. Rename the File, Exit menu item &Close. Change the
MergeOrder properties for the File, Save As; File, Close;
Format; and Help menu items to 5, 3, 10, and 30, respec-
tively. Change the MergeOrder property for the separator
in the File menu to 4.

5. Switch to the code view. After the default constructor
code, add another constructor with the following code:

public MdiChild(string fileName)
{

//
// Required for Windows Forms Designer support
//
InitializeComponent();
rtbText.LoadFile(fileName,

RichTextBoxStreamType.RichText);
}

6. Add another Windows form to existing project 316C02.
Name the form StepByStep2_22 and change its
IsMdiContainer property to true.

7. Add a MainMenu component to the form. Create a top-level
menu item, change its Text property to &File, and name
it mnuFile. Add the following menu items to it: &New
(mnuFileNew), &Open... (mnuFileOpen), separator, and
E&xit (mnuFileExit). Change the menu items’ MergeOrder
properties to 1, 2, 6, and 7, respectively.

05 0789728230 CH02 11/21/02 1:20 PM Page 212

Chapter 2 CONTROLS 213

8. Add another top-level menu. Change the Text property to
&Window, and the Name property to mnuWindow, and the
MdiList property to true. Add the following menu items
to it: Tile &Horizontally (mnuWindowTileHorizintally),
Tile &Vertically (mnuWindowTileVertically), and
&Cascade (mnuWindowCascade).

9. Double-click the File, New menu item and add the fol-
lowing event handler to its Click event:

private void mnuFileNew_Click(
object sender, System.EventArgs e)

{
//create a new instance of child window
MdiChild frmMdiChild = new MdiChild();
//set its MdiParent
frmMdiChild.MdiParent = this;
frmMdiChild.Text = “New Document”;
//Display the child window
frmMdiChild.Show();

}

10. Double-click the File, Open menu item and add the fol-
lowing event handler to it:

private void mnuFileOpen_Click(
object sender, System.EventArgs e)

{
//Allow to select only *.rtf files
dlgOpenFile.Filter =

“Rich Text Files (*.rtf)|*.rtf”;
if(dlgOpenFile.ShowDialog() == DialogResult.OK)
{

//create the child form by
//loading the given file in it
MdiChild frmMdiChild =

new MdiChild(dlgOpenFile.FileName);
//Set the current for as its parent
frmMdiChild.MdiParent = this;
//Set the file’s title bar text
frmMdiChild.Text = dlgOpenFile.FileName;
//display the form
frmMdiChild.Show();

}
}

continues

05 0789728230 CH02 11/21/02 1:20 PM Page 213

214 Par t I DEVELOPING WINDOWS APPLICATIONS

11. Add the following event handlers to Click events of other
menu items, as shown in steps 9 to 10:

private void mnuFileExit_Click(
object sender, System.EventArgs e)

{
//Close the parent window
this.Close();

}
private void mnuWindowTileHorizontally_Click(

object sender, System.EventArgs e)
{

//Tile child windows horizontally
this.LayoutMdi(MdiLayout.TileHorizontal);

}
private void mnuWindowTileVertically_Click(

object sender, System.EventArgs e)
{

//Tile child windows vertically
this.LayoutMdi(MdiLayout.TileVertical);

}
private void mnuWindowCascade_Click(

object sender, System.EventArgs e)
{

//cascade
this.LayoutMdi(MdiLayout.Cascade);

}

12. Add thefollowing event handler to the Popup event of the
mnuWindow menu item:

private void mnuWindow_Popup(
object sender, System.EventArgs e)

{
//code to enable and disable Window menu items
//depending on if any child windows are open
if (this.MdiChildren.Length > 0)
{

mnuWindowTileHorizontally.Enabled = true;
mnuWindowTileVertically.Enabled = true;
mnuWindowCascade.Enabled = true;

}
else
{

mnuWindowTileHorizontally.Enabled = false;
mnuWindowTileVertically.Enabled = false;
mnuWindowCascade.Enabled = false;

}
}

05 0789728230 CH02 11/21/02 1:20 PM Page 214

Chapter 2 CONTROLS 215

13. Insert the Main() method to launch form StepByStep2_22.
Set the form as the startup object for the project.

14. Run the project. From the File menu, open a new docu-
ment, and then also open an existing document by select-
ing File, Open. Click the Window menu and select various
options to arrange the child windows (see Figure 2.45).

F IGURE 2 .45
When you are working with an MDI application,
you can use the commands from the Window
menu to switch between windows or docu-
ments.

The default MergeType property for the MenuItem objects is Add. This
means that the MenuItem objects in Step by Step 2.22 are added
together on an MDI parent window. If you don’t want to include
some of the menu items, you can set their MergeType properties to
Remove. The MergeOrder properties for the MenuItem objects specify
the order in which they appear on the parent MDI form.

There is another interesting property of the MenuItem object that is
used with MDI applications: the MdiList property. When this prop-
erty is set to true, the MenuItem object is populated with a list of
MDI child windows that are displayed within the associated form.

. There are two primary types of menus. The main menu is used
to group all the available commands and option in a Windows
application, and a context menu is used to specify a relatively
smaller list of options that apply to a control, depending on
the application’s current context.

R E V I E W B R E A K

continues

05 0789728230 CH02 11/21/02 1:20 PM Page 215

216 Par t I DEVELOPING WINDOWS APPLICATIONS

. You can make keyboard navigation among menu items possi-
ble by associating hotkeys in the Text property of the menu
items. You can also associate shortcut keys, which directly
invoke commands, with a menu.

. The Clipboard object consists of two public static methods,
GetDataObject() and SetDataObject(), which get and set the
data from the Clipboard.

. The StatusBar control creates a standard Windows status bar
in an application. You can use StatusBar to display various
messages and help text to the user.

. You can use toolbars to create a set of small buttons that are
identified by icons. Toolbars generally provide shortcuts to
operations that are available in the application’s main menu.
Toolbars are common in Windows applications and make an
application simple to use.

. An MDI application allows multiple documents or windows
to be open at the same time.

continued

05 0789728230 CH02 11/21/02 1:20 PM Page 216

Chapter 2 CONTROLS 217

Using Visual Studio .NET, you can add controls to a form in two
ways: Either you can use the convenient Windows Forms Designer
or you can hand code the controls and load them dynamically in
application.

Visual Studio .NET comes with a whole array of Windows Forms
controls, and you can set their properties at design time and run-
time. Visual Studio .NET makes event handling easy by automati-
cally creating event handlers for controls.

Visual Studio .NET comes with full-fledged menu controls that are
needed by almost every real-time application. Visual Studio .NET
allows you to create main menus as well as context menus. Visual
Studio .NET’s MDI forms support is extensive, allowing you to
merge menu items with menus of child windows.

This chapter presents the rich library of Windows forms controls. It
discusses most of the common Windows controls used by the appli-
cations. In fact, the .NET Framework Software Development Kit
(SDK) also allows you to create your own controls. In addition, a
large number of controls are available from several third-party con-
trol vendors. Chapter 4, “Creating and Managing .NET
Components and Assemblies” explains how to create user controls
and add them to the list of available controls.

CHAPTER SUMMARY

KEY TERMS
• Clipboard

• context menu

• main menu

• MDI application

• SDI application

• tab order

• ToolTip

• z-order

05 0789728230 CH02 11/21/02 1:20 PM Page 217

218 Par t I DEVELOPING WINDOWS APPLICATIONS

A P P LY YO U R K N O W L E D G E

Exercises

2.1 Adding ToolTips to Controls

In this exercise you will learn how to set ToolTips for a
form. A few Windows forms controls, such as TabPage,
ToolBarButton, and StatusBarPanel, have ToolTipText
properties for showing ToolTips. But other commonly
used controls do not have any built-in properties to
which ToolTips text can be assigned. This exercise
introduces the ToolTip component. When you drag the
ToolTip component from the toolbox into the
Windows form, this component provides a new prop-
erty for all the controls on the form. This new property
is named ToolTip on tooltipComponentName and can be
edited through the Properties window. When the form
executes, for each of its controls it shows the value of
the ToolTip on Tooltip ComponentName property as the
ToolTip for the control.

Estimated time: 25 minutes

1. Create a new Visual C# .NET Windows applica-
tion in the Visual Studio .NET IDE.

2. Add a new form to your Visual C# .NET project.
Name it Exercise2_1.cs. Change the Text prop-
erty of the form to Find, change FormBorderStyle
to Fixed3D, and change TopMost to true. Set the
MaximizeBox, MimimizeBox, and ShowInTaskBar
properties to false.

3. Place a ToolTip component on the form and
name it tTip. It is added to the component tray.

4. Place one Label control (keep its default name),
one TextBox control (txtTextToFind), two Button
controls (btnFind and btnCancel), one CheckBox
control (chkMatchCase), and a group box with
two RadioButton controls (rbUp and rbDown) on
the form. Arrange the controls as shown in
Figure 2.46.

F IGURE 2 .46
The Windows ToolTip component displays text when the
user points at controls.

5. A property named ToolTip on tTip is added to
all the controls placed on the form. Modify this
property to enter an appropriate ToolTip message
for each control on the form.

6. Insert the Main() method and set the form as the
startup object of the project.

7. Run the project. The ToolTip message is dis-
played when you rest the mouse pointer over the
control (refer to Figure 2.46).

2.2 Dynamically Creating Menu Items

While creating menus in Windows applications, you
are often required to add menu items dynamically. This
exercise shows you how to create menu items dynami-
cally, and it shows a list of the recent files opened by
the application.

Estimated time: 40 minutes

1. Add a new form to your Visual C# .NET project.
Name it Exercise2_2.cs.

2. Place a MainMenu control (mnuMainMenu) and an
OpenFileDialog control (dlgOpenFile) on the form.

3. Using the menu designer, add a top-level menu
item, set its Text property to &File, and name it
mnuFile. Add three menu items: &Open
(mnuFileOpen), Recent &Files
(mnuFileRecentFiles), and E&xit (mnuExit).

05 0789728230 CH02 11/21/02 1:20 PM Page 218

Chapter 2 CONTROLS 219

A P P LY YO U R K N O W L E D G E

4. Change the Menu property of the form to
mnuMainMenu.

5. Add the following code in the code view, just
before the constructor:

//Store recently used file
//list in ArrayList
private ArrayList alRecentFiles;
private System.Windows.Forms.MainMenu

mnuMainMenu;
//Maximum number to files to store
private const int intListSize = 4;

6. Add the following code in the constructor:

//Create ArrayList of given size
alRecentFiles = new ArrayList(intListSize);

7. Attach the default Click event handlers for the
mnuFileExit, mnuFileOpen, and
mnuFileRecentFiles menu items and add the fol-
lowing code to handle the Click events of the
menu items:

private void mnuFileExit_Click(
object sender, System.EventArgs e)

{
this.Close();

}

private void mnuFileOpen_Click(
object sender, System.EventArgs e)

{
if(dlgOpenFile.ShowDialog() ==

DialogResult.OK)
{

//Find if the file already
//exists in the ArrayList
int pos = alRecentFiles.IndexOf(

dlgOpenFile.FileName);
//If it exists then remove it
if (pos >= 0)

alRecentFiles.RemoveAt(pos);

//If you have exceeded the size
//of ArrayList
//delete the oldest item from it
if (alRecentFiles.Count >=

intListSize)
alRecentFiles.RemoveAt(

intListSize-1);

//Add the recently opened file to
//the queue of recent files
alRecentFiles.Insert(0,

dlgOpenFile.FileName);

//do some processing here...
MessageBox.Show(

“You selected to open: “ +
dlgOpenFile.FileName,
“File Opened”,

MessageBoxButtons.OK,
MessageBoxIcon.Information);

}
}
private void mnuFileRecentFilesItem_Click(

object sender, System.EventArgs e)
{

MenuItem mnuItem = (MenuItem) sender;
//do some processing here
MessageBox.Show(“You selected to open: “

+
mnuItem.Text.Substring(2),
“File Opened”, MessageBoxButtons.OK,
MessageBoxIcon.Information);

}

8. Add the Popup event handler for the mnuFile
menu item:

private void mnuFile_Popup(
object sender, System.EventArgs e)

{
//Check if there are any file
//names in the list
if (alRecentFiles.Count > 0)
{
//Clear old recent file list
mnuFileRecentFiles.MenuItems.Clear();
//Use this number to add keyboard
//shortcut to menu items
//Most recent file has short of 1,
//next file has shortcut of 2..
int intFileCount = 1;
foreach (string fileName in

alRecentFiles)
{

//Create a menu item to create
//in File - Recent Files menu
MenuItem mnuItem =

new MenuItem();

05 0789728230 CH02 11/21/02 1:20 PM Page 219

220 Par t I DEVELOPING WINDOWS APPLICATIONS

A P P LY YO U R K N O W L E D G E

//Set the MenuItem text with
//a shortcut key
mnuItem.Text = String.Format(
“&{0} {1}”, intFileCount++,
fileName);

//attach an event handler
//to this menu item
mnuItem.Click += new
System.EventHandler(
mnuFileRecentFilesItem_Click);
//Add the recently used file in
// the File - Recent files menu

mnuFileRecentFiles.MenuItems.Add(
mnuItem);

}
//Now that I have some files in
//the File - Recent Files menu,
//Enable it
mnuFileRecentFiles.Enabled = true;

}
else

//If there are no recent files,
//disable the menu item
mnuFileRecentFiles.Enabled = false;

}

9. Insert the Main() method and set the form as the
startup object of the project.

10. Run the project. Open a few files by selecting
File, Open, and then select the Recent Files
menu item. The recently opened files are added
as submenu items to the Recent Files menu item.
Also, the files appear in order in terms of how
recently they were opened (see Figure 2.47).

Review Questions
1. Where in a form can controls be placed? What

are the two ways to add controls?

2. What is the shortcut way of creating an event
handler for the default event of a control?

3. When should you choose a ComboBox control
instead of a ListBox control in an application?

4. What different modes of selection are possible in
a list box?

5. What are the roles of the TabIndex and TabStop
properties?

6. How can you create modal and modeless dialog
boxes?

7. What are the different styles for drawing combo
boxes?

8. What is the function of the Tag property in a
control?

9. When does the Popup event of a menu occur?
What is the main reason this event is used?

10. What is the difference between the
DateTimePicker and MonthCalendar controls?
What do you need to do in order to display a
custom format in a DateTimePicker control?

11. What is an MDI application?

12. How do you merge menu items of a child win-
dow with an MDI window?

F I GURE 2 .47
You can display a list of recently used files by dynamically
creating menu items.

05 0789728230 CH02 11/21/02 1:20 PM Page 220

3C H A P T E R

Error Handling for the
User Interface

This chapter covers the following Microsoft-specified
objectives for the “Creating User Services” section of
Exam 70-316, “Developing and Implementing
Windows-Based Applications with Microsoft Visual
C# .NET and Microsoft Visual Studio .NET”:

Implement error handling in the UI.

• Create and implement custom error
messages

• Create and implement custom error
handlers.

• Raise and handle errors.

. When you run a Windows application, it may
encounter problems that you thought would not
occur. For example, the database server is down, a
file is missing, or a user has entered improper val-
ues. A good Windows application must recover
gracefully from this problem rather than abruptly
shut down. This exam objective covers the use of
exception handling to create robust and fault-toler-
ant applications. The Microsoft .NET Framework
provides some predefined exception classes to help
you catch these exceptional situations in your pro-
grams. It allows you to create your own exception
handling classes and error messages that are specific
to your application.

Validate user input.

. Garbage in results in garbage out. The best place to
avoid incorrect data in an application is at the
source—right where the data enters. The Windows
Forms library provides an ErrorProvider compo-
nent that can be used to display helpful error mes-
sages and error icons if data that is entered is incor-
rect. This exam objective covers the ErrorProvider
component and various other input-validation
techniques.

OBJECT IVES

06 0789728230 CH03 11/21/02 1:17 PM Page 229

Introduction 231

Understanding Exceptions 231

Handling Exceptions 234

The try Block 235

The catch Block 235

The throw Statement 239

The finally Block 240

Creating and Using Custom Exceptions 244

Managing Unhandled Exceptions 250

Validating User Input 255

Keystroke-Level Validation 256
The KeyPreview Property 257

Field-Level Validation 258
The Validating Event 258
The CausesValidation Property 259
The ErrorProvider Component 260

Enabling Controls Based on Input 263

Other Properties for Validation 264
The CharacterCasing Property 264
The MaxLength Property 264

Chapter Summary 269

Apply Your Knowledge 270

OUTL INE STUDY STRATEGIES

. Review the “Exception Handling Statements” and
the “Best Practices for Exception Handling” sec-
tions of the Visual Studio .NET Combined Help
Collection. The Visual Studio .NET Combined
Help Collection is installed as part of the Visual
Studio .NET installation.

. Experiment with code that uses the try, catch,
and finally blocks. Use these blocks with various
combinations and inspect the differences in your
code’s output.

. Know how to create custom exception classes and
custom error messages; learn to implement them
in a program.

. Experiment with the ErrorProvider component,
the Validating event, and other validation tech-
niques. Use these tools in various combinations
to validate data that is entered in controls.

06 0789728230 CH03 11/21/02 1:17 PM Page 230

Chapter 3 ERROR HANDLING FOR THE USER INTERFACE 231

INTRODUCTION

The .NET Framework uses the Windows structured exception han-
dling model. Exception handling is an integral part of the .NET
Framework that allows the Common Language Runtime (CLR) and
your code to throw exceptions across languages and machines.
Visual C# .NET helps you fire and handle these exceptions with the
help of try, catch, finally, and throw statements. The Framework
Class Library (FCL) provides a huge set of exception classes for deal-
ing with various unforeseen conditions in the normal execution
environment. If you feel the need to create custom exception classes
to meet the specific requirements of an application, you can do so
by deriving from the ApplicationException class.

In every program data must be validated before the program can
proceed with further processing and storage of the input data. In
this chapter I discuss the various techniques you can use to validate
data and maintain the integrity of an application. This isn’t just a
matter of making sure that your application delivers the proper
results; if you don’t validate input, your application might represent
a serious security hole in your systems.

UNDERSTANDING EXCEPTIONS

An exception occurs when a program encounters any unexpected
problems such as running out of memory or attempting to read
from a file that no longer exists. These problems are not necessarily
caused by programming errors but mainly occur due to violations of
certain assumptions that are made about the execution environment.

When a program encounters an exception, its default behavior is to
throw the exception, which generally translates to abruptly terminat-
ing the program after displaying an error message. This is not a
characteristic of a robust application and does not make your pro-
gram popular with users. Your program should be able to handle
these exceptional situations and, if possible, gracefully recover from
them. This is called exception handling. Proper use of exception han-
dling can make programs robust and easy to develop and maintain.
However, if you do not use exception handling properly, you might
end up having a program that performs poorly, is harder to main-
tain, and may potentially mislead its users.

STUDY STRATEGIES

06 0789728230 CH03 11/21/02 1:17 PM Page 231

232 Par t I DEVELOPING WINDOWS APPLICATIONS

Step by Step 3.1 demonstrates how an exception may occur in a
program. Later in this chapter I explain how to handle these excep-
tions.

S T E P B Y S T E P
3.1 Exceptions in Windows Applications

1. Create a new C# Windows application project in the
Visual Studio .NET Integrated Development
Environment (IDE). Name the project 316C03.

2. Add a new Windows form to the project. Name it
StepByStep3_1.

3. Place three TextBox controls (txtMiles, txtGallons, and
txtEfficiency) and a Button control (btnCalculate) on
the form and arrange them as shown in Figure 3.1. Add
Label controls as necessary.

4. Add the following code to the Click event handler of
btnCalculate:

private void btnCalculate_Click(
object sender, System.EventArgs e)

{
//this code has no error checking. If something
//goes wrong at run time,
//it will throw an exception
decimal decMiles =

Convert.ToDecimal(txtMiles.Text);
decimal decGallons =

Convert.ToDecimal(txtGallons.Text);
decimal decEfficiency = decMiles/decGallons;
txtEfficiency.Text =

String.Format(“{0:n}”, decEfficiency);
}

5. Insert the Main() method to launch the form. Set the
form as the startup object for the project.

6. Run the project. Enter values for miles and gallons and
click the Calculate button. The program calculates the
mileage efficiency, as expected. Now enter the value 0 in
the Gallons of Gas Used field and run the program. The
program abruptly terminates after displaying an error mes-
sage (see Figure 3.2).

F IGURE 3 .1
The mileage efficiency calculator does not
implement any error handling for the user inter-
face.

F IGURE 3 .2
The development environment gives you a
chance to analyze the problem when an excep-
tion occurs.

06 0789728230 CH03 11/21/02 1:17 PM Page 232

Chapter 3 ERROR HANDLING FOR THE USER INTERFACE 233

When you run the program created in Step by Step 3.1 from the
IDE and the program throws an exception, the IDE gives you
options to analyze the problem by debugging the program. In Step
by Step 3.1, if you had instead run the program by launching the
project’s .exe file from Windows Explorer, the program would have
terminated after displaying a message box with an error message and
some debugging information (see Figure 3.3).

From the CLR’s point of view, an exception is an object that encap-
sulates information about the problems that occur during program
execution. The FCL provides two categories of exceptions:

á ApplicationException—Represents exceptions thrown by the
applications

á SystemException—Represents exceptions thrown by the CLR

Both of these exception classes derive from the base class Exception,
which implements the common functionality for exception han-
dling. Neither the ApplicationException class nor the
SystemException class adds any new functionality to the Exception
class; they exist just to differentiate exceptions in applications from
exceptions in the CLR. The classes derived from Exception share
some important properties, as listed in Table 3.1

TABLE 3.1

IMPORTANT MEMBERS OF THE Exception CLASS

Member Type Description

HelpLink Property Specifies the uniform resource locator (URL) of
the help file associated with this exception.

InnerException Property Specifies an exception associated with this excep-
tion. This property is helpful when a series of
exceptions are involved. Each new exception can
preserve the information about the previous
exception by storing it in the InnerException
property.

Message Property Specifies textual information that indicates the
reason for the error and provides possible resolu-
tions.

Source Property Specifies the name of the application that causes
the error.

F IGURE 3 .3
When a program is executed outside the Visual
Studio .NET environment, debugging information
is displayed when an exception is thrown.

continues

06 0789728230 CH03 11/21/02 1:17 PM Page 233

234 Par t I DEVELOPING WINDOWS APPLICATIONS

StackTrace Property Specifies where an error has occurred. If the
debugging information is available, the stack
trace includes the name of the source file and the
program line number.

TargetSite Property Represents the method that throws the current
exception.

HANDLING EXCEPTIONS

Implement error handling in the user interface:

• Create and implement custom error messages.

• Raise and handle errors.

Abruptly terminating a program when an exception occurs is not a
good idea. An application should be able to handle an exception
and, if possible, try to recover from it. If recovery is not possible,
you can have the program take other steps, such as notify the user
and then gracefully terminate the application.

The .NET Framework allows exception handling to interoperate
among languages and across machines. You can catch exceptions
thrown by code written in one .NET language in a different .NET
language. The .NET framework also allows you to handle exceptions
thrown by legacy Component Object Model (COM) applications
and legacy non-COM Windows applications.

Exception handling is such an integral part of the .NET framework
that when you look for a method reference in the product documen-
tation, there is always a section that specifies what exceptions a call
to that method might throw.

You can handle exceptions in Visual C# .NET programs by using a
combination of exception handling statements: try, catch, finally,
and throw.

TABLE 3.1

IMPORTANT MEMBERS OF THE Exception CLASS

Member Type Description

continued

T
IP

Floating-Point Types and
Exceptions Operations that
involve floating-point types never
produce exceptions. Instead, in
exceptional situations, floating-point
operations are evaluated by using
the following rules:

• If the result of a floating-point
operation is too small for the
destination format, the result of
the operation becomes positive
zero or negative zero.

• If the result of a floating-point
operation is too large for the
destination format, the result of
the operation becomes positive
infinity or negative infinity.

• If a floating-point operation is
invalid, the result of the operation
becomes NaN (not a number).

E
X

A
M

06 0789728230 CH03 11/21/02 1:17 PM Page 234

Chapter 3 ERROR HANDLING FOR THE USER INTERFACE 235

The try Block
You should place the code that might cause exceptions in a try
block. A typical try block looks like this:

try
{

//code that may cause exception
}

You can place any valid C# statements inside a try block, including
another try block or a call to a method that places some of its state-
ments inside a try block. The point is, at runtime you may have a
hierarchy of try blocks placed inside each other. When an exception
occurs at any point, rather than executing any further lines of code,
the CLR searches for the nearest try block that encloses this code.
The control is then passed to a matching catch block (if any) and
then to the finally block associated with this try block.

A try block cannot exist on its own; it must be immediately fol-
lowed by either one or more catch blocks or a finally block.

The catch Block
You can have several catch blocks immediately following a try
block. Each catch block handles an exception of a particular type.
When an exception occurs in a statement placed inside the try
block, the CLR looks for a matching catch block that is capable of
handling that type of exception. A typical try-catch block looks like
this:

try
{

//code that may cause exception
}
catch(ExceptionTypeA)
{

//Statements to handle errors occurring
//in the associated try block

}
catch(ExceptionTypeB)
{

//Statements to handle errors occurring
//in the associated try block

}

06 0789728230 CH03 11/21/02 1:17 PM Page 235

236 Par t I DEVELOPING WINDOWS APPLICATIONS

The formula the CLR uses to match the exception is simple: While
matching it looks for the first catch block with either the exact same
exception or any of the exception’s base classes. For example, a
DivideByZeroException exception would match any of these excep-
tions: DivideByZeroException, ArithmeticException,
SystemException, and Exception. In the case of multiple catch
blocks, only the first matching catch block is executed. All other
catch blocks are ignored.

When you write multiple catch blocks, you need to arrange them
from specific exception types to more general exception types. For
example, the catch block for catching a DivideByZeroException
exception should always precede the catch block for catching a
ArithmeticException exception. This is because the
DivideByZeroException exception derives from ArithmeticException
and is therefore more specific than the latter. The compiler flags an
error if you do not follow this rule.

A try block need not necessarily have a catch block associated with
it, but if it does not, it must have a finally block associated with it.

S T E P B Y S T E P
3.2 Handling Exceptions

1. Add a new Windows form to the project. Name it
StepByStep3_2.

2. Create a form similar to the one created in Step by Step
3.1 (refer to Figure 3.1), with the same names for the
controls.

3. Add the following code to the Click event handler of
btnCalculate:

private void btnCalculate_Click(
object sender, System.EventArgs e)

{
//put all the code that may require graceful
//error recovery in a try block
try
{

decimal decMiles =
Convert.ToDecimal(txtMiles.Text);

decimal decGallons =
Convert.ToDecimal(txtGallons.Text);

decimal decEfficiency = decMiles/decGallons;

N
O

T
E Exception Handling Hierarchy If

there is no matching catch block, an
unhandled exception results. The
unhandled exception is propagated
back to its caller code. If the excep-
tion is not handled there, it propa-
gates further up the hierarchy of
method calls. If the exception is not
handled anywhere, it goes to the CLR,
whose default behavior is to terminate
the program immediately.

06 0789728230 CH03 11/21/02 1:17 PM Page 236

Chapter 3 ERROR HANDLING FOR THE USER INTERFACE 237

txtEfficiency.Text =
String.Format(“{0:n}”, decEfficiency);

}
// try block should at least have one catch or a
// finally block. catch block should be in order
// of specific to the generalized exceptions
// otherwise compilation generates an error
catch (FormatException fe)
{

string msg = String.Format(
“Message: {0}\n Stack Trace:\n {1}”,
fe.Message, fe.StackTrace);

MessageBox.Show(msg, fe.GetType().ToString());
}
catch (DivideByZeroException dbze)
{

string msg = String.Format(
“Message: {0}\n Stack Trace:\n {1}”,
dbze.Message, dbze.StackTrace);

MessageBox.Show(
msg, dbze.GetType().ToString());

}
//catches all CLS-compliant exceptions
catch(Exception ex)
{

string msg = String.Format(
“Message: {0}\n Stack Trace:\n {1}”,
ex.Message, ex.StackTrace);

MessageBox.Show(msg, ex.GetType().ToString());
}
//catches all other exceptions including
//the NON-CLS compliant exceptions
catch
{

//just rethrow the exception to the caller
throw;

}
}

4. Insert the Main() method to launch the form. Set the
form as the startup object for the project.

5. Run the project. Enter values for miles and gallons and
click the Calculate button. The program calculates the
mileage efficiency, as expected. Now enter the value 0 in
the Gallons of gas used field and run the program. Instead
of abruptly terminating as in the earlier case, the program
shows a message about the DivideByZeroException excep-
tion, as shown in Figure 3.4, and it continues running.
Now enter some alphabetic characters instead of
number in the fields and click the Calculate button.

continues

F IGURE 3 .4
To get information about an exception, you can
catch the Exception object and access its
Message property.

T
IP

CLS- and Non-CLS-Compliant
Exceptions All languages that fol-
low the Common Language
Specification (CLS) throw exceptions
of type System.Exception or a type
that derives from System.Exception.
A non-CLS-compliant language may
throw exceptions of other types, too.
You can catch those types of excep-
tions by placing a general catch
block (that does not specify any
exception) with a try block. In fact,
a general catch block can catch
exceptions of all types, so it is the
most generic of all catch blocks and
should be the last catch block
among the multiple catch blocks
associated with a try block.

E
X

A
M

06 0789728230 CH03 11/21/02 1:17 PM Page 237

238 Par t I DEVELOPING WINDOWS APPLICATIONS

This time you get a FormatException exception, and the
program continues to run. Now try entering very large
values in both the fields. If the values are large enough,
the program encounters an OverflowException exception,
but because the program is catching all types of excep-
tions, it continues running.

The program in Step by Step 3.2 displays a message box when an
exception occurs; the StackTrace property lists the methods in the
reverse order of their calling sequence. This helps you understand
the logical flow of the program. You can also place any appropriate
error handling code in place, and you can display a message box.

When you write a catch block that catches exceptions of type
Exception, the program catches all CLS-compliant exceptions. This
includes all exceptions, unless you are interacting with legacy COM
or Windows 32-bit Application Programming Interface (Win32
API) code. If you want to catch all kinds of exceptions, whether
CLS-compliant or not, you can place a catch block with no specific
type. A catch block like this must be the last catch block in the list
of catch blocks because it is the most generic one.

You might be thinking that it is a good idea to catch all sorts of
exceptions in your code and suppress them as soon as possible. But
it is not a good idea. A good programmer catches an exception in
code only if he or she can answer yes to one or more of the follow-
ing questions:

á Will I attempt to recover from this error in the catch block?

á Will I log the exception information in the system event log or
another log file?

á Will I add relevant information to the exception and rethrow it?

á Will I execute cleanup code that must run even if an exception
occurs?

If you answer no to all these questions, then you should not catch
the exception but rather just let it go. In that case, the exception
propagates up to the calling code, and the calling code might have a
better idea of how to handle the exception.

continued

N
O

T
E checked and unchecked Visual C#

.NET provides the checked and
unchecked keywords, which can be
used to enclose a block of statements
(for example, checked {a = c/d}) or as
an operator when you supply parame-
ters enclosed in parentheses (for exam-
ple, unchecked(c/d)). The checked key-
word enforces checking of any arith-
metic operation for overflow exceptions.
If constant values are involved, they are
checked for overflow at compile time.
The unchecked keyword suppresses the
overflow checking and instead of raising
an OverflowException exception, the
unchecked keyword returns a truncated
value in case of overflow.

If checked and unchecked are not
used, the default behavior in C# is to
raise an exception in case of overflow
for a constant expression or truncate
the results in case of overflow for the
nonconstant expressions.

N
O

T
E Do Not Use Exceptions to Control

the Normal Flow of Execution Using
exceptions to control the normal flow
of execution can make your code diffi-
cult to read and maintain because the
use of try-catch blocks to deal with
exceptions forces you to fork the regu-
lar program logic between two sepa-
rate locations—the try block and the
catch block.

06 0789728230 CH03 11/21/02 1:17 PM Page 238

Chapter 3 ERROR HANDLING FOR THE USER INTERFACE 239

The throw Statement
A throw statement explicitly generates an exception in code. You use
throw when a particular path in code results in an anomalous situa-
tion.

You should not throw exceptions for anticipated cases such as the
user entering an invalid username or password; instead, you can
handle this in a method that returns a value indicating whether the
login is successful. If you do not have the correct permissions to read
records from the user table and you try to read those records, an
exception is likely to occur because a method for validating users
should normally have read access to the user table.

There are two ways you can use the throw statement. In its simplest
form, you can just rethrow the exception in a catch block:

catch(Exception e)
{

//TODO: Add code to create an entry in event log
throw;

}

This usage of the throw statement rethrows the exception that was
just caught. It can be useful in situations in which you don’t want to
handle the exception yourself but would like to take other actions
(for example, recording the error in an event log, sending an email
notification about the error) when an exception occurs and then
pass the exception as-is to its caller.

The second way to use the throw statement is to use it to throw
explicitly created exceptions, as in this example:

string strMessage =
“EndDate should be greater than the StartDate”;

ArgumentOutOfRangeException newException =
new ArgumentOutOfRangeException(strMessage);

throw newException;

In this example, I first create a new instance of the
ArgumentOutOfRangeException object and associate a custom error
message with it, and then I throw the newly created exception.

You are not required to put this usage of the throw statement inside
a catch block because you are just creating and throwing a new
exception rather than rethrowing an existing one. You typically use
this technique in raising your own custom exceptions. I discuss how
to do that later in this chapter.

Use throw Only When Required
The throw statement is an expen-
sive operation. Use of throw con-
sumes significant system resources
compared to just returning a value
from a method. You should use the
throw statement cautiously and
only when necessary because it
has the potential to make your pro-
grams slow.

W
A

R
N

IN
G

T
IP

Custom Error Messages When you
create an exception object, you
should use its constructor that
allows you to associate a custom
error message rather than use its
default constructor. The custom error
message can pass specific informa-
tion about the cause of the error and
a possible way to resolve it.

E
X

A
M

06 0789728230 CH03 11/21/02 1:17 PM Page 239

240 Par t I DEVELOPING WINDOWS APPLICATIONS

Another way of throwing an exception is to throw it after wrapping
it with additional useful information, as in this example:

catch(ArgumentNullException ane)
{

//TODO: Add code to create an entry in the log file
string strMessage = “CustomerID cannot be null”;
ArgumentNullException newException =

new ArgumentNullException(strMessage, ane);
throw newException;

}

Many times, you need to catch an exception that you cannot handle
completely. In such a case you should perform any required process-
ing and throw a more relevant and informative exception to the
caller code so that it can perform the rest of the processing. In this
case, you can create a new exception whose constructor wraps the
previously caught exception in the new exception’s InnerException
property. The caller code then has more information available to
handle the exception appropriately.

It is interesting to note that because InnerException is of type
Exception, it also has an InnerException property that may store a
reference to another exception object. Therefore, when you throw an
exception that stores a reference to another exception in its
InnerException property, you are actually propagating a chain of
exceptions. This information is very valuable at the time of debug-
ging and allows you to trace the path of a problem to its origin.

The finally Block
The finally block contains code that always executes, whether or
not any exception occurs. You use the finally block to write
cleanup code that maintains your application in a consistent state
and preserves sanitation in the environment. For example, you can
write code to close files, database connections, and related
input/output resources in a finally block.

It is not necessary for a try block to have an associated finally
block. However, if you do write a finally block, you cannot have
more than one, and the finally block must appear after all the
catch blocks.

Step by Step 3.3 illustrates the use of the finally block.

T
IP

No Code in Between try-catch-
finally Blocks When you write
try, catch, and finally blocks,
they should be in immediate suc-
cession of each other. You cannot
write any other code between the
blocks, although compilers allow
you to place comments between
them.

E
X

A
M

06 0789728230 CH03 11/21/02 1:17 PM Page 240

Chapter 3 ERROR HANDLING FOR THE USER INTERFACE 241

S T E P B Y S T E P
3.3 Using the finally Block

1. Add a new Windows form to the project. Name it
StepByStep3_3.

2. Place two TextBox controls (txtFileName and txtText),
two Label controls (keep their default names), and a
Button control (btnSave) on the form and arrange them as
shown in Figure 3.5.

3. Attach the Click event handler to the btnSave control and
add the following code to handle the Click event:

private void btnSave_Click(
object sender, System.EventArgs e)

{
// a StreamWriter writes characters to a stream
StreamWriter sw = null;
try
{

sw = new StreamWriter(txtFileName.Text);
// Attempt to write the text box
// contents in a file
foreach(string line in txtText.Lines)

sw.WriteLine(line);
// This line only executes if there
// were no exceptions so far
MessageBox.Show(
“Contents written, without any exceptions”);

}
//catches all CLS-compliant exceptions
catch(Exception ex)
{

string msg = String.Format(
“Message: {0}\n Stack Trace:\n {1}”,
ex.Message, ex.StackTrace);

MessageBox.Show(msg, ex.GetType().ToString());
goto end;

}
// finally block is always executed to make sure
// that the resources get closed whether or not
// the exception occurs. Even if there is a goto
// statement in catch or try block the final block
// is first executed before the control goes to
// the goto label
finally
{

if (sw != null)
sw.Close();

F IGURE 3 .5
When you click the Save button, the code in
finally block executes, regardless of any
exception in the try block.

continues

06 0789728230 CH03 11/21/02 1:17 PM Page 241

242 Par t I DEVELOPING WINDOWS APPLICATIONS

MessageBox.Show(“Finally block always “ +
“executes whether or not exception occurs”);

}
end:

MessageBox.Show(“Control is at label: end”);
}

4. Insert a Main() method to launch the form. Set the form
as the startup object for the project.

5. Run the project. You should see a Windows form, as
shown in Figure 3.5. Enter a filename and some text.
Watch the order of messages. Note that the message box
being displayed in the finally block is always displayed
prior to the message box displayed by the end label.

Step by Step 3.3 illustrates that the finally block always executes.
In addition, if there is a transfer-control statement such as goto,
break, or continue in either the try block or the catch block, the
control transfer happens after the code in the finally block is exe-
cuted. What happens if there is a transfer-control statement in the
finally block also? That is not an issue because the C# compiler
does not allow you to put a transfer-control statement such as goto
inside a finally block.

One of the ways the finally statement can be used is in the form of
a try-finally block without any catch block. Here is an example:

try
{

//Write code to allocate some resources
}
finally
{

//Write code to Dispose all allocated resources
}

This use ensures that allocated resources are properly disposed of, no
matter what. In fact, C# provides a using statement that does the
exact same job but with less code. A typical use of the using state-
ment is as follows:

// Write code to allocate some resource. List the
// allocate resources in a comma-separated list inside
// the parentheses, with the following using block
using(...)

continued

T
IP

The finally Block Always
Executes If you have a finally
block associated with a try block,
the code in the finally block
always executes, whether or not an
exception occurs.E

X
A

M
N

O
T

E Throwing Exceptions from the final-
ly Block Although it is perfectly
legitimate to throw exceptions from a
finally block, it is not recommend-
ed. The reason for this is that when
you are processing a finally block,
you might already have an unhandled
exception waiting to be caught.

06 0789728230 CH03 11/21/02 1:17 PM Page 242

Chapter 3 ERROR HANDLING FOR THE USER INTERFACE 243

{
//use the allocated resource

}
// Here, the Dispose() method is called for all the
// objects referenced in the parentheses of the
// using statement. There is no need to write
// any additional code

. An exception occurs when a program encounters any unex-
pected problem during normal execution.

. The FCL provides two main types of exceptions:
SystemException and ApplicationException. SystemException
represents the exceptions thrown by the CLR, and
ApplicationException represents the exceptions thrown by the
applications.

. The System.Exception class represents the base class for all
CLS-compliant exceptions and provides the common func-
tionality for exception handling.

. The try block consists of code that may raise an exception. A
try block cannot exist on its own. It should be immediately
followed by one or more catch blocks or a finally block.

. The catch block handles the exception raised by the code in
the try block. The CLR looks for a matching catch block to
handle the exception; this is the first catch block with either
the exact same exception or any of the exception’s base classes.

. If there are multiple catch blocks associated with a try block,
the catch blocks should be arranged in specific-to-general
order of exception types.

. The throw statement is used to raise an exception.

. The finally block is used to enclose code that needs to run,
regardless of whether an exception is raised.

R E V I E W B R E A K

06 0789728230 CH03 11/21/02 1:17 PM Page 243

244 Par t I DEVELOPING WINDOWS APPLICATIONS

CREATING AND USING CUSTOM
EXCEPTIONS

Implement error handling in the user interface.

• Create and implement custom error messages.

• Create and implement custom error handlers.

• Raise and handle errors.

The exception classes provided by the .NET Framework, combined
with the custom messages created when you create a new Exception
object to throw or rethrow exceptions, should suffice for most of
your exception handling requirements. In some cases, however, you
might need exception types that are specific to the problem you are
solving.

The .NET Framework allows you to define custom exception class-
es. To keep your custom-defined Exception class homogeneous with
the .NET exception framework, Microsoft recommends that you
consider the following when you design a custom exception class:

á Create an exception class only if there is no existing exception
class that satisfies your requirement.

á Derive all programmer-defined exception classes from the
System.ApplicationException class.

á End the name of your custom exception class with the word
Exception (for example, MyOwnCustomException).

á Implement three constructors with the signatures shown in the
following code:

public class MyOwnCustomException :
ApplicationException

{
// Default constructor
public MyOwnCustomException ()
{
}
// Constructor accepting a single string message
public MyOwnCustomException (string message) :

base(message)
{

T
IP

Using ApplicationException as a
Base Class for Custom Exceptions
Although you can derive custom
exception classes directly from the
Exception class, Microsoft recom-
mends that you derive custom
exception classes from the
ApplicationException class.

E
X

A
M

06 0789728230 CH03 11/21/02 1:17 PM Page 244

Chapter 3 ERROR HANDLING FOR THE USER INTERFACE 245

}
// Constructor accepting a string message and an
// inner exception that will be wrapped
// by this custom exception class
public MyOwnCustomException(string message,

Exception inner) : base(message, inner)
{
}

}

Step by Step 3.4 shows you how to create a custom exception.

S T E P B Y S T E P
3.4 Creating and Using a Custom Exception

1. Add a new Windows form to the project. Name it
StepByStep3_4.

2. Place and arrange controls on the form as shown in Figure
3.6. Name the TextBox control txtDate, the Button con-
trol btnIsLeap, and the Label control inside the Results
panel lblResult.

3. Switch to the code view and add the following definition
for the MyOwnInvalidDateFormatException class to the end
of the class definition for project StepByStep3_4:

// You can create your own exception classes by
// deriving from the ApplicationException class.
// It is good coding practice to end the class name
// of the custom exception with the word “Exception”
public class MyOwnInvalidDateFormatException :

ApplicationException
{

// It is a good practice to implement the three
// recommended common constructors as shown here.
public MyOwnInvalidDateFormatException()
{
}
public MyOwnInvalidDateFormatException(

string message): base(message)
{

this.HelpLink =
“file://MyOwnInvalidDateFormatExceptionHelp.htm”;
}
public MyOwnInvalidDateFormatException(
string message, Exception inner) :
base(message, inner)
{
}

}

F IGURE 3 .6
The leap year finder implements a custom
exception for an invalid date format.

continues

06 0789728230 CH03 11/21/02 1:17 PM Page 245

246 Par t I DEVELOPING WINDOWS APPLICATIONS

4. Add the following definition for the Date class:

//This class does elementary date handling required
//for this program
public class Date
{

private int day, month, year;

public Date(string strDate)
{

if (strDate.Trim().Length == 10)
{

//Input data might be in an invalid format
//In which case, Convert.ToDateTime()
// method will fail
try
{

DateTime dt =
Convert.ToDateTime(strDate);

day = dt.Day;
month = dt.Month;
year = dt.Year;

}
//Catch the exception, attach that to the
//custom exception and
//throw the custom exception
catch(Exception e)
{

throw new
MyOwnInvalidDateFormatException(
“Custom Exception Says: “ +
“Invalid Date Format”, e);

}
}
else

//Throw the custom exception
throw new MyOwnInvalidDateFormatException(

“The input does not match the “ +
“required format: MM/DD/YYYY”);

}

//Find if the given date belongs to a leap year
public bool IsLeapYear()
{

return (year%4==0) && ((year %100 !=0) ||
(year %400 ==0));

}
}

continued

06 0789728230 CH03 11/21/02 1:17 PM Page 246

Chapter 3 ERROR HANDLING FOR THE USER INTERFACE 247

5. Add the following event handler for the Click event of
btnIsLeap:

private void btnIsLeap_Click(
object sender, System.EventArgs e)

{
try
{

Date dt = new Date(txtDate.Text);
if (dt.IsLeapYear())

lblResult.Text =
“This date is in a leap year”;

else
lblResult.Text =

“This date is NOT in a leap year”;
}
//Catch the custom exception and
//display an appropriate message
catch (MyOwnInvalidDateFormatException dte)
{

string msg;
//If some other exception was also
//attached with this exception
if (dte.InnerException != null)
msg = String.Format(
“Message:\n {0}\n\n Inner Exception:\n {1}”,
dte.Message, dte.InnerException.Message);

else
msg = String.Format(

“Message:\n {0}\n\n Help Link:\n {1}”,
dte.Message, dte.HelpLink);

MessageBox.Show(msg, dte.GetType().ToString());
}

}

6. Insert a Main() method to launch the form. Set the form
as the startup object for the project.

7. Run the project. Enter a date and click the button. If the
date you enter is in the required format, you see a result
displayed in the Results group box; otherwise, you get a
message box showing the custom error message thrown by
the custom exception, as in Figure 3.7.

F IGURE 3 .7
You can associate a customized error message
and a help link with a custom exception.

06 0789728230 CH03 11/21/02 1:17 PM Page 247

248 Par t I DEVELOPING WINDOWS APPLICATIONS

G U I D E D P R A C T I C E
E X E R C I S E 3 . 1
You are a Windows developer for a data analysis company. For one
of your applications you need to create a keyword searching form
that asks for a filename and a keyword from the user (as shown in
Figure 3.8). The form should search for the keyword in the file and
display the number of lines that contain the keyword in the results
group box. Your form assumes that the entered keyword is a single
word. If it is not a single word, you need to create and throw a cus-
tom exception for that case.

How would you throw a custom exception to implement custom
error messages and custom error handling in your program?

You should try working through this problem on your own first. If
you get stuck, or if you’d like to see one possible solution, follow
these steps:

1. Add a new form to your Visual C# .NET project. Name the
form GuidedPracticeExercise3_1.cs.

2. Place and arrange controls on the form as shown in Figure 3.8.
Name the TextBox control for accepting the filename
txtFileName and the Browse control btnBrowse. Set the
ReadOnly property of txtFileName to true. Name the TextBox
control for accepting the keyword txtKeyword and the Button
control btnSearch. Set the tab order of the form in the correct
order, to ensure that the user’s cursor is not placed in the read-
only text box when the application starts.

3. Add an OpenFileDialog control to the form and change its
name to dlgOpenFile.

4. Create a new class named BadKeywordFormatException that
derives from ApplicationException and place the following
code in it:

public class BadKeywordFormatException :
ApplicationException

{
public BadKeywordFormatException()
{
}
public BadKeywordFormatException(string message):

base(message)

F IGURE 3 .8
The keyword searching form throws a custom
exception if the input is not in the required
format.

06 0789728230 CH03 11/21/02 1:17 PM Page 248

Chapter 3 ERROR HANDLING FOR THE USER INTERFACE 249

{
}
public BadKeywordFormatException(string message,

Exception inner): base(message, inner)
{
}

}

5. Create a method named GetKeywordFrequency() in the
GuidedPracticeExercise3_1 class. This method should accept a
string and return the number of lines that contain the string.
Add the following code to the method:

private int GetKeywordFrequency(string path)
{

if(this.txtKeyword.Text.Trim().IndexOf(‘ ‘) >= 0)
throw new BadKeywordFormatException(
“The keyword must only have a single word”);

int count = 0;
if (File.Exists(path))
{

StreamReader sr =
new StreamReader(txtFileName.Text);

while (sr.Peek() > -1)
if (sr.ReadLine().IndexOf(txtKeyword.Text)
>= 0)

count++;
}
return count;

}

6. Add the following code to the Click event handler of
btnBrowse:

private void btnBrowse_Click(
object sender, System.EventArgs e)

{
if (dlgOpenFile.ShowDialog() == DialogResult.OK)

txtFileName.Text = dlgOpenFile.FileName;
}

7. Add the following code to the Click event handler of
btnSearch:

private void btnSearch_Click(
object sender, System.EventArgs e)

{
if (txtKeyword.Text.Trim().Length == 0)
{

MessageBox.Show(
“Please enter a keyword to search for”,
“Missing Keyword”);

return;
}

continues

06 0789728230 CH03 11/21/02 1:17 PM Page 249

250 Par t I DEVELOPING WINDOWS APPLICATIONS

try
{

lblResult.Text = String.Format(
“The keyword: ‘{0}’, was found in {1} lines”,
txtKeyword.Text,
GetKeywordFrequency(txtFileName.Text));

}
catch(BadKeywordFormatException bkfe)
{

string msg = String.Format(
“Message:\n {0}\n\n StackTrace:\n{1}”,
bkfe.Message, bkfe.StackTrace);

MessageBox.Show(msg, bkfe.GetType().ToString());
}

}

8. Insert the Main() method to launch the form
GuidedPracticeExercise3_1.cs. Set the form as the startup
object for the project.

9. Run the project. Click the Browse button and select an exist-
ing file. Enter the keyword to search for in the file and click
the Search button. If the keyword entered is in the wrong for-
mat (for example, if it contains two words), the custom
exception is raised.

If you have difficulty following this exercise, review the sections
“Handling Exceptions” and “Creating and Using Custom
Exceptions” earlier in this chapter. After reviewing, try this exercise
again.

MANAGING UNHANDLED EXCEPTIONS

The CLR-managed applications execute in an isolated environment
called an application domain. The AppDomain class of the System
namespace programmatically represents the application domain. The
AppDomain class provides a set of events that allows you to respond
when an assembly is loaded, when an application domain is
unloaded, or when an application throws an unhandled exception.

continued

06 0789728230 CH03 11/21/02 1:17 PM Page 250

Chapter 3 ERROR HANDLING FOR THE USER INTERFACE 251

In this chapter, we are particularly interested in the
UnhandledException event of the AppDomain class, which occurs when
any other exception handler does not catch an exception. Table 3.2
lists the properties of the UnhandledExceptionEventArgs class.

TABLE 3.2

IMPORTANT MEMBERS OF THE

UnhandledExceptionEventArgs CLASS

Member Type Description

ExceptionObject Property Specifies the unhandled exception object that
corresponds to the current domain

IsTerminating Property Indicates whether the CLR is terminating

You can attach an event handler with the UnhandledException event
to take custom actions such as logging exception-related informa-
tion. A log that is maintained over a period of time may help you
find and analyze patterns with useful debugging information. There
are several ways you can log information that is related to an event:

á By using the Windows event log

á By using custom log files

á By using databases such as SQL Server 2000

á By sending email notifications

Among these ways, the Windows event log offers the most robust
method for event logging because it requires minimal assumptions
for logging events. The other cases are not as fail-safe; for example,
an application could loose connectivity with the database or with
the SMTP server, or you might have problems writing an entry in a
custom log file.

The .NET Framework provides you access to the Windows event
log through the EventLog class. Windows 2000 and later have three
default logs—application, system, and security. You can use the
EventLog class to create custom event logs. You can easily view the
event log by using the Windows Event Viewer utility.

You should familiarize yourself with the important members of the
EventLog class that are listed in Table 3.3.

N
O

T
E When Not to Use the Windows Event

Log The Windows event log is not
available on older versions of
Windows, such as Windows 98. If
your application needs to support
computers running older versions of
Windows, you might want to create a
custom error log. In a distributed
application, you might want to log all
events centrally in a SQL Server data-
base. To make the scheme fail-safe,
you can choose to log locally if the
database is not available and transfer
the log to the central database when
it is available again.

06 0789728230 CH03 11/21/02 1:17 PM Page 251

252 Par t I DEVELOPING WINDOWS APPLICATIONS

TABLE 3.3

IMPORTANT MEMBERS OF THE EventLog CLASS

Member Type Description

Clear() Method Removes all entries from the event log and
makes it empty

CreateEventSource() Method Creates an event source that you can use to
write to a standard or custom event log

Entries Property Gets the contents of the event log

Log Property Specifies the name of the log to read from or
write to

MachineName Property Specifies the name of the computer on
which to read or write events

Source Property Specifies the event source name to register
and use when writing to the event log

SourceExists() Method Specifies whether the event source exists on a
computer

WriteEntry() Method Writes an entry in the event log

S T E P B Y S T E P
3.5 Logging Unhandled Exceptions in the Windows

Event Log

1. Add a new Windows form to the project. Name it
StepByStep3_5.

2. Place three TextBox controls (txtMiles, txtGallons, and
txtEfficiency) and a Button control (btnCalculate) on
the form and arrange them as shown in Figure 3.1. Add
Label controls as necessary.

3. Switch to the code view and add the following using
directive at the top of the program:

using System.Diagnostics;

4. Double-click the Button control and add the following
code to handle the Click event handler of the Button
control:

06 0789728230 CH03 11/21/02 1:17 PM Page 252

Chapter 3 ERROR HANDLING FOR THE USER INTERFACE 253

private void btnCalculate_Click(
object sender, System.EventArgs e)

{
//This code has no error checking.
//If something goes wrong at run time,
//it will throw an exception
decimal decMiles =

Convert.ToDecimal(txtMiles.Text);
decimal decGallons =

Convert.ToDecimal(txtGallons.Text);
decimal decEfficiency = decMiles/decGallons;
txtEfficiency.Text =

String.Format(“{0:n}”, decEfficiency);
}

5. Add the following code in the class definition:

private static void UnhandledExceptionHandler(
object sender, UnhandledExceptionEventArgs ue)

{
Exception unhandledException =

(Exception) ue.ExceptionObject;

//If no event source exist,
//create an event source.
if(!EventLog.SourceExists(

“Mileage Efficiency Calculator”))
{

EventLog.CreateEventSource(
“Mileage Efficiency Calculator”,
“Mileage Efficiency Calculator Log”);

}

// Create an EventLog instance
// and assign its source.
EventLog eventLog = new EventLog();
eventLog.Source = “Mileage Efficiency Calculator”;

// Write an informational entry to the event log.
eventLog.WriteEntry(unhandledException.Message);
MessageBox.Show(“An exception occurred: “ +

“Created an entry in the log file”);
}

6. Insert the following Main() method:

[STAThread]
public static void Main()
{

// Create an AppDomain object
AppDomain adCurrent = AppDomain.CurrentDomain;
// Attach the UnhandledExceptionEventHandler to
// the UnhandledException of the AppDomain object
adCurrent.UnhandledException += new

continues

06 0789728230 CH03 11/21/02 1:17 PM Page 253

254 Par t I DEVELOPING WINDOWS APPLICATIONS

UnhandledExceptionEventHandler(
UnhandledExceptionHandler);

Application.Run(new StepByStep3_5());
}

7. Set the form as the startup object for the project.

8. Run the project. Enter invalid values for miles and gallons
and run the program. When an unhandled exception
occurs, a message box is displayed, notifying you that the
exception has been logged. You can view the logged mes-
sage by selecting Event Viewer from the Administrative
Tools section of the Control Panel. The Event Viewer dis-
plays the Mileage Efficiency Calculator Log and other logs
in the left pane (see Figure 3.9). The right pane of the
Event Viewer shows the events that are logged. You can
double-click an event to view the description and other
properties of the event, as shown in Figure 3.10.

continued

F IGURE 3 .9
You can view messages logged to an event log
by using the Windows Event Viewer.

F IGURE 3 .10
You can view event properties for a particular
event to see the event-related details.

06 0789728230 CH03 11/21/02 1:17 PM Page 254

Chapter 3 ERROR HANDLING FOR THE USER INTERFACE 255

. If the existing exception classes do not meet your exception
handling requirements, you can create new exception classes
that are specific to your application by deriving them from the
ApplicationException class.

. You can use the UnhandledException event of the AppDomain
class to manage unhandled exceptions.

. You can use the EventLog class to log events to the Windows
event log.

VALIDATING USER INPUT

Validate user input.

Garbage in results in garbage out. When designing an application
that accepts data from the user, you must ensure that the entered
data is acceptable for the application. The most relevant place to
ensure the validity of data is at the time of data entry itself. You can
use various techniques for validating data:

á You can restrict the values that a field can accept by using
standard controls such as combo boxes, list boxes, radio but-
tons, and check boxes. These allow users to select from a set of
given values rather than permit free keyboard entry.

á You can capture the user’s keystrokes and analyze them for
validity. Some fields may require the user to enter only alpha-
betic values but no numeric values or special characters; in
that case, you can accept the keystrokes for alphabetic charac-
ters while rejecting others.

á You can restrict entry in some data fields by enabling or dis-
abling them, depending on the state of other fields.

á You can analyze the contents of the data field as a whole and
warn the user of any incorrect values when he or she attempts
to leave the field or close the window.

R E V I E W B R E A K

06 0789728230 CH03 11/21/02 1:17 PM Page 255

256 Par t I DEVELOPING WINDOWS APPLICATIONS

The first technique is discussed relative to the use of various controls
in Chapter 2, “Controls”; the following sections cover rest of these
techniques.

Keystroke-Level Validation
When you press a key on a control, three events take place, in the
following order:

1. KeyDown

2. KeyPress

3. KeyUp

You can program the event handlers for these events in order to per-
form keystroke-level validation. You choose the event to program
based on the order in which the event is fired and the information
that is passed in the event argument of the event handler.

The KeyPress event happens after the KeyDown event but before the
KeyUp event. Its event handler receives an argument of type
KeyPressEventArgs. Table 3.4 lists the properties of KeyPressEventArgs.

TABLE 3.4

IMPORTANT MEMBERS OF THE KeyPressEventArgs
CLASS

Member Type Description

Handled Property Indicates whether the event has
been handled

KeyChar Property Returns the character value that
corresponds to the key

The KeyPress event fires only if the key that is pressed generates a char-
acter value. To handle keypresses for function keys, control keys, and
cursor movement keys, you must use the KeyDown and KeyUp events.

The KeyDown and KeyUp events occur when the user presses and
releases a key on the keyboard, respectively. Event handlers of these
events receive an argument of KeyEventArgs type; it provides the
properties listed in Table 3.5.

06 0789728230 CH03 11/21/02 1:17 PM Page 256

Chapter 3 ERROR HANDLING FOR THE USER INTERFACE 257

TABLE 3.5

IMPORTANT MEMBERS OF THE KeyEventArgs CLASS

Member Type Description

Alt Property Returns true if the Alt key is pressed; otherwise,
returns false.

Control Property Returns true if the Ctrl key is pressed; otherwise,
returns false.

Handled Property Indicates whether the event has been handled.

KeyCode Property Returns the keyboard code for the event. Its value is
one of the values specified in the Keys enumeration.

KeyData Property Returns the key code for the pressed key, along with
modifier flags that indicate what combination of
modifier keys (Ctrl, Shift, and Alt) are pressed at the
same time.

KeyValue Property Returns the integer representation of the KeyData
property.

Modifiers Property Returns the modifier flags that indicate what combi-
nation of modifier keys (Ctrl, Shift, and Alt) are
pressed.

Shift Property Returns true if the Shift key is pressed; otherwise,
returns false.

The KeyPreview Property
By default, only the active control receives the keystroke events. The
Form object also has the KeyPress, KeyUp, and KeyDown events, but
they are fired only when all the controls on the form are either hid-
den or disabled.

When you set the KeyPreview property of a form to true, the form
receives all three events—KeyPress, KeyUp, and KeyDown—just before
the active control receives these events. This allows you to set up a
two-tier validation on controls. If you want to discard certain types
of characters at the form level, you can set the Handled property for
the event argument to true (this does not allow the event to propa-
gate to the active control); otherwise, the events propagate to the
active control. You can then use keystroke events at the control level
to perform field-specific validations, such as restricting the field to
only numeric digits.

06 0789728230 CH03 11/21/02 1:17 PM Page 257

258 Par t I DEVELOPING WINDOWS APPLICATIONS

Field-Level Validation
Field-level validation ensures that the value entered in the field is in
accordance with the application’s requirements. If it is not, you can
display an error to alert the user about the problem. These are
appropriate reasons to perform field-level validations:

á When the user attempts to leave the field

á When the content of the field changes for any reason

When the user enters and leaves a field, the events occur in the fol-
lowing order:

1. Enter (Occurs when a control is entered.)

2. GotFocus (Occurs when a control receives focus.)

3. Leave (Occurs when focus leaves a control.)

4. Validating (Occurs when a control is validating.)

5. Validated (Occurs when a control is finished validating.)

6. LostFocus (Occurs when a control looses focus.)

The Validating event is the ideal place to store the validating logic
for a field. The following sections explain the use of the Validating
event and the CausesValidation property for field-level validation.
They also discuss the use of the ErrorProvider component to display
error messages to the user.

The Validating Event
The Validating event is the ideal place for storing the field-level val-
idation logic for a control. The event handler for validating the event
receives an argument of type CancelEventArgs. Its only property,
Cancel, cancels the event when it is set to true.

Inside the Validating event, you can write code to do the following:

á Programmatically correct any errors or omissions made by the
user.

á Show error messages and alerts to the user so that the user can
fix the problem.

06 0789728230 CH03 11/21/02 1:17 PM Page 258

Chapter 3 ERROR HANDLING FOR THE USER INTERFACE 259

Inside the Validating event, you might also want to retain the focus
in the current control, thus forcing the user to fix the problem
before proceeding further. To do this, you can use either of the fol-
lowing techniques:

á Use the Focus() method of the control to transfer the focus
back to the field.

á Set the Cancel property of CancelEventArgs to true. This can-
cels the Validating event, leaving the focus in the control.

A related event, Validated, is fired just after the Validating event
occurs—and it enables you to take actions after the control’s con-
tents have been validated.

The CausesValidation Property
When you use the Validating event to restrict the focus in the con-
trol by canceling the event, you must also consider that you are
making the control sticky.

Consider a case in which the user is currently on a control such as a
TextBox control, with incorrect data, and you are forcing the user to
fix the problem before leaving the control, by setting the Cancel
property of CancelEventArgs to true. When the user clicks the Help
button in the toolbar to check what is wrong, nothing happens
unless the user makes a correct entry. This can be an annoying situa-
tion for the user, so you want to avoid it in your applications.

The CausesValidation property comes to your rescue in such a case.
The default value of the CausesValidation property for a control is
true for all controls, which means that the Validating event fires for
any control, requiring validation before the control in question
receives the focus.

When you want a control to respond, regardless of the validation
status of other controls, you should set the CausesValidation prop-
erty of that control to false. For example, in the previous example,
the Help button in the toolbar would be set with the
CausesValidation property set to false.

N
O

T
E The Validating Event and Sticky

Forms The Validating event fires
when you close a form. If inside the
Validating event you set the Cancel
property of the CancelEventArgs argu-
ment to true, the Validating event
also cancels the close operation.

There is a workaround for this prob-
lem. Inside the Validating event, you
should set the Cancel property of the
CancelEventArgs argument to true if
the mouse is in the form’s client area.
The close button is in the title bar
that is outside the client area of the
form. Therefore, when the user clicks
the close button, the Cancel property
is not set to true.

06 0789728230 CH03 11/21/02 1:17 PM Page 259

260 Par t I DEVELOPING WINDOWS APPLICATIONS

The ErrorProvider Component
The ErrorProvider component in the Visual Studio .NET toolbox is
useful when you’re showing validation-related error messages to the
user. The ErrorProvider component can set a small icon next to a
field when it contains an error. When the user moves the mouse
pointer over the icon, an error message pops up as a ToolTip. This is
a better way of displaying error messages than the old way of using
message boxes because it eliminates at least two serious problems
with message boxes:

á When you use message boxes, if you have errors on multiple
controls, popping up several message boxes might annoy or
scare your users.

á After the user dismisses a message box, the error message is no
longer available for reference.

Table 3.6 lists some important members of the ErrorProvider class
with which you should familiarize yourself.

TABLE 3.6

IMPORTANT MEMBERS OF THE ErrorProvider CLASS

Member Type Description

BlinkRate Property Specifies the rate at which the error icon flash-
es.

BlinkStyle Property Specifies a value that indicates when the error
icon flashes.

ContainerControl Property Specifies the component’s parent control.

GetError() Method Returns the error description string for the
specified control.

Icon Property Specifies an icon to display next to a control.
The icon is displayed only when an error
description string has been set for the control.

SetError() Method Sets the error description string for the speci-
fied control.

SetIconAlignment() Method Sets the location at which to place an error
icon with respect to the control. It has one of
the ErrorIconAlignment values
(BottomLeft, BottomRight, MiddleLeft,
MiddleRight, TopLeft, and TopRight).

SetIconPadding() Method Specifies the amount of extra space to leave
between the control and the error icon.

06 0789728230 CH03 11/21/02 1:17 PM Page 260

Chapter 3 ERROR HANDLING FOR THE USER INTERFACE 261

The ErrorProvider component displays an error icon next to a field,
based on the error message string. The error message string is set by
the SetError() method. If the error message is empty, no error icon
is displayed, and the field is considered correct. Step by Step 3.5
shows how to use the ErrorProvider component.

S T E P B Y S T E P
3.6 Using the ErrorProvider Component and

Other Validation Techniques

1. Add a new Windows form to the project. Name it
StepByStep3_6.

2. Place three TextBox controls (txtMiles, txtGallons, and
txtEfficiency) and a Button control (btnCalculate) on
the form and arrange them as shown in Figure 3.11. Add
Label controls as necessary.

3. The ErrorProvider component is present in the Windows
Forms tab of the Visual Studio .NET toolbox. Add an
ErrorProvider component (errorProvider1) to the form.
The ErrorProvider component is placed in the compo-
nent tray.

4. Double-click the form and add the following code to han-
dle the Load event handler of the Form control:

private void StepByStep3_6_Load(
object sender, System.EventArgs e)

{
// Set the ErrorProvider’s Icon
// alignment for the TextBox controls
errorProvider1.SetIconAlignment(

txtMiles, ErrorIconAlignment.MiddleLeft);
errorProvider1.SetIconAlignment(

txtGallons, ErrorIconAlignment.MiddleLeft);
}

5. Attach the Validating event handlers to the TextBox con-
trols and add the following code to handle the Validating
event handler of the txtMiles and txtGallons controls:

private void txtMiles_Validating(object sender,
System.ComponentModel.CancelEventArgs e)

{
try

continues

06 0789728230 CH03 11/21/02 1:17 PM Page 261

262 Par t I DEVELOPING WINDOWS APPLICATIONS

{
decimal decMiles =

Convert.ToDecimal(txtMiles.Text);
errorProvider1.SetError(txtMiles, “”);

}
catch(Exception ex)
{

errorProvider1.SetError(txtMiles, ex.Message);
}

}

private void txtGallons_Validating(object sender,
System.ComponentModel.CancelEventArgs e)

{
try
{

decimal decGallons =
Convert.ToDecimal(txtGallons.Text);

if (decGallons > 0)
errorProvider1.SetError(txtGallons, “”);

else
errorProvider1.SetError(txtGallons,
“Please enter a value > 0”);

}
catch(Exception ex)
{

errorProvider1.SetError(
txtGallons, ex.Message);

}
}

6. Add the following code to the Click event handler of
btnCalculate:

private void btnCalculate_Click(
object sender, System.EventArgs e)

{
// Check whether the error description is not empty
// for either of the TextBox controls
if (errorProvider1.GetError(txtMiles) != “” ||

errorProvider1.GetError(txtGallons) != “”)
return;

try
{

decimal decMiles =
Convert.ToDecimal(txtMiles.Text);

decimal decGallons =
Convert.ToDecimal(txtGallons.Text);

decimal decEfficiency = decMiles/decGallons;
txtEfficiency.Text =

String.Format(“{0:n}”, decEfficiency);
}

continued

06 0789728230 CH03 11/21/02 1:17 PM Page 262

Chapter 3 ERROR HANDLING FOR THE USER INTERFACE 263

catch(Exception ex)
{

string msg = String.Format(
“Message: {0}\n Stack Trace:\n {1}”,
ex.Message, ex.StackTrace);

MessageBox.Show(msg, ex.GetType().ToString());
}

}

7. Insert the Main() method to launch the form. Set the
form as the startup object for the project.

8. Run the project. Enter values for miles and gallons and
click Calculate. The program calculates the mileage effi-
ciency, as expected. When you enter an invalid value into
any of the TextBox controls, the error icon starts blinking
and displays the error message when the mouse is hovered
over the error icon, as shown in Figure 3.11.

Enabling Controls Based on Input
One of the useful techniques for restricting user input is selectively
enabling and disabling controls. These are some common cases in
which you would want to do this:

á Your application might have a check box titled Check Here if
You Want to Ship to a Different Location. Only when the user
checks the check box should you allow him or her to enter val-
ues in the fields for the shipping address. Otherwise, the ship-
ping address is the same as the billing address.

á In a Find dialog box, you have two buttons: Find and Cancel.
You want to keep the Find button disabled initially and enable
it only when the user enters search text in a text box.

The Enabled property for a control is true by default. When you
set it to false, the control cannot receive the focus and appears
grayed out.

For a control such as TextBox, you can also use the ReadOnly proper-
ty to restrict user input. One advantage of using the ReadOnly prop-
erty is that the control is still able to receive focus, so you are able
to scroll through any text in the control that is not initially visible.

F IGURE 3 .11
The ErrorProvider component shows the
error icon and the error message in a nonintru-
sive way.

06 0789728230 CH03 11/21/02 1:17 PM Page 263

264 Par t I DEVELOPING WINDOWS APPLICATIONS

In addition, you can select and copy the text to the Clipboard, even
if the ReadOnly property is true.

Other Properties for Validation
In addition to the techniques mentioned in the preceding sections,
the properties described in the following sections allow you to
enforce some restrictions on user input.

The CharacterCasing Property
The CharacterCasing property of the TextBox control changes the
case of characters in the text box as required by the application. For
example, you might want to convert all characters entered in a text
box used for entering a password to lowercase so that there are no
problems due to case-sensitivity.

The values of the CharacterCasing property can be set to three val-
ues: CharacterCasing.Lower, CharacterCasing.Normal (the default
value), and CharacterCasing.Upper.

The MaxLength Property
The MaxLength property of a TextBox or ComboBox control specifies
the maximum number of characters that the user can enter into the
control. This property is handy when you want to restrict the size of
some fields, such as fields for telephone numbers or zip codes. This
property is useful in scenarios in which you are adding or updating
records in a database with the values entered in the controls; in such
a case you can use the MaxLength property to prevent the user from
entering more characters than the corresponding database field can
handle.

When the MaxLength property is zero (the default), the number of
characters that can be entered is limited only by the available memory.

T
IP

The Scope of the MaxLength
Property The MaxLength property
affects only the text that is entered
into the control interactively by the
user. Programmatically, you can set
the value of the Text property to a
value that is longer than the value
specified by the MaxLength
property.

E
X

A
M

06 0789728230 CH03 11/21/02 1:17 PM Page 264

Chapter 3 ERROR HANDLING FOR THE USER INTERFACE 265

G U I D E D P R A C T I C E
E X E R C I S E 3 . 2
As a Windows developer for a data analysis company, you recently
developed a keyword searching form for your Windows application
(refer to Guided Practice Exercise 3.1). The form asks for a filename
and a keyword from the user, and then it searches for the keyword
in the file and displays the number of lines that contain the keyword
in the results group box. The form assumes that the entered key-
word is a single word. In the solution in Guided Practice Exercise
3.1, if the keyword is not a single word, the form creates and throws
a custom exception for that case. Since you created that solution,
you have studied field-level validation techniques and realized that
for this scenario, the use of field-level validation provides a much
more elegant solution.

You now want to modify the keyword searching form. Its basic func-
tionality is still the same as in Guided Practice Exercise 3.1, but you
need to incorporate a few changes in the user interface. Initially the
keyword text box and the Search button are disabled; you should
enable these controls as the user progresses through the application.
If the keyword entered by the user is not a single word, instead of
throwing an exception, you need to display the error icon with the
keyword text box and set an error message. The keyword text box
should not lose focus unless it has valid data.

How would you create such a form?

You should try working through this problem on your own first. If
you get stuck, or if you’d like to see one possible solution, follow
these steps:

1. Add a new form to your Visual C# .NET project. Name the
form GuidedPracticeExercise3_2.cs.

2. Place and arrange the controls on the form as shown in Figure
3.8. Name the TextBox control for accepting the filename
txtFileName and the Browse button btnBrowse. Set the
ReadOnly property of txtFileName to true. Name the TextBox
control for accepting the keyword txtKeyword and the Button
control btnSearch. Set the tab order of the form in the correct
order so that the user’s cursor is not placed in a read-only text
box when the application starts.

continues

06 0789728230 CH03 11/21/02 1:17 PM Page 265

266 Par t I DEVELOPING WINDOWS APPLICATIONS

3. Add an OpenFileDialog control to the form and change its
name to dlgOpenFile. Add an ErrorProvider component
(errorProvider1) to the form. The ErrorProvider component
is placed in the component tray.

4. Double-click the form to attach the Load event handler to the
form. Add the following code to handle the Load event of the
Form control:

private void GuidedPracticeExercise3_2_Load(
object sender, System.EventArgs e)

{
// Disable the keyword text box and Search button
txtKeyword.Enabled = false;
btnSearch.Enabled = false;
errorProvider1.SetIconAlignment(

txtKeyword, ErrorIconAlignment.MiddleLeft);
}

5. Attach TextChanged and Validating event handlers to the
txtKeyword control and add the following code:

private void txtKeyword_TextChanged(
object sender, System.EventArgs e)

{
if(this.txtKeyword.Text.Length==0)

this.btnSearch.Enabled = false;
else

this.btnSearch.Enabled = true;
}

private void txtKeyword_Validating(object sender,
System.ComponentModel.CancelEventArgs e)

{
if(this.txtKeyword.Text.Trim().IndexOf(‘ ‘) >= 0)
{

errorProvider1.SetError(txtKeyword,
“You must only specify a single word”);

txtKeyword.Focus();
txtKeyword.Select(0, txtKeyword.Text.Length);

}
else

errorProvider1.SetError(txtKeyword, “”);
}

6. Create a method named GetKeywordFrequency() that accepts a
string and returns the number of lines containing it. Add the
following code to the method:

private int GetKeywordFrequency(string path)
{

int count = 0;
if (File.Exists(path))

continued

06 0789728230 CH03 11/21/02 1:17 PM Page 266

Chapter 3 ERROR HANDLING FOR THE USER INTERFACE 267

{
StreamReader sr =

new StreamReader(txtFileName.Text);
while (sr.Peek() > -1)

if (sr.ReadLine().IndexOf(txtKeyword.Text)
>= 0)
count++;

}
return count;

}

7. Add the following code to the Click event handler of
btnBrowse:

private void btnBrowse_Click(
object sender, System.EventArgs e)

{
if (dlgOpenFile.ShowDialog() == DialogResult.OK)
{

txtFileName.Text = dlgOpenFile.FileName;
this.txtKeyword.Enabled = true;
this.txtKeyword.Focus();

}
}

8. Add the following code to the Click event handler of
btnSearch:

private void btnSearch_Click(
object sender, System.EventArgs e)

{
if (errorProvider1.GetError(txtKeyword) != “”)

return;
try
{

lblResult.Text = String.Format(
“The keyword: ‘{0}’ was found in {1} lines”,
txtKeyword.Text,
GetKeywordFrequency(txtFileName.Text));

}
catch(Exception ex)
{

string msg = String.Format(
“Message:\n {0}\n\n StackTrace:\n{1}”,
ex.Message, ex.StackTrace);

MessageBox.Show(msg, ex.GetType().ToString());
}

}

9. Insert the Main() method to launch form
GuidedPracticeExercise3_2.cs. Set the form as the startup
object for the project.

continues

06 0789728230 CH03 11/21/02 1:17 PM Page 267

268 Par t I DEVELOPING WINDOWS APPLICATIONS

10. Run the project. The keyword text box and the search button
are disabled. Click the Browse button and select an existing
file; this enables the keyword text box. Enter the keyword to
search in the file; this enables the Search button. Click the
Search button. If the keyword entered is in the wrong format
(for example, if it contains two words), the ErrorProvider
component shows the error message and the icon.

If you have difficulty following this exercise, review the section
“Validating User Input,” earlier in this chapter, and then try this
exercise again.

. It a good practice to validate user input at the time of data
entry. Thoroughly validated data results in consistent and cor-
rect data stored by the application.

. When a user presses a key, three events are generated, in the
following order: KeyDown, KeyPress, and KeyUp.

. The Validating event is the ideal place for storing the field-
level validation logic for a control.

. The CausesValidation property specifies whether validation
should be performed. If it is set to false, the Validating and
Validated events are suppressed.

. The ErrorProvider component in the Visual Studio .NET
toolbox is used to show validation-related error messages to the
user.

. A control cannot receive the focus and appears grayed out if its
Enabled property is set to false.

continued

R E V I E W B R E A K

06 0789728230 CH03 11/21/02 1:17 PM Page 268

Chapter 3 ERROR HANDLING FOR THE USER INTERFACE 269

The .NET Framework provides fully integrated support for excep-
tion handling. In fact, it allows you to raise exceptions in one lan-
guage and catch them in a program written in another language.
The try block is used to enclose code that might cause exceptions.
The catch block is used to handle the exceptions raised by the code
in the try block, and the finally block ensures that certain code is
executed, regardless of whether an exception occurs.

The FCL provides a large number of exception classes that represent
most of the exceptions that a program may encounter. If you prefer
to create your own custom exception class, you can do so by deriv-
ing your exception class from the ApplicationException class.

This chapter describes a variety of ways to validate user input. The
Windows Forms library provides an ErrorProvider component that
is used to signal errors. You can also associate custom icons and error
messages with the ErrorProvider component.

CHAPTER SUMMARY

KEY TERMS
• exception

• exception handling

• input validation

06 0789728230 CH03 11/21/02 1:17 PM Page 269

270 Par t I DEVELOPING WINDOWS APPLICATIONS

A P P LY YO U R K N O W L E D G E

Exercises

3.1 Handling Exceptions

Recall that Step by Step 2.5 in Chapter 2 demonstrates
the use of common dialog boxes through the creation
of a simple rich text editor. This editor allows you to
open and save a rich text file. You can also edit the text
and change its fonts and colors. The program works
fine in all cases except when you try to open or save a
file that is already open; in that case, the program
throws a System.IO.IOException exception.

The objective of this exercise is to make a robust ver-
sion of this program that generates a warning about the
open file rather than abruptly terminating the program.

Estimated time: 15 minutes

1. Open a new Windows application in Visual C#
.NET. Name it 316C03Exercises.

2. Add a Windows form to the project. Name the
form Exercise3_1.

3. Place five Button controls on the form. Name
them btnOpen, btnSave, btnClose, btnColor, and
btnFont, and change their Text properties to
&Open..., &Save..., Clos&e..., &Color..., and
&Font..., respectively. Place a RichTextBox con-
trol on the form and name it rtbText. Arrange all
the controls as shown in Figure 3.12.

F IGURE 3 .12
This robust version of a simple rich text editor handles the
exceptions of System.IO.IOException type.

4. Drag and drop the following components from
the toolbox onto the form: OpenFileDialog,
SaveFileDialog, ColorDialog, and FontDialog.

5. Switch to the code view and add the following
using directive to the top of the program:

using System.IO;

6. Double-click the Open button to attach an event
handler to this Click event. Add the following
code to the event handler:

private void btnOpen_Click(
object sender, System.EventArgs e)

{
//Allow user to select only *.rtf files
openFileDialog1.Filter =

“Rich Text Files (*.rtf)|*.rtf”;
if(openFileDialog1.ShowDialog()

== DialogResult.OK)
{

try
{

//Load the file contents
//into the RichTextBox control
rtbText.LoadFile(
openFileDialog1.FileName,
RichTextBoxStreamType.RichText);

}
catch(System.IO.IOException ioe)

06 0789728230 CH03 11/21/02 1:17 PM Page 270

Chapter 3 ERROR HANDLING FOR THE USER INTERFACE 271

A P P LY YO U R K N O W L E D G E

{
MessageBox.Show(ioe.Message,

“Error opening file”);
}

}
}

7. Add the following code to handle the Click event
of the Save button:

private void btnSave_Click(
object sender, System.EventArgs e)

{
//Default choice for saving file
//is *.rtf but user can select
//All Files to save with
//another extension
saveFileDialog1.Filter =
“Rich Text Files (*.rtf)|*.rtf|” +
“All Files (*.*)|*.*”;
if(saveFileDialog1.ShowDialog()

== DialogResult.OK)
{

try
{

//Save the RichTextBox control’s
//content to a file
rtbText.SaveFile(
saveFileDialog1.FileName,
RichTextBoxStreamType.RichText);

}
catch(System.IO.IOException ioe)
{

MessageBox.Show(ioe.Message,
“Error saving file”);

}
}

}

8. Add the following code to handle the Click event
of the Close button:

private void btnClose_Click(
object sender, System.EventArgs e)

{
//close the form
this.Close();

}

9. Add the following code to handle the Click event
of the Color button:

private void btnColor_Click(
object sender, System.EventArgs e)

{
if(colorDialog1.ShowDialog()

== DialogResult.OK)
{

//Change the color of the selected
//text. If no text is selected,
// change the active color
rtbText.SelectionColor =

colorDialog1.Color;
}

}

10. Add the following code to handle the Click event
of the Font button:

private void btnFont_Click(
object sender, System.EventArgs e)

{
if(fontDialog1.ShowDialog()

== DialogResult.OK)
{

//Change the font of the selected
//text. If no text is selected,
//change the active font
rtbText.SelectionFont =

fontDialog1.Font;
}

}

11. Insert the Main() method to launch the form. Set
the form as the startup object.

12. Run the project. Click on the Open button and
try to open an already opened file. An error mes-
sage appears, warning about the file already being
open, as shown in Figure 3.13.

F IGURE 3 .13
Instead of abnormal program termination, you now get an
error message about the already open file.

06 0789728230 CH03 11/21/02 1:17 PM Page 271

272 Par t I DEVELOPING WINDOWS APPLICATIONS

A P P LY YO U R K N O W L E D G E

3.2 Validating User Input

One technique for input validation is to force the user
to fix an erroneous field before allowing him or her to
move to another field. To achieve this, you can set the
Cancel property of the CancelEventArgs argument of
the field’s Validating event to false.

In this exercise, you create a login form (see Figure
3.14) that accepts a username and password. It forces
the user to enter the username. The user should also be
able to close the application by clicking the Cancel but-
ton, regardless of the validation status of the fields.

3. Place three Label controls (keep their default
names), two TextBox controls (txtUserName and
txtPassword), two Button controls (btnLogin and
btnCancel), and an ErrorProvider component
(errorProvider1) on the form. The
ErrorProvider component is placed in the com-
ponent tray. Arrange the controls in the form as
shown in Figure 3.14.

4. Change the ControlBox property of the form to
false, the CharacterCasing property of the
txtPassword control to Lower, and the
CausesValidation property of the btnCancel
control to false.

5. Double-click the Form control to attach a Load
event handler; add the following code to the
event handler:

private void Exercise3_2_Load(
object sender, System.EventArgs e)

{
errorProvider1.SetIconAlignment(

txtUserName,
ErrorIconAlignment.MiddleLeft);

errorProvider1.SetIconAlignment(
txtPassword,
ErrorIconAlignment.MiddleLeft);

}

6. Declare the following variable outside a method
block in the class:

//closingFlag is used to check if the
//user has clicked the Close button
private bool closingFlag = false;

7. Add the following code to the Click event han-
dler of the Cancel button:

private void btnCancel_Click(
object sender, System.EventArgs e)

{
closingFlag = true;
this.Close();

}

F IGURE 3 .14
A nonsticky login form validates the input and allows users
to close the application by clicking the Cancel button.

Estimated time: 15 minutes

1. Open a Visual C# .NET Windows application in
the Visual Studio .NET IDE. Name it
316C03Exercises.

2. Add a new form to the application. Name it
Exercise3_2.

06 0789728230 CH03 11/21/02 1:17 PM Page 272

Chapter 3 ERROR HANDLING FOR THE USER INTERFACE 273

A P P LY YO U R K N O W L E D G E

8. Add the following code to the Click event han-
dler of the Login button:

private void btnLogin_Click(
object sender, System.EventArgs e)

{
string strMessage = String.Format(
“The following information:” +
“\n\nUserName: {0}\n\nPassword: {1}” +
“\n\n can now be passed to the “ +
“middle-tier for validation”,
txtUserName.Text, txtPassword.Text);
MessageBox.Show(strMessage,

“User Input Validation Succeeded”);
}

9. Attach the following event handling code to the
Validating events of both the txtUserName and
txtPassword controls:

private void
txtUserNamePassword_Validating(
object sender,
System.ComponentModel.CancelEventArgs e)

{
TextBox fieldToValidate =

(TextBox) sender;

if (!closingFlag)
{
if(fieldToValidate.Text.Trim().Length

== 0)
{

errorProvider1.SetError(
fieldToValidate,

“Please enter a value for this field”);
e.Cancel = true;

}
else if (

fieldToValidate.Text.Trim().IndexOf(‘ ‘)
>=0)
{

errorProvider1.SetError(
fieldToValidate,

“You may NOT have spaces in this field”);
fieldToValidate.Select(0,
fieldToValidate.Text.Length);

e.Cancel = true;
}

}
}

10. Attach the following event handling code to the
Validated event of both the txtUserName and
txtPassword controls:

private void txtUserNamePassword_Validated(
object sender, System.EventArgs e)

{
TextBox fieldToValidate =

(TextBox) sender;
errorProvider1.SetError(

fieldToValidate, “”);
}

11. Insert the Main() method to launch the form. Set
the form as the startup object.

12. Run the project. Click the Login button, and you
are forced to enter the username. However, you
can click the Cancel button to close the applica-
tion.

Review Questions
1. What is the default behavior of the .NET

Framework when an exception is raised?

2. What is the base class of all exceptions that pro-
vides basic functionality for exception handling?
What are the two main types of exception classes
and their purposes?

3. Explain the Message and InnerException proper-
ties of the Exception class.

4. What is the purpose of a try-catch block?

5. How many catch blocks can be associated with a
try block? How should they be arranged?

6. What is the importance of a finally block?

7. Can you associate custom error messages with the
exception types defined by the CLR? If yes, how
do you do it?

06 0789728230 CH03 11/21/02 1:17 PM Page 273

II
TESTING, DEBUGGING, AND
DEPLOYING A WINDOWS APPLICATION

12 Testing and Debugging a Windows Application

13 Deploying a Windows Application

P A R T

15 0789728230 Part2 11/21/02 1:19 PM Page 773

15 0789728230 Part2 11/21/02 1:19 PM Page 774

12C H A P T E R

Testing and
Debugging a Windows

Application

This chapter covers the following Microsoft-specified
objective for the “Testing and Debugging” section of
Exam 70-316, “Developing and Implementing
Windows-Based Applications with Microsoft Visual
C# .NET and Microsoft Visual Studio .NET”:

Create a unit test plan.

. Before you release a product or component, the
product needs to pass through different types of
tests. This objective requires you to know the dif-
ferent types of tests that a product should undergo
to verify its robustness, reliability, and correctness.
These tests should be executed with a designed test
plan that ensures that the product thoroughly
meets its goals and requirements.

Implement tracing.

• Add trace listeners and trace switches to
an application.

• Display trace output.

. Tracing helps in displaying informative messages
during the application’s runtime to get a fair idea
of how the application is progressing. This objec-
tive requires you to know how to use Trace class
properties and methods, attach trace listeners, and
apply trace switches. Trace switches allow you to
enable, disable, and filter tracing output that is dis-
played by the Trace class without recompiling pro-
grams. You can do this by just editing the configu-
ration XML file.

OBJECT IVES

16 0789728230 CH12 11/21/02 1:17 PM Page 775

Debug, rework, and resolve defects in code.

• Configure the debugging environment.

• Create and apply debugging code to
components and applications.

• Provide multicultural test data to
components and applications.

• Execute tests.

• Resolve errors and rework code.

. The process of debugging helps you locate logical
or runtime errors in an application. This objective
requires you to know the various tools and win-
dows that are available in Visual C# .NET to
enable easy and effective debugging. These debug-
ging tools and windows help a great deal in deter-
mining errors, executing test code, and resolving
errors.

OBJECT IVES OUTL INE

Introduction 778

Testing 778

Creating a Test Plan 779

Executing Tests 779
Unit Testing 780
Integration Testing 780
Regression Testing 781

Testing International Applications 782

Tracing 783

Using Trace and Debug to Display
Information 786

Trace Listeners 789

Trace Switches 793

Conditional Compilation 797

Debugging 802

Stepping Through Program Execution 803

Setting Breakpoints 806

Analyzing Program State to Resolve
Errors 809

Debugging on Exceptions 813

Debugging a Running Process 815

Debugging a Remote Process 817

Debugging the Code in DLL Files 818

Chapter Summary 819

Apply Your Knowledge 820

16 0789728230 CH12 11/21/02 1:17 PM Page 776

STUDY STRATEGIES

. Review the “Introduction to Instrumentation and
Tracing” and “Using the Debugger” sections of
the Visual Studio .NET Combined Help
Collection.

. Try calling different methods of the Trace and
Debug classes. Note the differences in the out-
put when you run a program using the Debug
and Release configurations.

. Experiment with attaching predefined and cus-
tom-made listeners to Trace objects. Refer to
Step by Step 12.2 and Guided Practice Exercise
12.1 for examples.

. Know how to implement trace switches and
conditional compilation in Windows applica-
tions. Refer to Step by Step 12.3 and Step by
Step 12.4 for examples.

. Experiment with the different types of debug-
ging windows that are available in Visual C#
.NET. Understand their advantages and learn to
use them effectively. They can be very helpful in
resolving errors.

. Experiment with various techniques for debug-
ging, such as local and remote debugging,
debugging code in DLLs, and debugging SQL
Server stored procedures.

16 0789728230 CH12 11/21/02 1:17 PM Page 777

778 Par t I I TESTING, DEBUGGING, AND DEPLOYING A WINDOWS APPLICATION

INTRODUCTION

Building a quality Windows application requires thorough testing to
ensure that the application has the fewest possible defects. Therefore,
you need to chart an effective test plan. Complex applications
require multiple levels of testing, including unit testing, integration
testing, and regression testing.

Tracing is the process of monitoring an executing program. You trace
a program by placing tracing code in the program with the help of
the Trace and Debug classes. The tracing messages can be sent to a
variety of destinations, including the Output window, a text file, an
event log, or any other custom-defined trace listener, where they can
be recorded to analyze the behavior of the program. Trace switches
can be used to change the types of messages being generated without
recompiling the application.

The process of testing may reveal various logical errors, or bugs, in a
program. The process of finding the exact locations of these errors
may be time-consuming. Visual C# .NET provides a rich set of
debugging tools that makes this process very convenient.

In this chapter I first discuss the test plan and various common test-
ing techniques. I then discuss how to put tracing code in a program
to monitor its execution. Finally, I talk about the debugging capabil-
ities of Visual Studio .NET.

TESTING

Testing is the process of executing a program with the intention of
finding errors (bugs). By error I mean any case in which a program’s
actual results fail to match the expected results. The criteria of the
expected results may not include just the correctness of the program;
they may also include other attributes, such as usability, reliability,
and robustness. The process of testing may be manual, automated,
or a mixture of both techniques.

In this increasingly competitive world, testing is more important
than ever. A software company cannot afford to ignore the impor-
tance of testing. If a company releases buggy code, not only will it
end up spending more time and money fixing and redistributing the
corrected code, but it will also lose goodwill. In the Internet world,
the competition is not even next door: It is just a click away!

N
O

T
E Correctness, Robustness, and

Reliability Correctness refers to the
ability of a program to produce expect-
ed results when the program is given
a set of valid input data. Robustness
is the ability of a program to cope up
with invalid data or operations.
Reliability is the ability of a program
to produce consistent results on every
use.

16 0789728230 CH12 11/21/02 1:17 PM Page 778

Chapter 12 TESTING AND DEBUGGING A WINDOWS APPLICATION 779

Creating a Test Plan
Create a unit test plan.

A test plan is a document that guides the process of testing. A good
test plan should typically include the following information:

á Which software components needs to be tested

á What parts of a component’s specification are to be tested

á What parts of a component’s specification are not to be tested

á What approach needs to be followed for testing

á Who will be responsible for each task in the testing process

á What the schedule is for testing

á What the criteria are for a test to fail or pass

á How the test results will be documented and used

Executing Tests
Debug, rework, and resolve defects in code.

• Execute tests.

Incremental testing (sometime also called evolutionary testing) is a
modern approach to testing that has proven very useful for rapid
application development (RAD). The idea of incremental testing is
to test the system as you build it. Three levels of testing are involved
in incremental testing:

á Unit testing—Unit testing involves testing elementary units
of the application (usually classes).

á Integration testing—Integration testing tests the integration
of two or more units or the integration between subsystems of
those units.

á Regression testing—Regression testing usually involves the
process of repeating the unit and integration tests whenever a
bug is fixed, to ensure that the old bugs do not exist and that
no new ones have been introduced.

16 0789728230 CH12 11/21/02 1:17 PM Page 779

780 Par t I I TESTING, DEBUGGING, AND DEPLOYING A WINDOWS APPLICATION

Unit Testing
Units are the smallest building blocks of an application. In Visual
C# .NET, these building blocks often refer to components or class
definitions. Unit testing involves performing basic tests at the com-
ponent level to ensure that each unique path in the component
behaves exactly as documented in its specifications.

Usually, the same person who writes the component also does unit
testing for it. Unit testing typically requires that you write special
programs that use the component or class being tested. These pro-
grams are called test drivers; they are used throughout the testing
process, but they are not part of the final product.

The following are some of the major benefits of unit testing:

á It allows you to test parts of an application without waiting for
the other parts to be available.

á It allows you to test exceptional conditions that are not easily
reached by external inputs in a large, integrated system.

á It simplifies the debugging process by limiting the search for
bugs to a small unit rather than to the complete application.

á It helps you avoid lengthy compile-build-debug cycles when
debugging difficult problems.

á It enables you to detect and remove defects at a much lower
cost than with other, later, stages of testing.

Integration Testing
Integration testing verifies that the major subsystems of an application
work well with each other. The objective of integration testing is to
uncover the errors that might result because of the way units inte-
grate or interface with each other.

Visualize the whole application as a hierarchy of components; inte-
gration testing can be performed in any of the following ways:

á Bottom-up approach—With this approach, the testing pro-
gresses from the smallest subsystem and then gradually pro-
gresses up in the hierarchy to cover the whole system. This
approach may require you to write a number of test-driver
programs that test the integration between subsystems.

N
O

T
E NNUUnniitt NUnit is a simple framework

for writing repeatable tests in any
.NET language. For more information,
visit http://nunit.sourceforge.net.

16 0789728230 CH12 11/21/02 1:17 PM Page 780

Chapter 12 TESTING AND DEBUGGING A WINDOWS APPLICATION 781

á Top-down approach—This approach starts with the top-level
system, to test the top-level interfaces, and gradually comes
down and tests smaller subsystems. You might be required to
write stubs (that is, dummy modules that mimic the interface
of a module but have no functionality) for the modules that
are not yet ready for testing.

á Umbrella approach—This approach focuses on testing the
modules that have a high degree of user interaction. Normally,
stubs are used in place of process-intensive modules. This
approach enables you to release graphical user interface (GUI)-
based applications early and allows you to gradually increase
functionality. It is called the umbrella approach because when
you look at the application hierarchy (as shown in Figure
12.1), the input/output modules are generally present on the
edges, forming an umbrella shape.

Reporting System

Get Customer Record Compute Rental Charges

Get Record
Edit

Customer
Record

Format
Customer
Record

Format
Output

Print Line

Print Results

F IGURE 12 .1
The umbrella approach of integration testing
focuses on testing the modules that have a
high degree of user interaction.

Regression Testing
Regression testing should be performed any time a program is modi-
fied, either to fix a bug or to add a feature. The process of regression
testing involves running all the tests mentioned in the preceding sec-
tions as well as any newly added test cases to test the added func-
tionality. Regression testing has two main goals:

á Verify that all known bugs are corrected.

á Verify that the program has no new bugs.

N
O

T
E Limitations of Testing Testing can

show the presence of errors, but it can
never confirm the absence of errors.
Various factors such as the complexity
of the software, requirements such as
interoperability with various software
and hardware, and globalization issues
such as support for various languages
and cultures, can create excessive
input data and too many execution
paths to be tested. Many companies
do their best to capture most of the
test cases by using automation (that
is, using computer programs to find
errors) and beta-testing (that is, involv-
ing product enthusiasts to find errors),
but errors in final products are still a
well-known and acknowledged fact.

16 0789728230 CH12 11/21/02 1:17 PM Page 781

782 Par t I I TESTING, DEBUGGING, AND DEPLOYING A WINDOWS APPLICATION

Testing International Applications
Debug, rework, and resolve defects in code.

• Provide multicultural test data to components and
applications.

Testing an application designed for international usage involves
checking the country and language dependencies of each locale for
which the application has been designed. When testing international
applications, you need to consider the following:

á You should test the application’s data and user interface to
make sure that they conform to the locale’s standards for date
and time, numeric values, currency, list separators, and mea-
surements for the countries in which you plan to sell your
product.

á You should test your application on as many language and cul-
ture variants as necessary to cover your entire market for the
application. Operating systems such as Windows 2000 and
Windows XP support the languages used in more than 120
cultures/locales.

á You should use Unicode for your applications. Applications
that use Unicode run without requiring any changes on
Windows 2000 and XP. If an application instead uses
Windows code pages, you need to set the culture/locale of the
operating system according to the localized version of the
application that you are testing. Each such change requires you
to reboot the computer.

á While testing a localized version of an application, you should
make sure to use the input data in the language that is sup-
ported by the localized version. This makes the testing scenario
similar to the scenario in which the application will be actually
used.

For more discussion about support for globalization in a Windows
application, refer to Chapter 8, “Globalization.”

16 0789728230 CH12 11/21/02 1:17 PM Page 782

Chapter 12 TESTING AND DEBUGGING A WINDOWS APPLICATION 783

. Testing is the process of executing a program with the inten-
tion of finding errors. You should design an effective test plan
to ensure that your application is free from all likely defects
and errors.

. Unit testing ensures that each unit of an application functions
precisely as desired. It is the lowest level of testing.

. Integration testing ensures that different units of an applica-
tion function as expected by the test plan after they are inte-
grated.

. Whenever code is modified or a new feature is added in an
application, you should run all the existing test cases, along
with a new set of test cases, to check the new feature. This
helps you develop robust applications.

TRACING

Debug, rework, and resolve defects in code.

• Create and apply debugging code to components and
applications.

The process of testing can reveal the presence of errors in a program,
but to find the actual cause of a problem, you sometimes need the
program to generate information about its own execution. Analysis
of this information may help you understand why the program is
behaving in a particular way and may lead to possible resolution of
the error.

This process of collecting information about program execution is
called tracing. You trace a program’s execution in Visual C# .NET by
generating messages about the program’s execution with the use of
the Debug and Trace classes.

The Trace and Debug classes have several things in common:

á They both belong to the System.Diagnostics namespace.

á They have members with the same names.

R E V I E W B R E A K

16 0789728230 CH12 11/21/02 1:17 PM Page 783

784 Par t I I TESTING, DEBUGGING, AND DEPLOYING A WINDOWS APPLICATION

á All their members are static.

á They are conditionally compiled (that is, their statements are
included in the object code only if a certain symbol is
defined).

The only difference between the Debug and Trace classes is that the
members of the Debug class are conditionally compiled, but only
when the DEBUG symbol is defined. On the other hand, members of
the Trace class are conditionally compiled, but only when the TRACE
symbol is defined.

Visual C# .NET provides two basic configurations for a project:
Debug and Release. Debug is the default configuration. When you
compile a program by using the Debug configuration, both TRACE and
DEBUG symbols are defined, as shown in Figure 12.2. When you com-
pile a program in the Release configuration, only the TRACE symbol
is defined. You can switch between the Debug and Release configura-
tions using the Solution Configurations combo box on the standard
toolbar (as shown in Figure 12.3) or by using the Configuration
Manager dialog box (as shown in Figure 12.4) from the project’s
Property Pages dialog box.

F IGURE 12 .2
Both the TRACE and DEBUG symbols are defined
in the Debug configuration.

F IGURE 12 .3
The standard toolbar of Visual Studio .NET con-
tains a solutions configuration combo box to allow
users to easily change solution configuration.

16 0789728230 CH12 11/21/02 1:17 PM Page 784

Chapter 12 TESTING AND DEBUGGING A WINDOWS APPLICATION 785

Later in this chapter, you will learn how to make these changes from
within the program and through the command-line compilation
options.

When you compile a program by using the Debug configuration, the
code that uses the Debug and the Trace classes is included in the
compiled code. When you run such a program, messages are gener-
ated by both the Debug and Trace classes. On the other hand, when
a program is compiled by using the Trace configuration, it does not
include any calls to the Debug class. Thus, when such a program is
executed, you get only the messages generated by using the Trace
class.

Table 12.1 summarizes the members of both the Trace and Debug
classes.

TABLE 12.1

MEMBERS OF Debug AND Trace CLASSES

Member Type Description

Assert() Method Checks for a condition and displays a message if the
condition is false.

AutoFlush Property Specifies whether the Flush() method should be
called on the listeners after every write.

Close() Method Flushes the output buffer and then closes the
listeners.

Fail() Method Displays an error message.

Flush() Method Flushes the output buffer and causes the buffered
data to be written to the listeners.

Indent() Method Increases the current IndentLevel property by one.

IndentLevel Property Specifies the indent level.

IndentSize Property Specifies the number of spaces in an indent.

Listeners Property Specifies the collection of listeners that is monitor-
ing the trace output.

Unindent() Method Decreases the current IndentLevel property by one.

Write() Method Writes the given information to the trace listeners in
the Listeners collection.

WriteIf() Method Writes the given information to the trace listeners in
the Listeners collection only if a condition is true.

F IGURE 12 .4
The Configuration Manager dialog box allows you
to set configuration for projects in a solution.

N
O

T
E Tracing Helps in Resolving Hard-to-

Reproduce Errors When programs
run in a production environment, they
sometimes report errors (mostly relat-
ed to performance or threading prob-
lems) that are difficult to reproduce in
a simulated testing environment.
Tracing a production application can
help you get runtime statistics for the
program; this might help you in trap-
ping these hard-to-reproduce errors.

continues

16 0789728230 CH12 11/21/02 1:17 PM Page 785

786 Par t I I TESTING, DEBUGGING, AND DEPLOYING A WINDOWS APPLICATION

WriteLine() Method Acts the same as Write(), but appends the informa-
tion with a newline character.

WriteLineIf() Method Acts the same as WriteIf(), but appends the infor-
mation with a newline character.

Using Trace and Debug to Display
Information

Implement tracing.

• Display trace output

Step by Step 12.1 demonstrates how to use some of the methods of
the Trace and Debug classes.

S T E P B Y S T E P
12.1 Using the Trace and Debug Classes to Display

Debugging Information

1. Launch Visual Studio .NET. Select File, New, Blank
Solution and name the new solution 316C12.

2. In Solution Explorer, right-click the name of solution and
select Add, New Project. Select Visual C# Projects from
the Project Types tree and then select Windows
Application from the list of templates on the right. Name
the project StepByStep12_1.

3. In Solution Explorer, right-click Form1.cs and rename it
FactorialCalculator. Open the Properties window for
this form and change its Name property to
FactorialCalculator and Text property to Factorial
Calculator 12_1. Switch to the code view of the form and
modify the Main() method to launch FactorialCalculator
instead of Form1.

TABLE 12.1

MEMBERS OF Debug AND Trace CLASSES

Member Type Description

continued

16 0789728230 CH12 11/21/02 1:17 PM Page 786

Chapter 12 TESTING AND DEBUGGING A WINDOWS APPLICATION 787

4. Add two TextBox controls (txtNumber and txtFactorial)
and a Button control (btnCalculate) to the form and
arrange the controls as shown in Figure 12.5.

5. Add the following using directive in the code view:

using System.Diagnostics;

6. Add the following code to the Click event handler of
btnCalculate:

private void btnCalculate_Click(object sender,
System.EventArgs e)

{
// write a debug message
Debug.WriteLine(

“Inside Button Click event handler”);
// start indenting messages now
Debug.Indent();
int intNumber = Convert.ToInt32(txtNumber.Text);
// make a debug assertion
Debug.Assert(intNumber >= 0, “Invalid value”,

“negative value in debug mode”);
// write a trace assertion
Trace.Assert(intNumber >= 0, “Invalid value”,

“negative value in trace mode”);

int intFac = 1;
for (int i = 2; i <= intNumber; i++)
{

intFac = intFac * i;
// write a debug message
Debug.WriteLine(i,

“Factorial Program Debug, Value of i”);
}
// write a trace message if the condition is true
Trace.WriteLineIf(intFac < 1,

“There was an overflow”,
“Factorial Program Trace”);

// write a debug message if the condition is true
Debug.WriteLineIf(intFac < 1,

“There was an overflow”,
“Factorial Program Debug”);

txtFactorial.Text = intFac.ToString();
// decrease the indent level
Debug.Unindent();

// write a debug message
Debug.WriteLine(

“Done with computations, returning...”);
}

F IGURE 12 .5
You can design a form that calculates the facto-
rial of a given number.

continues

16 0789728230 CH12 11/21/02 1:17 PM Page 787

788 Par t I I TESTING, DEBUGGING, AND DEPLOYING A WINDOWS APPLICATION

7. Run the project. Keep the program running and switch to
the Visual Studio .NET Integrated Development
Environment (IDE). Select View, Other Windows,
Output. Push the pin on the title bar of the output win-
dow so that it does not hide automatically. Now switch to
the running program; enter 5 in the text box and click the
Calculate button. You should see Debug messages that are
generated by the program (see Figure 12.6).

8. Now switch to the running program and enter the value
100 and click the Calculate button. Messages from both
the Debug class and the Trace class overflow are displayed
in the Output window. Note that the default configura-
tion is the Debug configuration, where both the TRACE and
DEBUG symbols are defined.

9. Enter a negative value, such as -1, and click the Calculate
button. This causes the assertion to fail, and you see a dia-
log box that shows an assertion failed message, as shown
in Figure 12.7. This message box is generated by the
Debug.Assert() method in the code. The dialog box gives
you three choices: Abort, to terminate the program; Retry,
to break the program execution so that you can debug the
program; and Ignore, to continue the execution as if noth-
ing has happened. Click Ignore, and you see another
Assertion Failed dialog box. This one was generated by the
Trace.Assert() method in the code. Click the Abort but-
ton to terminate the program execution.

10. From the Solution Configurations combo box on the
standard toolbar, select the Release configuration. (The
Release configuration defines only the TRACE symbol.)
Run the program again. Enter the value 5 and click the
Calculate button. The factorial is calculated, but no mes-
sages appear in the Output window. Enter the value 100
and click the Calculate button. You should now see the
trace overflow message in the Output window. Finally, try
calculating the factorial of -1. You should see just one dia-
log box, showing an assertion failed message. Click the
Abort button to terminate the program.

continued

F IGURE 12 .6
Debug and Trace messages are by default
always displayed in the Output window.

F IGURE 12 .7
The Assertion Failed dialog box is displayed
when an assertion that is made in the
Assert() method fails.

16 0789728230 CH12 11/21/02 1:17 PM Page 788

Chapter 12 TESTING AND DEBUGGING A WINDOWS APPLICATION 789

Note from Step by Step 12.1 that you can use the methods of the
Debug and Trace classes (for example, the WriteIf() and
WriteLineIf() methods) to display messages based on conditions.
This can be a very useful technique if you are trying to understand
the flow of logic of a program. Step by Step 12.1 also demonstrates
the use of the Assert() method. The Assert() method tests your
assumption about a condition at a specific place in the program.
When an assertion fails, the Assert() method pinpoints the code
that is not behaving according to your assumptions. A related
method is Fail(). The Fail() method displays a dialog box similar
to the one that Assert() shows, but it does not work conditionally.
Fail() signals unconditional failure in a branch of code execution.

Trace Listeners
Implement tracing.

• Add trace listeners and trace switches to an
application.

Listeners are the classes that are responsible for forwarding, record-
ing, and displaying the messages generated by the Trace and Debug
classes. You can have multiple listeners associated with the Trace and
Debug classes, by adding Listener objects to their Listeners proper-
ty. The Listeners property is a collection that is capable of holding
any objects derived from the TraceListener class. The Debug and
Trace classes share a Listeners collection, so an object that is added
to the Listeners collection of the Debug class is automatically avail-
able in the Trace class and vice versa.

The TraceListener class is an abstract class that belongs to the
System.Diagnostics namespace and has three implementations:

á DDeeffaauullttTTrraacceeLLiisstteenneerr—An object of this class is automatically
added to the Listeners collection. Its behavior is to write mes-
sages on the Output window.

á TTeexxttWWrriitteerrTTrraacceeLLiisstteenneerr—An object of this class writes mes-
sages to any class that derives from the Stream class and that
includes the console or a file.

á EEvveennttLLooggTTrraacceeLLiisstteenneerr—An object of this class writes mes-
sages to the Windows event log.

16 0789728230 CH12 11/21/02 1:17 PM Page 789

790 Par t I I TESTING, DEBUGGING, AND DEPLOYING A WINDOWS APPLICATION

If you want a listener object to perform differently from these three
listener classes, you can create your own class that inherits from the
TraceListener class. When doing so, you must at least implement
the Write() and WriteLine() methods.

Step by Step 12.2 shows how to create a custom listener class that
implements the TraceListener class to send debug and trace mes-
sages through email.

S T E P B Y S T E P
12.2 Creating a Custom TraceListener Object

1. Create a new Windows application project in solution
316C12. Name the project StepByStep12_2.

2. In Solution Explorer, copy the FactorialCalculator.cs
form from the StepByStep12_1 project to the current pro-
ject. Change the Text property of the form to Factorial
Calculator 12_2. Switch to the code view and change the
namespace of the form to StepByStep12_2.

3. In Solution Explorer, right-click Form1.cs and select
Delete from the context menu.

4. Add to the project a reference to System.Web.dll.

5. Using the Add Class Wizard, add a new class to the pro-
ject. Name the class EmailTraceListener and add the fol-
lowing code to it (changing the From address to a valid
email address):

using System;
using System.Diagnostics;
using System.Text;
using System.Web.Mail;

namespace StepByStep12_2
{

public class EmailTraceListener : TraceListener
{

// Message log will be sent to this address
private string mailto;
// Store the message log
private StringBuilder message;

public EmailTraceListener(string mailto)
{

this.mailto = mailto;
}

T
IP

The Same Listeners for DDeebbuugg and
TTrraaccee Messages sent through the
Debug and Trace objects are directed
through each Listener object in the
Listeners collection. Debug and
Trace share the same Listeners col-
lection, so any Listener object that
is added to the Trace.Listeners col-
lection is also added to the
Debug.Listeners collection.

E
X

A
M

16 0789728230 CH12 11/21/02 1:17 PM Page 790

Chapter 12 TESTING AND DEBUGGING A WINDOWS APPLICATION 791

// A custom listener must
// override Write() method
public override void Write(string message)
{

if (this.message == null)
this.message = new StringBuilder();

this.message.Append(message);
}

// A custom listener must
// override WriteLine() method
public override void WriteLine(string message)
{

if (this.message == null)
this.message = new StringBuilder();

this.message.Append(message);
this.message.Append(‘\n’);

}

// use the close method to send mail.
public override void Close()
{

// ensure that the listener is flushed
Flush();
// MailMessage belongs to the
// System.Web.Mail namespace
// but can be used from
// any managed application
if (this.message != null)
{

// Create a MailMessage object
MailMessage mailMessage =

new MailMessage();
mailMessage.From =

“tracelistener@youraddress.com”;
mailMessage.To = this.mailto;
mailMessage.Subject =
“Factorial Program Debug/Trace output”;
mailMessage.Body =

this.message.ToString();
//send the mail
SmtpMail.Send(mailMessage);

}
}

public override void Flush()
{

// nothing much to do here
// so call the base class’s implementation
base.Flush();

}
}

}

continues

N
O

T
E Sending Email Messages The types

in the System.Web.Mail namespace
can be used from any managed appli-
cation, including both Web and
Windows applications. This functionali-
ty is supported only in the Windows
2000, Windows XP Professional, and
Windows .NET Server operating sys-
tems. For other operating systems,
you can send email messages by
manually establishing Simple Mail
Transfer Protocol (SMTP) connections
through the System.Net.TcpClient
class or by using an SMTP compo-
nent, which you might be able to get
from a component vendor for free.

16 0789728230 CH12 11/21/02 1:17 PM Page 791

792 Par t I I TESTING, DEBUGGING, AND DEPLOYING A WINDOWS APPLICATION

6. Add the following code to the Load event of the
FactorialCalculator form, changing the email address
Insert@youraddress.here to a real address that can receive
emails:

private void FactorialCalculator_Load(object sender,
System.EventArgs e)

{
// Add a custom listener to
// the Listeners collection
Trace.Listeners.Add(new EmailTraceListener(

“Insert@youraddress.here”));
}

7. Add the following code to the Closing event of the
FactorialCalculator form:

private void FactorialCalculator_Closing(
object sender,
System.ComponentModel.CancelEventArgs e)

{
// call the Close() method for all listeners
Trace.Close();

}

8. Set project StepByStep12_2 as the startup project.

9. Run the project, using the default Debug configuration.
Enter a value and click the Calculate button. Close the
form. Note that both Debug and Trace messages appear on
the Output window, and they are emailed to the specified
address by using the local SMTP server. Run the project
again in the Release mode. Enter a large value, such as
100, and click the Calculate button. The overflow message
appears in the Output window. Close the form. While
you are closing the form, an email message containing the
Trace messages are sent to the specified email address.

continued

16 0789728230 CH12 11/21/02 1:17 PM Page 792

Chapter 12 TESTING AND DEBUGGING A WINDOWS APPLICATION 793

Trace Switches
Implement tracing.

• Add trace listeners and trace switches to an
application.

So far in this chapter, you have learned that the Trace and Debug
classes can be used to display valuable information related to pro-
gram execution. You have also learned that it is possible to capture
messages in a variety of formats. In this section, you will learn how
to control the nature of messages that you want to get from a pro-
gram.

You can use trace switches to set the parameters that control the
level of tracing that needs to be done on a program. You set these
switches via an Extensible Markup Language (XML) based external
configuration file. This is especially useful when the application you
are working with is in production mode. You might initially want
the application not to generate any trace messages. However, if the
application later has problems or you just want to check on the
health of the application, you might want to instruct the application
to emit a particular type of trace information by just changing the
configuration file. You are not required to recompile the application;
the application automatically picks up the changes from the configu-
ration file when it restarts.

There are two predefined classes for creating trace switches: the
BooleanSwitch class and the TraceSwitch class. Both of these classes
derive from the abstract Switch class. You can also define your own
trace switch classes by deriving classes from the Switch class.

You use the BooleanSwitch class to differentiate between two modes
of tracing: trace-on and trace-off. Its default value is zero, which cor-
responds to the trace-off state. If it is set to any nonzero value, it
corresponds to the trace-on state.

Unlike BooleanSwitch, the TraceSwitch class provides five different
levels of tracing switches. These levels are defined by the TraceLevel
enumeration and are listed in Table 12.2. The default value of
TraceLevel for a TraceSwitch object is 0 (Off).

16 0789728230 CH12 11/21/02 1:17 PM Page 793

794 Par t I I TESTING, DEBUGGING, AND DEPLOYING A WINDOWS APPLICATION

TABLE 12.2

THE TraceLevel ENUMERATION

Enumerated Value Integer Value Type of Tracing

Off 0 None

Error 1 Only error messages

Warning 2 Warning messages and error messages

Info 3 Informational messages, warning mes-
sages, and error messages

Verbose 4 Verbose messages, informational mes-
sages, warning messages, and error
messages

Table 12.3 displays the important properties of the TraceSwitch
class.

TABLE 12.3

IMPORTANT PROPERTIES OF THE TraceSwitch CLASS

Property Description

Description Describes the switch (inherited from Switch).

DisplayName Specifies a name used to identify the switch (inherited from
Switch).

Level Specifies the trace level that helps select which trace and debug
messages will be processed. Its value is one of the TraceLevel
enumeration values (refer to Table 12.2).

TraceError Returns true if Level is set to Error, Warning, Info, or
Verbose; otherwise, it returns false.

TraceInfo Returns true if Level is set to Info or Verbose; otherwise, it
returns false.

TraceVerbose Returns true if Level is set to Verbose; otherwise, it returns
false.

TraceWarning Returns true if Level is set to Warning, Info, or Verbose;
otherwise, it returns false.

Step by Step 12.3 demonstrates how to use trace switches in a
Windows application.

T
IP

Out-of-Range Values for
BBoooolleeaannSSwwiittcchh and TTrraacceeSSwwiittcchh
For a BooleanSwitch object, if any
nonzero (negative or positive) value
is specified in the configuration file,
the BooleanSwitch object’s Enabled
property is set to true. For a
TraceSwitch object, if a value
greater than 4 is specified, the
Level property of the object is set
to TraceLevel.Verbose (4). If a
negative value is specified, a
StackOverflow exception occurs at
runtime.

E
X

A
M

16 0789728230 CH12 11/21/02 1:17 PM Page 794

Chapter 12 TESTING AND DEBUGGING A WINDOWS APPLICATION 795

S T E P B Y S T E P
12.3 Using the TraceSwitch Class

1. Create a new Windows application project in solution
316C12. Name the project StepByStep12_3.

2. In Solution Explorer, copy the FactorialCalculator.cs
form from the StepByStep12_1 project to the current pro-
ject. Change the Text property of the form to Factorial
Calculator 12_3. Switch to the code view and change the
namespace of the form to StepByStep12_3.

3. Delete the default Form1.cs.

4. Declare the following static variable at the class level, just
after the Main() method:

static TraceSwitch traceSwitch =
new TraceSwitch(“FactorialTrace”,
“Trace the factorial application”);

5. Change the Click event handler of the Calculate button
so that it has the following code:

private void btnCalculate_Click(object sender,
System.EventArgs e)

{
if (traceSwitch.TraceVerbose)

// write a debug message
Debug.WriteLine(

“Inside the Button Click event handler”);

// start indenting messages now
Debug.Indent();
int intNumber = Convert.ToInt32(txtNumber.Text);

if (traceSwitch.TraceError)
{

// make a debug assertion
Debug.Assert(intNumber >= 0, “Invalid value”,

“negative value in debug mode”);
}

int intFac = 1;
for (int i = 2; i <= intNumber; i++)
{

intFac = intFac * i;
// write a debug message
if (traceSwitch.TraceInfo)

Debug.WriteLine(i,
“Factorial Program Debug, Value of i”);

}

continues

16 0789728230 CH12 11/21/02 1:17 PM Page 795

796 Par t I I TESTING, DEBUGGING, AND DEPLOYING A WINDOWS APPLICATION

if (traceSwitch.TraceWarning)
// write a debug message
// if the condition is true
Debug.WriteLineIf(intFac < 1,

“There was an overflow”,
“Factorial Program Debug”);

txtFactorial.Text = intFac.ToString();
// decrease the indent level
Debug.Unindent();

if (traceSwitch.TraceVerbose)
// write a debug message
Debug.WriteLine(

“Done with computations, returning...”);
}

6. In Solution Explorer, select View All Files from the tool-
bar. Navigate to the bin\debug folder. Right-click the
debug folder and then select Add, Add New Item. Choose
to create an XML file and name the XML file
StepByStep12_3.exe.config.

7. In the XML editor, type the following configuration data
in the XML file:

<?xml version=”1.0” encoding=”utf-8” ?>
<configuration>

<system.diagnostics>
<switches>

<add name=”FactorialTrace” value=”4” />
</switches>

</system.diagnostics>
</configuration>

8. Set project StepByStep12_3 as the startup project.

9. Run the project, using the default Debug configuration.
Enter the value 5; note that all messages appear in the out-
put window. Enter a negative value and then a large value,
and you see all the errors and warning messages. Close the
form. Modify the XML file to change the value of
FactorialTrace to 3. Run the project again, you should
now see all messages except the one set with TraceLevel as
Verbose. Repeat the process, with values of
FactorialTrace in the configuration file changed to 2, 1,
and 0.

continued

16 0789728230 CH12 11/21/02 1:17 PM Page 796

Chapter 12 TESTING AND DEBUGGING A WINDOWS APPLICATION 797

10. Modify the program to change all Debug statements to
Trace statements. Copy the XML configuration file to the
bin\Release folder in the project and then repeat step 9,
using the Release configuration.

Conditional Compilation
The C# programming language provides a set of preprocessing direc-
tives. You can use these directives to skip sections of source files for
compilation, to report errors and warnings, or to mark distinct
regions of source code.

Table 12.4 summarizes the preprocessing directives that are available
in C#.

TABLE 12.4

C# PREPROCESSING DIRECT IVES

Directives Description

#if, #else, #elif, and #endif These directives conditionally skip the sections
of code. The skipped sections are not part of the
compiled code.

#define and #undef These directives define or undefine symbols in
the code.

#warning and #error These directives explicitly generate error or
warning messages. The compiler reports errors
and warnings in the same way it reports other
compile-time errors and warnings.

#line This directive alters the line numbers and source
file filenames reported by the compiler in warn-
ing and error messages.

#region and #endregion These directives mark sections of code. A com-
mon example of these directives is the code gen-
erated by Windows Forms Designer. Visual
designers such as Visual Studio .NET can use
these directives to show, hide, and format code.

In addition to providing preprocessing directives, the C# program-
ming language also provides a ConditionalAttribute class.

N
O

T
E C# and the Preprocessor There is

no separate preprocessor in the
Visual C# .NET compiler. The lexical
analysis phase of the compiler
processes all the preprocessing direc-
tives. C# uses the term preprocessor
from a conventional point of view, in
contrast to languages such as C and
C++ that have separate preproces-
sors for taking care of conditional
compilation.

16 0789728230 CH12 11/21/02 1:17 PM Page 797

798 Par t I I TESTING, DEBUGGING, AND DEPLOYING A WINDOWS APPLICATION

You can mark a method as conditional by applying the Conditional
attribute to it. The Conditional attribute takes one argument that
specifies a symbol. The conditional method is either included or
omitted from the compiled code, depending on the definition of the
specified symbol at that point. If the symbol definition is available,
the code of the method is included; otherwise, the code of the
method is excluded from the compiled code.

The conditional compilation directives and methods with the
Conditional attribute allow you to keep debugging-related code in
the source code but exclude it from the compiled version. This
removes the extraneous messages and the production programs do
not encounter performance hits due to processing of additional
code. In this case, if you want to resolve some errors, you can easily
activate the debugging code by defining a symbol and recompiling
the program.

Step by Step 12.4 demonstrate the use of ConditionalAttribute and
the conditional compilation directives.

S T E P B Y S T E P
12.4 Using Conditional Compilation

1. Create a new Windows application project in solution
316C12. Name the project StepByStep12_4.

2. In Solution Explorer, copy the FactorialCalculator.cs
form from the StepByStep12_1 project to the current pro-
ject. Set the Text property of the form to Factorial
Calculator 12_4. Switch to the code view and change the
namespace of the form to StepByStep12_4.

3. Delete the default Form1.cs.

4. Add the following two conditional methods to the class
definition:

[Conditional(“DEBUG”)]
public void InitializeDebugMode()
{

label1.Text = “Factorial Calculator: Debug Mode”;
}

T
IP

Conditional Methods A method
must have its return type set to
void in order to have the
Conditional attribute applied to it.

E
X

A
M

16 0789728230 CH12 11/21/02 1:17 PM Page 798

Chapter 12 TESTING AND DEBUGGING A WINDOWS APPLICATION 799

[Conditional(“TRACE”)]
public void InitializeReleaseMode()
{

label1.Text = “Factorial Calculator Version 1.0”;
}

5. Attach an event handler to the form’s Load event and add
the following code:

private void StepByStep12_4_Load(
object sender, System.EventArgs e)

{
#if !DEBUG && !TRACE

#error you should have either
➥DEBUG or TRACE defined

#endif

#if DEBUG
Debug.WriteLine(

“Program started in debug mode”);
InitializeDebugMode();

#else
Trace.WriteLine(

“Program started in release mode”);
InitializeReleaseMode();

#endif
}

6. Set project StepByStep12_4 as the startup project.

7. Run the project, using the default Debug configuration.
The heading of the form displays “Factorial Program:
Debug Mode” (see Figure 12.8). The Output window also
displays a string: “Program started in debug mode.” Close
the program and start it again in the Release mode. A dif-
ferent heading appears in the form (see Figure 12.9) and a
different message appears in the Output window.

8. Add the following line as the very first line of the code:

#undef DEBUG

Run the program, using the Debug configuration. Note
that the program is executed as if it were executed in the
Trace configuration. This is because the Debug configura-
tion defines both the DEBUG and TRACE symbols. Because
DEBUG is undefined using the #undef preprocessing direc-
tive in the code you added, the compiled code includes
the #else part of the preprocessing directive.

F IGURE 12 .8
The factorial calculator can be conditionally
compiled by using the Debug configuration.

F IGURE 12 .9
The factorial calculator can be conditionally
compiled by using the Release configuration.

continues

16 0789728230 CH12 11/21/02 1:17 PM Page 799

800 Par t I I TESTING, DEBUGGING, AND DEPLOYING A WINDOWS APPLICATION

9. Add the following line just after the directive placed in
step 8:

#undef TRACE

Try running the program. Rather than run the program,
the compiler throws an error message, complaining that
both DEBUG and TRACE are undefined. This message is
caused by the conditional logic in the Load event handler
of the form.

You can define the DEBUG and TRACE symbols for the compiler in the
following ways:

á By defining the constants in the project’s property pages dialog
box

á By using the #define directive at the beginning of the code file

á By using the /define (/d for short) option with the command-
line C# compiler

Step by Step 12.4 demonstrates conditional compilation with the
DEBUG and TRACE symbols. You can also use conditional compilation
with any other custom-defined symbols to perform conditional com-
pilation.

G U I D E D P R A C T I C E
E X E R C I S E 1 2 . 1
The goal of this exercise is to add an EventLogTraceListener object
to the Factorial Calculator program so that it will write all Trace and
Debug messages to the Windows event log.

This exercise will give you good practice using trace listeners. How
would you create such a form?

You should try working through this problem on your own first. If
you get stuck, or if you’d like to see one possible solution, follow
these steps:

continued

16 0789728230 CH12 11/21/02 1:17 PM Page 800

Chapter 12 TESTING AND DEBUGGING A WINDOWS APPLICATION 801

1. Create a new Visual C# Windows application in solution
316C12. Name the project GuidedPracticeExercise12_1.

2. In Solution Explorer, copy the FactorialCalculator.cs form
from the StepByStep12_1 project to the current project. Set the
Text property of the form to Factorial Calculator
GuidedPracticeExercise12_1. Switch to the code view and
change the namespace of the form to
GuidedPracticeExercise12_1.

3. Delete the default Form1.cs.

4. Double-click the form to add an event handler for the Load
event. Add the following code to the event handler:

private void FactorialCalculator_Load(object sender,
System.EventArgs e)

{
//Add a event log listener to
//the Listeners collection
Trace.Listeners.Add(new EventLogTraceListener(

“FactorialCalculator”));
}

5. Set project GuidedPracticeExercise12_1 as the startup project.

6. Run the project. Enter a value for finding a factorial. Click the
Calculate button. Close the program. Select View, Server
Explorer. Navigate to your computer, and expand the Event
Logs node, the Application node, and the
FactorialCalculator node. The messages generated by the
Trace and Debug classes are added to the Application event log,
as shown in Figure 12.10.

If you have difficulty following this exercise, review the sections
“Trace Listeners” and “Using Trace and Debug to Display
Information,” earlier in this chapter. After doing that review, try this
exercise again.

F IGURE 12 .10
You can view the Windows Event Log from
Server Explorer.

16 0789728230 CH12 11/21/02 1:18 PM Page 801

802 Par t I I TESTING, DEBUGGING, AND DEPLOYING A WINDOWS APPLICATION

. The Trace and Debug classes can be used to display informative
messages in an application when the DEBUG and TRACE symbols
are defined, respectively, at the time of compilation.

. By default, both TRACE and DEBUG symbols are defined in the
Debug configuration for compilation, and only the TRACE sym-
bol is defined for the Release configuration for compilation.

. Listeners are objects that receive trace and debug output. By
default, both Trace and Debug classes have the
DefaultTraceListener object in their Listeners collections.
The DefaultTraceListener object displays messages in the
Output window.

. Debug and Trace objects share the same Listeners collection.
Therefore, any listener object added to the Trace.Listeners
collection is also added to the Debug.Listeners collection.

. Trace switches allow you to change the type of messages traced
by a program, depending on the value stored in the XML con-
figuration file. You need not recompile the application for this
change to take effect; you just restart it. You need to imple-
ment code to display the messages, depending on the value of
the switch.

. C# preprocessing directives allow you to define and undefine
symbols in an application, report errors or warnings, mark
regions of code, and conditionally skip code for compilation.

. The Conditional attribute allows you to conditionally add or
skip a method for compilation, depending on the value of the
symbol that is passed as a parameter to the attribute.

DEBUGGING

Debug, rework, and resolve defects in code.

• Configure the debugging environment.

Debugging is the process of finding the causes of errors in a program,
locating the lines of code that are causing those errors, and fixing
those errors.

R E V I E W B R E A K

16 0789728230 CH12 11/21/02 1:18 PM Page 802

Chapter 12 TESTING AND DEBUGGING A WINDOWS APPLICATION 803

Without tools, the process of debugging can be very time-consum-
ing and tedious. Thankfully, Visual Studio .NET comes loaded with
a large set of tools to help you with various debugging tasks.

Stepping Through Program Execution
A common technique for debugging is to execute a program step-
by-step. This systematic execution allows you to track the flow of
logic, to ensure that the program is following the same paths of exe-
cution that you expect it to follow. If it does not, you can immedi-
ately identify the location of the problem.

Using step-by-step execution of a program also gives you an oppor-
tunity to monitor the program’s state before and after a statement is
executed. For example, you can check the values of variables, the
records in a database, and other changes in the environment. Visual
Studio .NET provides tools to make these tasks convenient.

The Debug menu provides three options for step-by-step execution
of a program (see Table 12.5). The keyboard shortcuts listed in Table
12.5 correspond to the default keyboard scheme of the Visual Studio
.NET IDE. If you have personalized the keyboard scheme either
through the Tools, Options, Environment, Keyboard menu or
through the Visual Studio . NET Start Page, you might have a dif-
ferent keyboard mapping. You can check out the keyboard mappings
available for your customization through Visual Studio .NET’s
context-sensitive help.

TABLE 12.5

DEBUG OPTIONS FOR STEP-BY-STEP EXECUTION

Keyboard
Debug Menu Item Shortcut Purpose

Step Into F11 You use this option to execute code in step
mode. If a method call is encountered, the
program execution steps into the code of the
method and executes the method in step
mode.

N
O

T
E Runtime Errors and Compile-Time

Errors Compile-time errors are pro-
duced when a program does not com-
ply with the syntax of the program-
ming language. These errors are trivial
and are generally pointed out by com-
pilers themselves. Runtime errors
occur in programs that are compiled
successfully but do not behave as
expected. The process of testing and
debugging applies to runtime errors
only. Testing reveals these errors, and
debugging repairs them.

continues

16 0789728230 CH12 11/21/02 1:18 PM Page 803

804 Par t I I TESTING, DEBUGGING, AND DEPLOYING A WINDOWS APPLICATION

Step Over F10 You use this option when a method call is
encountered and you do not want to step into
the method code. When this option is select-
ed, the debugger executes the entire method
without any step-by-step execution (interrup-
tion), and then it steps to the next statement
after the method call.

Step Out Shift+F11 You use this option inside a method call to
execute the rest of the method without step-
ping, and you resume step execution mode
when control returns to the calling method.

S T E P B Y S T E P
12.5 Trying Step-by-Step Execution of a Windows

Application

1. Set project StepByStep12_4 as the startup project.

2. Select Debug, Step Into. The program pauses its execution
at the first executable statement and shows the statement
highlighted, as shown in Figure 12.11. An arrow appears
in the left margin of the code, and it points at the next
statement to be executed.

3. Press F11 to proceed to the next step. The debugger steps
into the Windows Form Designer Generated Code sec-
tion, where it executes the constructor code of the
FactorialCalculator form to create its new instance, as
requested by the Application.Run() method. Press F11 a
couple times.

TABLE 12.5

DEBUG OPTIONS FOR STEP-BY-STEP EXECUTION

Keyboard
Debug Menu Item Shortcut Purpose

continued

16 0789728230 CH12 11/21/02 1:18 PM Page 804

Chapter 12 TESTING AND DEBUGGING A WINDOWS APPLICATION 805

4. Drag the yellow arrow back one line. In this way you can
instruct the debugger to change what statement will be
executed next. Press F11 two times to see the effect of
dragging the debugger back. Now press Shift+F11. This
automates the execution for the rest of the current
method, and the execution breaks again at the next state-
ment to be executed in the calling code.

5. Control comes back to the Application.Run() method
call. The form is now created and is ready to be launched,
as soon as you initiate the next step by pressing F11. Press
the F11 key, and you see the form execute.

6. Enter a positive number in the form and press the
Calculate button. The form calculates the factorial and
displays it almost instantly. Note that the application is no
longer running in step mode. Pressing F11 either on the
form or in the code view has no effect.

The lesson from Step by Step 12.5 is that when you start an applica-
tion in step mode, after the Application.Run() method is executed
and the form is launched, you cannot really go back to step-by-step
execution of the code. To step into the code of various event han-
dlers of a form, you need to mark breakpoints in the code, as
described in the following section.

F IGURE 12 .11
You can step through a program’s execution by
selecting Debug, StepInto from the Visual
Studio .NET menu.

16 0789728230 CH12 11/21/02 1:18 PM Page 805

806 Par t I I TESTING, DEBUGGING, AND DEPLOYING A WINDOWS APPLICATION

Setting Breakpoints
Breakpoints are markers in code that signal the debugger to pause
execution. When the debugger pauses at a breakpoint, you can take
your time to analyze variables, data records, and other settings in the
environment to determine the state of the program. You can also
choose to execute the program in step mode from this point onward.

If you have placed a breakpoint in the Click event handler of a
button, the program pauses when you click the button and the
execution reaches the breakpoint. You can then step through the exe-
cution for the rest of the event handler. When the execution of the
event handler code finishes, the control is transferred back to the
form. If you have another button on the form for which a break-
point is not set in the event handler, then the program is no longer
under step execution. You should mark breakpoints at all the places
you would like execution to pause.

S T E P B Y S T E P
12.6 Working with Breakpoints

1. Create a new Windows application project in solution
316C12. Name the project StepByStep12_6.

2. In Solution Explorer, copy the FactorialCalculator.cs
form from the StepByStep12_1 project to the current pro-
ject. Change the Text property of the form to Factorial
Calculator 12_6. Switch to the code view and change the
namespace of the form to StepByStep12_6.

3. Delete the default Form1.cs.

4. Set project StepByStep12_6 as the startup project.

5. Add the following method to the class:

private int Factorial(int intNumber)
{

int intFac = 1;
for (int i = 2; i <= intNumber; i++)
{

intFac = intFac * i;
}
return intFac;

}

16 0789728230 CH12 11/21/02 1:18 PM Page 806

Chapter 12 TESTING AND DEBUGGING A WINDOWS APPLICATION 807

6. Modify the Click event handler of btnCalculate so that it
looks like this:

private void btnCalculate_Click(object sender,
System.EventArgs e)

{
int intNumber, intFactorial;
try
{

intNumber = Convert.ToInt32(txtNumber.Text);
intFactorial = Factorial(intNumber);
txtFactorial.Text = intFactorial.ToString();

}
catch(Exception ex)
{

Debug.WriteLine(ex.Message);
}

}

7. In the event handler added in step 6, right-click the
beginning of the line that makes a call to the Factorial()
method and select Insert Breakpoint from the context
menu. Note that the line of code is highlighted with red
and that a red dot appears in the left margin, as in Figure
12.12. Alternatively, you could create a breakpoint by
clicking the left margin adjacent to a line.

F IGURE 12 .12
You can enter step-by-step execution mode by
setting a breakpoint in a program.

8. Execute the project. The Factorial form appears. Enter a
value and click the Calculate button. Note that execution
pauses at the location where you have marked the break-
point.

continues

N
O

T
E The Disassembly Window Shows

Native Code Instead of MSIL
Although C# programs are compiled
to Microsoft Intermediate Language
(MSIL), they are just-in-time compiled
to native code only at the time of their
first execution. This means the exe-
cuting code is never in IL; it is always
in native code. Thus, you will always
see native code instead of IL in the
Disassembly window.

16 0789728230 CH12 11/21/02 1:18 PM Page 807

808 Par t I I TESTING, DEBUGGING, AND DEPLOYING A WINDOWS APPLICATION

9. Press F11 to step into the code of the Factorial()
method. Move the mouse pointer over various variables in
the Factorial() method, and you see the current values of
these variables.

10. Select Debug, Windows, Breakpoints. The Breakpoints
window appears, as shown in Figure 12.13. Right-click
the breakpoint listed in the window and select Goto
Disassembly. The Disassembly window appears, showing
the object code of the program along with the disassem-
bled source code.

F IGURE 12 .13
The Breakpoints window gives you convenient
access to all breakpoint-related tasks in one
place.

11. Close the Disassembly window. Select Debug, Step Out
to automatically execute the rest of the Factorial()
method and again start the step mode in the event han-
dler at the next statement. Step through the execution
until you see the form again.

12. Select Debug, Stop Debugging. The debugging session
ends and the application is terminated.

13. In the code view, right-click the statement where you have
set the breakpoint and select Disable Breakpoint from the
context menu.

To set advanced options in a breakpoint, you can choose to create a
new breakpoint by selecting New from the context menu of the
code or from the toolbar in the Breakpoints window. The New
Breakpoint dialog box (see Figure 12.14) has four tabs. You can use
these tabs to set a breakpoint in a function, in a file, at an address in
the object code, and when a data value (that is, the value of a vari-
able) changes.

N
O

T
E The DDeebbuugg Configuration

Breakpoints and other debugging fea-
tures are available only when you
compile a program by using the Debug
configuration.

N
O

T
E Disabling Versus Removing a

Breakpoint When you remove a
breakpoint, you loose all the informa-
tion related to it. Instead of removing a
breakpoint, you can choose to disable
it. Disabling a breakpoint does not
pause the program at the point of the
breakpoint, but Visual C# .NET will
remember the breakpoint settings. At
any time, you can select Enable
Breakpoint to reactivate the breakpoint.

16 0789728230 CH12 11/21/02 1:18 PM Page 808

Chapter 12 TESTING AND DEBUGGING A WINDOWS APPLICATION 809

Clicking the Condition button opens the Breakpoint Condition dia-
log box, as shown in Figure 12.15. The Breakpoint Condition dialog
box allows you to set a breakpoint based on the runtime value of an
expression.

Clicking the Hit Count button opens the Breakpoint Hit Count
dialog box, as shown in Figure 12.16. This dialog box enables you to
break the program execution only if the specified breakpoint has
been hit a given number of times. This can be especially helpful if
you have a breakpoint inside a lengthy loop and you want to step-
execute the program only near the end of the loop.

Analyzing Program State to Resolve
Errors

Debug, rework, and resolve defects in code.

• Resolve errors and rework code.

When you break the execution of a program, the program is at a
particular state in its execution cycle. You can use various debugging
tools to analyze the values of variables, the results of expressions, the
path of execution, and so on, to help identify the cause of the error
that you are debugging.

Step by Step 12.7 demonstrates various Visual C# .NET debugging
tools, such as the Watch, Autos, Locals, This, Immediate, Output
and the Call Stack windows.

F IGURE 12 .14,
The New Breakpoint dialog box allows you to
create a new breakpoint.

F IGURE 12 .15▲
The Breakpoint Condition dialog box allows you
to set a breakpoint that is based on the value
of an expression at runtime.

F IGURE 12 .16▲
The Breakpoint Hit Count dialog box enables
you to break program execution only if the
specified breakpoint has been hit a given num-
ber of times.

16 0789728230 CH12 11/21/02 1:18 PM Page 809

810 Par t I I TESTING, DEBUGGING, AND DEPLOYING A WINDOWS APPLICATION

S T E P B Y S T E P
12.7 Analyzing Program State to Resolve Errors

1. Create a new Windows application project in solution
316C12. Name the project StepByStep12_7.

2. In Solution Explorer, copy the FactorialCalculator.cs
form from the StepByStep12_6 project to the current pro-
ject. Change the Text property of the form to Factorial
Calculator 12_7. Switch to the code view and change the
namespace of the form to StepByStep12_7.

3. Delete the default Form1.cs.

4. Set project StepByStep12_7 as the startup project.

5. Change the code in the Factorial() method to the fol-
lowing:

private int Factorial(int intNumber)
{

int intFac = 1;
for (int i = 2; i < intNumber; i++)
{

intFac = intFac * i;
}
return intFac;

}

Note in this code that I have introduced a logical error
that I will later “discover” through debugging.

6. Run the program. Enter the value 5 in the text box and
click the Calculate button. You should see that the result
is not correct; this program needs to be debugged.

7. Set a breakpoint in the Click event handler of
btnCalculate at the line where a call to the Factorial()
method is being made. Execute the program. Enter the
value 5 again, and click the Calculate button.

8. Press the F11 key to step into the Factorial() method.
Select Debug, Windows, Watch, Watch1 to add a Watch
window. Similarly, select the Debug, Windows menu and
add the Locals, Autos, This, Immediate, Output and Call
Stack windows. Pin down the windows so that they always
remain in view and are easy to watch as you step through
the program.

16 0789728230 CH12 11/21/02 1:18 PM Page 810

Chapter 12 TESTING AND DEBUGGING A WINDOWS APPLICATION 811

9. Look at the Call Stack window shown in Figure 12.17. It
shows the method call stack, giving you information
about the path taken by the code to reach its current
point of execution. The currently executing method is at
the top of the stack, as indicated by a yellow arrow.
When this method is finished executing, the next entry in
the stack will be the method receiving the control of exe-
cution.

10. Look at the This window, shown in Figure 12.18. In the
This window you can examine the members associated
with the current object (the Factorial form). You can scroll
down to find the txtNumber object. You can change the
values of these objects here. At this point, you don’t need
to change any values.

11. Activate the Autos window, which is shown in Figure
12.19. The Autos window displays the variables used in
the current statement and the previous statement. The
debugger determines this information for you automati-
cally; that is why the name of this window is Autos.

F IGURE 12 .17▲
The Call Stack window enables you to view the
names of methods on the call stack, parameter
types, and their values.

F IGURE 12 .18▲
The This window enables you to examine the
members associated with the current object.

F IGURE 12 .19,
The Autos window displays the variables that
are used in the current statement and the pre-
vious statement.

12. Invoke the Locals window, which is shown in Figure
12.20. The Locals window displays the variables that are
local to the current context (that is, the current method
under execution) with their current values. Figure 12.20
shows the local variables in the Factorial() method.

13. Invoke the Immediate window. Type intNumber in the
Immediate window and press Enter. The Immediate win-
dow immediately evaluates and displays the current value
of this variable in the next line. Now type the expression
Factorial(intNumber). The Immediate window calls the
Factorial() method for a given value and prints the result.

F IGURE 12 .20▲
The Locals window displays the variables that
are local to the method currently under
execution.

continues

16 0789728230 CH12 11/21/02 1:18 PM Page 811

812 Par t I I TESTING, DEBUGGING, AND DEPLOYING A WINDOWS APPLICATION

The Immediate window can therefore be used to print val-
ues of variables and expressions while you are debugging a
program.

14. Invoke the Watch1 window. The Watch window enables
you to evaluate variables and expressions. Select the variable
intFac from the code and drag and drop it in the Watch1
window. You can also double-click the next available row
and add a variable to it. Add the variables i and intNumber
to the Watch1 window, as shown in Figure 12.22.

continued

N
O

T
E Two Modes of the Command Window

The command window has two modes:
the command mode and the immedi-
ate mode. When you select View,
Other Windows, Command Window,
the command window is invoked in the
command mode. You can distinctly
identify the command mode as in this
mode the command window shows
the > prompt (see Figure 12.21). You
can use the command mode to evalu-
ate expressions or to issue com-
mands such as Edit to edit text in a
file. You can also use regular expres-
sions with the Edit command to make
editing operations quick and effective.

On the other hand, when you invoke
the command window by selecting
Debug, Window, Immediate, it opens
in the immediate mode. You can use
the immediate mode to evaluate
expressions in the currently debugged
program. The immediate mode does
not show any prompt (see Figure
12.21). You can switch from immedi-
ate mode to command mode by typing
>cmd, and you can switch from com-
mand mode to immediate mode by
typing immed in the Command window.

F IGURE 12 .21
The Command window can appear in two modes:
the command mode and the immediate mode.

F IGURE 12 .22
The Watch window enables you to evaluate variables and expressions.

15. Step through the execution of the program by pressing the
F11 key. Keep observing the way values change in the
Watch1 (or Autos or Locals) window. After a few steps,
the method terminates. Note that the program executed
only until the value of i was 4 and that the loop was not
iterated back when the value of i was 5. This causes the
incorrect output in the program.

16. Change the condition in the for loop to use the <= opera-
tor instead of < and press F11 to step through. The
Unable to Apply Code Changes dialog box appears, as
shown in Figure 12.23. This dialog box appears because
after you have identified the problem and corrected the
code, the source code is different from the compiled ver-
sion of the program. If you choose to continue at this
stage, your source code and program in execution are dif-
ferent, and that might mislead you. I recommend that
you always restart execution in this case by clicking the
Restart button. The code is then recompiled, and the pro-
gram is started again.

16 0789728230 CH12 11/21/02 1:18 PM Page 812

Chapter 12 TESTING AND DEBUGGING A WINDOWS APPLICATION 813

17. Enter the value 5 and click the Continue button. The pro-
gram breaks into the debugger again because the break-
point is still active. Step through the program and watch
the values of the variables. The loop is executed the cor-
rect number of times, and you get the correct factorial
value.

Debugging on Exceptions
You can control the way the debugger behaves when it encounters a
line of code that throws an exception. You can control this behavior
through the Exceptions dialog box, which is shown in Figure 12.24
and is invoked by selecting Debug, Exceptions. The Exceptions dia-
log box allows you to control the debugger’s behavior for each type
of exception defined on the system. In fact, if you have defined your
own exceptions, you can also add them to this dialog box.

There are two levels at which you can control the behavior of the
debugger when it encounters exceptions:

á When the exception is thrown—You can instruct the debug-
ger to either continue or break the execution of the program
when an exception is thrown. The default setting for Common
Language Runtime (CLR) exceptions is to continue the execu-
tion, possibly in anticipation that there will be an exception
handler.

á If the exception is not handled—If the program you are
debugging fails to handle an exception, you can instruct the
debugger to either ignore it and continue or to break the exe-
cution of the program. The default setting for CLR exceptions
is to break the execution, warning the programmer of the
possibly problematic situation.

F IGURE 12 .23
The Unable to Apply Code Changes dialog box
appears if you edit code and then try to contin-
ue execution.

N
O

T
E Support for Cross-Language

Debugging Visual Studio .NET sup-
ports debugging of projects that con-
tain code written in several managed
languages. The debugger can trans-
parently step into and out of lan-
guages, making the debugging
process smooth for you as a develop-
er. Visual Studio .NET also extends
this support to nonmanaged lan-
guages, but with minor limitations.

F IGURE 12 .24
The Exceptions dialog box allows you to control
the debugger’s behavior for system and custom-
defined exceptions.

16 0789728230 CH12 11/21/02 1:18 PM Page 813

814 Par t I I TESTING, DEBUGGING, AND DEPLOYING A WINDOWS APPLICATION

G U I D E D P R A C T I C E
E X E R C I S E 1 2 . 2
The Factorial Calculator program created in Step by Step 12.4
throws exceptions of type System.FormatException and
System.OverflowException when users are not careful about the
numbers they enter.

The later versions of this program (created in Step by Step 12.6 and
12.7) catch the exception to prevent users from complaining about
the annoying exception messages.

The goal of this exercise is to configure the debugger in Step by Step
12.7 so that when the reported exception occurs, you get an oppor-
tunity to analyze the program.

How would you configure the debugger?

In this exercise you will practice configuring the exception handling
for the Visual Studio .NET debugger environment. You should try
working through this problem on your own first. If you get stuck, or
if you’d like to see one possible solution, follow these steps:

1. Open the Windows application project StepByStep12_7.

2. Activate the Exceptions dialog box by selecting Debug –
Exceptions.

3. In the Exceptions dialog box, click the Find button. Enter
System.FormatException and click the OK button. You are
quickly taken to the desired exception in the exception tree view.

4. Select Break into the Debugger from the When the Exception
Is Thrown group box.

5. Repeat the steps 3 and 4 for System.OverFlowException.

6. Run the project. Enter a nonnumeric value for which to find
the factorial. This causes a System.FormatException error, and
the debugger prompts you to either break or continue the exe-
cution. Select to break. You can see the values of various vari-
ables at this stage either by moving the mouse pointer over
them or by adding the variables to the Watch window. On
the next execution of the program, enter a very large value.
This causes a System.OverFlowException error. Select to break
when prompted by the debugger, and then analyze the values
of the various variables.

16 0789728230 CH12 11/21/02 1:18 PM Page 814

Chapter 12 TESTING AND DEBUGGING A WINDOWS APPLICATION 815

If you have difficulty following this exercise, review the section
“Debugging on Exceptions,” earlier in this chapter. After doing that
review, try this exercise again.

Debugging a Running Process
Until this point in the chapter, you have only seen how to debug pro-
grams by starting them from the Visual Studio .NET environment.
However, Visual Studio .NET also allows you to debug processes that
are running outside the Visual Studio .NET debugging environment.

To access external processes from Visual Studio .NET, you need to
invoke the Processes dialog box, shown in Figure 12.25. You can do
this in two ways:

á When you have a solution open in Visual Studio .NET, you can
invoke the Processes dialog box by selecting Debug, Processes.

á When there is no solution open in Visual Studio .NET, you
don’t see any Debug menu, but you can still invoke the
Processes dialog box by selecting Tools, Debug Processes.

F IGURE 12 .25
The Processes dialog box allows you to attach
a debugger to a process that is under execu-
tion.

Step by Step 12.8 demonstrates how to attach the debugger to a
process that is being executed.

16 0789728230 CH12 11/21/02 1:18 PM Page 815

816 Par t I I TESTING, DEBUGGING, AND DEPLOYING A WINDOWS APPLICATION

S T E P B Y S T E P
12.8 Attaching the Debugger to a Process That Is

Being Executed

1. Using Windows Explorer, navigate to the bin\Debug folder
inside the project folder for StepByStep12_7. Double-click
the .exe file to launch the program.

2. Start a new instance of Visual Studio .NET and select
Tools, Debug Processes. The Processes dialog box appears,
as shown in Figure 12.25. You may have a different
process list from what is shown in the figure.

3. Select the process named StepByStep12_7.exe and click
the Attach button. This invokes an Attach to Process dia-
log box, as shown in Figure 12.26. Select the Common
Language Runtime as the program type and keep all other
options unchecked. Click the OK button. You should
now see the selected process in the Debugged Processes
section of the Processes dialog box.

4. Click the Break button to break into the running process.
Click the Close button to close the Processes dialog box
for now.

5. Both the Disassembly window and the source code win-
dow open in the debugging environment. Switch to the
source code window. Set a breakpoint on the line of code
that makes a call to the Factorial() method. Press F11 to
step into the program.

6. Enter the value 5 in the form and click the Calculate but-
ton. The debugger breaks the execution when the break-
point is reached.

7. Select Watch, Locals, Autos to analyze variables and step
through the program execution.

8. When the factorial result is displayed, invoke the Processes
window again by selecting Debug, Processes. From the list
of debugged processes, select StepByStep12_7 and click the
Detach button.

F IGURE 12 .26
The Attach to Process dialog box allows you to
attach to a program that is running in a process
outside Visual Studio .NET.

16 0789728230 CH12 11/21/02 1:18 PM Page 816

Chapter 12 TESTING AND DEBUGGING A WINDOWS APPLICATION 817

9. Click the Close button to close the Processes dialog box.
StepByStep12_7.exe is still executing, as it was when you
initiated the debugging process.

Debugging a Remote Process
The process of debugging a remote process is almost the same as the
process of debugging an already running process. The only differ-
ence is that prior to selecting a running process from the Processes
dialog box, you need to select the remote machine name from the
Processes dialog box (refer to Figure 12.25).

Before you can remotely debug processes, you need to do a one-time
configuration on the remote machine (where the processes are run-
ning). To do so, you take one of the following steps:

á Install Visual Studio .NET on the remote machine.

á Install Remote Components Setup on the remote machine
(you can start this from the Visual Studio .NET Setup Disc 1).

Using either of these methods, you can set up Machine Debug
Manager (mdm.exe) on the remote computer. mdm.exe runs as a back-
ground service on the computer, providing remote debugging sup-
port. In addition, when you use either of these methods, you can
add the logged-on user to the Debugger Users group. A user needs
to be a member of this group in order to remotely access this com-
puter. You can later add other usernames to this group by using the
Computer Management MMC Snap-in on the remote computer.

If SQL Server is installed on the remote machine, the setup process
just described also configures the machine for SQL Server stored
procedures debugging, which is demonstrated at the end of this
chapter, in Exercise 12.2.

For a different configuration or requirement, you might want to
refer to the “Setting Up Remote Debugging” topic in the Visual
Studio .NET Combined Help Collection.

T
IP

Debugging a Remote Process
The local computer and the remote
computer must be members of a
trusted domain in order for remote
debugging to be possible.

E
X

A
M

16 0789728230 CH12 11/21/02 1:18 PM Page 817

818 Par t I I TESTING, DEBUGGING, AND DEPLOYING A WINDOWS APPLICATION

Debugging the Code in DLL Files
The process of debugging a DLL file is similar to the process of
debugging an EXE file. There is one difference though: The code in
the DLL file cannot be directly invoked, so you need to have a calling
program that calls various methods/components of the DLL files.

You typically need to take the following steps in order to debug code
in a DLL file:

1. Launch the EXE file that uses the components or methods in
the DLL file.

2. Launch Visual Studio .NET and attach the debugger to the
EXE file. Set a breakpoint where the method in the DLL file is
called. Continue with the execution.

3. The execution breaks when the breakpoint is reached. At this
point, select Debug, Step Into to step into the code of the
DLL file. Execute the code in the DLL file in step mode while
you watch the value of its variables.

In addition, if the code files are executing on a remote machine, you
need to make sure that the remote machine is set up with remote
debugging support, as explained in the previous section.

. Debugging is the process of finding the causes of errors in a
program, locating the lines of code that are causing the error,
and fixing the errors.

. The three options available while performing step-by-step exe-
cution are Step Into, Step Over, and Step Out.

. Breakpoints allow you to mark code that signals the debugger
to pause execution. After you encounter a breakpoint, you can
choose to continue step-by-step execution or resume the nor-
mal execution by pressing F5 or by clicking the Resume but-
ton, or the Continue button.

. The various tool windows, such as This, Locals, Immediate,
Autos, Watch, and Call Stack, can be of great help in tracking
the execution path and the status of variables in the process of
debugging an application in Visual Studio .NET.

R E V I E W B R E A K

16 0789728230 CH12 11/21/02 1:18 PM Page 818

Chapter 12 TESTING AND DEBUGGING A WINDOWS APPLICATION 819

. When an exception is thrown by an application, you can
either choose to continue execution or break into the debugger
(in order to start debugging operations such as step-by-step
execution). You can customize this behavior for each exception
object by using the Exceptions dialog box.

. You can attach the debugger to a running process (either local
or remote) with the help of the Processes dialog box.

This chapter starts with a discussion of the various types of tests and
how important testing is for an application. You have learned that
designing and executing a comprehensive test plan is desirable to
ensure that an application is robust, accurate, and reliable.

The .NET Framework provides various classes and techniques that
implement tracing in applications. You use tracing to display infor-
mative messages during execution of a program. The Trace and
Debug classes provide different methods to generate messages at spe-
cific locations in the code. You have learned how trace switches can
be applied to an application to give you control over the type of
tracing information generated by an application without even need-
ing to recompile the application.

You have also learned about the various C# preprocessing directives
that are available in Visual C# .NET. You have seen how you can use
the Conditional attribute to conditionally compile methods.

The compiler flags syntactical errors at compile time. The tough job
is to find logical and runtime errors in an application. Visual C#
.NET offers lots of tools for debugging. In this chapter you have
learned about various tools available for debugging. You have also
learned how to debug an already running process, debug a process
running on a remote machine and debug DLL files. As you continue
to work with Visual C# .NET, you’ll discover more benefits of these
debugging tools.

CHAPTER SUMMARY

KEY TERMS
• debugging

• testing

• tracing

16 0789728230 CH12 11/21/02 1:18 PM Page 819

820 Par t I I TESTING, DEBUGGING, AND DEPLOYING A WINDOWS APPLICATION

A P P LY YO U R K N O W L E D G E

Exercises

12.1 Creating a Custom Trace Switch

The TraceSwitch and BooleanSwitch classes are two
classes that provide trace switch functionality. If you
need different trace levels or different implementations
of the Switch class, you can inherit from the Switch
class to implement your own custom trace switches.

In this exercise, you will learn how to create a custom
switch. You will create a FactorialSwitch class that can
be set with four values (Negative (-1), Off (0),
Overflow (1), and Both (2)) for the Factorial
Calculator form. The class will have two properties:
Negative and Overflow.

Estimated time: 25 minutes

1. Launch Visual Studio .NET. Select File, New,
Blank Solution, and name the new project
316C12Exercises.

2. Add a new Windows application project to the
solution. Name the project Exercise12_1.

3. Using the Add Class Wizard, add a new class to
the project. Name the class FactorialSwitch and
modify the class definition so that it has the fol-
lowing code:

using System;
using System.Diagnostics;

namespace Exercise12_1
{

// The possible values for new switch
public enum FactorialSwitchLevel
{

Negative = -1,
Off = 0,
Overflow = 1,
Both = 2

}

public class FactorialSwitch : Switch
{

public FactorialSwitch(
string displayName,
string description)
: base(displayName, description)

{
}
public bool Negative
{

get
{

// return true if the
// SwitchSetting is
// Negative or Both
if((SwitchSetting == -1) ||

(SwitchSetting == 2))
return true;

else
return false;

}
}
public bool Overflow
{

get
{

// return true if the
// SwitchSetting is
// Overflow or Both
if ((SwitchSetting == 1) ||

(SwitchSetting == 2))
return true;

else
return false;

}
}

}
}

4. In Solution Explorer, right-click Form1.cs and
rename it FactorialCalculator. Open the
Properties window for the form and change its
Name property to FactorialCalculator and Text
property to Factorial Calculator Exercise
12_1. Switch to the code view of the form and
modify the Main() method to launch
FactorialCalculator instead of Form1.

16 0789728230 CH12 11/21/02 1:18 PM Page 820

Chapter 12 TESTING AND DEBUGGING A WINDOWS APPLICATION 821

A P P LY YO U R K N O W L E D G E

5. Place two TextBox controls (txtNumber and
txtFactorial), three Label controls, and a Button
control (btnCalculate) on the form and arrange
the controls as shown in Figure 12.5.

6. Open FactorialCalculator.cs in the code view.
Add the following code in the class definition:

static FactorialSwitch facSwitch =
new FactorialSwitch(“FactorialTrace”,
“Trace the factorial application “ +
“using Factorial Switch”);

7. Attach a Click event handler to the btnCalculate
control with the following code:

private void btnCalculate_Click(
object sender, System.EventArgs e)

{
int intNumber = Convert.ToInt32(

txtNumber.Text);

if (facSwitch.Negative)
{

// make a debug assertion
Debug.Assert(

intNumber >= 0, “Invalid value”,
“negative value in debug mode”);

}

int intFac = 1;
for (int i = 2; i <= intNumber; i++)
{

intFac = intFac * i;
}

if (facSwitch.Overflow)
// write a debug message if
// the condition is true
Debug.WriteLineIf(intFac < 1,

“There was an overflow”,
“Factorial Program Debug”);

txtFactorial.Text = intFac.ToString();
}

8. In Solution Explorer, select View All Files from
the toolbar. Navigate to the bin\debug folder.
Right-click the debug folder and select Add, Add
New Item. Choose to create an XML file and
name it Exercise12_1.exe.config.

9. In the XML editor, type the following configura-
tion data in the XML file:

<?xml version=”1.0” encoding=”utf-8” ?>
<configuration>

<system.diagnostics>
<switches>

<add name=”FactorialTrace”
value=”2” />

</switches>
</system.diagnostics>

</configuration>

10. Set Exercise12_1 as the startup project.

11. Run the project, using the default Debug configu-
ration. Notice that the Assertion Failed dialog
box is displayed only if the switch is set with the
value –1 or 2. Similarly, the overflow message is
displayed in the Output window only if the
switch value is set to 1 or 2.

12. Modify the program to change all Debug state-
ments to Trace statements. Copy the XML con-
figuration file to the bin\Release folder in the
project and then repeat step 11, using the
Release configuration.

The value set in the configuration file can be accessed
through the SwitchSetting property of the Switch class.
The Negative and Overflow properties of the
FactorialSwitch class return true or false, depending
on the value of the SwitchSetting property.

12.2 Debugging SQL Server Stored
Procedures Using Visual C# .NET

You can perform step-by-step execution of SQL Server
stored procedures in Visual C# .NET. This exercise
shows you how.

Estimated time: 30 minutes

1. Add a new Windows application project to the
solution. Name the project Exercise12_2.

16 0789728230 CH12 11/21/02 1:18 PM Page 821

822 Par t I I TESTING, DEBUGGING, AND DEPLOYING A WINDOWS APPLICATION

A P P LY YO U R K N O W L E D G E

2. Rename the Form1.cs form
MostExpensiveProdcuts.cs. Change all occur-
rences of Form1.cs to MostExpensiveProducts.cs.

3. Select Project, Properties from the main menu.
Select Debugging under the Configuration
Properties node in the left pane of the project’s
Property Pages dialog box. In the right pane,
under the Debuggers node, choose True for
Enable SQL Debugging, as shown in Figure 12.27.

5. Choose the Use Existing Stored Procedures
option in the Choose a Query Type page. Click
Next. Select Ten Most Expensive Products from
the Select combo box, as shown in Figure 12.28.
Click Next and then click Finish. A
SqlConnection component is created in the
component tray.

F IGURE 12 .27
You can enable SQL debugging in the project’s Property
Pages dialog box to allow debugging of SQL Server stored
procedures.

4. Drag a SqlDataAdapter component to the form.
This activates the Data Adapter Configuration
Wizard. Click Next. Select the Northwind data-
base connection that you have created in the ear-
lier chapters (Chapters 5, “Data Binding,” and 6,
“Consuming and Manipulating Data,”) or click
the New Connection button to create a
Northwind database connection. Click Next.

F IGURE 12 .28
The Bind Commands to Existing Stored Procedures dialog
box allows you to choose the SQL stored procedures to bind
to the SqlCommand object.

6. Select the sqlDataAdapter1 component, and then
right-click and select Generate DataSet from the
context menu. Select the New radio button and
choose Ten Most Expensive Products from the
checked list box. Click OK to create a dataSet11
component in the component tray.

7. Place a Button control (btnGetProducts) and a
DataGrid control (dataGrid1) on the form.
Change the DataGrid control’s DataSource proper-
ty to dataSet1 and DataMember property to Ten
Most Expensive Products.

16 0789728230 CH12 11/21/02 1:18 PM Page 822

Chapter 12 TESTING AND DEBUGGING A WINDOWS APPLICATION 823

A P P LY YO U R K N O W L E D G E

8. Add the following code in the Click event of the
Button control:

private void btnGetProducts_Click(
object sender, System.EventArgs e)

{
sqlDataAdapter1.Fill(this.dataSet11);

}

9. Insert a breakpoint in the Click event handler, at
the point of a call to the Fill() method of the
sqlDataAdapter1 object.

10. Open Server Explorer. Open the Data
Connections node and select the stored procedure
Ten Most Expensive Products. Right-click the
stored procedure and select Edit Stored
Procedure. Insert a breakpoint in the starting
code line of the stored procedure, as shown in
Figure 12.29.

In Figure 12.29, notice the SELECT statement enclosed
in a blue outline, which represents each step in the
stored procedure (if the step occupies more than a line).

F IGURE 12 .29
You can insert breakpoints in SQL Server stored procedures.

11. Run the project. Click the button. The program
starts step-by-step execution as soon as it encoun-
ters the breakpoint in the Fill() method call
line. Press F11. You are taken to the stored proce-
dure code, where you can perform step-by-step
execution.

This exercise teaches you how to debug SQL Server
stored procedures by using step-by-step execution.

T
IP

Watching SQL Server Variables
You can use various tools, such as
the Watch and Locals windows, to
keep track of the values of the vari-
ables that are defined in the stored
procedures during step-by-step exe-
cution. These tools are very helpful
when you are debugging complex
stored procedures.

E
X

A
M

12.3 Setting Conditional Breakpoints by
Using Visual C# .NET

This exercise shows you how to set conditional break-
points. You set a breakpoint in the factorial calculation
to break when the factorial value overflows (that is,
when it becomes negative).

Estimated time: 30 minutes

1. Add a new Windows application project to the
solution. Name the project Exercise12_3.

2. In Solution Explorer, right-click Form1.cs and
rename it FactorialCalculator. Open the
Properties window for this form and change its
Name property to FactorialCalculator and Text
property to Factorial Calculator Exercise
12_3. Switch to the code view of the form and
modify the Main() method to launch
FactorialCalculator instead of Form1.

3. Place two TextBox controls (txtNumber and
txtFactorial), three Label controls, and a Button
control (btnCalculate) on the form and arrange
the controls as shown in Figure 12.5.

16 0789728230 CH12 11/21/02 1:18 PM Page 823

824 Par t I I TESTING, DEBUGGING, AND DEPLOYING A WINDOWS APPLICATION

A P P LY YO U R K N O W L E D G E

4. Attach a Click event handler to the btnCalculate
control and add the following code in the event
handler:

private void btnCalculate_Click(
object sender, System.EventArgs e)

{
int intNumber =

Convert.ToInt32(txtNumber.Text);

int intFac = 1;
for (int i = 2; i <= intNumber; i++)
{

intFac = intFac * i;
}
txtFactorial.Text = intFac.ToString();

}

5. Right-click the following line in the button Click
event handler and select New Breakpoint from
the context menu:

intFac=intFac*i;

The New Breakpoint dialog box appears. Select the
File tab. Note that File, Line, and Character posi-
tion are already marked correctly. Click the
Condition button. This opens the Breakpoint
Condition dialog box. Set the values in the dialog
box as shown in Figure 12.30. Select the Condition
checkbox. Enter intFac < 1 in the Condition text
box and select the Is True option. Click OK twice
to dismiss the New Breakpoint dialog box.

6. Run the project using the default Debug configu-
ration. Enter 100 and click the Calculate button.
Notice that the running page breaks into the
debugger when intFac has a negative value and
the breakpoint is reached.

Review Questions
1. For what do you use a test plan?

2. What is the purpose of the Assert() method in
the Debug and Trace classes?

3. What is the main purpose of TraceListener class?
What classes implement TraceListener in the
Framework Class Library?

4. What are the two built-in trace switches in the
.NET Framework Class Library?

5. What is the main advantage of trace switches?

6. What types of methods can be marked with the
Conditional attribute?

7. What are the purposes of the #error and
#warning preprocessing directives?

8. What are the three commands can you use to
step through code while debugging?

9. What happens when you put a breakpoint in
code?

10. What are some of the different windows that are
available for debugging?

11. How can you attach the debugger to a running
process in Visual C# .NET?

12. In order to verify that remote debugging is
enabled on a system, what should you check?

F IGURE 12 .30
You can set conditional breakpoints with the Breakpoint
Condition dialog box.

16 0789728230 CH12 11/21/02 1:18 PM Page 824

Programming C#

 page 23

Programming fundamentals :create and use variables and constants. It then goes on to introduce
enumerations, strings, identifiers, expressions, and statements.

The second part of the chapter explains and demonstrates the use of branching, using the if,
switch, while, do...while, for, and foreach statements. Also discussed are operators, including
the assignment, logical, relational, and mathematical operators. This is followed by an introduction
to namespaces and a short tutorial on the C# precompiler.

Although C# is principally concerned with the creation and manipulation of objects, it is best to
start with the fundamental building blocks: the elements from which objects are created. These
include the built-in types that are an intrinsic part of the C# language as well as the syntactic
elements of C#.

3.1 Types

C# is a strongly typed language. In a strongly typed language you must declare the type of each
object you create (e.g., integers, floats, strings, windows, buttons, etc.) and the compiler will help
you prevent bugs by enforcing that only data of the right type is assigned to those objects. The type
of an object signals to the compiler the size of that object (e.g., int indicates an object of 4 bytes)
and its capabilities (e.g., buttons can be drawn, pressed, and so forth).

Like C++ and Java, C# divides types into two sets: intrinsic (built-in) types that the language offers
and user-defined types that the programmer defines.

C# also divides the set of types into two other categories: value types and reference types.[1] The
principal difference between value and reference types is the manner in which their values are
stored in memory. A value type holds its actual value in memory allocated on the stack (or it is
allocated as part of a larger reference type object). The address of a reference type variable sits on
the stack, but the actual object is stored on the heap.

[1] All the intrinsic types are value types except for Object (discussed in Chapter 5) and String (discussed in Chapter 10). All user-defined types are
reference types except for structs (discussed in Chapter 7).

If you have a very large object, putting it on the heap has many advantages. Chapter 4 discusses the
various advantages and disadvantages of working with reference types; the current chapter focuses
on the intrinsic value types available in C#.

C# also supports C++ style pointer types, but these are rarely used, and only when working with
unmanaged code. Unmanaged code is code created outside of the .NET platform, such as COM
objects. Working with COM objects is discussed in Chapter 22.

3.1.1 Working with Built-in Types

The C# language offers the usual cornucopia of intrinsic (built-in) types one expects in a modern
language, each of which maps to an underlying type supported by the .NET Common Language
Specification (CLS). Mapping the C# primitive types to the underlying .NET type ensures that
objects created in C# can be used interchangeably with objects created in any other language
compliant with the .NET CLS, such as VB .NET.

ß°°»²¼·¨ A. C# Language Fundamentals

Programming C#

 page 24

Each type has a specific and unchanging size. Unlike with C++, a C# int is always 4 bytes because
it maps to an Int32 in the .NET CLS. Table 3-1 lists the built-in value types offered by C#.

Table 3-1, C# built-in value types
Type Size (in

bytes)
.NET
Type Description

byte 1 Byte Unsigned (values 0-255).
char 1 Char Unicode characters.
bool 1 Boolean true or false.
sbyte 1 Sbyte Signed (values -128 to 127).
short 2 Int16 Signed (short) (values -32,768 to 32,767).
ushort 2 Uint16 Unsigned (short) (values 0 to 65,535).
int 4 Int32 Signed integer values between -2,147,483,647 and 2,147,483,647.
uint 4 Uint32 Unsigned integer values between 0 and 4,294,967,295.

float 4 Single Floating point number. Holds the values from approximately +/-1.5 * 10-45 to
approximate +/-3.4 * 1038 with 7 significant figures.

double 8 Double Double-precision floating point; holds the values from approximately +/-5.0 * 10-324
to approximate +/-1.7 * 10308 with 15-16 significant figures.

decimal 8 Decimal Fixed-precision up to 28 digits and the position of the decimal point. This is typically
used in financial calculations. Requires the suffix "m" or "M."

long 8 Int64 Signed integers ranging from -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807.

ulong 8 Uint64 Unsigned integers ranging from 0 to 0xffffffffffffffff.

C and C++ programmers take note: Boolean variables can only have the
values true or false. Integer values do not equate to Boolean values in C#
and there is no implicit conversion.

In addition to these primitive types, C# has two other value types: enum (considered later in this
chapter) and struct (see Chapter 4). Chapter 4 also discusses other subtleties of value types such
as forcing value types to act as reference types through a process known as boxing, and that value
types do not "inherit."

The Stack and the Heap
A stack is a data structure used to store items on a last-in first-out basis (like a stack of
dishes at the buffet line in a restaurant). The stack refers to an area of memory supported
by the processor, on which the local variables are stored.

In C#, value types (e.g., integers) are allocated on the stack—an area of memory is set
aside for their value, and this area is referred to by the name of the variable.

Reference types (e.g., objects) are allocated on the heap. When an object is allocated on
the heap its address is returned, and that address is assigned to a reference.

The garbage collector destroys objects on the stack sometime after the stack frame they
are declared within ends. Typically a stack frame is defined by a function. Thus, if you
declare a local variable within a function (as explained later in this chapter) the object
will be marked for garbage collection after the function ends.

Objects on the heap are garbage collected sometime after the final reference to them is

Programming C#

 page 25

destroyed.

3.1.1.1 Choosing a built-in type

Typically you decide which size integer to use (short, int, or long) based on the magnitude of the
value you want to store. For example, a ushort can only hold values from 0 through 65,535, while
a ulong can hold values from 0 through 4,294,967,295.

That said, memory is fairly cheap, and programmer time is increasingly expensive; most of the time
you'll simply declare your variables to be of type int, unless there is a good reason to do otherwise.

The signed types are the numeric types of choice of most programmers unless they have a good
reason to use an unsigned value.

Although you might be tempted to use an unsigned short to double the positive values of a signed
short (moving the maximum positive value from 32,767 up to 65,535), it is easier and preferable to
use a signed integer (with a maximum value of 2,147,483,647).

It is better to use an unsigned variable when the fact that the value must be positive is an inherent
characteristic of the data. For example, if you had a variable to hold a person's age, you would use
an unsigned int because an age cannot be negative.

Float, double, and decimal offer varying degrees of size and precision. For most small fractional
numbers, float is fine. Note that the compiler assumes that any number with a decimal point is a
double unless you tell it otherwise. To assign a literal float, follow the number with the letter f.
(Assigning values to literals is discussed in detail later in this chapter.)

float someFloat = 57f;

The char type represents a Unicode character. char literals can be simple, Unicode, or escape
characters enclosed by single quote marks. For example, A is a simple character while \u0041 is a
Unicode character. Escape characters are special two-character tokens in which the first character is
a backslash. For example, \t is a horizontal tab. The common escape characters are shown in Table
3-2.

Table 3-2, Common escape characters
Char Meaning

\' Single quote
\" Double quote
\\ Backslash
\0 Null
\a Alert
\b Backspace
\f Form feed
\n Newline
\r Carriage return
\t Horizontal tab
\v Vertical tab

3.1.1.2 Converting built-in types

Programming C#

 page 26

Objects of one type can be converted into objects of another type either implicitly or explicitly.
Implicit conversions happen automatically; the compiler takes care of it for you. Explicit
conversions happen when you "cast" a value to a different type. The semantics of an explicit
conversion are "Hey! Compiler! I know what I'm doing." This is sometimes called "hitting it with
the big hammer" and can be very useful or very painful, depending on whether your thumb is in the
way of the nail.

Implicit conversions happen automatically and are guaranteed not to lose information. For example,
you can implicitly cast from a short int (2 bytes) to an int (4 bytes) implicitly. No matter what
value is in the short, it will not be lost when converting to an int:

short x = 5;
int y = x; // implicit conversion

If you convert the other way, however, you certainly can lose information. If the value in the int is
greater than 32,767 it will be truncated in the conversion. The compiler will not perform an implicit
conversion from int to short:

short x;
int y = 500;
x = y; // won't compile

You must explicitly convert using the cast operator:

short x;
int y = 500;
x = (short) y; // OK

All of the intrinsic types define their own conversion rules. At times it is convenient to define
conversion rules for your user-defined types, as discussed in Chapter 5.

3.2 Variables and Constants

A variable is a storage location with a type. In the preceding examples, both x and y are variables.
Variables can have values assigned to them, and that value can be changed programmatically.

WriteLine()
The .Net Framework provides a useful method for writing output to the screen. The
details of this method, System.Console.WriteLine(), will become clearer as we
progress through the book, but the fundamentals are straightforward. You call the method
as shown in Example 3-3, passing in a string that you want printed to the console (the
screen) and, optionally, parameters that will be substituted. In the following example:

System.Console.WriteLine("After assignment, myInt: {0}", myInt);

the string "After assignment, myInt:" is printed as is, followed by the value in the
variable myInt. The location of the substitution parameter {0} specifies where the value
of the first output variable, myInt, will be displayed, in this case at the end of the string.
We'll see a great deal more about Writeline() in coming chapters.

Programming C#

 page 27

You create a variable by declaring its type and then giving it a name. You can initialize the variable
when you declare it, and you can assign a new value to that variable at any time, changing the value
held in the variable. This is illustrated in Example 3-1.

Example 3-1. Initializing and assigning a value to a variable
class Values
{
 static void Main()
 {
 int myInt = 7;
 System.Console.WriteLine("Initialized, myInt: {0}",
 myInt);
 myInt = 5;
 System.Console.WriteLine("After assignment, myInt: {0}",
 myInt);
 }
}

 Output:
Initialized, myInt: 7
After assignment, myInt: 5

Here we initialize the variable myInt to the value 7, display that value, reassign the variable with
the value 5, and display it again.

3.2.1 Definite Assignment

C# requires that variables be initialized before they are used. To test this rule, change the line that
initializes myInt in Example 3-1 to:

int myInt;

and save the revised program shown in Example 3-2.

Example 3-2. Using an uninitialized variable
class Values
{
 static void Main()
 {
 int myInt;
 System.Console.WriteLine
 ("Uninitialized, myInt: {0}",myInt);
 myInt = 5;
 System.Console.WriteLine("Assigned, myInt: {0}", myInt);
 }
}

When you try to compile this listing, the C# compiler will display the following error message:

3.1.cs(6,55): error CS0165: Use of unassigned local
variable 'myInt'

It is not legal to use an uninitialized variable in C#. Example 3-2 is not legal.

So, does this mean you must initialize every variable in a program? In fact, no. You don't actually
need to initialize a variable, but you must assign a value to it before you attempt to use it. This is
called definite assignment and C# requires it. Example 3-3 illustrates a correct program.

Programming C#

 page 28

Example 3-3. Assigning without initializing
class Values
{
 static void Main()
 {
 int myInt;
 myInt = 7;
 System.Console.WriteLine("Assigned, myInt: {0}", myInt);
 myInt = 5;
 System.Console.WriteLine("Reassigned, myInt: {0}", myInt);
 }
}

3.2.2 Constants

A constant is a variable whose value cannot be changed. Variables are a powerful tool, but there are
times when you want to manipulate a defined value, one whose value you want to ensure remains
constant. For example, you might need to work with the Fahrenheit freezing and boiling points of
water in a program simulating a chemistry experiment. Your program will be clearer if you name
the variables that store these values FreezingPoint and BoilingPoint, but you do not want to
permit their values to be reassigned. How do you prevent reassignment? The answer is to use a
constant.

Constants come in three flavors: literals, symbolic constants, and enumerations. In this assignment:

x = 32;

the value 32 is a literal constant. The value of 32 is always 32. You can't assign a new value to 32;
you can't make 32 represent the value 99 no matter how you might try.

Symbolic constants assign a name to a constant value. You declare a symbolic constant using the
const keyword and the following syntax:

const type identifier = value;

A constant must be initialized when it is declared, and once initialized it cannot be altered. For
example:

const int FreezingPoint = 32;

In this declaration, 32 is a literal constant and FreezingPoint is a symbolic constant of type int.
Example 3-4 illustrates the use of symbolic constants.

Example 3-4. Using symbolic constants
class Values
{
 static void Main()
 {
 const int FreezingPoint = 32; // degrees Farenheit
 const int BoilingPoint = 212;

 System.Console.WriteLine("Freezing point of water: {0}",
 FreezingPoint);
 System.Console.WriteLine("Boiling point of water: {0}",
 BoilingPoint);
 //BoilingPoint = 21;

Programming C#

 page 29

 }
}

Example 3-4 creates two symbolic integer constants: FreezingPoint and BoilingPoint. As a
matter of style, constant names are written in Pascal notation, but this is certainly not required by
the language.

These constants serve the same purpose as always using the literal values 32 and 212 for the
freezing and boiling points of water in expressions that require them, but because these constants
have names they convey far more meaning. Also, if you decide to switch this program to Celsius,
you can reinitialize these constants at compile time, to 0 and 100, respectively; and all the rest of the
code ought to continue to work.

To prove to yourself that the constant cannot be reassigned, try uncommenting the last line of the
program (shown in bold). When you recompile you should receive this error:

error CS0131: The left-hand side of an assignment must be
a variable, property or indexer

3.2.3 Enumerations

Enumerations provide a powerful alternative to constants. An enumeration is a distinct value type,
consisting of a set of named constants (called the enumerator list).

In Example 3-4, you created two related constants:

const int FreezingPoint = 32;
const int BoilingPoint = 212;

You might wish to add a number of other useful constants as well to this list, such as:

const int LightJacketWeather = 60;
const int SwimmingWeather = 72;
const int WickedCold = 0;

This process is somewhat cumbersome, and there is no logical connection among these various
constants. C# provides the enumeration to solve these problems:

enum Temperatures
{
 WickedCold = 0,
 FreezingPoint = 32,
 LightJacketWeather = 60,
 SwimmingWeather = 72,
 BoilingPoint = 212,
}

Every enumeration has an underlying type, which can be any integral type (integer, short, long,
etc.) except for char. The technical definition of an enumeration is:

[attributes] [modifiers] enum identifier
 [:base-type] {enumerator-list};

Programming C#

 page 30

The optional attributes and modifiers are considered later in this book. For now, let's focus on the
rest of this declaration. An enumeration begins with the keyword enum, which is generally followed
by an identifier, such as:

enum Temperatures

The base type is the underlying type for the enumeration. If you leave out this optional value (and
often you will) it defaults to integer, but you are free to use any of the integral types (e.g., ushort,
long) except for char. For example, the following fragment declares an enumeration of unsigned
integers (uint):

enum ServingSizes :uint
{
 Small = 1,
 Regular = 2,
 Large = 3
}

Notice that an enum declaration ends with the enumerator list. The enumerator list contains the
constant assignments for the enumeration, each separated by a comma.

Example 3-5 rewrites Example 3-4 to use an enumeration.

Example 3-5. Using enumerations to simplify your code
class Values
{

 enum Temperatures
 {
 WickedCold = 0,
 FreezingPoint = 32,
 LightJacketWeather = 60,
 SwimmingWEather = 72,
 BoilingPoint = 212,
 }

 static void Main()
 {

 System.Console.WriteLine("Freezing point of water: {0}",
 Temperatures.FreezingPoint);
 System.Console.WriteLine("Boiling point of water: {0}",
 Temperatures.BoilingPoint);

 }
}

As you can see, an enum must be qualified by its enumtype (e.g., Temperatures.WickedCold).

Each constant in an enumeration corresponds to a numerical value, in this case, an integer. If you
don't specifically set it otherwise, the enumeration begins at 0 and each subsequent value counts up
from the previous.

If you create the following enumeration:

enum SomeValues
{

Programming C#

 page 31

 First,
 Second,
 Third = 20,
 Fourth
}

the value of First will be 0, Second will be 1, Third will be 20, and Fourth will be 21.

Enums are formal types; therefore an explicit conversion is required to convert between an enum
type and an integral type.

C++ programmers take note: C#'s use of enums is subtly different from C++,
which restricts assignment to an enum type from an integer but allows an
enum to be promoted to an integer for assignment of an enum to an integer.

3.2.4 Strings

It is nearly impossible to write a C# program without creating strings. A string object holds a string
of characters.

You declare a string variable using the string keyword much as you would create an instance of
any object:

string myString;

A string literal is created by placing double quotes around a string of letters:

"Hello World"

It is common to initialize a string variable with a string literal:

string myString = "Hello World";

Strings will be covered in much greater detail in Chapter 10.

3.2.5 Identifiers

Identifiers are names that programmers choose for their types, methods, variables, constants,
objects, and so forth. An identifier must begin with a letter or an underscore.

The Microsoft naming conventions suggest using camel notation (initial lowercase such as
someName) for variable names and Pascal notation (initial uppercase such as SomeOtherName) for
method names and most other identifiers.

Microsoft no longer recommends using Hungarian notation (e.g.,
iSomeInteger) or underscores (e.g., SOME_VALUE).

Identifiers cannot clash with keywords. Thus, you cannot create a variable named int or class. In
addition, identifiers are case-sensitive, so C# treats myVariable and MyVariable as two different
variable names.

Programming C#

 page 32

3.3 Expressions

Statements that evaluate to a value are called expressions. You may be surprised how many
statements do evaluate to a value. For example, an assignment such as:

myVariable = 57;

is an expression; it evaluates to the value assigned, in this case, 57.

Note that the preceding statement assigns the value 57 to the variable myVariable. The assignment
operator (=) does not test equality; rather it causes whatever is on the right side (57) to be assigned
to whatever is on the left side (myVariable). All of the C# operators (including assignment and
equality) are discussed later in this chapter (see Section 3.6).

Because myVariable = 57 is an expression that evaluates to 57, it can be used as part of another
assignment operator, such as:

mySecondVariable = myVariable = 57;

What happens in this statement is that the literal value 57 is assigned to the variable myVariable.
The value of that assignment (57) is then assigned to the second variable, mySecondVariable.
Thus, the value 57 is assigned to both variables. You can thus initialize any number of variables to
the same value with one statement:

a = b = c = d = e = 20;

3.4 Whitespace

In the C# language, spaces, tabs, and newlines are considered to be " whitespace" (so named
because you see only the white of the underlying "page"). Extra whitespace is generally ignored in
C# statements. Thus, you can write:

myVariable = 5;

or:

myVariable = 5;

and the compiler will treat the two statements as identical.

The exception to this rule is that whitespace within strings is not ignored. If you write:

Console.WriteLine("Hello World")

each space between "Hello" and "World" is treated as another character in the string.

Most of the time the use of whitespace is intuitive. The key is to use whitespace to make the
program more readable to the programmer; the compiler is indifferent.

However, there are instances in which the use of whitespace is quite significant. Although the
expression:

Programming C#

 page 33

int x = 5;

is the same as:

int x=5;

it is not the same as:

intx=5;

The compiler knows that the whitespace on either side of the assignment operator is extra, but the
whitespace between the type declaration int and the variable name x is not extra, and is required.
This is not surprising; the whitespace allows the compiler to parse the keyword int rather than
some unknown term intx. You are free to add as much or as little whitespace between int and x as
you care to, but there must be at least one whitespace character (typically a space or tab).

Visual Basic programmers take note: in C# the end-of-line has no special
significance; statements are ended with semicolons, not newline characters.
There is no line continuation character because none is needed.

3.5 Statements

In C# a complete program instruction is called a statement. Programs consist of sequences of C#
statements. Each statement must end with a semicolon (;). For example:

int x; // a statement
x = 23; // another statement
int y = x; // yet another statement

C# statements are evaluated in order. The compiler starts at the beginning of a statement list and
makes its way to the bottom. This would be entirely straightforward, and terribly limiting, were it
not for branching. There are two types of branches in a C# program: unconditional branching and
conditional branching.

Program flow is also affected by looping and iteration statements, which are signaled by the
keywords for , while, do, in, and foreach. Iteration is discussed later in this chapter. For now,
let's consider some of the more basic methods of conditional and unconditional branching.

3.5.1 Unconditional Branching Statements

An unconditional branch is created in one of two ways. The first way is by invoking a method.
When the compiler encounters the name of a method it stops execution in the current method and
branches to the newly "called" method. When that method returns a value, execution picks up in the
original method on the line just below the method call. Example 3-6 illustrates.

Example 3-6. Calling a method
using System;
class Functions
{
 static void Main()
 {
 Console.WriteLine("In Main! Calling SomeMethod()...");

Programming C#

 page 34

 SomeMethod();
 Console.WriteLine("Back in Main().");

 }
 static void SomeMethod()
 {
 Console.WriteLine("Greetings from SomeMethod!");
 }
}

Output:

In Main! Calling SomeMethod()...
Greetings from SomeMethod!
Back in Main().

Program flow begins in Main() and proceeds until SomeMethod() is invoked (invoking a method
is sometimes referred to as "calling" the method). At that point program flow branches to the
method. When the method completes, program flow resumes at the next line after the call to that
method.

The second way to create an unconditional branch is with one of the unconditional branch
keywords: goto, break, continue, return, or statementhrow. Additional information about the
first four jump statements is provided in Section 3.5.2.3, Section 3.5.3.1, and Section 3.5.3.6, later
in this chapter. The final statement, throw, is discussed in Chapter 9.

3.5.2 Conditional Branching Statements

A conditional branch is created by a conditional statement, which is signaled by keywords such as
if, else, or switch. A conditional branch occurs only if the condition expression evaluates true.

3.5.2.1 If...else statements

If...else statements branch based on a condition. The condition is an expression, tested in the
head of the if statement. If the condition evaluates true, the statement (or block of statements) in
the body of the if statement is executed.

If statements may contain an optional else statement. The else statement is executed only if the
expression in the head of the if statement evaluates false:

if (expression)
 statement1
[else
 statement2]

This is the kind of description of the if statement you are likely to find in your compiler
documentation. It shows you that the if statement takes an expression (a statement that returns a
value) in parentheses, and executes statement1 if the expression evaluates true. Note that
statement1 can actually be a block of statements within braces.

You can also see that the else statement is optional, as it is enclosed in square brackets. Although
this gives you the syntax of an if statement, an illustration will make its use clear. Example 3-7
illustrates.

Example 3-7. If . . . else statements

Programming C#

 page 35

using System;
class Values
{
 static void Main()
 {
 int valueOne = 10;
 int valueTwo = 20;

 if (valueOne > valueTwo)
 {
 Console.WriteLine(
 "ValueOne: {0} larger than ValueTwo: {1}",
 valueOne, valueTwo);
 }
 else
 {
 Console.WriteLine(
 "ValueTwo: {0} larger than ValueOne: {1}",
 valueTwo,valueOne);
 }

 valueOne = 30; // set valueOne higher

 if (valueOne > valueTwo)
 {
 valueTwo = valueOne++;
 Console.WriteLine("\nSetting valueTwo to valueOne value, ");
 Console.WriteLine("and incrementing ValueOne.\n");
 Console.WriteLine("ValueOne: {0} ValueTwo: {1}",
 valueOne, valueTwo);
 }
 else
 {
 valueOne = valueTwo;
 Console.WriteLine("Setting them equal. ");
 Console.WriteLine("ValueOne: {0} ValueTwo: {1}",
 valueOne, valueTwo);
 }
 }
}

In Example 3-7, the first if statement tests whether valueOne is greater than valueTwo. The
relational operators such as greater than (>), less than (<), and equal to (==) are fairly intuitive to
use.

The test of whether valueOne is greater than valueTwo evaluates false (because valueOne is 10 and
valueTwo is 20 and so valueOne is not greater than valueTwo). The else statement is invoked,
printing the statement:

ValueTwo: 20 is larger than ValueOne: 10

The second if statement evaluates true and all the statements in the if block are evaluated, causing
two lines to print:

ValueOne was larger. Setting valueTwo to old ValueOne value,
and incrementing ValueOne.

ValueOne: 31 ValueTwo: 30

Programming C#

 page 36

Statement Blocks
Anyplace that C# expects a statement, you can substitute a statement block. A statement
block is a set of statements surrounded by braces.

Thus, where you might write:

if (someCondition)
 someStatement;

you can instead write:

if(someCondition)
{
 statementOne;
 statementTwo;
 statementThree;
}

3.5.2.2 Nested if statements

It is possible, and not uncommon, to nest if statements to handle complex conditions. For example,
suppose you need to write a program to evaluate the temperature, and specifically to return the
following types of information:

• If the temperature is 32 degrees or lower, the program should warn you about ice on the
road.

• If the temperature is exactly 32 degrees, the program should tell you that there may be ice
patches.

• If the temperature is higher than 32 degrees, the program should assure you that there is no
ice.

There are many good ways to write this program. Example 3-8 illustrates one approach, using
nested if statements.

Example 3-8. Nested if statements
using System;
class Values
{
 static void Main()
 {
 int temp = 32;

 if (temp <= 32)
 {
 Console.WriteLine("Warning! Ice on road!");
 if (temp == 32)
 {
 Console.WriteLine(
 "Temp exactly freezing, beware of water.");
 }
 else
 {
 Console.WriteLine("Watch for black ice! Temp: {0}", temp);
 }
 }

Programming C#

 page 37

 }
}

The logic of Example 3-8 is that it tests whether the temperature is less than or equal to 32. If so, it
prints a warning:

if (temp <= 32)
{
 Console.WriteLine("Warning! Ice on road!");

The program then checks whether the temp is equal to 32 degrees. If so, it prints one message; if
not, the temp must be less than 32 and the program prints the second message. Notice that this
second if statement is nested within the first if, so the logic of the else is: "since it has been
established that the temp is less than or equal to 32, and it isn't equal to 32, it must be less than 32."

All Operators Are Not Created Equal
A closer examination of the second if statement in Example 3-8 reveals a common
potential problem. This if statement tests whether the temperature is equal to 32:

if (temp == 32)

In C and C++, there is an inherent danger in this kind of statement. It's not uncommon for
novice programmers to use the assignment operator rather than the equals operator,
instead creating the statement:

if (temp = 32)

This mistake would be difficult to notice, and the result would be that 32 was assigned to
temp, and then 32 would be returned as the value of the assignment statement. Because
any nonzero value evaluates to true in C and C#, the if statement would return true. The
side effect would be that temp would be assigned a value of 32 whether or not it
originally had that value. This is a common bug that could easily be overlooked—if the
developers of C# had not anticipated it!

C# solves this problem by requiring that if statements accept only Boolean values. The
32 returned by the assignment is not Boolean (it is an integer) and, in C#, there is no
automatic conversion from 32 to true. Thus, this bug would be caught at compile time,
which is a very good thing, and a significant improvement over C++—at the small cost of
not allowing implicit conversions from integers to Booleans!

3.5.2.3 Switch statements: an alternative to nested ifs

Nested if statements are hard to read, hard to get right, and hard to debug. When you have a
complex set of choices to make, the switch statement is a more powerful alternative. The logic of a
switch statement is this: "pick a matching value and act accordingly."

switch (expression)
{
 case constant-expression:
 statement
 jump-statement

Programming C#

 page 38

 [default: statement]
}

As you can see, like an if statement, the expression is put in parentheses in the head of the switch
statement. Each case statement then requires a constant expression; that is, a literal or symbolic
constant or an enumeration.

If a case is matched, the statement (or block of statements) associated with that case is executed.
This must be followed by a jump statement. Typically, the jump statement is break, which transfers
execution out of the switch. An alternative is a goto statement, typically used to jump into another
case, as illustrated in Example 3-9.

Example 3-9. The switch statement
using System;

class Values
{
 static void Main()
 {
 const int Democrat = 0;
 const int LiberalRepublican = 1;
 const int Republican = 2;
 const int Libertarian = 3;
 const int NewLeft = 4;
 const int Progressive = 5;

 int myChoice = Libertarian;

 switch (myChoice)
 {
 case Democrat:
 Console.WriteLine("You voted Democratic.\n");
 break;
 case LiberalRepublican: // fall through
 //Console.WriteLine(
 //"Liberal Republicans vote Republican\n");
 case Republican:
 Console.WriteLine("You voted Republican.\n");
 break;
 case NewLeft:
 Console.Write("NewLeft is now Progressive");
 goto case Progressive;
 case Progressive:
 Console.WriteLine("You voted Progressive.\n");
 break;
 case Libertarian:
 Console.WriteLine("Libertarians are voting Republican");
 goto case Republican;
 default:
 Console.WriteLine("You did not pick a valid choice.\n");
 break;
 }

 Console.WriteLine("Thank you for voting.");

 }
}

Programming C#

 page 39

In this whimsical example, we create constants for various political parties. We then assign one
value (Libertarian) to the variable myChoice and switch on that value. If myChoice is equal to
Democrat, we print out a statement. Notice that this case ends with break. Break is a jump
statement that takes us out of the switch statement and down to the first line after the switch, on
which we print "Thank you for voting."

The value LiberalRepublican has no statement under it, and it "falls through" to the next
statement: Republican. If the value is LiberalRepublican or Republican, the Republican
statements will execute. You can only "fall through" like this if there is no body within the
statement. If you uncomment the WriteLine under LiberalRepublican, this program will not
compile.

C and C++ programmers take note: you cannot fall through to the next case
if the case statement is not empty. Thus, you can write the following:

case 1: // fall through ok
case 2:

In this example, case 1 is empty. You cannot, however, write the following:

case 1:
 TakeSomeAction();
 // fall through not OK
case 2:

Here case 1 has a statement in it, and you cannot fall through. If you want
case 1 to fall through to case 2, you must explicitly use goto:

case 1: TakeSomeAction();
goto case 2
// explicit fall through
case 2:

If you do need a statement but you then want to execute another case, you can use the goto
statement, as shown in the NewLeft case:

goto case Progressive;

It is not required that the goto take you to the case immediately following. In the next instance, the
Libertarian choice also has a goto, but this time it jumps all the way back up to the Republican
case. Because our value was set to Libertarian, this is just what occurs. We print out the
Libertarian statement, then go to the Republican case, print that statement, and then hit the
break, taking us out of the switch and down to the final statement. The output for all of this is:

Libertarians are voting Republican
You voted Republican.

Thank you for voting.

Note the default case, excerpted from Example 3-9:

default:
 Console.WriteLine(
 "You did not pick a valid choice.\n");

Programming C#

 page 40

If none of the cases matches, the default case will be invoked, warning the user of the mistake.

3.5.2.4 Switch on string statements

In the previous example, the switch value was an integral constant. C# offers the ability to switch
on a string, allowing you to write:

case "Libertarian":

If the strings match, the case statement is entered.

3.5.3 Iteration Statements

C# provides an extensive suite of iteration statements, including for, while and do . . . while
loops, as well as foreach loops (new to the C family but familiar to VB programmers). In addition,
C# supports the goto, break , continue,and return jump statements.

3.5.3.1 The goto statement

The goto statement is the seed from which all other iteration statements have been germinated.
Unfortunately, it is a semolina seed, producer of spaghetti code and endless confusion. Most
experienced programmers properly shun the goto statement, but in the interest of completeness,
here's how you use it:

1. Create a label.
2. goto that label.

The label is an identifier followed by a colon. The goto command is typically tied to a condition, as
illustrated in Example 3-10.

Example 3-10. Using goto
using System;
public class Tester
 {

 public static int Main()
 {
 int i = 0;
 repeat: // the label
 Console.WriteLine("i: {0}",i);
 i++;
 if (i < 10)
 goto repeat; // the dasterdly deed
 return 0;
 }
 }

If you were to try to draw the flow of control in a program that makes extensive use of goto
statements, the resulting morass of intersecting and overlapping lines looks like a plate of spaghetti;
hence the term "spaghetti code." It was this phenomenon that led to the creation of alternatives,
such as the while loop. Many programmers feel that using goto in anything other than a trivial
example creates confusion and difficult-to-maintain code.

3.5.3.2 The while loop

Programming C#

 page 41

The semantics of the while loop are "while this condition is true, do this work."

The syntax is:

while (expression) statement

As usual, an expression is any statement that returns a value. While statements require an
expression that evaluates to a Boolean (true /false) value, and that statement can, of course, be a
block of statements. Example 3-11 updates Example 3-10, using a while loop.

Example 3-11. Using a while loop
using System;
public class Tester
 {

 public static int Main()
 {
 int i = 0;
 while (i < 10)
 {
 Console.WriteLine("i: {0}",i);
 i++;
 }
 return 0;
 }
 }

The code in Example 3-11 produces results identical to the code in Example 3-10, but the logic is a
bit clearer. The while statement is nicely self-contained, and it reads like an English sentence:
"while i is less than 10, print this message and increment i."

Notice that the while loop tests the value of i before entering the loop. This ensures that the loop
will not run if the condition tested is false; thus if i is initialized to 11, the loop will never run.

3.5.3.3 The do . . . while loop

There are times when a while loop might not serve your purpose. In certain situations, you might
want to reverse the semantics from "run while this is true" to the subtly different "do this, while this
condition remains true." In other words, take the action, and then, after the action is completed,
check the condition. For this you will use the do...while loop.

do expression while statement

An expression is any statement that returns a value. An example of the do...while loop is shown
in Example 3-12.

Example 3-12. The do...while loop
using System;
public class Tester
{

 public static int Main()
 {
 int i = 11;
 do
 {

Programming C#

 page 42

 Console.WriteLine("i: {0}",i);
 i++;
 } while (i < 10);
 return 0;
 }
}

Here i is initialized to 11 and the while test fails, but only after the body of the loop has run once.

3.5.3.4 The for loop

A careful examination of the while loop in Example 3-12 reveals a pattern often seen in iterative
statements: initialize a variable (i = 0), test the variable (i < 10), execute a series of statements,
and increment the variable (i++). The for loop allows you to combine all these steps in a single
loop statement:

for ([initializers]; [expression]; [iterators]) statement

The for loop is illustrated in Example 3-13.

Example 3-13. The for loop
using System;
public class Tester
{

 public static int Main()
 {
 for (int i=0;i<100;i++)
 {
 Console.Write("{0} ", i);

 if (i%10 == 0)
 {
 Console.WriteLine("\t{0}", i);
 }
 }
 return 0;
 }
}

Output:

0 0
1 2 3 4 5 6 7 8 9 10 10
11 12 13 14 15 16 17 18 19 20 20
21 22 23 24 25 26 27 28 29 30 30
31 32 33 34 35 36 37 38 39 40 40
41 42 43 44 45 46 47 48 49 50 50
51 52 53 54 55 56 57 58 59 60 60
61 62 63 64 65 66 67 68 69 70 70
71 72 73 74 75 76 77 78 79 80 80
81 82 83 84 85 86 87 88 89 90 90
91 92 93 94 95 96 97 98 99

This for loop makes use of the modulus operator described later in this chapter. The value of i is
printed until i is a multiple of 10.

if (i%10 == 0)

Programming C#

 page 43

A tab is then printed, followed by the value. Thus the tens (20,30,40, etc.) are called out on the right
side of the output.

The individual values are printed using Console.Write, which is much like WriteLine but which
does not enter a newline character, allowing the subsequent writes to occur on the same line.

A few quick points to notice: in a for loop the condition is tested before the statements are
executed. Thus, in the example, i is initialized to zero, then i is tested to see if it is less than 100.
Because i < 100 returns true, the statements within the for loop are executed. After the execution,
i is incremented (i++).

Note that the variable i is scoped to within the for loop (that is, the variable i is visible only within
the for loop). Example 3-14 will not compile:

Example 3-14. Scope of variables declared in a for loop
using System;
public class Tester
{

 public static int Main()
 {
 for (int i=0; i<100; i++)
 {
 Console.Write("{0} ", i);

 if (i%10 == 0)
 {
 Console.WriteLine("\t{0}", i);
 }
 }
 Console.WriteLine("\n Final value of i: {0}", i);
 return 0;
 }
}

The line shown in bold fails, as the variable i is not available outside the scope of the for loop
itself.

Whitespace and Braces
There is much controversy about the use of whitespace in programming. For example, the
for loop shown in Example 3-14:

 for (int i=0;i<100;i++)
 {
 Console.Write("{0} ", i);

 if (i%10 == 0)
 {

 Console.WriteLine("\t{0}", i);
 }
 }

could well be written with more space between the operators:

Programming C#

 page 44

 for (int i = 0; i < 100; i++)
 {
 Console.Write("{0} ", i);
 if (i % 10 == 0)
 {
 Console.WriteLine("\t{0}", i);
 }
 }

Because single for and if statements do not need braces, we can also rewrite the same
listing as

 for (int i = 0; i < 100; i++)
 Console.Write("{0} ", i);

 if (i % 10 == 0)
 Console.WriteLine("\t{0}", i);

Much of this is a matter of personal taste. Although I find whitespace can make code
more readable, too much space can cause confusion. In this book, I tend to compress the
whitespace to save room on the printed page.

3.5.3.5 The foreach statement

The foreach statement is new to the C family of languages; it is used for looping through the
elements of an array or a collection. Discussion of this incredibly useful statement is deferred until
Chapter 7.

3.5.3.6 The continue and break statements

There are times when you would like to restart a loop without executing the remaining statements in
the loop. The continue statement causes the loop to return to the top and continue executing.

The obverse side of that coin is the ability to break out of a loop and immediately end all further
work within the loop. For this purpose the break statement exists.

Break and continue create multiple exit points and make for hard-to-
understand, and thus hard-to-maintain, code. Use them with some care.

Example 3-15 illustrates the mechanics of continue and break. This code, suggested to me by one
of my technical reviewers, Donald Xie, is intended to create a traffic signal processing system. The
signals are simulated by entering numerals and uppercase characters from the keyboard, using
Console.ReadLine, which reads a line of text from the keyboard.

The algorithm is simple: receipt of a "0" (zero) means normal conditions, and no further action is
required except to log the event. (In this case, the program simply writes a message to the console; a
real application might enter a time-stamped record in a database.) On receipt of an Abort signal
(here simulated with an uppercase "A"), the problem is logged and the process is ended. Finally, for
any other event, an alarm is raised, perhaps notifying the police. (Note that this sample does not
actually notify the police, though it does print out a harrowing message to the console.) If the signal
is "X," the alarm is raised but the while loop is also terminated.

Programming C#

 page 45

Example 3-15. Using continue and break
using System;
public class Tester
{
 public static int Main()
 {
 string signal = "0"; // initialize to neutral
 while (signal != "X") // X indicates stop
 {
 Console.Write("Enter a signal: ");
 signal = Console.ReadLine();

 // do some work here, no matter what signal you
 // receive
 Console.WriteLine("Received: {0}", signal);

 if (signal == "A")
 {
 // faulty - abort signal processing
 // Log the problem and abort.
 Console.WriteLine("Fault! Abort\n");
 break;
 }

 if (signal == "0")
 {
 // normal traffic condition
 // log and continue on
 Console.WriteLine("All is well.\n");
 continue;
 }

 // Problem. Take action and then log the problem
 // and then continue on
 Console.WriteLine("{0} -- raise alarm!\n",
 signal);
 }
 return 0;
 }
}

Output:

Enter a signal: 0
The following signal was received: 0
All is well.

Enter a signal: B
The following signal was received: B
B -- raise alarm!

Enter a signal: A
The following signal was received: A
Faulty processing. Abort

Press any key to continue

The point of this exercise is that when the A signal is received, the action in the if statement is
taken and then the program breaks out of the loop, without raising the alarm. When the signal is 0 it
is also undesirable to raise the alarm, so the program continues from the top of the loop.

Programming C#

 page 46

3.6 Operators

An operator is a symbol that causes C# to take an action. The C# primitive types (e.g., int) support
a number of operators such as assignment, increment, and so forth. Their use is highly intuitive,
with the possible exception of the assignment operator (=) and the equality operator (==), which are
often confused.

3.6.1 The Assignment Operator (=)

Section 3.3, earlier in this chapter, demonstrates the use of the assignment operator. This symbol
causes the operand on the left side of the operator to have its value changed to whatever is on the
right side of the operator.

3.6.2 Mathematical Operators

C# uses five mathematical operators, four for standard calculations and a fifth to return the
remainder in integer division. The following sections consider the use of these operators.

3.6.2.1 Simple arithmetical operators (+, -, *, /)

C# offers operators for simple arithmetic: the addition (+), subtraction (-), multiplication (*), and
division (/) operators work as you might expect, with the possible exception of integer division.

When you divide two integers, C# divides like a child in fourth grade: it throws away any fractional
remainder. Thus, dividing 17 by 4 will return the value 4 (17/4 = 4, with a remainder of 1). C#
provides a special operator, modulus (%), described in the next section, to retrieve the remainder.

Note, however, that C# does return fractional answers when you divide floats, doubles, and
decimals.

3.6.2.2 The modulus operator (%) to return remainders

To find the remainder in integer division, use the modulus operator (%). For example, the statement
17%4 returns 1 (the remainder after integer division).

The modulus operator turns out to be more useful than you might at first imagine. When you
perform modulus n on a number that is a multiple of n, the result is zero. Thus 80 % 10 = 0
because 80 is an even multiple of 10. This fact allows you to set up loops in which you take an
action every nth time through the loop, by testing a counter to see if %n is equal to zero. This
strategy comes in handy in the use of the for loop, as described earlier in this chapter. The effects
of division on integers, floats, doubles, and decimals is illustrated in Example 3-16.

Example 3-16. Division and modulus
using System;
class Values
{
 static void Main()
 {
 int i1, i2;
 float f1, f2;
 double d1, d2;
 decimal dec1, dec2;

Programming C#

 page 47

 i1 = 17;
 i2 = 4;
 f1 = 17f;
 f2 = 4f;
 d1 = 17;
 d2 = 4;
 dec1 = 17;
 dec2 = 4;
 Console.WriteLine("Integer:\t{0}\nfloat:\t\t{1}\n",
 i1/i2, f1/f2);
 Console.WriteLine("double:\t\t{0}\ndecimal:\t{1}",
 d1/d2, dec1/dec2);
 Console.WriteLine("\nModulus:\t{0}", i1%i2);

 }
}

Output:

Integer: 4
float: 4.25
double: 4.25
decimal: 4.25

Modulus: 1

Now consider this line from Example 3-16:

Console.WriteLine("Integer:\t{0}\nfloat:\t\t{1}\n",
 i1/i2, f1/f2);

It begins with a call to Console.Writeline, passing in this partial string:

"Integer:\t{0}\n

This will print the characters Integer: followed by a tab (\t) followed by the first parameter
({0}) and then followed by a newline character (\n). The next string snippet:

float:\t\t{1}\n

is very similar. It prints float: followed by two tabs (to ensure alignment), the contents of the
second parameter ({1}), and then another newline. Notice the subsequent line, as well:

Console.WriteLine("\nModulus:\t{0}", i1%i2);

This time the string begins with a newline character, which causes a line to be skipped just before
the string Modulus: is printed. You can see this effect in the output.

3.6.3 Increment and Decrement Operators

A common requirement is to add a value to a variable, subtract a value from a variable, or otherwise
change the mathematical value, and then to assign that new value back to the same variable. You
might even want to assign the result to another variable altogether. The following two sections
discuss these cases respectively.

3.6.3.1 Calculate and reassign operators

Programming C#

 page 48

Suppose you want to increment the mySalary variable by 5000. You can do this by writing:

mySalary = mySalary + 5000;

The addition happens before the assignment, and it is perfectly legal to assign the result back to the
original variable. Thus, after this operation completes, mySalary will have been incremented by
5000. You can perform this kind of assignment with any mathematical operator:

mySalary = mySalary * 5000;
mySalary = mySalary - 5000;

and so forth.

The need to increment and decrement variables is so common that C# includes special operators for
self-assignment. Among these operators are += , -=, *=, /=, and %=, which, respectively, combine
addition, subtraction, multiplication, division, and modulus, with self-assignment. Thus, you can
alternatively write the previous examples as:

mySalary += 5000;
mySalary *= 5000;
mySalary -= 5000;

The effect of this is to increment mySalary by 5000, multiply mySalary by 5000, and subtract 5000
from the mySalary variable, respectively.

Because incrementing and decrementing by 1 is a very common need, C# (like C and C++ before it)
also provides two special operators. To increment by 1 you use the ++ operator, and to decrement
by 1 you use the -- operator.

Thus, if you want to increment the variable myAge by 1 you can write:

myAge++;

3.6.3.2 The prefix and postfix operators

To complicate matters further, you might want to increment a variable and assign the results to a
second variable:

firstValue = secondValue++;

The question arises: do you want to assign before you increment the value or after? In other words,
if secondValue starts out with the value 10, do you want to end with both firstValue and
secondValue equal to 11, or do you want firstValue to be equal to 10 (the original value) and
secondValue to be equal to 11?

C# (again, like C and C++) offer two flavors of the increment and decrement operators: prefix and
postfix. Thus you can write:

firstValue = secondValue++; // postfix

which will assign first, and then increment (firstValue=10, secondValue=11), or you can write:

firstValue = ++secondValue; //prefix

Programming C#

 page 49

which will increment first, and then assign (firstValue=11, secondValue=11).

It is important to understand the different effects of prefix and postfix, as illustrated in Example
3-17.

Example 3-17. Illustrating prefix versus postfix increment
using System;
class Values
{
 static void Main()
 {
 int valueOne = 10;
 int valueTwo;
 valueTwo = valueOne++;
 Console.WriteLine("After postfix: {0}, {1}", valueOne,
 valueTwo);
 valueOne = 20;
 valueTwo = ++valueOne;
 Console.WriteLine("After prefix: {0}, {1}", valueOne,
 valueTwo);
 }
}

Output:

After postfix: 11, 10
After prefix: 21, 21

3.6.4 Relational Operators

Relational operators are used to compare two values, and then return a Boolean (true or false). The
greater-than operator (>), for example, returns true if the value on the left of the operator is greater
than the value on the right. Thus, 5 > 2 returns the value true, while 2 > 5 returns the value
false.

The relational operators for C# are shown in Table 3-3. This table assumes two variables: bigValue
and smallValue in which bigValue has been assigned the value 100 and smallValue the value 50.

Table 3-3, C# relational operators (assumes bigValue = 100 and smallValue = 50)
Name Operator Given this statement: The expression evaluates to:

Equals ==
bigValue == 100

bigValue = 80

true

false

Not Equals !=
bigValue != 100

bigValue != 80

false

true
Greater than > bigValue > smallValue true

Greater than or equals >=
bigValue >= smallValue

smallValue >= bigValue

true

false
Less than < bigValue < smallValue false

Less than or equals <=
smallValue <= bigValue

bigValue <= smallValue

true

false

Programming C#

 page 50

Each of these relational operators acts as you might expect. However, take note of the equals
operator (==), which is created by typing two equal signs (=) in a row (i.e., without any space
between them); the C# compiler treats the pair as a single operator.

The C# equality operator (==) tests for equality between the objects on either side of the operator.
This operator evaluates to a Boolean value (true or false). Thus, the statement:

myX == 5;

evaluates to true if and only if myX is a variable whose value is 5.

It is not uncommon to confuse the assignment operator (=) with the equals
operator (==). The latter has two equal signs, the former only one.

3.6.5 Use of Logical Operators with Conditionals

If statements (discussed earlier in this chapter) test whether a condition is true. Often you will want
to test whether two conditions are both true, or only one is true, or none is true. C# provides a set of
logical operators for this, as shown in Table 3-4. This table assumes two variables, x and y, in
which x has the value 5 and y the value 7.

Table 3-4, C# logical operators (assumes x = 5, y = 7)
Name Operator Given this statement The expression evaluates to Logic
and && (x == 3) && (y == 7) false Both must be true
or || (x == 3) || (y == 7) true Either or both must be true
not ! ! (x == 3) true Expression must be false

The and operator tests whether two statements are both true. The first line in Table 3-4 includes an
example which illustrates the use of the and operator:

(x == 3) && (y == 7)

The entire expression evaluates false because one side (x == 3) is false.

With the or operator, either or both sides must be true; the expression is false only if both sides are
false. So, in the case of the example in Table 3-4:

(x == 3) || (y == 7)

the entire expression evaluates true because one side (y==7) is true.

With a not operator, the statement is true if the expression is false, and vice versa. So, in the
accompanying example:

! (x == 3)

the entire expression is true because the tested expression (x==3) is false. (The logic is: "it is true
that it is not true that x is equal to 3.")

Programming C#

 page 51

Short-Circuit Evaluation
Consider the following code snippet:

int x = 8;
if ((x == 8) || (y == 12))

The if statement here is a bit complicated. The entire if statement is in parentheses, as
are all if statements in C#. Thus, everything within the outer set of parentheses must
evaluate true for the if statement to be true.

Within the outer parentheses are two expressions (x==8) and (y==12) which are separated
by an or operator (||). Because x is 8, the first term (x==8) evaluates true. There is no
need to evaluate the second term (y==12). It doesn't matter whether y is 12, the entire
expression will be true. Similarly, consider this snippet:

int x = 8;
if ((x == 5) && (y == 12))

Again, there is no need to evaluate the second term. Because the first term is false, the
and must fail. (Remember, for an and statement to evaluate true, both tested expressions
must evaluate true.)

In cases such as these, the C# compiler will short-circuit the evaluation; the second test
will never be performed.

3.6.6 Operator Precedence

The compiler must know the order in which to evaluate a series of operators. For example, if I
write:

myVariable = 5 + 7 * 3;

there are three operators for the compiler to evaluate (=, +, and *). It could, for example, operate left
to right, which would assign the value 5 to myVariable, then add 7 to the 5 (12) and multiply by 3
(36)—but of course then it would throw that 36 away. This is clearly not what is intended.

The rules of precedence tell the compiler which operators to evaluate first. As is the case in algebra,
multiplication has higher precedence than addition, so 5+7*3 is equal to 26 rather than 36. Both
addition and multiplication have higher precedence than assignment, so the compiler will do the
math, and then assign the result (26) to myVariable only after the math is completed.

In C#, parentheses are also used to change the order of precedence much as they are in algebra.
Thus, you can change the result by writing:

myVariable = (5+7) * 3;

Grouping the elements of the assignment in this way causes the compiler to add 5+7, multiply the
result by 3, and then assign that value (36) to myVariable. Table 3-5 summarizes operator
precedence in C#.

Table 3-5, Operator precedence

Programming C#

 page 52

Category Operators

Primary (x) x.y f(x) a[x] x++ x-- new typeof sizeof
checked unchecked

Unary + - ! ~ ++x —x (T)x
Multiplicative * / %
Additive + -
Shift << >>
Relational < > <= >= is
Equality == !=
Logical AND &
Logical XOR ^
Logical OR |
Conditional AND &&
Conditional OR ||
Conditional ?:
Assignment = *= /= %= += -= <<= >>= &= ^= |=

In some complex equations you might need to nest your parentheses to ensure the proper order of
operations. Assume I want to know how many seconds my family wastes each morning.

It turns out that the adults spend 20 minutes over coffee each morning and 10 minutes reading the
newspaper. The children waste 30 minutes dawdling and 10 minutes arguing.

Here's my algorithm:

(((minDrinkingCoffee + minReadingNewspaper)* numAdults) +
((minDawdling + minArguing) * numChildren)) * secondsPerMinute.

Although this works, it is hard to read and hard to get right. It's much easier to use interim variables:

wastedByEachAdult = minDrinkingCoffee + minReadingNewspaper;
wastedByAllAdults = wastedByEachAdult * numAdults;
wastedByEachKid = minDawdling + minArguing;
wastedByAllKids = wastedByEachKid * numChildren;
wastedByFamily = wastedByAllAdults + wastedByAllKids;
totalSeconds = wastedByFamily * 60;

The latter example uses many more interim variables, but it is far easier to read, understand, and
(most important) debug. As you step through this program in your debugger, you can see the
interim values and make sure they are correct.

3.6.7 The Ternary Operator

Although most operators require one term (e.g., myValue++) or two terms (e.g., a+b), there is one
operator that has three—the ternary operator (?:).

cond-expr ? expr1 : expr2

This operator evaluates a conditional expression (an expression which returns a value of type bool),
and then invokes either expression1 if the value returned from the conditional expression is true,
or expression2 if the value returned is false. The logic is "if this is true, do the first; otherwise do
the second." Example 3-18 illustrates.

Programming C#

 page 53

Example 3-18. The ternary operator
using System;
class Values
{
 static void Main()
 {
 int valueOne = 10;
 int valueTwo = 20;

 int maxValue = valueOne > valueTwo ? valueOne : valueTwo;

 Console.WriteLine("ValueOne: {0}, valueTwo: {1}, maxValue: {2}",
 valueOne, valueTwo, maxValue);

 }
}

Output:

ValueOne: 10, valueTwo: 20, maxValue: 20

In Example 3-18, the ternary operator is being used to test whether valueOne is greater than
valueTwo. If so, the value of valueOne is assigned to the integer variable maxValue; otherwise the
value of valueTwo is assigned to maxValue.

3.7 Namespaces

Chapter 2 discusses the reasons for introducing namespaces into the C# language (e.g., avoiding
name collisions when using libraries from multiple vendors). In addition to using the namespaces
provided by the .NET Framework or other vendors, you are free to create your own. You do this by
using the namespace keyword, followed by the name you wish to create. Enclose the objects for
that namespace within braces, as illustrated in Example 3-19.

Example 3-19. Creating namespaces
namespace Programming_C_Sharp
{
 using System;
 public class Tester
 {

 public static int Main()
 {
 for (int i=0;i<10;i++)
 {
 Console.WriteLine("i: {0}",i);
 }
 return 0;
 }
 }
}

Example 3-19 creates a namespace called Programming_C_Sharp, and also specifies a Tester class
which lives within that namespace. You can alternatively choose to nest your namespaces, as
needed, by declaring one within another. You might do so to segment your code, creating objects
within a nested namespace whose names are protected from the outer namespace, as illustrated in
Example 3-20.

Example 3-20. Nesting namespaces

Programming C#

 page 54

namespace Programming_C_Sharp
{
 namespace Programming_C_Sharp_Test
 {
 using System;
 public class Tester
 {

 public static int Main()
 {
 for (int i=0;i<10;i++)
 {
 Console.WriteLine("i: {0}",i);
 }
 return 0;
 }
 }
 }
}

The Tester object now declared within the Programming_C_Sharp_Test namespace is:

Programming_C_Sharp.Programming_C_Sharp_Test.Tester

This name would not conflict with another Tester object in any other namespace, including the
outer namespace Programming_C_Sharp.

3.8 Preprocessor Directives

In the examples you've seen so far, you've compiled your entire program whenever you compiled
any of it. At times, however, you might want to compile only parts of your program depending on,
for example, whether you are debugging or building your production code.

Before your code is compiled, another program called the preprocessor runs and prepares your
program for the compiler. The preprocessor examines your code for special preprocessor directives,
all of which begin with the pound sign (#). These directives allow you to define identifiers and then
test for their existence.

3.8.1 Defining Identifiers

#define DEBUG defines a preprocessor identifier, DEBUG. Although other preprocessor directives
can come anywhere in your code, identifiers must be defined before any other code, including
using statements.

You can test whether DEBUG has been defined with the #if statement. Thus, you can write:

#define DEBUG

//... some normal code - not affected by preprocessor

#if DEBUG
 // code to include if debugging
#else
 // code to include if not debugging
#endif

//... some normal code - not affected by preprocessor

Programming C#

 page 55

When the preprocessor runs, it sees the #define statement and records the identifier DEBUG. The
preprocessor skips over your normal C# code and then finds the #if - #else - #endif block.

The #if statement tests for the identifier DEBUG, which does exist, and so the code between #if and
#else is compiled into your program, but the code between #else and #endif is not compiled.
That code does not appear in your assembly at all; it is as if it were left out of your source code.

Had the #if statement failed—that is, if you had tested for an identifier which did not exist—the
code between #if and #else would not be compiled, but the code between #else and #endif
would be compiled.

Any code not surrounded by #if - #endif is not affected by the
preprocessor and is compiled into your program.

3.8.2 Undefining Identifiers

You undefine an identifier with #undef. The preprocessor works its way through the code from top
to bottom, so the identifier is defined from the #define statement until the #undef statement, or
until the program ends. Thus if you write:

#define DEBUG

#if DEBUG
 // this code will be compiled
#endif

#undef DEBUG

#if DEBUG
 // this code will not be compiled
#endif

the first #if will succeed (DEBUG is defined), but the second will fail (DEBUG has been undefined).

3.8.3 #if, #elif, #else, and #endif

There is no switch statement for the preprocessor, but the #elif and #else directives provide
great flexibility. The #elif directive allows the else-if logic of "if DEBUG then action one, else if
TEST then action two, else action three":

#if DEBUG
 // compile this code if debug is defined
#elif TEST
 // compile this code if debug is not defined
 // but TEST is defined
#else
 // compile this code if neither DEBUG nor TEST
 // is defined
#endif

In this example the preprocessor first tests to see if the identifier DEBUG is defined. If it is, the code
between #if and #elif will be compiled, and none of the rest of the code until #endif, will be
compiled.

Programming C#

 page 56

If (and only if) DEBUG is not defined, the preprocessor next checks to see if TEST is defined. Note
that the preprocessor will not check for TEST unless DEBUG is not defined. If TEST is defined, the
code between the #elif and the #else directives will be compiled. If it turns out that neither DEBUG
nor TEST is defined, the code between the #else and the #endif statements will be compiled.

3.8.4 #region

The #region preprocessor directive marks an area of text with a comment. The principal use of this
preprocessor directive is to allow tools such as Visual Studio .NET to mark off areas of code and
collapse them in the editor with only the region's comment showing.

For example, when you create a Windows application (covered in Chapter 13) Visual Studio .NET
creates a region for code generated by the designer. When the region is expanded it looks like
Figure 3-1. (Note: I've added the rectangle and highlighting to make it easier to find the region.)

Figure 3-1. Expanding the Visual Studio .NET code region

You can see the region marked by the #region and #end region preprocessor directives. When
the region is collapsed, however, all you see is the region comment (Windows Form Designer
generated code), as shown in Figure 3-2.

Figure 3-2. Code region is collapsed

Programming C#

 page 57

Chapter 4. Classes and Objects
Chapter 3 discusses the myriad primitive types built into the C# language, such as int, long, and
char. The heart and soul of C#, however, is the ability to create new, complex, programmer-defined
types that map cleanly to the objects that make up the problem you are trying to solve.

It is this ability to create new types that characterizes an object-oriented language. You specify new
types in C# by declaring and defining classes. You can also define types with interfaces, as you will
see in Chapter 8. Instances of a class are called objects. Objects are created in memory when your
program executes.

The difference between a class and an object is the same as the difference between the concept of a
Dog and the particular dog who is sitting at your feet as you read this. You can't play fetch with the
definition of a Dog, only with an instance.

A Dog class describes what dogs are like: they have weight, height, eye color, hair color,
disposition, and so forth. They also have actions they can take, such as eat, walk, bark, and sleep. A
particular dog (such as my dog Milo) will have a specific weight (62 pounds), height (22 inches),
eye color (black), hair color (yellow), disposition (angelic), and so forth. He is capable of all the
actions of any dog (though if you knew him you might imagine that eating is the only method he
implements).

The huge advantage of classes in object-oriented programming is that they encapsulate the
characteristics and capabilities of an entity in a single, self-contained and self-sustaining unit of
code. When you want to sort the contents of an instance of a Windows list box control, for example,
you tell the list box to sort itself. How it does so is of no concern; that it does so is all you need to
know. Encapsulation, along with polymorphism and inheritance, is one of three cardinal principles
of object-oriented programming.

Programming C#

 page 58

An old programming joke asks, how many object-oriented programmers does it take to change a
light bulb? Answer: none, you just tell the light bulb to change itself. (Alternate answer: none,
Microsoft has changed the standard to darkness.)

This chapter explains the C# language features that are used to specify new classes. The elements of
a class—its behaviors and properties—are known collectively as its class members. This chapter
will show how methods are used to define the behaviors of the class, and how the state of the class
is maintained in member variables (often called fields). In addition, this chapter introduces
properties, which act like methods to the creator of the class but look like fields to clients of the
class.

4.1 Defining Classes

To define a new type or class you first declare it, and then define its methods and fields. You
declare a class using the class keyword. The complete syntax is as follows:

[
attributes

] [
access-modifiers

] class identifier [:base-class]
{
class-body

 }

Attributes are covered in Chapter 18; access modifiers are discussed in the next section. (Typically,
your classes will use the keyword public as an access modifier.) The identifier is the name of
the class that you provide. The optional base-class is discussed in Chapter 5. The member
definitions that make up the class-body are enclosed by open and closed curly braces ({}).

C++ programmers take note: a C# class definition does not end with a
semicolon, though if you add one the program will still compile.

In C#, everything happens within a class. For instance, some of the examples in Chapter 3 make use
of a class named Tester:

public class Tester
{

 public static int Main()
 {
 /...
 }
}

So far, we've not instantiated any instances of that class; that is, we haven't created any Tester
objects. What is the difference between a class and an instance of that class? To answer that
question, start with the distinction between the type int and a variable of type int. Thus, while you
would write:

Programming C#

 page 59

int myInteger = 5;

you would not write:

int = 5;

You can't assign a value to a type; instead, you assign the value to an object of that type (in this
case, a variable of type int).

When you declare a new class, you define the properties of all objects of that class, as well as their
behaviors. For example, if you are creating a windowing environment, you might want to create
screen widgets, more commonly known as controls in Windows programming, to simplify user
interaction with your application. One control of interest might be a list box, a control that is very
useful for presenting a list of choices to the user and enabling the user to select from the list.

List boxes have a variety of characteristics: height, width, location, and text color, for example.
Programmers have also come to expect certain behaviors of list boxes: they can be opened, closed,
sorted, and so on.

Object-oriented programming allows you to create a new type, ListBox, which encapsulates these
characteristics and capabilities. Such a class might have member variables named height, width,
location, and text color, and member methods named sort(), add(), remove(), etc.

You can't assign data to the ListBox type. Instead you must first create an object of that type, as in
the following code snippet:

ListBox myListBox;

Once you create an instance of ListBox, you can assign data to its fields.

Now consider a class to keep track of and display the time of day. The internal state of the class
must be able to represent the current year, month, date, hour, minute, and second. You probably
would also like the class to display the time in a variety of formats. You might implement such a
class by defining a single method and six variables, as shown in Example 4-1.

Example 4-1. Simple Time class
 using System;

 public class Time
 {
 // public methods
 public void DisplayCurrentTime()
 {
 Console.WriteLine(
 "stub for DisplayCurrentTime");
 }

 // private variables
 int Year;
 int Month;
 int Date;
 int Hour;
 int Minute;
 int Second;

Programming C#

 page 60

 }

 public class Tester
 {
 static void Main()
 {
 Time t = new Time();
 t.DisplayCurrentTime();
 }

 }

The only method declared within the Time class definition is the method DisplayCurrentTime().
The body of the method is defined within the class definition itself. Unlike other languages (such as
C++), C# does not require that methods be declared before they are defined, nor does the language
support placing its declarations into one file and code into another. (C# has no header files.) All C#
methods are defined in line as shown in Example 4-1 with DisplayCurrentTime().

The DisplayCurrentTime() method is defined to return void; that is, it will not return a value to
a method that invokes it. For now, the body of this method has been "stubbed out."

The Time class definition ends with the declaration of a number of member variables: Year, Month,
Date, Hour, Minute, and Second.

After the closing brace, a second class, Tester, is defined. Tester contains our now familiar Main(
) method. In Main() an instance of Time is created and its address is assigned to object t. Because
t is an instance of Time, Main()can make use of the DisplayCurrentTime() method available
with objects of that type and call it to display the time:

t.DisplayCurrentTime();

4.1.1 Access Modifiers

An access modifier determines which class methods—including methods of other classes—can see
and use a member variable or method within a class. Table 4-1 summarizes the C# access modifiers.

Table 4-1, Access modifiers
Access Modifier Restrictions
public No restrictions. Members marked public are visible to any method of any class.
private The members in class A which are marked private are accessible only to methods of class A.

protected The members in class A which are marked protected are accessible to methods of class A and
also to methods of classes derived from class A.

internal The members in class A which are marked internal are accessible to methods of any class in A's
assembly.

protected
internal

The members in class A which are marked protected internal are accessible to methods of
class A, to methods of classes derived from class A, and also to any class in A's assembly. This is
effectively protected OR internal (There is no concept of protected AND internal.)

It is generally desirable to designate the member variables of a class as private. This means that
only member methods of that class can access their value. Because private is the default
accessibility level, you do not need to make it explicit, but I recommend that you do so. Thus, in
Example 4-1, the declarations of member variables should have been written as follows:

// private variables

Programming C#

 page 61

private int Year;
private int Month;
private int Date;
private int Hour;
private int Minute;
private int Second;

Class Tester and method DisplayCurrentTime() are both declared public so that any other class
can make use of them.

It is good programming practice to explicitly set the accessibility of all
methods and members of your class. Although you can rely on the fact that
class members are declared private by default, making their access explicit
indicates a conscious decision and is self-documenting.

4.1.2 Method Arguments

Methods can take any number of parameters.[1] The parameter list follows the method name and is
encased in parentheses, with each parameter preceded by its type. For example, the following
declaration defines a method named MyMethod which returns void (that is, which returns no value
at all) and which takes two parameters: an int and a button:

[1] The terms "argument" and "parameter" are often used interchangeably, though some programmers insist on differentiating between the argument declaration
and the parameters passed in when the method is invoked.

void MyMethod (int firstParam, button secondParam)
{
 // ...
}

Within the body of the method, the parameters act as local variables, as if you had declared them in
the body of the method and initialized them with the values passed in. Example 4-2 illustrates how
you pass values into a method, in this case values of type int and float.

Example 4-2. Passing values into SomeMethod()
using System;

public class MyClass
{
 public void SomeMethod(int firstParam, float secondParam)
 {
 Console.WriteLine(
 "Here are the parameters received: {0}, {1}",
 firstParam, secondParam);
 }

}

public class Tester
{
 static void Main()
 {
 int howManyPeople = 5;
 float pi = 3.14f;
 MyClass mc = new MyClass();
 mc.SomeMethod(howManyPeople, pi);
 }

Programming C#

 page 62

}

The method SomeMethod() takes an int and a float and displays them using
Console.WriteLine(). The parameters, which are named firstParam and secondParam, are
treated as local variables within SomeMethod().

In the calling method (Main), two local variables (howManyPeople and pi) are created and
initialized. These variables are passed as the parameters to SomeMethod(). The compiler maps
howManyPeople to firstParam and pi to secondParam, based on their relative positions in the
parameter list.

4.2 Creating Objects

In Chapter 3, a distinction is drawn between value types and reference types. The primitive C#
types (int, char, etc.) are value types, and are created on the stack. Objects, however, are reference
types, and are created on the heap, using the keyword new, as in the following:

Time t = new Time();

t does not actually contain the value for the Time object; it contains the address of that (unnamed)
object that is created on the heap. t itself is just a reference to that object.

4.2.1 Constructors

In Example 4-1, notice that the statement that creates the Time object looks as though it is invoking
a method:

Time t = new Time();

In fact, a method is invoked whenever you instantiate an object. This method is called a
constructor, and you must either define one as part of your class definition or let the Common
Language Runtime (CLR) provide one on your behalf. The job of a constructor is to create the
object specified by a class and to put it into a valid state. Before the constructor runs, the object is
undifferentiated memory; after the constructor completes, the memory holds a valid instance of the
class type.

The Time class of Example 4-1 does not define a constructor. If a constructor is not declared, the
compiler provides one for you. The default constructor creates the object but takes no other action.
Member variables are initialized to innocuous values (integers to 0, strings to the empty string, etc.).
Table 4-2 lists the default values assigned to primitive types.

Table 4-2, Primitive types and their default values
Type Default Value

numeric (int, long , etc.) 0
bool false
char `\0' (null)
enum 0
reference null

Typically, you'll want to define your own constructor and provide it with arguments so that the
constructor can set the initial state for your object. In Example 4-1, assume that you want to pass in
the current year, month, date, and so forth, so that the object is created with meaningful data.

Programming C#

 page 63

To define a constructor you declare a method whose name is the same as the class in which it is
declared. Constructors have no return type and are typically declared public. If there are arguments
to be passed, you define an argument list just as you would for any other method. Example 4-3
declares a constructor for the Time class that accepts a single argument, an object of type DateTime.

Example 4-3. Declaring a constructor
 public class Time
 {
 // public accessor methods
 public void DisplayCurrentTime()
 {
 System.Console.WriteLine("{0}/{1}/{2} {3}:{4}:{5}",
 Month, Date, Year, Hour, Minute, Second);
 }

 // constructor
 public Time(System.DateTime dt)
 {

 Year = dt.Year;
 Month = dt.Month;
 Date = dt.Day;
 Hour = dt.Hour;
 Minute = dt.Minute;
 Second = dt.Second;
 }

 // private member variables
 int Year;
 int Month;
 int Date;
 int Hour;
 int Minute;
 int Second;

 }

 public class Tester
 {
 static void Main()
 {
 System.DateTime currentTime = System.DateTime.Now;
 Time t = new Time(currentTime);
 t.DisplayCurrentTime();
 }

 }

 Output:
11/16/2000 16:21:40

In this example, the constructor takes a DateTime object and initializes all the member variables
based on values in that object. When the constructor finishes, the Time object exists and the values
have been initialized. When DisplayCurrentTime() is called in Main(), the values are displayed.

Try commenting out one of the assignments and running the program again. You'll find that the
member variable is initialized by the compiler to 0. Integer member variables are set to 0 if you
don't otherwise assign them. Remember, value types (e.g., integers) cannot be uninitialized; if you
don't tell the constructor what to do, it will try for something innocuous.

Programming C#

 page 64

In Example 4-3, the DateTime object is created in the Main() method of Tester. This object,
supplied by the System library, offers a number of public values—Year, Month, Day, Hour, Minute,
and Second—that correspond directly to the private member variables of our Time object. In
addition, the DateTime object offers a static member method, Now, which returns a reference to an
instance of a DateTime object initialized with the current time.

Examine the highlighted line in Main(), where the DateTime object is created by calling the static
method Now(). Now()creates a DateTime object on the heap and returns a reference to it.

That reference is assigned to currentTime, which is declared to be a reference to a DateTime
object. Then currentTime is passed as a parameter to the Time constructor. The Time constructor
parameter, dt, is also a reference to a DateTime object; in fact dt now refers to the same DateTime
object as currentTime does. Thus, the Time constructor has access to the public member variables
of the DateTime object that was created in Tester.Main().

The reason that the DateTime object referred to in the Time constructor is the same object referred
to in Main() is that objects are reference types. Thus, when you pass one as a parameter it is
passed by reference—that is, the pointer is passed and no copy of the object is made.

4.2.2 Initializers

It is possible to initialize the values of member variables in an initializer, instead of having to do so
in every constructor. You create an initializer by assigning an initial value to a class member:

private int Second = 30; // initializer

Assume that the semantics of our Time object are such that no matter what time is set, the seconds
are always initialized to 30. We might rewrite our Time class to use an initializer so that no matter
which constructor is called, the value of Second is always initialized, either explicitly by the
constructor or implicitly by the initializer, as shown in Example 4-4.

Example 4-4. Using an initializer
 public class Time
 {
 // public accessor methods
 public void DisplayCurrentTime()
 {
 System.DateTime now = System.DateTime.Now;
 System.Console.WriteLine(
 "\nDebug\t: {0}/{1}/{2} {3}:{4}:{5}",
 now.Month, now.Day , now.Year, now.Hour,
 now.Minute, now.Second);

 System.Console.WriteLine("Time\t: {0}/{1}/{2} {3}:{4}:{5}",
 Month, Date, Year, Hour, Minute, Second);
 }

 // constructors
 public Time(System.DateTime dt)
 {

 Year = dt.Year;
 Month = dt.Month;
 Date = dt.Day;

Programming C#

 page 65

 Hour = dt.Hour;
 Minute = dt.Minute;
 Second = dt.Second; //explicit assignment
 }

 public Time(int Year, int Month, int Date,
 int Hour, int Minute)
 {
 this.Year = Year;
 this.Month = Month;
 this.Date = Date;
 this.Hour = Hour;
 this.Minute = Minute;
 }

 // private member variables
 private int Year;
 private int Month;
 private int Date;
 private int Hour;
 private int Minute;
 private int Second = 30; // initializer
 }

 public class Tester
 {
 static void Main()
 {
 System.DateTime currentTime = System.DateTime.Now;
 Time t = new Time(currentTime);
 t.DisplayCurrentTime();

 Time t2 = new Time(2000,11,18,11,45);
 t2.DisplayCurrentTime();

 }
 }

 Output:
Debug : 11/27/2000 7:52:54
Time : 11/27/2000 7:52:54

Debug : 11/27/2000 7:52:54
Time : 11/18/2000 11:45:30

If you do not provide a specific initializer, the constructor will initialize each integer member
variable to zero (0). In the case shown, however, the Second member is initialized to 30:

private int Second = 30; // initializer

If a value is not passed in for Second, its value will be set to 30 when t2 is created:

Time t2 = new Time(2000,11,18,11,45);
t2.DisplayCurrentTime();

However, if a value is assigned to Second, as is done in the constructor (which takes a DateTime
object, shown in bold), that value overrides the initialized value.

Programming C#

 page 66

The first time through the program we call the constructor that takes a DateTime object, and the
seconds are initialized to 54. The second time through we explicitly set the time to 11:45 (not
setting the seconds) and the initializer takes over.

If the program did not have an initializer and did not otherwise assign a value to Second, the value
would be initialized by the compiler to zero.

4.2.4 The this Keyword

The keyword this refers to the current instance of an object. The this reference (sometimes
referred to as a this pointer[2]) is a hidden pointer to every nonstatic method of a class. Each method
can refer to the other methods and variables of that object by way of the this reference.

[2] A pointer is a variable that holds the address of an object in memory. C# does not use pointers with managed objects.

There are three ways in which the this reference is typically used. The first way is to qualify
instance members otherwise hidden by parameters, as in the following:

public void SomeMethod (int hour)
{
 this.hour = hour;
}

In this example, SomeMethod() takes a parameter (Hour) with the same name as a member
variable of the class. The this reference is used to resolve the name ambiguity. While this.Hour
refers to the member variable, Hour refers to the parameter.

Programming C#

 page 67

The argument in favor of this style is that you pick the right variable name and then use it both for
the parameter and for the member variable. The counter-argument is that using the same name for
both the parameter and the member variable can be confusing.

The second use of the this reference is to pass the current object as a parameter to another method.
For instance, the following code

public void FirstMethod(OtherClass otherObject)
{
 otherObject.SecondMethod(this);
}

establishes two classes, one with the method FirstMethod(), and OtherClass, with its method
SecondMethod(). Inside FirstMethod, we'd like to invoke SecondMethod, passing in the current
object for further processing.

The third use of this is with indexers, covered in Chapter 9.

4.3 Using Static Members

The properties and methods of a class can be either instance members or static members. Instance
members are associated with instances of a type, while static members are considered to be part of
the class. You access a static member through the name of the class in which it is declared. For
example, suppose you have a class named Button and have instantiated objects of that class named
btnUpdate and btnDelete. Suppose as well that the Button class has a static method
SomeMethod(). To access the static method you write:

Button.SomeMethod();

rather than writing:

btnUpdate.SomeMethod();

In C# it is not legal to access a static method or member variable through an instance, and trying to
do so will generate a compiler error (C++ programmers, take note).

Some languages distinguish between class methods and other (global) methods that are available
outside the context of any class. In C# there are no global methods, only class methods, but you can
achieve an analogous result by defining static methods within your class.

Static methods act more or less like global methods, in that you can invoke them without actually
having an instance of the object at hand. The advantage of static methods over global, however, is
that the name is scoped to the class in which it occurs, and thus you do not clutter up the global
namespace with myriad function names. This can help manage highly complex programs, and the
name of the class acts very much like a namespace for the static methods within it.

Resist the temptation to create a single class in your program in which you
stash all your miscellaneous methods. It is possible but not desirable and
undermines the encapsulation of an object-oriented design.

Programming C#

 page 68

4.3.1 Invoking Static Methods

The Main() method is static. Static methods are said to operate on the class, rather than on an
instance of the class. They do not have a this reference, as there is no instance to point to.

Static methods cannot directly access nonstatic members. For Main() to call a nonstatic method, it
must instantiate an object. Consider Example 4-2, reproduced here for your convenience.

using System;

public class MyClass
{
 public void SomeMethod(int firstParam, float secondParam)
 {
 Console.WriteLine(
 "Here are the parameters received: {0}, {1}",
 firstParam, secondParam);
 }

}

public class Tester
{
 static void Main()
 {
 int howManyPeople = 5;
 float pi = 3.14f;
 MyClass mc = new MyClass();
 mc.SomeMethod(howManyPeople, pi);
 }

}

SomeMethod() is a nonstatic method of MyClass. For Main() to access this method, it must first
instantiate an object of type MyClass and then invoke the method through that object.

4.3.2 Using Static Constructors

If your class declares a static constructor, you will be guaranteed that the static constructor will run
before any instance of your class is created.

You are not able to control exactly when a static constructor will run, but you
do know that it will be after the start of your program and before the first
instance is created. Because of this you cannot assume (or determine) whether
an instance is being created.

For example, you might add the following static constructor to Time:

static Time()
{
 Name = "Time";
}

Notice that there is no access modifier (e.g., public) before the static constructor. Access modifiers
are not allowed on static constructors. In addition, because this is a static member method, you
cannot access nonstatic member variables, and so Name must be declared a static member variable:

Programming C#

 page 69

private static string Name;

The final change is to add a line to DisplayCurrentTime(), as in the following:

public void DisplayCurrentTime()
{
 System.Console.WriteLine("Name: {0}", Name);
 System.Console.WriteLine("{0}/{1}/{2} {3}:{4}:{5}",
 Month, Date, Year, Hour, Minute, Second);
}

When all these changes are made, the output is:

Name: Time
11/20/2000 14:39:8
Name: Time
11/18/2000 11:3:30
Name: Time
11/18/2000 11:3:30

Although this code works, it is not necessary to create a static constructor to accomplish this goal.
You could, instead, use an initializer:

private static string Name = "Time";

which accomplishes the same thing. Static constructors are useful, however, for set-up work that
cannot be accomplished with an initializer and that needs to be done only once.

For example, assume you have an unmanaged bit of code in a legacy COM dll. You want to provide
a class wrapper for this code. You can call load library in your static constructor and initialize the
jump table in the static constructor. Handling legacy code and interoperating with unmanaged code
is discussed in Chapter 22.

4.3.3 Using Private Constructors

In C# there are no global methods or constants. You might find yourself creating small utility
classes that exist only to hold static members. Setting aside whether this is a good design or not, if
you create such a class you will not want any instances created. You can prevent any instances from
being created by creating a default constructor (one with no parameters) which does nothing, and
which is marked private. With no public constructors, it will not be possible to create an instance
of your class.

4.3.4 Using Static Fields

A common use of static member variables is to keep track of the number of instances that currently
exist for your class. Example 4-5 illustrates.

Example 4-5. Using static fields for instance counting
using System;

public class Cat
{

 public Cat()
 {

Programming C#

 page 70

 instances++;
 }

 public static void HowManyCats()
 {
 Console.WriteLine("{0} cats adopted",
 instances);
 }
 private static int instances = 0;
}

public class Tester
{
 static void Main()
 {
 Cat.HowManyCats();
 Cat frisky = new Cat();
 Cat.HowManyCats();
 Cat whiskers = new Cat();
 Cat.HowManyCats();

 }

}

Output:

0 cats adopted
1 cats adopted
2 cats adopted

The Cat class has been stripped to its absolute essentials. A static member variable called
instances is created and initialized to zero. Note that the static member is considered part of the
class, not a member of an instance, and so it cannot be initialized by the compiler on creation of an
instance. Thus, an explicit initializer is required for static member variables. When additional
instances of Cats are created (in a constructor) the count is incremented.

Static Methods to Access Static Fields
It is undesirable to make member data public. This applies to static member variables as
well. One solution is to make the static member private, as we've done here with
instances. We have created a public accessor method, HowManyCats(), to provide
access to this private member. Because HowManyCats() is also static, it has access to the
static member instances.

4.4 Destroying Objects

C# provides garbage collection and thus does not need an explicit destructor. If you do control an
unmanaged resource, however, you will need to explicitly free that resource when you are done
with it. Implicit control over this resource is provided with a Finalize() method (called a
finalizer), which will be called by the garbage collector when your object is destroyed.

The finalizer should only release resources that your object holds on to, and should not reference
other objects. Note that if you have only managed references you do not need to and should not
implement the Finalize() method; you want this only for handling unmanaged resources. Because

Programming C#

 page 71

there is some cost to having a finalizer, you ought to implement this only on methods that require it
(that is, methods that consume valuable unmanaged resources).

You must never call an object's Finalize() method directly (except that you can call the base
class' Finalize() method in your own Finalize()). The garbage collector will call Finalize(
) for you.

How Finalize Works
The garbage collector maintains a list of objects that have a Finalize() method. This
list is updated every time a finalizable object is created or destroyed.

When an object on the garbage collector's finalizable list is first collected, it is placed on a
queue with other objects waiting to be finalized. After the Finalize() method executes,
the garbage collector then collects the object and updates the queue, as well as its list of
finalizable objects.

4.4.1 The C# Destructor

C#'s destructor looks, syntactically, much like a C++ destructor, but it behaves quite differently.
You declare a C# destructor with a tilde as follows:

~MyClass(){}

In C#, however, this syntax is simply a shortcut for declaring a Finalize() method that chains up
to its base class. Thus, writing:

~MyClass()
{
 // do work here
}

is identical to writing:

MyClass.Finalize()
{
 // do work here
 base.Finalize();
}

Because of the potential for confusion, it is recommended that you eschew the destructor and write
an explicit finalizer if needed.

4.4.2 Finalize Versus Dispose

It is not legal to call a finalizer explicitly. Your Finalize() method will be called by the garbage
collector. If you do handle precious unmanaged resources (such as file handles) that you want to
close and dispose of as quickly as possible, you ought to implement the IDisposable interface.
(You will learn more about interfaces in Chapter 8.) The IDisposable interface requires its
implementers to define one method, named Dispose(), to perform whatever cleanup you consider
to be crucial. The availability of Dispose() is a way for your clients to say "don't wait for
Finalize() to be called, do it right now."

Programming C#

 page 72

If you provide a Dispose() method, you should stop the garbage collector from calling
Finalize() on your object. To stop the garbage collector, you call the static method
GC.SuppressFinalize(), passing in the this pointer for your object. Your Finalize() method
can then call your Dispose() method. Thus, you might write:

public void Dispose()
{
 // perform clean up

 // tell the GC not to finailze
 GC.SuppressFinalize(this);
}

public override void Finalize()
{
 Dispose();
 base.Finalize();
}

4.4.3 Implementing the Close Method

For some objects, you'd rather have your clients call the Close() method. (For example, Close
makes more sense than Dispose() for file objects.) You can implement this by creating a private
Dispose() method and a public Close() method and having your Close() method invoke
Dispose().

4.4.4 The using Statement

Because you cannot be certain that your user will call Dispose() reliably, and because finalization
is nondeterministic (i.e., you can't control when the GC will run), C# provides a using statement
which ensures that Dispose() will be called at the earliest possible time. The idiom is to declare
which objects you are using and then to create a scope for these objects with curly braces. When the
close brace is reached, the Dispose() method will be called on the object automatically, as
illustrated in Example 4-6.

Example 4-6. The using construct
using System.Drawing;
class Tester
{
 public static void Main()
 {
 using (Font theFont = new Font("Arial", 10.0f))
 {
 // use theFont

 } // compiler will call Dispose on theFont

 Font anotherFont = new Font("Courier",12.0f);

 using (anotherFont)
 {
 // use anotherFont

 } // compiler calls Dispose on anotherFont

 }

}

Programming C#

 page 73

In the first part of this example, the Font object is created within the using statement. When the
using statement ends, Dispose() is called on the Font object.

In the second part of the example, a Font object is created outside of the using statement. When we
decide to use that font, we put it inside the using statement and when that statement ends, once
again Dispose() is called.

The using statement also protects you against unanticipated exceptions. No matter how control
leaves the using statement, Dispose() is called. It is as if there were an implicit try-catch-finally
block. (See Section 11.2 in Chapter 11 for details.)

4.5 Passing Parameters

By default, value types are passed into methods by value (see Section 4.1.2 earlier in this chapter).
This means that when a value object is passed to a method, a temporary copy of the object is created
within that method. Once the method completes, the copy is discarded. Although passing by value
is the normal case, there are times when you will want to pass value objects by reference. C#
provides the ref parameter modifier for passing value objects into a method by reference and the
out modifier for those cases in which you want to pass in a ref variable without first initializing it.
C# also supports the params modifier which allows a method to accept a variable number of
parameters. The params keyword is discussed in Chapter 9.

4.5.1 Passing by Reference

Methods can return only a single value (though that value can be a collection of values). Let's return
to the Time class and add a GetTime() method which returns the hour, minutes, and seconds.

Because we cannot return three values, perhaps we can pass in three parameters, let the method
modify the parameters, and examine the result in the calling method. Example 4-7 shows a first
attempt at this.

Example 4-7. Returning values in parameters
public class Time
{
 // public accessor methods
 public void DisplayCurrentTime()
 {
 System.Console.WriteLine("{0}/{1}/{2} {3}:{4}:{5}",
 Month, Date, Year, Hour, Minute, Second);
 }

 public int GetHour()
 {
 return Hour;
 }

 public void GetTime(int h, int m, int s)
 {
 h = Hour;
 m = Minute;
 s = Second;
 }

 // constructor
 public Time(System.DateTime dt)
 {

Programming C#

 page 74

 Year = dt.Year;
 Month = dt.Month;
 Date = dt.Day;
 Hour = dt.Hour;
 Minute = dt.Minute;
 Second = dt.Second;
 }

 // private member variables
 private int Year;
 private int Month;
 private int Date;
 private int Hour;
 private int Minute;
 private int Second;

 }

 public class Tester
 {
 static void Main()
 {
 System.DateTime currentTime = System.DateTime.Now;
 Time t = new Time(currentTime);
 t.DisplayCurrentTime();

 int theHour = 0;
 int theMinute = 0;
 int theSecond = 0;
 t.GetTime(theHour, theMinute, theSecond);
 System.Console.WriteLine("Current time: {0}:{1}:{2}",
 theHour, theMinute, theSecond);

 }

 }

 Output:
11/17/2000 13:41:18
Current time: 0:0:0

Notice that the "Current time" in the output is 0:0:0. Clearly, this first attempt did not work. The
problem is with the parameters. We pass in three integer parameters to GetTime(), and we modify
the parameters in GetTime(), but when the values are accessed back in Main(), they are
unchanged. This is because integers are value types, and so are passed by value; a copy is made in
GetTime(). What we need is to pass these values by reference.

Two small changes are required. First, change the parameters of the GetTime method to indicate
that the parameters are ref (reference) parameters:

public void GetTime(ref int h, ref int m, ref int s)
{
 h = Hour;
 m = Minute;
 s = Second;
}

Second, modify the call to GetTime() to pass the arguments as references as well:

Programming C#

 page 75

t.GetTime(ref theHour, ref theMinute, ref theSecond);

If you leave out the second step of marking the arguments with the keyword ref, the compiler will
complain that the argument cannot be converted from an int to a ref int.

The results now show the correct time. By declaring these parameters to be ref parameters, you
instruct the compiler to pass them by reference. Instead of a copy being made, the parameter in
GetTime() is a reference to the same variable (theHour) that is created in Main(). When you
change these values in GetTime(), the change is reflected in Main().

Keep in mind that ref parameters are references to the actual original value—it is as if you said
"here, work on this one." Conversely, value parameters are copies—it is as if you said "here, work
on one just like this."

4.5.2 Passing Out Parameters with Definite Assignment

C# imposes definite assignment , which requires that all variables be assigned a value before they
are used. In Example 4-7, if you don't initialize theHour, theMinute, and theSecond before you
pass them as parameters to GetTime(), the compiler will complain. Yet the initialization that is
done merely sets their values to 0 before they are passed to the method:

int theHour = 0;
int theMinute = 0;
int theSecond = 0;
t.GetTime(ref theHour, ref theMinute, ref theSecond);

It seems silly to initialize these values because you immediately pass them by reference into
GetTime where they'll be changed, but if you don't, the following compiler errors are reported:

Use of unassigned local variable 'theHour'
Use of unassigned local variable 'theMinute'
Use of unassigned local variable 'theSecond'

C# provides the out parameter modifier for this situation. The out modifier removes the
requirement that a reference parameter be initiailzed. The parameters to GetTime(), for example,
provide no information to the method; they are simply a mechanism for getting information out of
it. Thus, by marking all three as out parameters, you eliminate the need to initialize them outside
the method. Within the called method the out parameters must be assigned a value before the
method returns. Here are the altered parameter declarations for GetTime():

public void GetTime(out int h, out int m, out int s)
{
 h = Hour;
 m = Minute;
 s = Second;
}

and here is the new invocation of the method in Main():

t.GetTime(out theHour, out theMinute, out theSecond);

To summarize, value types are passed into methods by value. Ref parameters are used to pass value
types into a method by reference. This allows you to retrieve their modified value in the calling

Programming C#

 page 76

method. Out parameters are used only to return information from a method. Example 4-8 rewrites
Example 4-7 to use all three.

Example 4-8. Using in, out, and ref parameters
public class Time
 {
 // public accessor methods
 public void DisplayCurrentTime()
 {
 System.Console.WriteLine("{0}/{1}/{2} {3}:{4}:{5}",
 Month, Date, Year, Hour, Minute, Second);
 }

 public int GetHour()
 {
 return Hour;
 }

 public void SetTime(int hr, out int min, ref int sec)
 {
 // if the passed in time is >= 30
 // increment the minute and set second to 0
 // otherwise leave both alone
 if (sec >= 30)
 {
 Minute++;
 Second = 0;
 }
 Hour = hr; // set to value passed in

 // pass the minute and second back out
 min = Minute;
 sec = Second;
 }

 // constructor
 public Time(System.DateTime dt)
 {

 Year = dt.Year;
 Month = dt.Month;
 Date = dt.Day;
 Hour = dt.Hour;
 Minute = dt.Minute;
 Second = dt.Second;
 }

 // private member variables
 private int Year;
 private int Month;
 private int Date;
 private int Hour;
 private int Minute;
 private int Second;

 }

 public class Tester
 {
 static void Main()
 {
 System.DateTime currentTime = System.DateTime.Now;
 Time t = new Time(currentTime);

Programming C#

 Hour = dt.Hour;
 Minute = dt.Minute;
 Second = dt.Second;
 }

 // private member variables
 public static int Year;
 public static int Month;
 public static int Date;
 public static int Hour;
 public static int Minute;
 public static int Second;
}

public class Tester
{
 static void Main()
 {
 System.Console.WriteLine ("This year: {0}",
 RightNow.Year.ToString());
 RightNow.Year = 2002;
 System.Console.WriteLine ("This year: {0}",
 RightNow.Year.ToString());
 }
}

Output:

This year: 2000
This year: 2002

This works well enough, until someone comes along and changes one of these values. As the
example shows, the RightNow.Year value can be changed, for example, to 2002. This is clearly not
what we'd like.

We'd like to mark the static values as constant, but that is not possible because we don't initialize
them until the static constructor is executed. C# provides the keyword readonly for exactly this
purpose. If you change the class member variable declarations as follows:

public static readonly int Year;
public static readonly int Month;
public static readonly int Date;
public static readonly int Hour;
public static readonly int Minute;
public static readonly int Second;

then comment out the reassignment in Main():

// RightNow.Year = 2002; // error!

the program will compile and run as intended.

Programming C#

 page 23

Programming fundamentals :create and use variables and constants. It then goes on to introduce
enumerations, strings, identifiers, expressions, and statements.

The second part of the chapter explains and demonstrates the use of branching, using the if,
switch, while, do...while, for, and foreach statements. Also discussed are operators, including
the assignment, logical, relational, and mathematical operators. This is followed by an introduction
to namespaces and a short tutorial on the C# precompiler.

Although C# is principally concerned with the creation and manipulation of objects, it is best to
start with the fundamental building blocks: the elements from which objects are created. These
include the built-in types that are an intrinsic part of the C# language as well as the syntactic
elements of C#.

3.1 Types

C# is a strongly typed language. In a strongly typed language you must declare the type of each
object you create (e.g., integers, floats, strings, windows, buttons, etc.) and the compiler will help
you prevent bugs by enforcing that only data of the right type is assigned to those objects. The type
of an object signals to the compiler the size of that object (e.g., int indicates an object of 4 bytes)
and its capabilities (e.g., buttons can be drawn, pressed, and so forth).

Like C++ and Java, C# divides types into two sets: intrinsic (built-in) types that the language offers
and user-defined types that the programmer defines.

C# also divides the set of types into two other categories: value types and reference types.[1] The
principal difference between value and reference types is the manner in which their values are
stored in memory. A value type holds its actual value in memory allocated on the stack (or it is
allocated as part of a larger reference type object). The address of a reference type variable sits on
the stack, but the actual object is stored on the heap.

[1] All the intrinsic types are value types except for Object (discussed in Chapter 5) and String (discussed in Chapter 10). All user-defined types are
reference types except for structs (discussed in Chapter 7).

If you have a very large object, putting it on the heap has many advantages. Chapter 4 discusses the
various advantages and disadvantages of working with reference types; the current chapter focuses
on the intrinsic value types available in C#.

C# also supports C++ style pointer types, but these are rarely used, and only when working with
unmanaged code. Unmanaged code is code created outside of the .NET platform, such as COM
objects. Working with COM objects is discussed in Chapter 22.

3.1.1 Working with Built-in Types

The C# language offers the usual cornucopia of intrinsic (built-in) types one expects in a modern
language, each of which maps to an underlying type supported by the .NET Common Language
Specification (CLS). Mapping the C# primitive types to the underlying .NET type ensures that
objects created in C# can be used interchangeably with objects created in any other language
compliant with the .NET CLS, such as VB .NET.

ß°°»²¼·¨ A. C# Language Fundamentals

Programming C#

 page 24

Each type has a specific and unchanging size. Unlike with C++, a C# int is always 4 bytes because
it maps to an Int32 in the .NET CLS. Table 3-1 lists the built-in value types offered by C#.

Table 3-1, C# built-in value types
Type Size (in

bytes)
.NET
Type Description

byte 1 Byte Unsigned (values 0-255).
char 1 Char Unicode characters.
bool 1 Boolean true or false.
sbyte 1 Sbyte Signed (values -128 to 127).
short 2 Int16 Signed (short) (values -32,768 to 32,767).
ushort 2 Uint16 Unsigned (short) (values 0 to 65,535).
int 4 Int32 Signed integer values between -2,147,483,647 and 2,147,483,647.
uint 4 Uint32 Unsigned integer values between 0 and 4,294,967,295.

float 4 Single Floating point number. Holds the values from approximately +/-1.5 * 10-45 to
approximate +/-3.4 * 1038 with 7 significant figures.

double 8 Double Double-precision floating point; holds the values from approximately +/-5.0 * 10-324
to approximate +/-1.7 * 10308 with 15-16 significant figures.

decimal 8 Decimal Fixed-precision up to 28 digits and the position of the decimal point. This is typically
used in financial calculations. Requires the suffix "m" or "M."

long 8 Int64 Signed integers ranging from -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807.

ulong 8 Uint64 Unsigned integers ranging from 0 to 0xffffffffffffffff.

C and C++ programmers take note: Boolean variables can only have the
values true or false. Integer values do not equate to Boolean values in C#
and there is no implicit conversion.

In addition to these primitive types, C# has two other value types: enum (considered later in this
chapter) and struct (see Chapter 4). Chapter 4 also discusses other subtleties of value types such
as forcing value types to act as reference types through a process known as boxing, and that value
types do not "inherit."

The Stack and the Heap
A stack is a data structure used to store items on a last-in first-out basis (like a stack of
dishes at the buffet line in a restaurant). The stack refers to an area of memory supported
by the processor, on which the local variables are stored.

In C#, value types (e.g., integers) are allocated on the stack—an area of memory is set
aside for their value, and this area is referred to by the name of the variable.

Reference types (e.g., objects) are allocated on the heap. When an object is allocated on
the heap its address is returned, and that address is assigned to a reference.

The garbage collector destroys objects on the stack sometime after the stack frame they
are declared within ends. Typically a stack frame is defined by a function. Thus, if you
declare a local variable within a function (as explained later in this chapter) the object
will be marked for garbage collection after the function ends.

Objects on the heap are garbage collected sometime after the final reference to them is

Programming C#

 page 25

destroyed.

3.1.1.1 Choosing a built-in type

Typically you decide which size integer to use (short, int, or long) based on the magnitude of the
value you want to store. For example, a ushort can only hold values from 0 through 65,535, while
a ulong can hold values from 0 through 4,294,967,295.

That said, memory is fairly cheap, and programmer time is increasingly expensive; most of the time
you'll simply declare your variables to be of type int, unless there is a good reason to do otherwise.

The signed types are the numeric types of choice of most programmers unless they have a good
reason to use an unsigned value.

Although you might be tempted to use an unsigned short to double the positive values of a signed
short (moving the maximum positive value from 32,767 up to 65,535), it is easier and preferable to
use a signed integer (with a maximum value of 2,147,483,647).

It is better to use an unsigned variable when the fact that the value must be positive is an inherent
characteristic of the data. For example, if you had a variable to hold a person's age, you would use
an unsigned int because an age cannot be negative.

Float, double, and decimal offer varying degrees of size and precision. For most small fractional
numbers, float is fine. Note that the compiler assumes that any number with a decimal point is a
double unless you tell it otherwise. To assign a literal float, follow the number with the letter f.
(Assigning values to literals is discussed in detail later in this chapter.)

float someFloat = 57f;

The char type represents a Unicode character. char literals can be simple, Unicode, or escape
characters enclosed by single quote marks. For example, A is a simple character while \u0041 is a
Unicode character. Escape characters are special two-character tokens in which the first character is
a backslash. For example, \t is a horizontal tab. The common escape characters are shown in Table
3-2.

Table 3-2, Common escape characters
Char Meaning

\' Single quote
\" Double quote
\\ Backslash
\0 Null
\a Alert
\b Backspace
\f Form feed
\n Newline
\r Carriage return
\t Horizontal tab
\v Vertical tab

3.1.1.2 Converting built-in types

Programming C#

 page 26

Objects of one type can be converted into objects of another type either implicitly or explicitly.
Implicit conversions happen automatically; the compiler takes care of it for you. Explicit
conversions happen when you "cast" a value to a different type. The semantics of an explicit
conversion are "Hey! Compiler! I know what I'm doing." This is sometimes called "hitting it with
the big hammer" and can be very useful or very painful, depending on whether your thumb is in the
way of the nail.

Implicit conversions happen automatically and are guaranteed not to lose information. For example,
you can implicitly cast from a short int (2 bytes) to an int (4 bytes) implicitly. No matter what
value is in the short, it will not be lost when converting to an int:

short x = 5;
int y = x; // implicit conversion

If you convert the other way, however, you certainly can lose information. If the value in the int is
greater than 32,767 it will be truncated in the conversion. The compiler will not perform an implicit
conversion from int to short:

short x;
int y = 500;
x = y; // won't compile

You must explicitly convert using the cast operator:

short x;
int y = 500;
x = (short) y; // OK

All of the intrinsic types define their own conversion rules. At times it is convenient to define
conversion rules for your user-defined types, as discussed in Chapter 5.

3.2 Variables and Constants

A variable is a storage location with a type. In the preceding examples, both x and y are variables.
Variables can have values assigned to them, and that value can be changed programmatically.

WriteLine()
The .Net Framework provides a useful method for writing output to the screen. The
details of this method, System.Console.WriteLine(), will become clearer as we
progress through the book, but the fundamentals are straightforward. You call the method
as shown in Example 3-3, passing in a string that you want printed to the console (the
screen) and, optionally, parameters that will be substituted. In the following example:

System.Console.WriteLine("After assignment, myInt: {0}", myInt);

the string "After assignment, myInt:" is printed as is, followed by the value in the
variable myInt. The location of the substitution parameter {0} specifies where the value
of the first output variable, myInt, will be displayed, in this case at the end of the string.
We'll see a great deal more about Writeline() in coming chapters.

Programming C#

 page 27

You create a variable by declaring its type and then giving it a name. You can initialize the variable
when you declare it, and you can assign a new value to that variable at any time, changing the value
held in the variable. This is illustrated in Example 3-1.

Example 3-1. Initializing and assigning a value to a variable
class Values
{
 static void Main()
 {
 int myInt = 7;
 System.Console.WriteLine("Initialized, myInt: {0}",
 myInt);
 myInt = 5;
 System.Console.WriteLine("After assignment, myInt: {0}",
 myInt);
 }
}

 Output:
Initialized, myInt: 7
After assignment, myInt: 5

Here we initialize the variable myInt to the value 7, display that value, reassign the variable with
the value 5, and display it again.

3.2.1 Definite Assignment

C# requires that variables be initialized before they are used. To test this rule, change the line that
initializes myInt in Example 3-1 to:

int myInt;

and save the revised program shown in Example 3-2.

Example 3-2. Using an uninitialized variable
class Values
{
 static void Main()
 {
 int myInt;
 System.Console.WriteLine
 ("Uninitialized, myInt: {0}",myInt);
 myInt = 5;
 System.Console.WriteLine("Assigned, myInt: {0}", myInt);
 }
}

When you try to compile this listing, the C# compiler will display the following error message:

3.1.cs(6,55): error CS0165: Use of unassigned local
variable 'myInt'

It is not legal to use an uninitialized variable in C#. Example 3-2 is not legal.

So, does this mean you must initialize every variable in a program? In fact, no. You don't actually
need to initialize a variable, but you must assign a value to it before you attempt to use it. This is
called definite assignment and C# requires it. Example 3-3 illustrates a correct program.

Programming C#

 page 28

Example 3-3. Assigning without initializing
class Values
{
 static void Main()
 {
 int myInt;
 myInt = 7;
 System.Console.WriteLine("Assigned, myInt: {0}", myInt);
 myInt = 5;
 System.Console.WriteLine("Reassigned, myInt: {0}", myInt);
 }
}

3.2.2 Constants

A constant is a variable whose value cannot be changed. Variables are a powerful tool, but there are
times when you want to manipulate a defined value, one whose value you want to ensure remains
constant. For example, you might need to work with the Fahrenheit freezing and boiling points of
water in a program simulating a chemistry experiment. Your program will be clearer if you name
the variables that store these values FreezingPoint and BoilingPoint, but you do not want to
permit their values to be reassigned. How do you prevent reassignment? The answer is to use a
constant.

Constants come in three flavors: literals, symbolic constants, and enumerations. In this assignment:

x = 32;

the value 32 is a literal constant. The value of 32 is always 32. You can't assign a new value to 32;
you can't make 32 represent the value 99 no matter how you might try.

Symbolic constants assign a name to a constant value. You declare a symbolic constant using the
const keyword and the following syntax:

const type identifier = value;

A constant must be initialized when it is declared, and once initialized it cannot be altered. For
example:

const int FreezingPoint = 32;

In this declaration, 32 is a literal constant and FreezingPoint is a symbolic constant of type int.
Example 3-4 illustrates the use of symbolic constants.

Example 3-4. Using symbolic constants
class Values
{
 static void Main()
 {
 const int FreezingPoint = 32; // degrees Farenheit
 const int BoilingPoint = 212;

 System.Console.WriteLine("Freezing point of water: {0}",
 FreezingPoint);
 System.Console.WriteLine("Boiling point of water: {0}",
 BoilingPoint);
 //BoilingPoint = 21;

Programming C#

 page 29

 }
}

Example 3-4 creates two symbolic integer constants: FreezingPoint and BoilingPoint. As a
matter of style, constant names are written in Pascal notation, but this is certainly not required by
the language.

These constants serve the same purpose as always using the literal values 32 and 212 for the
freezing and boiling points of water in expressions that require them, but because these constants
have names they convey far more meaning. Also, if you decide to switch this program to Celsius,
you can reinitialize these constants at compile time, to 0 and 100, respectively; and all the rest of the
code ought to continue to work.

To prove to yourself that the constant cannot be reassigned, try uncommenting the last line of the
program (shown in bold). When you recompile you should receive this error:

error CS0131: The left-hand side of an assignment must be
a variable, property or indexer

3.2.3 Enumerations

Enumerations provide a powerful alternative to constants. An enumeration is a distinct value type,
consisting of a set of named constants (called the enumerator list).

In Example 3-4, you created two related constants:

const int FreezingPoint = 32;
const int BoilingPoint = 212;

You might wish to add a number of other useful constants as well to this list, such as:

const int LightJacketWeather = 60;
const int SwimmingWeather = 72;
const int WickedCold = 0;

This process is somewhat cumbersome, and there is no logical connection among these various
constants. C# provides the enumeration to solve these problems:

enum Temperatures
{
 WickedCold = 0,
 FreezingPoint = 32,
 LightJacketWeather = 60,
 SwimmingWeather = 72,
 BoilingPoint = 212,
}

Every enumeration has an underlying type, which can be any integral type (integer, short, long,
etc.) except for char. The technical definition of an enumeration is:

[attributes] [modifiers] enum identifier
 [:base-type] {enumerator-list};

Programming C#

 page 30

The optional attributes and modifiers are considered later in this book. For now, let's focus on the
rest of this declaration. An enumeration begins with the keyword enum, which is generally followed
by an identifier, such as:

enum Temperatures

The base type is the underlying type for the enumeration. If you leave out this optional value (and
often you will) it defaults to integer, but you are free to use any of the integral types (e.g., ushort,
long) except for char. For example, the following fragment declares an enumeration of unsigned
integers (uint):

enum ServingSizes :uint
{
 Small = 1,
 Regular = 2,
 Large = 3
}

Notice that an enum declaration ends with the enumerator list. The enumerator list contains the
constant assignments for the enumeration, each separated by a comma.

Example 3-5 rewrites Example 3-4 to use an enumeration.

Example 3-5. Using enumerations to simplify your code
class Values
{

 enum Temperatures
 {
 WickedCold = 0,
 FreezingPoint = 32,
 LightJacketWeather = 60,
 SwimmingWEather = 72,
 BoilingPoint = 212,
 }

 static void Main()
 {

 System.Console.WriteLine("Freezing point of water: {0}",
 Temperatures.FreezingPoint);
 System.Console.WriteLine("Boiling point of water: {0}",
 Temperatures.BoilingPoint);

 }
}

As you can see, an enum must be qualified by its enumtype (e.g., Temperatures.WickedCold).

Each constant in an enumeration corresponds to a numerical value, in this case, an integer. If you
don't specifically set it otherwise, the enumeration begins at 0 and each subsequent value counts up
from the previous.

If you create the following enumeration:

enum SomeValues
{

Programming C#

 page 31

 First,
 Second,
 Third = 20,
 Fourth
}

the value of First will be 0, Second will be 1, Third will be 20, and Fourth will be 21.

Enums are formal types; therefore an explicit conversion is required to convert between an enum
type and an integral type.

C++ programmers take note: C#'s use of enums is subtly different from C++,
which restricts assignment to an enum type from an integer but allows an
enum to be promoted to an integer for assignment of an enum to an integer.

3.2.4 Strings

It is nearly impossible to write a C# program without creating strings. A string object holds a string
of characters.

You declare a string variable using the string keyword much as you would create an instance of
any object:

string myString;

A string literal is created by placing double quotes around a string of letters:

"Hello World"

It is common to initialize a string variable with a string literal:

string myString = "Hello World";

Strings will be covered in much greater detail in Chapter 10.

3.2.5 Identifiers

Identifiers are names that programmers choose for their types, methods, variables, constants,
objects, and so forth. An identifier must begin with a letter or an underscore.

The Microsoft naming conventions suggest using camel notation (initial lowercase such as
someName) for variable names and Pascal notation (initial uppercase such as SomeOtherName) for
method names and most other identifiers.

Microsoft no longer recommends using Hungarian notation (e.g.,
iSomeInteger) or underscores (e.g., SOME_VALUE).

Identifiers cannot clash with keywords. Thus, you cannot create a variable named int or class. In
addition, identifiers are case-sensitive, so C# treats myVariable and MyVariable as two different
variable names.

Programming C#

 page 32

3.3 Expressions

Statements that evaluate to a value are called expressions. You may be surprised how many
statements do evaluate to a value. For example, an assignment such as:

myVariable = 57;

is an expression; it evaluates to the value assigned, in this case, 57.

Note that the preceding statement assigns the value 57 to the variable myVariable. The assignment
operator (=) does not test equality; rather it causes whatever is on the right side (57) to be assigned
to whatever is on the left side (myVariable). All of the C# operators (including assignment and
equality) are discussed later in this chapter (see Section 3.6).

Because myVariable = 57 is an expression that evaluates to 57, it can be used as part of another
assignment operator, such as:

mySecondVariable = myVariable = 57;

What happens in this statement is that the literal value 57 is assigned to the variable myVariable.
The value of that assignment (57) is then assigned to the second variable, mySecondVariable.
Thus, the value 57 is assigned to both variables. You can thus initialize any number of variables to
the same value with one statement:

a = b = c = d = e = 20;

3.4 Whitespace

In the C# language, spaces, tabs, and newlines are considered to be " whitespace" (so named
because you see only the white of the underlying "page"). Extra whitespace is generally ignored in
C# statements. Thus, you can write:

myVariable = 5;

or:

myVariable = 5;

and the compiler will treat the two statements as identical.

The exception to this rule is that whitespace within strings is not ignored. If you write:

Console.WriteLine("Hello World")

each space between "Hello" and "World" is treated as another character in the string.

Most of the time the use of whitespace is intuitive. The key is to use whitespace to make the
program more readable to the programmer; the compiler is indifferent.

However, there are instances in which the use of whitespace is quite significant. Although the
expression:

Programming C#

 page 33

int x = 5;

is the same as:

int x=5;

it is not the same as:

intx=5;

The compiler knows that the whitespace on either side of the assignment operator is extra, but the
whitespace between the type declaration int and the variable name x is not extra, and is required.
This is not surprising; the whitespace allows the compiler to parse the keyword int rather than
some unknown term intx. You are free to add as much or as little whitespace between int and x as
you care to, but there must be at least one whitespace character (typically a space or tab).

Visual Basic programmers take note: in C# the end-of-line has no special
significance; statements are ended with semicolons, not newline characters.
There is no line continuation character because none is needed.

3.5 Statements

In C# a complete program instruction is called a statement. Programs consist of sequences of C#
statements. Each statement must end with a semicolon (;). For example:

int x; // a statement
x = 23; // another statement
int y = x; // yet another statement

C# statements are evaluated in order. The compiler starts at the beginning of a statement list and
makes its way to the bottom. This would be entirely straightforward, and terribly limiting, were it
not for branching. There are two types of branches in a C# program: unconditional branching and
conditional branching.

Program flow is also affected by looping and iteration statements, which are signaled by the
keywords for , while, do, in, and foreach. Iteration is discussed later in this chapter. For now,
let's consider some of the more basic methods of conditional and unconditional branching.

3.5.1 Unconditional Branching Statements

An unconditional branch is created in one of two ways. The first way is by invoking a method.
When the compiler encounters the name of a method it stops execution in the current method and
branches to the newly "called" method. When that method returns a value, execution picks up in the
original method on the line just below the method call. Example 3-6 illustrates.

Example 3-6. Calling a method
using System;
class Functions
{
 static void Main()
 {
 Console.WriteLine("In Main! Calling SomeMethod()...");

Programming C#

 page 34

 SomeMethod();
 Console.WriteLine("Back in Main().");

 }
 static void SomeMethod()
 {
 Console.WriteLine("Greetings from SomeMethod!");
 }
}

Output:

In Main! Calling SomeMethod()...
Greetings from SomeMethod!
Back in Main().

Program flow begins in Main() and proceeds until SomeMethod() is invoked (invoking a method
is sometimes referred to as "calling" the method). At that point program flow branches to the
method. When the method completes, program flow resumes at the next line after the call to that
method.

The second way to create an unconditional branch is with one of the unconditional branch
keywords: goto, break, continue, return, or statementhrow. Additional information about the
first four jump statements is provided in Section 3.5.2.3, Section 3.5.3.1, and Section 3.5.3.6, later
in this chapter. The final statement, throw, is discussed in Chapter 9.

3.5.2 Conditional Branching Statements

A conditional branch is created by a conditional statement, which is signaled by keywords such as
if, else, or switch. A conditional branch occurs only if the condition expression evaluates true.

3.5.2.1 If...else statements

If...else statements branch based on a condition. The condition is an expression, tested in the
head of the if statement. If the condition evaluates true, the statement (or block of statements) in
the body of the if statement is executed.

If statements may contain an optional else statement. The else statement is executed only if the
expression in the head of the if statement evaluates false:

if (expression)
 statement1
[else
 statement2]

This is the kind of description of the if statement you are likely to find in your compiler
documentation. It shows you that the if statement takes an expression (a statement that returns a
value) in parentheses, and executes statement1 if the expression evaluates true. Note that
statement1 can actually be a block of statements within braces.

You can also see that the else statement is optional, as it is enclosed in square brackets. Although
this gives you the syntax of an if statement, an illustration will make its use clear. Example 3-7
illustrates.

Example 3-7. If . . . else statements

Programming C#

 page 35

using System;
class Values
{
 static void Main()
 {
 int valueOne = 10;
 int valueTwo = 20;

 if (valueOne > valueTwo)
 {
 Console.WriteLine(
 "ValueOne: {0} larger than ValueTwo: {1}",
 valueOne, valueTwo);
 }
 else
 {
 Console.WriteLine(
 "ValueTwo: {0} larger than ValueOne: {1}",
 valueTwo,valueOne);
 }

 valueOne = 30; // set valueOne higher

 if (valueOne > valueTwo)
 {
 valueTwo = valueOne++;
 Console.WriteLine("\nSetting valueTwo to valueOne value, ");
 Console.WriteLine("and incrementing ValueOne.\n");
 Console.WriteLine("ValueOne: {0} ValueTwo: {1}",
 valueOne, valueTwo);
 }
 else
 {
 valueOne = valueTwo;
 Console.WriteLine("Setting them equal. ");
 Console.WriteLine("ValueOne: {0} ValueTwo: {1}",
 valueOne, valueTwo);
 }
 }
}

In Example 3-7, the first if statement tests whether valueOne is greater than valueTwo. The
relational operators such as greater than (>), less than (<), and equal to (==) are fairly intuitive to
use.

The test of whether valueOne is greater than valueTwo evaluates false (because valueOne is 10 and
valueTwo is 20 and so valueOne is not greater than valueTwo). The else statement is invoked,
printing the statement:

ValueTwo: 20 is larger than ValueOne: 10

The second if statement evaluates true and all the statements in the if block are evaluated, causing
two lines to print:

ValueOne was larger. Setting valueTwo to old ValueOne value,
and incrementing ValueOne.

ValueOne: 31 ValueTwo: 30

Programming C#

 page 36

Statement Blocks
Anyplace that C# expects a statement, you can substitute a statement block. A statement
block is a set of statements surrounded by braces.

Thus, where you might write:

if (someCondition)
 someStatement;

you can instead write:

if(someCondition)
{
 statementOne;
 statementTwo;
 statementThree;
}

3.5.2.2 Nested if statements

It is possible, and not uncommon, to nest if statements to handle complex conditions. For example,
suppose you need to write a program to evaluate the temperature, and specifically to return the
following types of information:

• If the temperature is 32 degrees or lower, the program should warn you about ice on the
road.

• If the temperature is exactly 32 degrees, the program should tell you that there may be ice
patches.

• If the temperature is higher than 32 degrees, the program should assure you that there is no
ice.

There are many good ways to write this program. Example 3-8 illustrates one approach, using
nested if statements.

Example 3-8. Nested if statements
using System;
class Values
{
 static void Main()
 {
 int temp = 32;

 if (temp <= 32)
 {
 Console.WriteLine("Warning! Ice on road!");
 if (temp == 32)
 {
 Console.WriteLine(
 "Temp exactly freezing, beware of water.");
 }
 else
 {
 Console.WriteLine("Watch for black ice! Temp: {0}", temp);
 }
 }

Programming C#

 page 37

 }
}

The logic of Example 3-8 is that it tests whether the temperature is less than or equal to 32. If so, it
prints a warning:

if (temp <= 32)
{
 Console.WriteLine("Warning! Ice on road!");

The program then checks whether the temp is equal to 32 degrees. If so, it prints one message; if
not, the temp must be less than 32 and the program prints the second message. Notice that this
second if statement is nested within the first if, so the logic of the else is: "since it has been
established that the temp is less than or equal to 32, and it isn't equal to 32, it must be less than 32."

All Operators Are Not Created Equal
A closer examination of the second if statement in Example 3-8 reveals a common
potential problem. This if statement tests whether the temperature is equal to 32:

if (temp == 32)

In C and C++, there is an inherent danger in this kind of statement. It's not uncommon for
novice programmers to use the assignment operator rather than the equals operator,
instead creating the statement:

if (temp = 32)

This mistake would be difficult to notice, and the result would be that 32 was assigned to
temp, and then 32 would be returned as the value of the assignment statement. Because
any nonzero value evaluates to true in C and C#, the if statement would return true. The
side effect would be that temp would be assigned a value of 32 whether or not it
originally had that value. This is a common bug that could easily be overlooked—if the
developers of C# had not anticipated it!

C# solves this problem by requiring that if statements accept only Boolean values. The
32 returned by the assignment is not Boolean (it is an integer) and, in C#, there is no
automatic conversion from 32 to true. Thus, this bug would be caught at compile time,
which is a very good thing, and a significant improvement over C++—at the small cost of
not allowing implicit conversions from integers to Booleans!

3.5.2.3 Switch statements: an alternative to nested ifs

Nested if statements are hard to read, hard to get right, and hard to debug. When you have a
complex set of choices to make, the switch statement is a more powerful alternative. The logic of a
switch statement is this: "pick a matching value and act accordingly."

switch (expression)
{
 case constant-expression:
 statement
 jump-statement

Programming C#

 page 38

 [default: statement]
}

As you can see, like an if statement, the expression is put in parentheses in the head of the switch
statement. Each case statement then requires a constant expression; that is, a literal or symbolic
constant or an enumeration.

If a case is matched, the statement (or block of statements) associated with that case is executed.
This must be followed by a jump statement. Typically, the jump statement is break, which transfers
execution out of the switch. An alternative is a goto statement, typically used to jump into another
case, as illustrated in Example 3-9.

Example 3-9. The switch statement
using System;

class Values
{
 static void Main()
 {
 const int Democrat = 0;
 const int LiberalRepublican = 1;
 const int Republican = 2;
 const int Libertarian = 3;
 const int NewLeft = 4;
 const int Progressive = 5;

 int myChoice = Libertarian;

 switch (myChoice)
 {
 case Democrat:
 Console.WriteLine("You voted Democratic.\n");
 break;
 case LiberalRepublican: // fall through
 //Console.WriteLine(
 //"Liberal Republicans vote Republican\n");
 case Republican:
 Console.WriteLine("You voted Republican.\n");
 break;
 case NewLeft:
 Console.Write("NewLeft is now Progressive");
 goto case Progressive;
 case Progressive:
 Console.WriteLine("You voted Progressive.\n");
 break;
 case Libertarian:
 Console.WriteLine("Libertarians are voting Republican");
 goto case Republican;
 default:
 Console.WriteLine("You did not pick a valid choice.\n");
 break;
 }

 Console.WriteLine("Thank you for voting.");

 }
}

Programming C#

 page 39

In this whimsical example, we create constants for various political parties. We then assign one
value (Libertarian) to the variable myChoice and switch on that value. If myChoice is equal to
Democrat, we print out a statement. Notice that this case ends with break. Break is a jump
statement that takes us out of the switch statement and down to the first line after the switch, on
which we print "Thank you for voting."

The value LiberalRepublican has no statement under it, and it "falls through" to the next
statement: Republican. If the value is LiberalRepublican or Republican, the Republican
statements will execute. You can only "fall through" like this if there is no body within the
statement. If you uncomment the WriteLine under LiberalRepublican, this program will not
compile.

C and C++ programmers take note: you cannot fall through to the next case
if the case statement is not empty. Thus, you can write the following:

case 1: // fall through ok
case 2:

In this example, case 1 is empty. You cannot, however, write the following:

case 1:
 TakeSomeAction();
 // fall through not OK
case 2:

Here case 1 has a statement in it, and you cannot fall through. If you want
case 1 to fall through to case 2, you must explicitly use goto:

case 1: TakeSomeAction();
goto case 2
// explicit fall through
case 2:

If you do need a statement but you then want to execute another case, you can use the goto
statement, as shown in the NewLeft case:

goto case Progressive;

It is not required that the goto take you to the case immediately following. In the next instance, the
Libertarian choice also has a goto, but this time it jumps all the way back up to the Republican
case. Because our value was set to Libertarian, this is just what occurs. We print out the
Libertarian statement, then go to the Republican case, print that statement, and then hit the
break, taking us out of the switch and down to the final statement. The output for all of this is:

Libertarians are voting Republican
You voted Republican.

Thank you for voting.

Note the default case, excerpted from Example 3-9:

default:
 Console.WriteLine(
 "You did not pick a valid choice.\n");

Programming C#

 page 40

If none of the cases matches, the default case will be invoked, warning the user of the mistake.

3.5.2.4 Switch on string statements

In the previous example, the switch value was an integral constant. C# offers the ability to switch
on a string, allowing you to write:

case "Libertarian":

If the strings match, the case statement is entered.

3.5.3 Iteration Statements

C# provides an extensive suite of iteration statements, including for, while and do . . . while
loops, as well as foreach loops (new to the C family but familiar to VB programmers). In addition,
C# supports the goto, break , continue,and return jump statements.

3.5.3.1 The goto statement

The goto statement is the seed from which all other iteration statements have been germinated.
Unfortunately, it is a semolina seed, producer of spaghetti code and endless confusion. Most
experienced programmers properly shun the goto statement, but in the interest of completeness,
here's how you use it:

1. Create a label.
2. goto that label.

The label is an identifier followed by a colon. The goto command is typically tied to a condition, as
illustrated in Example 3-10.

Example 3-10. Using goto
using System;
public class Tester
 {

 public static int Main()
 {
 int i = 0;
 repeat: // the label
 Console.WriteLine("i: {0}",i);
 i++;
 if (i < 10)
 goto repeat; // the dasterdly deed
 return 0;
 }
 }

If you were to try to draw the flow of control in a program that makes extensive use of goto
statements, the resulting morass of intersecting and overlapping lines looks like a plate of spaghetti;
hence the term "spaghetti code." It was this phenomenon that led to the creation of alternatives,
such as the while loop. Many programmers feel that using goto in anything other than a trivial
example creates confusion and difficult-to-maintain code.

3.5.3.2 The while loop

Programming C#

 page 41

The semantics of the while loop are "while this condition is true, do this work."

The syntax is:

while (expression) statement

As usual, an expression is any statement that returns a value. While statements require an
expression that evaluates to a Boolean (true /false) value, and that statement can, of course, be a
block of statements. Example 3-11 updates Example 3-10, using a while loop.

Example 3-11. Using a while loop
using System;
public class Tester
 {

 public static int Main()
 {
 int i = 0;
 while (i < 10)
 {
 Console.WriteLine("i: {0}",i);
 i++;
 }
 return 0;
 }
 }

The code in Example 3-11 produces results identical to the code in Example 3-10, but the logic is a
bit clearer. The while statement is nicely self-contained, and it reads like an English sentence:
"while i is less than 10, print this message and increment i."

Notice that the while loop tests the value of i before entering the loop. This ensures that the loop
will not run if the condition tested is false; thus if i is initialized to 11, the loop will never run.

3.5.3.3 The do . . . while loop

There are times when a while loop might not serve your purpose. In certain situations, you might
want to reverse the semantics from "run while this is true" to the subtly different "do this, while this
condition remains true." In other words, take the action, and then, after the action is completed,
check the condition. For this you will use the do...while loop.

do expression while statement

An expression is any statement that returns a value. An example of the do...while loop is shown
in Example 3-12.

Example 3-12. The do...while loop
using System;
public class Tester
{

 public static int Main()
 {
 int i = 11;
 do
 {

Programming C#

 page 42

 Console.WriteLine("i: {0}",i);
 i++;
 } while (i < 10);
 return 0;
 }
}

Here i is initialized to 11 and the while test fails, but only after the body of the loop has run once.

3.5.3.4 The for loop

A careful examination of the while loop in Example 3-12 reveals a pattern often seen in iterative
statements: initialize a variable (i = 0), test the variable (i < 10), execute a series of statements,
and increment the variable (i++). The for loop allows you to combine all these steps in a single
loop statement:

for ([initializers]; [expression]; [iterators]) statement

The for loop is illustrated in Example 3-13.

Example 3-13. The for loop
using System;
public class Tester
{

 public static int Main()
 {
 for (int i=0;i<100;i++)
 {
 Console.Write("{0} ", i);

 if (i%10 == 0)
 {
 Console.WriteLine("\t{0}", i);
 }
 }
 return 0;
 }
}

Output:

0 0
1 2 3 4 5 6 7 8 9 10 10
11 12 13 14 15 16 17 18 19 20 20
21 22 23 24 25 26 27 28 29 30 30
31 32 33 34 35 36 37 38 39 40 40
41 42 43 44 45 46 47 48 49 50 50
51 52 53 54 55 56 57 58 59 60 60
61 62 63 64 65 66 67 68 69 70 70
71 72 73 74 75 76 77 78 79 80 80
81 82 83 84 85 86 87 88 89 90 90
91 92 93 94 95 96 97 98 99

This for loop makes use of the modulus operator described later in this chapter. The value of i is
printed until i is a multiple of 10.

if (i%10 == 0)

Programming C#

 page 43

A tab is then printed, followed by the value. Thus the tens (20,30,40, etc.) are called out on the right
side of the output.

The individual values are printed using Console.Write, which is much like WriteLine but which
does not enter a newline character, allowing the subsequent writes to occur on the same line.

A few quick points to notice: in a for loop the condition is tested before the statements are
executed. Thus, in the example, i is initialized to zero, then i is tested to see if it is less than 100.
Because i < 100 returns true, the statements within the for loop are executed. After the execution,
i is incremented (i++).

Note that the variable i is scoped to within the for loop (that is, the variable i is visible only within
the for loop). Example 3-14 will not compile:

Example 3-14. Scope of variables declared in a for loop
using System;
public class Tester
{

 public static int Main()
 {
 for (int i=0; i<100; i++)
 {
 Console.Write("{0} ", i);

 if (i%10 == 0)
 {
 Console.WriteLine("\t{0}", i);
 }
 }
 Console.WriteLine("\n Final value of i: {0}", i);
 return 0;
 }
}

The line shown in bold fails, as the variable i is not available outside the scope of the for loop
itself.

Whitespace and Braces
There is much controversy about the use of whitespace in programming. For example, the
for loop shown in Example 3-14:

 for (int i=0;i<100;i++)
 {
 Console.Write("{0} ", i);

 if (i%10 == 0)
 {

 Console.WriteLine("\t{0}", i);
 }
 }

could well be written with more space between the operators:

Programming C#

 page 44

 for (int i = 0; i < 100; i++)
 {
 Console.Write("{0} ", i);
 if (i % 10 == 0)
 {
 Console.WriteLine("\t{0}", i);
 }
 }

Because single for and if statements do not need braces, we can also rewrite the same
listing as

 for (int i = 0; i < 100; i++)
 Console.Write("{0} ", i);

 if (i % 10 == 0)
 Console.WriteLine("\t{0}", i);

Much of this is a matter of personal taste. Although I find whitespace can make code
more readable, too much space can cause confusion. In this book, I tend to compress the
whitespace to save room on the printed page.

3.5.3.5 The foreach statement

The foreach statement is new to the C family of languages; it is used for looping through the
elements of an array or a collection. Discussion of this incredibly useful statement is deferred until
Chapter 7.

3.5.3.6 The continue and break statements

There are times when you would like to restart a loop without executing the remaining statements in
the loop. The continue statement causes the loop to return to the top and continue executing.

The obverse side of that coin is the ability to break out of a loop and immediately end all further
work within the loop. For this purpose the break statement exists.

Break and continue create multiple exit points and make for hard-to-
understand, and thus hard-to-maintain, code. Use them with some care.

Example 3-15 illustrates the mechanics of continue and break. This code, suggested to me by one
of my technical reviewers, Donald Xie, is intended to create a traffic signal processing system. The
signals are simulated by entering numerals and uppercase characters from the keyboard, using
Console.ReadLine, which reads a line of text from the keyboard.

The algorithm is simple: receipt of a "0" (zero) means normal conditions, and no further action is
required except to log the event. (In this case, the program simply writes a message to the console; a
real application might enter a time-stamped record in a database.) On receipt of an Abort signal
(here simulated with an uppercase "A"), the problem is logged and the process is ended. Finally, for
any other event, an alarm is raised, perhaps notifying the police. (Note that this sample does not
actually notify the police, though it does print out a harrowing message to the console.) If the signal
is "X," the alarm is raised but the while loop is also terminated.

Programming C#

 page 45

Example 3-15. Using continue and break
using System;
public class Tester
{
 public static int Main()
 {
 string signal = "0"; // initialize to neutral
 while (signal != "X") // X indicates stop
 {
 Console.Write("Enter a signal: ");
 signal = Console.ReadLine();

 // do some work here, no matter what signal you
 // receive
 Console.WriteLine("Received: {0}", signal);

 if (signal == "A")
 {
 // faulty - abort signal processing
 // Log the problem and abort.
 Console.WriteLine("Fault! Abort\n");
 break;
 }

 if (signal == "0")
 {
 // normal traffic condition
 // log and continue on
 Console.WriteLine("All is well.\n");
 continue;
 }

 // Problem. Take action and then log the problem
 // and then continue on
 Console.WriteLine("{0} -- raise alarm!\n",
 signal);
 }
 return 0;
 }
}

Output:

Enter a signal: 0
The following signal was received: 0
All is well.

Enter a signal: B
The following signal was received: B
B -- raise alarm!

Enter a signal: A
The following signal was received: A
Faulty processing. Abort

Press any key to continue

The point of this exercise is that when the A signal is received, the action in the if statement is
taken and then the program breaks out of the loop, without raising the alarm. When the signal is 0 it
is also undesirable to raise the alarm, so the program continues from the top of the loop.

Programming C#

 page 46

3.6 Operators

An operator is a symbol that causes C# to take an action. The C# primitive types (e.g., int) support
a number of operators such as assignment, increment, and so forth. Their use is highly intuitive,
with the possible exception of the assignment operator (=) and the equality operator (==), which are
often confused.

3.6.1 The Assignment Operator (=)

Section 3.3, earlier in this chapter, demonstrates the use of the assignment operator. This symbol
causes the operand on the left side of the operator to have its value changed to whatever is on the
right side of the operator.

3.6.2 Mathematical Operators

C# uses five mathematical operators, four for standard calculations and a fifth to return the
remainder in integer division. The following sections consider the use of these operators.

3.6.2.1 Simple arithmetical operators (+, -, *, /)

C# offers operators for simple arithmetic: the addition (+), subtraction (-), multiplication (*), and
division (/) operators work as you might expect, with the possible exception of integer division.

When you divide two integers, C# divides like a child in fourth grade: it throws away any fractional
remainder. Thus, dividing 17 by 4 will return the value 4 (17/4 = 4, with a remainder of 1). C#
provides a special operator, modulus (%), described in the next section, to retrieve the remainder.

Note, however, that C# does return fractional answers when you divide floats, doubles, and
decimals.

3.6.2.2 The modulus operator (%) to return remainders

To find the remainder in integer division, use the modulus operator (%). For example, the statement
17%4 returns 1 (the remainder after integer division).

The modulus operator turns out to be more useful than you might at first imagine. When you
perform modulus n on a number that is a multiple of n, the result is zero. Thus 80 % 10 = 0
because 80 is an even multiple of 10. This fact allows you to set up loops in which you take an
action every nth time through the loop, by testing a counter to see if %n is equal to zero. This
strategy comes in handy in the use of the for loop, as described earlier in this chapter. The effects
of division on integers, floats, doubles, and decimals is illustrated in Example 3-16.

Example 3-16. Division and modulus
using System;
class Values
{
 static void Main()
 {
 int i1, i2;
 float f1, f2;
 double d1, d2;
 decimal dec1, dec2;

Programming C#

 page 47

 i1 = 17;
 i2 = 4;
 f1 = 17f;
 f2 = 4f;
 d1 = 17;
 d2 = 4;
 dec1 = 17;
 dec2 = 4;
 Console.WriteLine("Integer:\t{0}\nfloat:\t\t{1}\n",
 i1/i2, f1/f2);
 Console.WriteLine("double:\t\t{0}\ndecimal:\t{1}",
 d1/d2, dec1/dec2);
 Console.WriteLine("\nModulus:\t{0}", i1%i2);

 }
}

Output:

Integer: 4
float: 4.25
double: 4.25
decimal: 4.25

Modulus: 1

Now consider this line from Example 3-16:

Console.WriteLine("Integer:\t{0}\nfloat:\t\t{1}\n",
 i1/i2, f1/f2);

It begins with a call to Console.Writeline, passing in this partial string:

"Integer:\t{0}\n

This will print the characters Integer: followed by a tab (\t) followed by the first parameter
({0}) and then followed by a newline character (\n). The next string snippet:

float:\t\t{1}\n

is very similar. It prints float: followed by two tabs (to ensure alignment), the contents of the
second parameter ({1}), and then another newline. Notice the subsequent line, as well:

Console.WriteLine("\nModulus:\t{0}", i1%i2);

This time the string begins with a newline character, which causes a line to be skipped just before
the string Modulus: is printed. You can see this effect in the output.

3.6.3 Increment and Decrement Operators

A common requirement is to add a value to a variable, subtract a value from a variable, or otherwise
change the mathematical value, and then to assign that new value back to the same variable. You
might even want to assign the result to another variable altogether. The following two sections
discuss these cases respectively.

3.6.3.1 Calculate and reassign operators

Programming C#

 page 48

Suppose you want to increment the mySalary variable by 5000. You can do this by writing:

mySalary = mySalary + 5000;

The addition happens before the assignment, and it is perfectly legal to assign the result back to the
original variable. Thus, after this operation completes, mySalary will have been incremented by
5000. You can perform this kind of assignment with any mathematical operator:

mySalary = mySalary * 5000;
mySalary = mySalary - 5000;

and so forth.

The need to increment and decrement variables is so common that C# includes special operators for
self-assignment. Among these operators are += , -=, *=, /=, and %=, which, respectively, combine
addition, subtraction, multiplication, division, and modulus, with self-assignment. Thus, you can
alternatively write the previous examples as:

mySalary += 5000;
mySalary *= 5000;
mySalary -= 5000;

The effect of this is to increment mySalary by 5000, multiply mySalary by 5000, and subtract 5000
from the mySalary variable, respectively.

Because incrementing and decrementing by 1 is a very common need, C# (like C and C++ before it)
also provides two special operators. To increment by 1 you use the ++ operator, and to decrement
by 1 you use the -- operator.

Thus, if you want to increment the variable myAge by 1 you can write:

myAge++;

3.6.3.2 The prefix and postfix operators

To complicate matters further, you might want to increment a variable and assign the results to a
second variable:

firstValue = secondValue++;

The question arises: do you want to assign before you increment the value or after? In other words,
if secondValue starts out with the value 10, do you want to end with both firstValue and
secondValue equal to 11, or do you want firstValue to be equal to 10 (the original value) and
secondValue to be equal to 11?

C# (again, like C and C++) offer two flavors of the increment and decrement operators: prefix and
postfix. Thus you can write:

firstValue = secondValue++; // postfix

which will assign first, and then increment (firstValue=10, secondValue=11), or you can write:

firstValue = ++secondValue; //prefix

Programming C#

 page 49

which will increment first, and then assign (firstValue=11, secondValue=11).

It is important to understand the different effects of prefix and postfix, as illustrated in Example
3-17.

Example 3-17. Illustrating prefix versus postfix increment
using System;
class Values
{
 static void Main()
 {
 int valueOne = 10;
 int valueTwo;
 valueTwo = valueOne++;
 Console.WriteLine("After postfix: {0}, {1}", valueOne,
 valueTwo);
 valueOne = 20;
 valueTwo = ++valueOne;
 Console.WriteLine("After prefix: {0}, {1}", valueOne,
 valueTwo);
 }
}

Output:

After postfix: 11, 10
After prefix: 21, 21

3.6.4 Relational Operators

Relational operators are used to compare two values, and then return a Boolean (true or false). The
greater-than operator (>), for example, returns true if the value on the left of the operator is greater
than the value on the right. Thus, 5 > 2 returns the value true, while 2 > 5 returns the value
false.

The relational operators for C# are shown in Table 3-3. This table assumes two variables: bigValue
and smallValue in which bigValue has been assigned the value 100 and smallValue the value 50.

Table 3-3, C# relational operators (assumes bigValue = 100 and smallValue = 50)
Name Operator Given this statement: The expression evaluates to:

Equals ==
bigValue == 100

bigValue = 80

true

false

Not Equals !=
bigValue != 100

bigValue != 80

false

true
Greater than > bigValue > smallValue true

Greater than or equals >=
bigValue >= smallValue

smallValue >= bigValue

true

false
Less than < bigValue < smallValue false

Less than or equals <=
smallValue <= bigValue

bigValue <= smallValue

true

false

Programming C#

 page 50

Each of these relational operators acts as you might expect. However, take note of the equals
operator (==), which is created by typing two equal signs (=) in a row (i.e., without any space
between them); the C# compiler treats the pair as a single operator.

The C# equality operator (==) tests for equality between the objects on either side of the operator.
This operator evaluates to a Boolean value (true or false). Thus, the statement:

myX == 5;

evaluates to true if and only if myX is a variable whose value is 5.

It is not uncommon to confuse the assignment operator (=) with the equals
operator (==). The latter has two equal signs, the former only one.

3.6.5 Use of Logical Operators with Conditionals

If statements (discussed earlier in this chapter) test whether a condition is true. Often you will want
to test whether two conditions are both true, or only one is true, or none is true. C# provides a set of
logical operators for this, as shown in Table 3-4. This table assumes two variables, x and y, in
which x has the value 5 and y the value 7.

Table 3-4, C# logical operators (assumes x = 5, y = 7)
Name Operator Given this statement The expression evaluates to Logic
and && (x == 3) && (y == 7) false Both must be true
or || (x == 3) || (y == 7) true Either or both must be true
not ! ! (x == 3) true Expression must be false

The and operator tests whether two statements are both true. The first line in Table 3-4 includes an
example which illustrates the use of the and operator:

(x == 3) && (y == 7)

The entire expression evaluates false because one side (x == 3) is false.

With the or operator, either or both sides must be true; the expression is false only if both sides are
false. So, in the case of the example in Table 3-4:

(x == 3) || (y == 7)

the entire expression evaluates true because one side (y==7) is true.

With a not operator, the statement is true if the expression is false, and vice versa. So, in the
accompanying example:

! (x == 3)

the entire expression is true because the tested expression (x==3) is false. (The logic is: "it is true
that it is not true that x is equal to 3.")

Programming C#

 page 51

Short-Circuit Evaluation
Consider the following code snippet:

int x = 8;
if ((x == 8) || (y == 12))

The if statement here is a bit complicated. The entire if statement is in parentheses, as
are all if statements in C#. Thus, everything within the outer set of parentheses must
evaluate true for the if statement to be true.

Within the outer parentheses are two expressions (x==8) and (y==12) which are separated
by an or operator (||). Because x is 8, the first term (x==8) evaluates true. There is no
need to evaluate the second term (y==12). It doesn't matter whether y is 12, the entire
expression will be true. Similarly, consider this snippet:

int x = 8;
if ((x == 5) && (y == 12))

Again, there is no need to evaluate the second term. Because the first term is false, the
and must fail. (Remember, for an and statement to evaluate true, both tested expressions
must evaluate true.)

In cases such as these, the C# compiler will short-circuit the evaluation; the second test
will never be performed.

3.6.6 Operator Precedence

The compiler must know the order in which to evaluate a series of operators. For example, if I
write:

myVariable = 5 + 7 * 3;

there are three operators for the compiler to evaluate (=, +, and *). It could, for example, operate left
to right, which would assign the value 5 to myVariable, then add 7 to the 5 (12) and multiply by 3
(36)—but of course then it would throw that 36 away. This is clearly not what is intended.

The rules of precedence tell the compiler which operators to evaluate first. As is the case in algebra,
multiplication has higher precedence than addition, so 5+7*3 is equal to 26 rather than 36. Both
addition and multiplication have higher precedence than assignment, so the compiler will do the
math, and then assign the result (26) to myVariable only after the math is completed.

In C#, parentheses are also used to change the order of precedence much as they are in algebra.
Thus, you can change the result by writing:

myVariable = (5+7) * 3;

Grouping the elements of the assignment in this way causes the compiler to add 5+7, multiply the
result by 3, and then assign that value (36) to myVariable. Table 3-5 summarizes operator
precedence in C#.

Table 3-5, Operator precedence

Programming C#

 page 52

Category Operators

Primary (x) x.y f(x) a[x] x++ x-- new typeof sizeof
checked unchecked

Unary + - ! ~ ++x —x (T)x
Multiplicative * / %
Additive + -
Shift << >>
Relational < > <= >= is
Equality == !=
Logical AND &
Logical XOR ^
Logical OR |
Conditional AND &&
Conditional OR ||
Conditional ?:
Assignment = *= /= %= += -= <<= >>= &= ^= |=

In some complex equations you might need to nest your parentheses to ensure the proper order of
operations. Assume I want to know how many seconds my family wastes each morning.

It turns out that the adults spend 20 minutes over coffee each morning and 10 minutes reading the
newspaper. The children waste 30 minutes dawdling and 10 minutes arguing.

Here's my algorithm:

(((minDrinkingCoffee + minReadingNewspaper)* numAdults) +
((minDawdling + minArguing) * numChildren)) * secondsPerMinute.

Although this works, it is hard to read and hard to get right. It's much easier to use interim variables:

wastedByEachAdult = minDrinkingCoffee + minReadingNewspaper;
wastedByAllAdults = wastedByEachAdult * numAdults;
wastedByEachKid = minDawdling + minArguing;
wastedByAllKids = wastedByEachKid * numChildren;
wastedByFamily = wastedByAllAdults + wastedByAllKids;
totalSeconds = wastedByFamily * 60;

The latter example uses many more interim variables, but it is far easier to read, understand, and
(most important) debug. As you step through this program in your debugger, you can see the
interim values and make sure they are correct.

3.6.7 The Ternary Operator

Although most operators require one term (e.g., myValue++) or two terms (e.g., a+b), there is one
operator that has three—the ternary operator (?:).

cond-expr ? expr1 : expr2

This operator evaluates a conditional expression (an expression which returns a value of type bool),
and then invokes either expression1 if the value returned from the conditional expression is true,
or expression2 if the value returned is false. The logic is "if this is true, do the first; otherwise do
the second." Example 3-18 illustrates.

Programming C#

 page 53

Example 3-18. The ternary operator
using System;
class Values
{
 static void Main()
 {
 int valueOne = 10;
 int valueTwo = 20;

 int maxValue = valueOne > valueTwo ? valueOne : valueTwo;

 Console.WriteLine("ValueOne: {0}, valueTwo: {1}, maxValue: {2}",
 valueOne, valueTwo, maxValue);

 }
}

Output:

ValueOne: 10, valueTwo: 20, maxValue: 20

In Example 3-18, the ternary operator is being used to test whether valueOne is greater than
valueTwo. If so, the value of valueOne is assigned to the integer variable maxValue; otherwise the
value of valueTwo is assigned to maxValue.

3.7 Namespaces

Chapter 2 discusses the reasons for introducing namespaces into the C# language (e.g., avoiding
name collisions when using libraries from multiple vendors). In addition to using the namespaces
provided by the .NET Framework or other vendors, you are free to create your own. You do this by
using the namespace keyword, followed by the name you wish to create. Enclose the objects for
that namespace within braces, as illustrated in Example 3-19.

Example 3-19. Creating namespaces
namespace Programming_C_Sharp
{
 using System;
 public class Tester
 {

 public static int Main()
 {
 for (int i=0;i<10;i++)
 {
 Console.WriteLine("i: {0}",i);
 }
 return 0;
 }
 }
}

Example 3-19 creates a namespace called Programming_C_Sharp, and also specifies a Tester class
which lives within that namespace. You can alternatively choose to nest your namespaces, as
needed, by declaring one within another. You might do so to segment your code, creating objects
within a nested namespace whose names are protected from the outer namespace, as illustrated in
Example 3-20.

Example 3-20. Nesting namespaces

Programming C#

 page 54

namespace Programming_C_Sharp
{
 namespace Programming_C_Sharp_Test
 {
 using System;
 public class Tester
 {

 public static int Main()
 {
 for (int i=0;i<10;i++)
 {
 Console.WriteLine("i: {0}",i);
 }
 return 0;
 }
 }
 }
}

The Tester object now declared within the Programming_C_Sharp_Test namespace is:

Programming_C_Sharp.Programming_C_Sharp_Test.Tester

This name would not conflict with another Tester object in any other namespace, including the
outer namespace Programming_C_Sharp.

3.8 Preprocessor Directives

In the examples you've seen so far, you've compiled your entire program whenever you compiled
any of it. At times, however, you might want to compile only parts of your program depending on,
for example, whether you are debugging or building your production code.

Before your code is compiled, another program called the preprocessor runs and prepares your
program for the compiler. The preprocessor examines your code for special preprocessor directives,
all of which begin with the pound sign (#). These directives allow you to define identifiers and then
test for their existence.

3.8.1 Defining Identifiers

#define DEBUG defines a preprocessor identifier, DEBUG. Although other preprocessor directives
can come anywhere in your code, identifiers must be defined before any other code, including
using statements.

You can test whether DEBUG has been defined with the #if statement. Thus, you can write:

#define DEBUG

//... some normal code - not affected by preprocessor

#if DEBUG
 // code to include if debugging
#else
 // code to include if not debugging
#endif

//... some normal code - not affected by preprocessor

Programming C#

 page 55

When the preprocessor runs, it sees the #define statement and records the identifier DEBUG. The
preprocessor skips over your normal C# code and then finds the #if - #else - #endif block.

The #if statement tests for the identifier DEBUG, which does exist, and so the code between #if and
#else is compiled into your program, but the code between #else and #endif is not compiled.
That code does not appear in your assembly at all; it is as if it were left out of your source code.

Had the #if statement failed—that is, if you had tested for an identifier which did not exist—the
code between #if and #else would not be compiled, but the code between #else and #endif
would be compiled.

Any code not surrounded by #if - #endif is not affected by the
preprocessor and is compiled into your program.

3.8.2 Undefining Identifiers

You undefine an identifier with #undef. The preprocessor works its way through the code from top
to bottom, so the identifier is defined from the #define statement until the #undef statement, or
until the program ends. Thus if you write:

#define DEBUG

#if DEBUG
 // this code will be compiled
#endif

#undef DEBUG

#if DEBUG
 // this code will not be compiled
#endif

the first #if will succeed (DEBUG is defined), but the second will fail (DEBUG has been undefined).

3.8.3 #if, #elif, #else, and #endif

There is no switch statement for the preprocessor, but the #elif and #else directives provide
great flexibility. The #elif directive allows the else-if logic of "if DEBUG then action one, else if
TEST then action two, else action three":

#if DEBUG
 // compile this code if debug is defined
#elif TEST
 // compile this code if debug is not defined
 // but TEST is defined
#else
 // compile this code if neither DEBUG nor TEST
 // is defined
#endif

In this example the preprocessor first tests to see if the identifier DEBUG is defined. If it is, the code
between #if and #elif will be compiled, and none of the rest of the code until #endif, will be
compiled.

Programming C#

 page 56

If (and only if) DEBUG is not defined, the preprocessor next checks to see if TEST is defined. Note
that the preprocessor will not check for TEST unless DEBUG is not defined. If TEST is defined, the
code between the #elif and the #else directives will be compiled. If it turns out that neither DEBUG
nor TEST is defined, the code between the #else and the #endif statements will be compiled.

3.8.4 #region

The #region preprocessor directive marks an area of text with a comment. The principal use of this
preprocessor directive is to allow tools such as Visual Studio .NET to mark off areas of code and
collapse them in the editor with only the region's comment showing.

For example, when you create a Windows application (covered in Chapter 13) Visual Studio .NET
creates a region for code generated by the designer. When the region is expanded it looks like
Figure 3-1. (Note: I've added the rectangle and highlighting to make it easier to find the region.)

Figure 3-1. Expanding the Visual Studio .NET code region

You can see the region marked by the #region and #end region preprocessor directives. When
the region is collapsed, however, all you see is the region comment (Windows Form Designer
generated code), as shown in Figure 3-2.

Figure 3-2. Code region is collapsed

Programming C#

 page 57

Chapter 4. Classes and Objects
Chapter 3 discusses the myriad primitive types built into the C# language, such as int, long, and
char. The heart and soul of C#, however, is the ability to create new, complex, programmer-defined
types that map cleanly to the objects that make up the problem you are trying to solve.

It is this ability to create new types that characterizes an object-oriented language. You specify new
types in C# by declaring and defining classes. You can also define types with interfaces, as you will
see in Chapter 8. Instances of a class are called objects. Objects are created in memory when your
program executes.

The difference between a class and an object is the same as the difference between the concept of a
Dog and the particular dog who is sitting at your feet as you read this. You can't play fetch with the
definition of a Dog, only with an instance.

A Dog class describes what dogs are like: they have weight, height, eye color, hair color,
disposition, and so forth. They also have actions they can take, such as eat, walk, bark, and sleep. A
particular dog (such as my dog Milo) will have a specific weight (62 pounds), height (22 inches),
eye color (black), hair color (yellow), disposition (angelic), and so forth. He is capable of all the
actions of any dog (though if you knew him you might imagine that eating is the only method he
implements).

The huge advantage of classes in object-oriented programming is that they encapsulate the
characteristics and capabilities of an entity in a single, self-contained and self-sustaining unit of
code. When you want to sort the contents of an instance of a Windows list box control, for example,
you tell the list box to sort itself. How it does so is of no concern; that it does so is all you need to
know. Encapsulation, along with polymorphism and inheritance, is one of three cardinal principles
of object-oriented programming.

Programming C#

 page 58

An old programming joke asks, how many object-oriented programmers does it take to change a
light bulb? Answer: none, you just tell the light bulb to change itself. (Alternate answer: none,
Microsoft has changed the standard to darkness.)

This chapter explains the C# language features that are used to specify new classes. The elements of
a class—its behaviors and properties—are known collectively as its class members. This chapter
will show how methods are used to define the behaviors of the class, and how the state of the class
is maintained in member variables (often called fields). In addition, this chapter introduces
properties, which act like methods to the creator of the class but look like fields to clients of the
class.

4.1 Defining Classes

To define a new type or class you first declare it, and then define its methods and fields. You
declare a class using the class keyword. The complete syntax is as follows:

[
attributes

] [
access-modifiers

] class identifier [:base-class]
{
class-body

 }

Attributes are covered in Chapter 18; access modifiers are discussed in the next section. (Typically,
your classes will use the keyword public as an access modifier.) The identifier is the name of
the class that you provide. The optional base-class is discussed in Chapter 5. The member
definitions that make up the class-body are enclosed by open and closed curly braces ({}).

C++ programmers take note: a C# class definition does not end with a
semicolon, though if you add one the program will still compile.

In C#, everything happens within a class. For instance, some of the examples in Chapter 3 make use
of a class named Tester:

public class Tester
{

 public static int Main()
 {
 /...
 }
}

So far, we've not instantiated any instances of that class; that is, we haven't created any Tester
objects. What is the difference between a class and an instance of that class? To answer that
question, start with the distinction between the type int and a variable of type int. Thus, while you
would write:

Programming C#

 page 59

int myInteger = 5;

you would not write:

int = 5;

You can't assign a value to a type; instead, you assign the value to an object of that type (in this
case, a variable of type int).

When you declare a new class, you define the properties of all objects of that class, as well as their
behaviors. For example, if you are creating a windowing environment, you might want to create
screen widgets, more commonly known as controls in Windows programming, to simplify user
interaction with your application. One control of interest might be a list box, a control that is very
useful for presenting a list of choices to the user and enabling the user to select from the list.

List boxes have a variety of characteristics: height, width, location, and text color, for example.
Programmers have also come to expect certain behaviors of list boxes: they can be opened, closed,
sorted, and so on.

Object-oriented programming allows you to create a new type, ListBox, which encapsulates these
characteristics and capabilities. Such a class might have member variables named height, width,
location, and text color, and member methods named sort(), add(), remove(), etc.

You can't assign data to the ListBox type. Instead you must first create an object of that type, as in
the following code snippet:

ListBox myListBox;

Once you create an instance of ListBox, you can assign data to its fields.

Now consider a class to keep track of and display the time of day. The internal state of the class
must be able to represent the current year, month, date, hour, minute, and second. You probably
would also like the class to display the time in a variety of formats. You might implement such a
class by defining a single method and six variables, as shown in Example 4-1.

Example 4-1. Simple Time class
 using System;

 public class Time
 {
 // public methods
 public void DisplayCurrentTime()
 {
 Console.WriteLine(
 "stub for DisplayCurrentTime");
 }

 // private variables
 int Year;
 int Month;
 int Date;
 int Hour;
 int Minute;
 int Second;

Programming C#

 page 60

 }

 public class Tester
 {
 static void Main()
 {
 Time t = new Time();
 t.DisplayCurrentTime();
 }

 }

The only method declared within the Time class definition is the method DisplayCurrentTime().
The body of the method is defined within the class definition itself. Unlike other languages (such as
C++), C# does not require that methods be declared before they are defined, nor does the language
support placing its declarations into one file and code into another. (C# has no header files.) All C#
methods are defined in line as shown in Example 4-1 with DisplayCurrentTime().

The DisplayCurrentTime() method is defined to return void; that is, it will not return a value to
a method that invokes it. For now, the body of this method has been "stubbed out."

The Time class definition ends with the declaration of a number of member variables: Year, Month,
Date, Hour, Minute, and Second.

After the closing brace, a second class, Tester, is defined. Tester contains our now familiar Main(
) method. In Main() an instance of Time is created and its address is assigned to object t. Because
t is an instance of Time, Main()can make use of the DisplayCurrentTime() method available
with objects of that type and call it to display the time:

t.DisplayCurrentTime();

4.1.1 Access Modifiers

An access modifier determines which class methods—including methods of other classes—can see
and use a member variable or method within a class. Table 4-1 summarizes the C# access modifiers.

Table 4-1, Access modifiers
Access Modifier Restrictions
public No restrictions. Members marked public are visible to any method of any class.
private The members in class A which are marked private are accessible only to methods of class A.

protected The members in class A which are marked protected are accessible to methods of class A and
also to methods of classes derived from class A.

internal The members in class A which are marked internal are accessible to methods of any class in A's
assembly.

protected
internal

The members in class A which are marked protected internal are accessible to methods of
class A, to methods of classes derived from class A, and also to any class in A's assembly. This is
effectively protected OR internal (There is no concept of protected AND internal.)

It is generally desirable to designate the member variables of a class as private. This means that
only member methods of that class can access their value. Because private is the default
accessibility level, you do not need to make it explicit, but I recommend that you do so. Thus, in
Example 4-1, the declarations of member variables should have been written as follows:

// private variables

Programming C#

 page 61

private int Year;
private int Month;
private int Date;
private int Hour;
private int Minute;
private int Second;

Class Tester and method DisplayCurrentTime() are both declared public so that any other class
can make use of them.

It is good programming practice to explicitly set the accessibility of all
methods and members of your class. Although you can rely on the fact that
class members are declared private by default, making their access explicit
indicates a conscious decision and is self-documenting.

4.1.2 Method Arguments

Methods can take any number of parameters.[1] The parameter list follows the method name and is
encased in parentheses, with each parameter preceded by its type. For example, the following
declaration defines a method named MyMethod which returns void (that is, which returns no value
at all) and which takes two parameters: an int and a button:

[1] The terms "argument" and "parameter" are often used interchangeably, though some programmers insist on differentiating between the argument declaration
and the parameters passed in when the method is invoked.

void MyMethod (int firstParam, button secondParam)
{
 // ...
}

Within the body of the method, the parameters act as local variables, as if you had declared them in
the body of the method and initialized them with the values passed in. Example 4-2 illustrates how
you pass values into a method, in this case values of type int and float.

Example 4-2. Passing values into SomeMethod()
using System;

public class MyClass
{
 public void SomeMethod(int firstParam, float secondParam)
 {
 Console.WriteLine(
 "Here are the parameters received: {0}, {1}",
 firstParam, secondParam);
 }

}

public class Tester
{
 static void Main()
 {
 int howManyPeople = 5;
 float pi = 3.14f;
 MyClass mc = new MyClass();
 mc.SomeMethod(howManyPeople, pi);
 }

Programming C#

 page 62

}

The method SomeMethod() takes an int and a float and displays them using
Console.WriteLine(). The parameters, which are named firstParam and secondParam, are
treated as local variables within SomeMethod().

In the calling method (Main), two local variables (howManyPeople and pi) are created and
initialized. These variables are passed as the parameters to SomeMethod(). The compiler maps
howManyPeople to firstParam and pi to secondParam, based on their relative positions in the
parameter list.

4.2 Creating Objects

In Chapter 3, a distinction is drawn between value types and reference types. The primitive C#
types (int, char, etc.) are value types, and are created on the stack. Objects, however, are reference
types, and are created on the heap, using the keyword new, as in the following:

Time t = new Time();

t does not actually contain the value for the Time object; it contains the address of that (unnamed)
object that is created on the heap. t itself is just a reference to that object.

4.2.1 Constructors

In Example 4-1, notice that the statement that creates the Time object looks as though it is invoking
a method:

Time t = new Time();

In fact, a method is invoked whenever you instantiate an object. This method is called a
constructor, and you must either define one as part of your class definition or let the Common
Language Runtime (CLR) provide one on your behalf. The job of a constructor is to create the
object specified by a class and to put it into a valid state. Before the constructor runs, the object is
undifferentiated memory; after the constructor completes, the memory holds a valid instance of the
class type.

The Time class of Example 4-1 does not define a constructor. If a constructor is not declared, the
compiler provides one for you. The default constructor creates the object but takes no other action.
Member variables are initialized to innocuous values (integers to 0, strings to the empty string, etc.).
Table 4-2 lists the default values assigned to primitive types.

Table 4-2, Primitive types and their default values
Type Default Value

numeric (int, long , etc.) 0
bool false
char `\0' (null)
enum 0
reference null

Typically, you'll want to define your own constructor and provide it with arguments so that the
constructor can set the initial state for your object. In Example 4-1, assume that you want to pass in
the current year, month, date, and so forth, so that the object is created with meaningful data.

Programming C#

 page 63

To define a constructor you declare a method whose name is the same as the class in which it is
declared. Constructors have no return type and are typically declared public. If there are arguments
to be passed, you define an argument list just as you would for any other method. Example 4-3
declares a constructor for the Time class that accepts a single argument, an object of type DateTime.

Example 4-3. Declaring a constructor
 public class Time
 {
 // public accessor methods
 public void DisplayCurrentTime()
 {
 System.Console.WriteLine("{0}/{1}/{2} {3}:{4}:{5}",
 Month, Date, Year, Hour, Minute, Second);
 }

 // constructor
 public Time(System.DateTime dt)
 {

 Year = dt.Year;
 Month = dt.Month;
 Date = dt.Day;
 Hour = dt.Hour;
 Minute = dt.Minute;
 Second = dt.Second;
 }

 // private member variables
 int Year;
 int Month;
 int Date;
 int Hour;
 int Minute;
 int Second;

 }

 public class Tester
 {
 static void Main()
 {
 System.DateTime currentTime = System.DateTime.Now;
 Time t = new Time(currentTime);
 t.DisplayCurrentTime();
 }

 }

 Output:
11/16/2000 16:21:40

In this example, the constructor takes a DateTime object and initializes all the member variables
based on values in that object. When the constructor finishes, the Time object exists and the values
have been initialized. When DisplayCurrentTime() is called in Main(), the values are displayed.

Try commenting out one of the assignments and running the program again. You'll find that the
member variable is initialized by the compiler to 0. Integer member variables are set to 0 if you
don't otherwise assign them. Remember, value types (e.g., integers) cannot be uninitialized; if you
don't tell the constructor what to do, it will try for something innocuous.

Programming C#

 page 64

In Example 4-3, the DateTime object is created in the Main() method of Tester. This object,
supplied by the System library, offers a number of public values—Year, Month, Day, Hour, Minute,
and Second—that correspond directly to the private member variables of our Time object. In
addition, the DateTime object offers a static member method, Now, which returns a reference to an
instance of a DateTime object initialized with the current time.

Examine the highlighted line in Main(), where the DateTime object is created by calling the static
method Now(). Now()creates a DateTime object on the heap and returns a reference to it.

That reference is assigned to currentTime, which is declared to be a reference to a DateTime
object. Then currentTime is passed as a parameter to the Time constructor. The Time constructor
parameter, dt, is also a reference to a DateTime object; in fact dt now refers to the same DateTime
object as currentTime does. Thus, the Time constructor has access to the public member variables
of the DateTime object that was created in Tester.Main().

The reason that the DateTime object referred to in the Time constructor is the same object referred
to in Main() is that objects are reference types. Thus, when you pass one as a parameter it is
passed by reference—that is, the pointer is passed and no copy of the object is made.

4.2.2 Initializers

It is possible to initialize the values of member variables in an initializer, instead of having to do so
in every constructor. You create an initializer by assigning an initial value to a class member:

private int Second = 30; // initializer

Assume that the semantics of our Time object are such that no matter what time is set, the seconds
are always initialized to 30. We might rewrite our Time class to use an initializer so that no matter
which constructor is called, the value of Second is always initialized, either explicitly by the
constructor or implicitly by the initializer, as shown in Example 4-4.

Example 4-4. Using an initializer
 public class Time
 {
 // public accessor methods
 public void DisplayCurrentTime()
 {
 System.DateTime now = System.DateTime.Now;
 System.Console.WriteLine(
 "\nDebug\t: {0}/{1}/{2} {3}:{4}:{5}",
 now.Month, now.Day , now.Year, now.Hour,
 now.Minute, now.Second);

 System.Console.WriteLine("Time\t: {0}/{1}/{2} {3}:{4}:{5}",
 Month, Date, Year, Hour, Minute, Second);
 }

 // constructors
 public Time(System.DateTime dt)
 {

 Year = dt.Year;
 Month = dt.Month;
 Date = dt.Day;

Programming C#

 page 65

 Hour = dt.Hour;
 Minute = dt.Minute;
 Second = dt.Second; //explicit assignment
 }

 public Time(int Year, int Month, int Date,
 int Hour, int Minute)
 {
 this.Year = Year;
 this.Month = Month;
 this.Date = Date;
 this.Hour = Hour;
 this.Minute = Minute;
 }

 // private member variables
 private int Year;
 private int Month;
 private int Date;
 private int Hour;
 private int Minute;
 private int Second = 30; // initializer
 }

 public class Tester
 {
 static void Main()
 {
 System.DateTime currentTime = System.DateTime.Now;
 Time t = new Time(currentTime);
 t.DisplayCurrentTime();

 Time t2 = new Time(2000,11,18,11,45);
 t2.DisplayCurrentTime();

 }
 }

 Output:
Debug : 11/27/2000 7:52:54
Time : 11/27/2000 7:52:54

Debug : 11/27/2000 7:52:54
Time : 11/18/2000 11:45:30

If you do not provide a specific initializer, the constructor will initialize each integer member
variable to zero (0). In the case shown, however, the Second member is initialized to 30:

private int Second = 30; // initializer

If a value is not passed in for Second, its value will be set to 30 when t2 is created:

Time t2 = new Time(2000,11,18,11,45);
t2.DisplayCurrentTime();

However, if a value is assigned to Second, as is done in the constructor (which takes a DateTime
object, shown in bold), that value overrides the initialized value.

Programming C#

 page 66

The first time through the program we call the constructor that takes a DateTime object, and the
seconds are initialized to 54. The second time through we explicitly set the time to 11:45 (not
setting the seconds) and the initializer takes over.

If the program did not have an initializer and did not otherwise assign a value to Second, the value
would be initialized by the compiler to zero.

4.2.4 The this Keyword

The keyword this refers to the current instance of an object. The this reference (sometimes
referred to as a this pointer[2]) is a hidden pointer to every nonstatic method of a class. Each method
can refer to the other methods and variables of that object by way of the this reference.

[2] A pointer is a variable that holds the address of an object in memory. C# does not use pointers with managed objects.

There are three ways in which the this reference is typically used. The first way is to qualify
instance members otherwise hidden by parameters, as in the following:

public void SomeMethod (int hour)
{
 this.hour = hour;
}

In this example, SomeMethod() takes a parameter (Hour) with the same name as a member
variable of the class. The this reference is used to resolve the name ambiguity. While this.Hour
refers to the member variable, Hour refers to the parameter.

Programming C#

 page 67

The argument in favor of this style is that you pick the right variable name and then use it both for
the parameter and for the member variable. The counter-argument is that using the same name for
both the parameter and the member variable can be confusing.

The second use of the this reference is to pass the current object as a parameter to another method.
For instance, the following code

public void FirstMethod(OtherClass otherObject)
{
 otherObject.SecondMethod(this);
}

establishes two classes, one with the method FirstMethod(), and OtherClass, with its method
SecondMethod(). Inside FirstMethod, we'd like to invoke SecondMethod, passing in the current
object for further processing.

The third use of this is with indexers, covered in Chapter 9.

4.3 Using Static Members

The properties and methods of a class can be either instance members or static members. Instance
members are associated with instances of a type, while static members are considered to be part of
the class. You access a static member through the name of the class in which it is declared. For
example, suppose you have a class named Button and have instantiated objects of that class named
btnUpdate and btnDelete. Suppose as well that the Button class has a static method
SomeMethod(). To access the static method you write:

Button.SomeMethod();

rather than writing:

btnUpdate.SomeMethod();

In C# it is not legal to access a static method or member variable through an instance, and trying to
do so will generate a compiler error (C++ programmers, take note).

Some languages distinguish between class methods and other (global) methods that are available
outside the context of any class. In C# there are no global methods, only class methods, but you can
achieve an analogous result by defining static methods within your class.

Static methods act more or less like global methods, in that you can invoke them without actually
having an instance of the object at hand. The advantage of static methods over global, however, is
that the name is scoped to the class in which it occurs, and thus you do not clutter up the global
namespace with myriad function names. This can help manage highly complex programs, and the
name of the class acts very much like a namespace for the static methods within it.

Resist the temptation to create a single class in your program in which you
stash all your miscellaneous methods. It is possible but not desirable and
undermines the encapsulation of an object-oriented design.

Programming C#

 page 68

4.3.1 Invoking Static Methods

The Main() method is static. Static methods are said to operate on the class, rather than on an
instance of the class. They do not have a this reference, as there is no instance to point to.

Static methods cannot directly access nonstatic members. For Main() to call a nonstatic method, it
must instantiate an object. Consider Example 4-2, reproduced here for your convenience.

using System;

public class MyClass
{
 public void SomeMethod(int firstParam, float secondParam)
 {
 Console.WriteLine(
 "Here are the parameters received: {0}, {1}",
 firstParam, secondParam);
 }

}

public class Tester
{
 static void Main()
 {
 int howManyPeople = 5;
 float pi = 3.14f;
 MyClass mc = new MyClass();
 mc.SomeMethod(howManyPeople, pi);
 }

}

SomeMethod() is a nonstatic method of MyClass. For Main() to access this method, it must first
instantiate an object of type MyClass and then invoke the method through that object.

4.3.2 Using Static Constructors

If your class declares a static constructor, you will be guaranteed that the static constructor will run
before any instance of your class is created.

You are not able to control exactly when a static constructor will run, but you
do know that it will be after the start of your program and before the first
instance is created. Because of this you cannot assume (or determine) whether
an instance is being created.

For example, you might add the following static constructor to Time:

static Time()
{
 Name = "Time";
}

Notice that there is no access modifier (e.g., public) before the static constructor. Access modifiers
are not allowed on static constructors. In addition, because this is a static member method, you
cannot access nonstatic member variables, and so Name must be declared a static member variable:

Programming C#

 page 69

private static string Name;

The final change is to add a line to DisplayCurrentTime(), as in the following:

public void DisplayCurrentTime()
{
 System.Console.WriteLine("Name: {0}", Name);
 System.Console.WriteLine("{0}/{1}/{2} {3}:{4}:{5}",
 Month, Date, Year, Hour, Minute, Second);
}

When all these changes are made, the output is:

Name: Time
11/20/2000 14:39:8
Name: Time
11/18/2000 11:3:30
Name: Time
11/18/2000 11:3:30

Although this code works, it is not necessary to create a static constructor to accomplish this goal.
You could, instead, use an initializer:

private static string Name = "Time";

which accomplishes the same thing. Static constructors are useful, however, for set-up work that
cannot be accomplished with an initializer and that needs to be done only once.

For example, assume you have an unmanaged bit of code in a legacy COM dll. You want to provide
a class wrapper for this code. You can call load library in your static constructor and initialize the
jump table in the static constructor. Handling legacy code and interoperating with unmanaged code
is discussed in Chapter 22.

4.3.3 Using Private Constructors

In C# there are no global methods or constants. You might find yourself creating small utility
classes that exist only to hold static members. Setting aside whether this is a good design or not, if
you create such a class you will not want any instances created. You can prevent any instances from
being created by creating a default constructor (one with no parameters) which does nothing, and
which is marked private. With no public constructors, it will not be possible to create an instance
of your class.

4.3.4 Using Static Fields

A common use of static member variables is to keep track of the number of instances that currently
exist for your class. Example 4-5 illustrates.

Example 4-5. Using static fields for instance counting
using System;

public class Cat
{

 public Cat()
 {

Programming C#

 page 70

 instances++;
 }

 public static void HowManyCats()
 {
 Console.WriteLine("{0} cats adopted",
 instances);
 }
 private static int instances = 0;
}

public class Tester
{
 static void Main()
 {
 Cat.HowManyCats();
 Cat frisky = new Cat();
 Cat.HowManyCats();
 Cat whiskers = new Cat();
 Cat.HowManyCats();

 }

}

Output:

0 cats adopted
1 cats adopted
2 cats adopted

The Cat class has been stripped to its absolute essentials. A static member variable called
instances is created and initialized to zero. Note that the static member is considered part of the
class, not a member of an instance, and so it cannot be initialized by the compiler on creation of an
instance. Thus, an explicit initializer is required for static member variables. When additional
instances of Cats are created (in a constructor) the count is incremented.

Static Methods to Access Static Fields
It is undesirable to make member data public. This applies to static member variables as
well. One solution is to make the static member private, as we've done here with
instances. We have created a public accessor method, HowManyCats(), to provide
access to this private member. Because HowManyCats() is also static, it has access to the
static member instances.

4.4 Destroying Objects

C# provides garbage collection and thus does not need an explicit destructor. If you do control an
unmanaged resource, however, you will need to explicitly free that resource when you are done
with it. Implicit control over this resource is provided with a Finalize() method (called a
finalizer), which will be called by the garbage collector when your object is destroyed.

The finalizer should only release resources that your object holds on to, and should not reference
other objects. Note that if you have only managed references you do not need to and should not
implement the Finalize() method; you want this only for handling unmanaged resources. Because

Programming C#

 page 71

there is some cost to having a finalizer, you ought to implement this only on methods that require it
(that is, methods that consume valuable unmanaged resources).

You must never call an object's Finalize() method directly (except that you can call the base
class' Finalize() method in your own Finalize()). The garbage collector will call Finalize(
) for you.

How Finalize Works
The garbage collector maintains a list of objects that have a Finalize() method. This
list is updated every time a finalizable object is created or destroyed.

When an object on the garbage collector's finalizable list is first collected, it is placed on a
queue with other objects waiting to be finalized. After the Finalize() method executes,
the garbage collector then collects the object and updates the queue, as well as its list of
finalizable objects.

4.4.1 The C# Destructor

C#'s destructor looks, syntactically, much like a C++ destructor, but it behaves quite differently.
You declare a C# destructor with a tilde as follows:

~MyClass(){}

In C#, however, this syntax is simply a shortcut for declaring a Finalize() method that chains up
to its base class. Thus, writing:

~MyClass()
{
 // do work here
}

is identical to writing:

MyClass.Finalize()
{
 // do work here
 base.Finalize();
}

Because of the potential for confusion, it is recommended that you eschew the destructor and write
an explicit finalizer if needed.

4.4.2 Finalize Versus Dispose

It is not legal to call a finalizer explicitly. Your Finalize() method will be called by the garbage
collector. If you do handle precious unmanaged resources (such as file handles) that you want to
close and dispose of as quickly as possible, you ought to implement the IDisposable interface.
(You will learn more about interfaces in Chapter 8.) The IDisposable interface requires its
implementers to define one method, named Dispose(), to perform whatever cleanup you consider
to be crucial. The availability of Dispose() is a way for your clients to say "don't wait for
Finalize() to be called, do it right now."

Programming C#

 page 72

If you provide a Dispose() method, you should stop the garbage collector from calling
Finalize() on your object. To stop the garbage collector, you call the static method
GC.SuppressFinalize(), passing in the this pointer for your object. Your Finalize() method
can then call your Dispose() method. Thus, you might write:

public void Dispose()
{
 // perform clean up

 // tell the GC not to finailze
 GC.SuppressFinalize(this);
}

public override void Finalize()
{
 Dispose();
 base.Finalize();
}

4.4.3 Implementing the Close Method

For some objects, you'd rather have your clients call the Close() method. (For example, Close
makes more sense than Dispose() for file objects.) You can implement this by creating a private
Dispose() method and a public Close() method and having your Close() method invoke
Dispose().

4.4.4 The using Statement

Because you cannot be certain that your user will call Dispose() reliably, and because finalization
is nondeterministic (i.e., you can't control when the GC will run), C# provides a using statement
which ensures that Dispose() will be called at the earliest possible time. The idiom is to declare
which objects you are using and then to create a scope for these objects with curly braces. When the
close brace is reached, the Dispose() method will be called on the object automatically, as
illustrated in Example 4-6.

Example 4-6. The using construct
using System.Drawing;
class Tester
{
 public static void Main()
 {
 using (Font theFont = new Font("Arial", 10.0f))
 {
 // use theFont

 } // compiler will call Dispose on theFont

 Font anotherFont = new Font("Courier",12.0f);

 using (anotherFont)
 {
 // use anotherFont

 } // compiler calls Dispose on anotherFont

 }

}

Programming C#

 page 73

In the first part of this example, the Font object is created within the using statement. When the
using statement ends, Dispose() is called on the Font object.

In the second part of the example, a Font object is created outside of the using statement. When we
decide to use that font, we put it inside the using statement and when that statement ends, once
again Dispose() is called.

The using statement also protects you against unanticipated exceptions. No matter how control
leaves the using statement, Dispose() is called. It is as if there were an implicit try-catch-finally
block. (See Section 11.2 in Chapter 11 for details.)

4.5 Passing Parameters

By default, value types are passed into methods by value (see Section 4.1.2 earlier in this chapter).
This means that when a value object is passed to a method, a temporary copy of the object is created
within that method. Once the method completes, the copy is discarded. Although passing by value
is the normal case, there are times when you will want to pass value objects by reference. C#
provides the ref parameter modifier for passing value objects into a method by reference and the
out modifier for those cases in which you want to pass in a ref variable without first initializing it.
C# also supports the params modifier which allows a method to accept a variable number of
parameters. The params keyword is discussed in Chapter 9.

4.5.1 Passing by Reference

Methods can return only a single value (though that value can be a collection of values). Let's return
to the Time class and add a GetTime() method which returns the hour, minutes, and seconds.

Because we cannot return three values, perhaps we can pass in three parameters, let the method
modify the parameters, and examine the result in the calling method. Example 4-7 shows a first
attempt at this.

Example 4-7. Returning values in parameters
public class Time
{
 // public accessor methods
 public void DisplayCurrentTime()
 {
 System.Console.WriteLine("{0}/{1}/{2} {3}:{4}:{5}",
 Month, Date, Year, Hour, Minute, Second);
 }

 public int GetHour()
 {
 return Hour;
 }

 public void GetTime(int h, int m, int s)
 {
 h = Hour;
 m = Minute;
 s = Second;
 }

 // constructor
 public Time(System.DateTime dt)
 {

Programming C#

 page 74

 Year = dt.Year;
 Month = dt.Month;
 Date = dt.Day;
 Hour = dt.Hour;
 Minute = dt.Minute;
 Second = dt.Second;
 }

 // private member variables
 private int Year;
 private int Month;
 private int Date;
 private int Hour;
 private int Minute;
 private int Second;

 }

 public class Tester
 {
 static void Main()
 {
 System.DateTime currentTime = System.DateTime.Now;
 Time t = new Time(currentTime);
 t.DisplayCurrentTime();

 int theHour = 0;
 int theMinute = 0;
 int theSecond = 0;
 t.GetTime(theHour, theMinute, theSecond);
 System.Console.WriteLine("Current time: {0}:{1}:{2}",
 theHour, theMinute, theSecond);

 }

 }

 Output:
11/17/2000 13:41:18
Current time: 0:0:0

Notice that the "Current time" in the output is 0:0:0. Clearly, this first attempt did not work. The
problem is with the parameters. We pass in three integer parameters to GetTime(), and we modify
the parameters in GetTime(), but when the values are accessed back in Main(), they are
unchanged. This is because integers are value types, and so are passed by value; a copy is made in
GetTime(). What we need is to pass these values by reference.

Two small changes are required. First, change the parameters of the GetTime method to indicate
that the parameters are ref (reference) parameters:

public void GetTime(ref int h, ref int m, ref int s)
{
 h = Hour;
 m = Minute;
 s = Second;
}

Second, modify the call to GetTime() to pass the arguments as references as well:

Programming C#

 page 75

t.GetTime(ref theHour, ref theMinute, ref theSecond);

If you leave out the second step of marking the arguments with the keyword ref, the compiler will
complain that the argument cannot be converted from an int to a ref int.

The results now show the correct time. By declaring these parameters to be ref parameters, you
instruct the compiler to pass them by reference. Instead of a copy being made, the parameter in
GetTime() is a reference to the same variable (theHour) that is created in Main(). When you
change these values in GetTime(), the change is reflected in Main().

Keep in mind that ref parameters are references to the actual original value—it is as if you said
"here, work on this one." Conversely, value parameters are copies—it is as if you said "here, work
on one just like this."

4.5.2 Passing Out Parameters with Definite Assignment

C# imposes definite assignment , which requires that all variables be assigned a value before they
are used. In Example 4-7, if you don't initialize theHour, theMinute, and theSecond before you
pass them as parameters to GetTime(), the compiler will complain. Yet the initialization that is
done merely sets their values to 0 before they are passed to the method:

int theHour = 0;
int theMinute = 0;
int theSecond = 0;
t.GetTime(ref theHour, ref theMinute, ref theSecond);

It seems silly to initialize these values because you immediately pass them by reference into
GetTime where they'll be changed, but if you don't, the following compiler errors are reported:

Use of unassigned local variable 'theHour'
Use of unassigned local variable 'theMinute'
Use of unassigned local variable 'theSecond'

C# provides the out parameter modifier for this situation. The out modifier removes the
requirement that a reference parameter be initiailzed. The parameters to GetTime(), for example,
provide no information to the method; they are simply a mechanism for getting information out of
it. Thus, by marking all three as out parameters, you eliminate the need to initialize them outside
the method. Within the called method the out parameters must be assigned a value before the
method returns. Here are the altered parameter declarations for GetTime():

public void GetTime(out int h, out int m, out int s)
{
 h = Hour;
 m = Minute;
 s = Second;
}

and here is the new invocation of the method in Main():

t.GetTime(out theHour, out theMinute, out theSecond);

To summarize, value types are passed into methods by value. Ref parameters are used to pass value
types into a method by reference. This allows you to retrieve their modified value in the calling

Programming C#

 page 76

method. Out parameters are used only to return information from a method. Example 4-8 rewrites
Example 4-7 to use all three.

Example 4-8. Using in, out, and ref parameters
public class Time
 {
 // public accessor methods
 public void DisplayCurrentTime()
 {
 System.Console.WriteLine("{0}/{1}/{2} {3}:{4}:{5}",
 Month, Date, Year, Hour, Minute, Second);
 }

 public int GetHour()
 {
 return Hour;
 }

 public void SetTime(int hr, out int min, ref int sec)
 {
 // if the passed in time is >= 30
 // increment the minute and set second to 0
 // otherwise leave both alone
 if (sec >= 30)
 {
 Minute++;
 Second = 0;
 }
 Hour = hr; // set to value passed in

 // pass the minute and second back out
 min = Minute;
 sec = Second;
 }

 // constructor
 public Time(System.DateTime dt)
 {

 Year = dt.Year;
 Month = dt.Month;
 Date = dt.Day;
 Hour = dt.Hour;
 Minute = dt.Minute;
 Second = dt.Second;
 }

 // private member variables
 private int Year;
 private int Month;
 private int Date;
 private int Hour;
 private int Minute;
 private int Second;

 }

 public class Tester
 {
 static void Main()
 {
 System.DateTime currentTime = System.DateTime.Now;
 Time t = new Time(currentTime);

Programming C#

 Hour = dt.Hour;
 Minute = dt.Minute;
 Second = dt.Second;
 }

 // private member variables
 public static int Year;
 public static int Month;
 public static int Date;
 public static int Hour;
 public static int Minute;
 public static int Second;
}

public class Tester
{
 static void Main()
 {
 System.Console.WriteLine ("This year: {0}",
 RightNow.Year.ToString());
 RightNow.Year = 2002;
 System.Console.WriteLine ("This year: {0}",
 RightNow.Year.ToString());
 }
}

Output:

This year: 2000
This year: 2002

This works well enough, until someone comes along and changes one of these values. As the
example shows, the RightNow.Year value can be changed, for example, to 2002. This is clearly not
what we'd like.

We'd like to mark the static values as constant, but that is not possible because we don't initialize
them until the static constructor is executed. C# provides the keyword readonly for exactly this
purpose. If you change the class member variable declarations as follows:

public static readonly int Year;
public static readonly int Month;
public static readonly int Date;
public static readonly int Hour;
public static readonly int Minute;
public static readonly int Second;

then comment out the reassignment in Main():

// RightNow.Year = 2002; // error!

the program will compile and run as intended.

 - 96 -

Overview
In C#, conversions are divided into implicit and explicit conversions. Implicit conversions are those that
will always succeed; the conversion can always be performed without data loss.[1] For numeric types,
this means that the destination type can fully represent the range of the source type. For example, a
short can be converted implicitly to an int, because the short range is a subset of the int range.

[1]Conversions from int, uint, or long to float and from long to double may result in a loss of
precision, but will not result in a loss of magnitude.

Numeric Types
For the numeric types, there are widening implicit conversions for all the signed and unsigned numeric
types. Figure 15-1 shows the conversion hierarchy. If a path of arrows can be followed from a source
type to a destination type, there is an implicit conversion from the source to the destination. For
example, there are implicit conversions from sbyte to short, from byte to decimal, and from
ushort to long.

Figure 15-1. C# conversion hierarchy

Note that the path taken from a source type to a destination type in the figure does not represent how
the conversion is done; it merely indicates that it can be done. In other words, the conversion from
byte to long is done in a single operation, not by converting through ushort and uint.
class Test

ß°°»²¼·¨ B. Conversions

 - 97 -

{
 public static void Main()
 {
 // all implicit
 sbyte v = 55;
 short v2 = v;
 int v3 = v2;
 long v4 = v3;

 // explicit to "smaller" types
 v3 = (int) v4;
 v2 = (short) v3;
 v = (sbyte) v2;
 }
}

Conversions and Member Lookup
When considering overloaded members, the compiler may have to choose between several functions.
Consider the following:
using System;
class Conv
{
 public static void Process(sbyte value)
 {
 Console.WriteLine("sbyte {0}", value);
 }
 public static void Process(short value)
 {
 Console.WriteLine("short {0}", value);
 }
 public static void Process(int value)
 {
 Console.WriteLine("int {0}", value);
 }
}
class Test
{
 public static void Main()
 {
 int value1 = 2;
 sbyte value2 = 1;
 Conv.Process(value1);
 Conv.Process(value2);
 }
}

 - 98 -

The preceding code produces the following output:
int 2
sbyte 1
In the first call to Process(), the compiler could only match the int parameter to one of the
functions, the one that took an int parameter.
In the second call, however, the compiler had three versions to choose from, taking sbyte, short, or
int. To select one version, it first tries to match the type exactly. In this case, it can match sbyte, so
that’s the version that gets called. If the sbyte version wasn’t there, it would select the short version,
because a short can be converted implicitly to an int. In other words, short is "closer to" sbyte in
the conversion hierarchy, and is therefore preferred.

The preceding rule handles many cases, but it doesn’t handle the following one:
using System;
class Conv
{
 public static void Process(short value)
 {
 Console.WriteLine("short {0}", value);
 }
 public static void Process(ushort value)
 {
 Console.WriteLine("ushort {0}", value);
 }
}
class Test
{
 public static void Main()
 {
 byte value = 3;
 Conv.Process(value);
 }
}
Here, the earlier rule doesn’t allow the compiler to choose one function over the other, because there
are no implicit conversions in either direction between ushort and short.
In this case, there’s another rule that kicks in, which says that if there is a single-arrow implicit
conversion to a signed type, it will be preferred over all conversions to unsigned types. This is
graphically represented in Figure 15-1 by the dotted arrows; the compiler will choose a single solid
arrow over any number of dotted arrows.
This rule only applies for the case where there is a single-arrow conversion to the signed type. If the
function that took a short was changed to take an int, there would be no "better" conversion, and an
ambiguity error would be reported.

Explicit Numeric Conversions
Explicit conversions—those using the cast syntax—are the conversions that operate in the opposite
direction from the implicit conversions. Converting from short to long is implicit, and therefore
converting from long to short is an explicit conversion.

Viewed another way, an explicit numeric conversion may result in a value that is different than the
original:
using System;
class Test

 - 99 -

{
 public static void Main()
 {
 uint value1 = 312;
 byte value2 = (byte) value1;
 Console.WriteLine("Value2: {0}", value2);
 }
}

The preceding code results in the following output:
56
In the conversion to byte, the least-significant (lowest-valued) part of the uint is put into the
byte value. In many cases, the programmer either knows that the conversion will succeed, or is
depending on this behavior.

Checked Conversions
In other cases, it may be useful to check whether the conversion succeeded. This is done by executing
the conversion in a checked context:
using System;
class Test
{
 public static void Main()
 {
 checked
 {
 uint value1 = 312;
 byte value2 = (byte) value1;
 Console.WriteLine("Value: {0}", value2);
 }
 }
}
When an explicit numeric conversion is done in a checked context, if the source value will not fit in the
destination data type, an exception will be thrown.
The checked statement creates a block in which conversions are checked for success. Whether a
conversion is checked or not is determined at compile time, and the checked state does not apply to
code in functions called from within the checked block.
Checking conversions for success does have a small performance penalty, and therefore may not be
appropriate for released software. It can, however, be useful to check all explicit numeric conversions
when developing software. The C# compiler provides a /checked compiler option that will generate
checked conversions for all explicit numeric conversions. This option can be used while developing
software, and then can be turned off to improve performance for released software.
If the programmer is depending upon the unchecked behavior, turning on /checked could cause
problems. In this case, the unchecked statement can be used to indicate that none of the conversions
in a block should ever be checked for conversions.
It is sometimes useful to be able to specify the checked state for a single statement; in this case, the
checked or unchecked operator can be specified at the beginning of an expression:
using System;
class Test
{
 public static void Main()
 {

 - 100 -

 uint value1 = 312;
 byte value2;

 value2 = unchecked((byte) value1); // never checked
 value2 = (byte) value1; // checked if /checked
 value2 = checked((byte) value1); // always checked
 }
}
In this example, the first conversion will never be checked, the second conversion will be checked if the
/checked statement is present, and the third conversion will always be checked.

Conversions of Classes (Reference Types)
Conversions involving classes are similar to those involving numeric values, except that object
conversions deal with casts up and down the object inheritance hierarchy instead of conversions up and
down the numeric type hierarchy.

As with numeric conversions, implicit conversions are those that will always succeed, and explicit
conversions are those that may fail.

To the Base Class of an Object
A reference to an object can be converted implicitly to a reference to the base class of an object. Note
that this does not convert the object to the type of the base class; only the reference is to the base class
type. The following example illustrates this:
using System;
public class Base
{
 public virtual void WhoAmI()
 {
 Console.WriteLine("Base");
 }
}
public class Derived: Base
{
 public override void WhoAmI()
 {
 Console.WriteLine("Derived");
 }
}
public class Test
{
 public static void Main()
 {
 Derived d = new Derived();
 Base b = d;

 b.WhoAmI();
 Derived d2 = (Derived) b;

 - 101 -

 Object o = d;
 Derived d3 = (Derived) o;
 }
}

This code produces the following output:
Derived
Initially, a new instance of Derived is created, and the variable d contains a reference to that object.
The reference d is then converted to a reference to the base type Base. The object referenced by both
variables, however, is still a Derived ; this is shown because when the virtual function WhoAmI() is
called, the version from Derived is called. It is also possible to convert the Base reference b back to
a reference of type Derived, or to convert the Derived reference to an object reference and back.
Converting to the base type is an implicit conversion because, as discussed in Chapter 1, “Object-
Oriented Basics,” a derived class is always an example of the base class. In other words, Derived is-
a Base.
Explicit conversions are possible between classes when there is a “could-be” relationship. Because
Derived is derived from Base, any reference to Base could really be a Base reference to a
Derived object, and therefore the conversion can be attempted. At runtime, the actual type of the
object referenced by the Base reference (in the previous example) will be checked to see if it is really a
reference to Derived. If it isn’t, an exception will be thrown on the conversion.
Because object is the ultimate base type, any reference to a class can be implicitly converted to a
reference to object, and a reference to object may be explicitly converted to a reference to any
class type.
Figure 15-2 shows the previous example pictorially.

Figure 15-2. Different references to the same instance

To an Interface the Object Implements
Interface implementation is somewhat like class inheritance. If a class implements an interface, an
implicit conversion can be used to convert from a reference to an instance of the class to the interface.
This conversion is implicit because it is known at compile time that it works.

Once again, the conversion to an interface does not change the underlying type of an object. A
reference to an interface can therefore be converted explicitly back to a reference to an object that
implements the interface, since the interface reference “could-be” referencing an instance of the
specified object.

In practice, converting back from the interface to an object is an operation that is rarely, if ever, used.

To an Interface the Object Might Implement
The implicit conversion from an object reference to an interface reference discussed in the previous
section isn’t the common case. An interface is especially useful in situations where it isn’t known
whether an object implements an interface.

The following example implements a debug trace routine that uses an interface if it’s available:
using System;
interface IdebugDump
{
 string DumpObject();
}
class Simple

 - 102 -

{
 public Simple(int value)
 {
 this.value = value;
 }
 public override string ToString()
 {
 return(value.ToString());
 }
 int value;
}
class Complicated: IdebugDump
{
 public Complicated(string name)
 {
 this.name = name;
 }
 public override string ToString()
 {
 return(name);
 }
 string IdebugDump.DumpObject()
 {
 return(String.Format(
 "{0}\nLatency: {0}\nRequests: {1}\nFailures; {0}\n",
 new object[] {name, latency, requestCount, failedCount}));
 }
 string name;
 int latency = 0;
 int requestCount = 0;
 int failedCount = 0;
}
 class Test
 {
 public static void DoConsoleDump(params object[] arr)
 {
 foreach (object o in arr)
 {
 IDebugDump dumper = o as IDebugDump;
 if (dumper != null)
 Console.WriteLine("{0}", dumper.DumpObject());
 else
 Console.WriteLine("{0}", o);
 }

ß°°»²¼·¨ Cæ Ó¿¬¸ Ý´¿
É±®µ·²¹ ©·¬¸ ²«³¾»® · ¬¸» ³±¬ º«²¼¿³»²¬¿´ °®±¹®¿³³·²¹ ¬¿µò Ì¸» Ó·½®±±º¬ òÒÛÌ Ú®¿³»©±®µ
¿²¼ Ýý ¿¼¼ ¿ º»© º»¿¬«®» ¬± ²«³¾»® ¬¸¿¬ ³¿§ ¾» ²»© ¬± ª»¬»®¿² Ý °®±¹®¿³³»®ò ×² ¬¸· ¿°°»²¼·¨ô
×ù´´ ¼·½« ¬¸±» º»¿¬«®» ¿ ©»´´ ¿ ¬¸» ¿´´ó·³°±®¬¿²¬ Ó¿¬¸ ½´¿ô ©¸·½¸ ½±²¬¿·² ³»¬¸±¼ ¬¸¿¬ ¿®»
»¯«·ª¿´»²¬ ±º º«²½¬·±² ¼»½´¿®»¼ ·² ¬¸» Ý Ó¿¬¸ò¸ ¸»¿¼»® º·´»ò

Ò«³»®·½ Ì§°»

Ì¸» Ýý ´¿²¹«¿¹» «°°±®¬ ïï ²«³»®·½ ¬§°» ¬¸¿¬ º¿´´ ·²¬± ¬¸®»» ½¿¬»¹±®·»æ ·²¬»¹®¿´ô º´±¿¬·²¹ °±·²¬ô
¿²¼ ¼»½·³¿´æ

Ýý Ò«³»®·½ Ì§°»

×²¬»¹»®

Þ·¬ Í·¹²»¼ Ë²·¹²»¼ Ú´±¿¬·²¹ Ð±·²¬ Ü»½·³¿´

è ¾§¬» ¾§¬»

ïê ¸±®¬ «¸±®¬

íî ·²¬ «·²¬ º´±¿¬

êì ´±²¹ «´±²¹ ¼±«¾´»

ïîè ¼»½·³¿´

×² ¿ Ýý °®±¹®¿³ô ¿² ·²¬»¹»® ´·¬»®¿´ ø¬¸¿¬ ·ô ¿ ²«³¾»® ©®·¬¬»² ©·¬¸±«¬ ¿ ¼»½·³¿´ °±·²¬÷ · ¿«³»¼ ¬±
¾» ¿² ·²¬ «²´» ·¬ ª¿´«» · ´¿®¹»® ¬¸¿² ¿ ³¿¨·³«³ ·²¬ô ·² ©¸·½¸ ½¿» ¬¸» ª¿´«» ±º ¬¸» ²«³¾»® · «»¼
¬± ¼»¬»®³·²» ·¬ ¬§°»ò Ì¸» ²«³¾»® · ¿«³»¼ ¬± ¾» ¿ «·²¬ô ´±²¹ô ±® «´±²¹ ø·² ¬¸¿¬ ±®¼»®÷ ¼»°»²¼·²¹
±² ·¬ ª¿´«»ò ß ´·¬»®¿´ ©·¬¸ ¿ ¼»½·³¿´ °±·²¬ ø±® ¬¸¿¬ ·²½´«¼» ¿² »¨°±²»²¬ ·²¼·½¿¬»¼ ©·¬¸ ¿² Û ±® »
º±´´±©»¼ ¾§ ¿ ²«³¾»®÷ · ¿«³»¼ ¬± ¾» ¿ ¼±«¾´»ò Ç±« ½¿² «» ¬¸» º±´´±©·²¹ «ºº·¨» ±² ²«³»®·½
´·¬»®¿´ ¬± ½´¿®·º§ §±«® ·²¬»²¬·±²ò

Í«ºº·¨» º±® Ò«³»®·½ Ô·¬»®¿´

Ì§°» Í«ºº·¨

«·²¬ « ±® Ë

´±²¹ ´ ±® Ô

«´±²¹ «´ô «Ôô Ë´ô ËÔô ´«ô ´Ëô Ô«ô ±® ÔË

º´±¿¬ º ±® Ú

¼±«¾´» ¼ ±® Ü

¼»½·³¿´ ³ ±® Ó

Ì¸» Ýý ¬§°» ²¿³» ¿®» ¿´·¿» º±® ¬®«½¬«®» ¼»º·²»¼ ·² ¬¸» Í§¬»³ ½´¿ ±º ¬¸» òÒÛÌ Ú®¿³»©±®µò
Ì¸»» ¬®«½¬«®» ¿®» ¿´´ ¼»®·ª»¼ º®±³ Ê¿´«»Ì§°»ô ©¸·½¸ ·¬»´º ¼»®·ª» º®±³ Ñ¾¶»½¬æ

òÒÛÌ Ò«³»®·½ Ì§°»

×²¬»¹»®

Þ·¬ Í·¹²»¼ Ë²·¹²»¼ Ú´±¿¬·²¹ Ð±·²¬ Ü»½·³¿´

è ÍÞ§¬» Þ§¬»

ïê ×²¬ïê Ë×²¬ïê

íî ×²¬íî Ë×²¬íî Í·²¹´»

êì ×²¬êì Ë×²¬êì Ü±«¾´»

ïîè Ü»½·³¿´

Ì¸» ÍÞ§¬»ô Ë×²¬ïêô Ë×²¬íîô ¿²¼ Ë×²¬êì ¬§°» ¿®» ²±¬ ½±³°´·¿²¬ ©·¬¸ ¬¸» Ý±³³±² Ô¿²¹«¿¹»
Í°»½·º·½¿¬·±² øÝÔÍ÷ò É¸¿¬ ¬¸¿¬ ³»¿² · ¬¸¿¬ ¿ °®±¹®¿³³·²¹ ´¿²¹«¿¹» ½¿² ¾» ½±³°´·¿²¬ ©·¬¸ ¬¸»
ÝÔÍ ©·¬¸±«¬ «°°±®¬·²¹ ¬¸»» ¬§°»ò ×º §±« ©®·¬» ½±¼» ¬¸¿¬ §±« ©¿²¬ ¬± ¾» «¿¾´» ¾§ ¿´´ ÝÔÍó
½±³°´·¿²¬ ´¿²¹«¿¹» ø«½¸ ¿ ·² ÜÔÔ÷ô ¼± ²±¬ «» ·¹²»¼ ¾§¬» ±® «²·¹²»¼ ïêó¾·¬ô íîó¾·¬ô ±® êìó¾·¬
·²¬»¹»®ò

Ý¸»½µ·²¹ ×²¬»¹»® Ñª»®º´±©

Ý±²·¼»® ¬¸» º±´´±©·²¹ ½±¼»æ

¸±®¬ ã íîéêéå

 õã ïå

Ø»®»ù ¿²±¬¸»® ±²»æ

«¸±®¬ « ã ðå

« óã ïå

Ì¸»» ¿®» »¨¿³°´» ±º ·²¬»¹»® ±ª»®º´±© ¿²¼ «²¼»®º´±©ô ¿²¼ ¾±¬¸ ¬¸»» ²·°°»¬ ±º ½±¼» ¿®» °»®º»½¬´§
´»¹¿´ ·² Ý ¿ ©»´´ ¿ Ýý ø¾§ ¼»º¿«´¬ ¿²§©¿§÷ò

×² ¬¸» º·®¬ ½¿»ô ¿ ·¹²»¼ ·²¬»¹»® · ¾»·²¹ ·²½®»³»²¬»¼ °¿¬ ·¬ ³¿¨·³«³ ª¿´«»ò Ü«» ¬± ¬¸» ³¿²²»® ·²
©¸·½¸ ·²¬»¹»® ¿®» ¬±®»¼ ·² ³»³±®§ô ¬¸» ®»«´¬ ©·´´ ¾» óíîéêèò ×² ¬¸» »½±²¼ ½¿»ô ¿² «²·¹²»¼
·²¬»¹»® · ¾»·²¹ ¼»½®»³»²¬»¼ ¾»´±© ¦»®±ô ¿²¼ ¬¸» ®»«´¬ · êëëíëò

Í±³»¬·³» °®±¹®¿³³»® ¬¿µ» ¿¼ª¿²¬¿¹» ±º ·²¬»¹»® ±ª»®º´±© ¿²¼ «²¼»®º´±©ô ¿²¼ ±³»¬·³»
°®±¹®¿³³»® º¿´´ ª·½¬·³ ¬± ±ª»®º´±© ¿²¼ «²¼»®º´±© ¾«¹ò Ì± »°¿®¿¬» ½´»ª»® ¬»½¸²·¯«» º®±³ ²¿¬§
¾«¹ô Ýý ¿´´±© §±« ¬± ±°¬·±²¿´´§ ½¸»½µ º±® ·²¬»¹»® ±ª»®º´±© ¿²¼ «²¼»®º´±©ò

Ì± «¾¶»½¬ ¿² »²¬·®» °®±¹®¿³ ¬± ®«²¬·³» ½¸»½µ·²¹ ±º ±ª»®º´±© ¿²¼ «²¼»®º´±©ô «» ¬¸» º±´´±©·²¹
½±³°·´»® ©·¬½¸æ

ñ½¸»½µ»¼õ

Ì¸» º±´´±©·²¹ ½±³°·´»® ©·¬½¸ ®»«´¬ ·² ¬¸» ¼»º¿«´¬ ±°¬·±²æ

ñ½¸»½µ»¼ó

×² Ê·«¿´ Ýý òÒÛÌô §±« ½¿² »¬ ¬¸· ½±³°·´»® ©·¬½¸ ¾§ º·®¬ ·²ª±µ·²¹ ¬¸» Ð®±°»®¬§ Ð¿¹» ¼·¿´±¹ ¾±¨
º±® ¬¸» °®±¶»½¬ò Ñ² ¬¸» ´»º¬ ·¼» ±º ¬¸» ¼·¿´±¹ ¾±¨ô »´»½¬ Þ«·´¼ º®±³ Ý±²º·¹«®¿¬·±² Ð®±°»®¬·»ò Ñ² ¬¸»
®·¹¸¬ ·¼» ±º ¬¸» ¼·¿´±¹ ¾±¨ô »¬ ¬¸» ±°¬·±² Ý¸»½µ Ú±® ß®·¬¸³»¬·½ Ñª»®º´±©ñË²¼»®º´±© ¬± Ì®«»ò

É¸»² §±« »²¿¾´» ®«²¬·³» ½¸»½µ·²¹ ±º ±ª»®º´±© ¿²¼ «²¼»®º´±©ô ¬¸» ·²½®»³»²¬ ¿²¼ ¼»½®»³»²¬
±°»®¿¬·±² ¶«¬ ¸±©² ©·´´ ®¿·» ¿² »¨½»°¬·±² ±º ¬§°» Ñª»®º´±©Û¨½»°¬·±²ò

É·¬¸·² §±«® Ýý °®±¹®¿³ô §±« ½¿² ±ª»®®·¼» ¬¸» ½±³°·´»® »¬¬·²¹ ¾§ «·²¹ ¬¸» µ»§©±®¼ ½¸»½µ»¼ ¿²¼
«²½¸»½µ»¼ò Ç±« º±´´±© ¬¸» µ»§©±®¼ ©·¬¸ ¿² »¨°®»·±² »²½´±»¼ ·² °¿®»²¬¸»»ô ±® ¿ ¬¿¬»³»²¬ ±®
¹®±«° ±º ¬¿¬»³»²¬ ·² ½«®´§ ¾®¿½µ»¬ò Ú±® »¨¿³°´»ô ¬¸» ½±¼»

¸±®¬ ã íîéêéå

½¸»½µ»¼

¥

 õã ïå

£

©·´´ ®¿·» ¿² »¨½»°¬·±² ®»¹¿®¼´» ±º ¬¸» ½±³°·´»® ©·¬½¸ò Ç±«ù´´ °®±¾¿¾´§ ©¿²¬ ¬± »²½´±» ½¸»½µ»¼
¾´±½µ ©·¬¸·² ¬®§ ¾´±½µò

Í± º¿®ô ×ùª» ¾»»² °»¿µ·²¹ ±´»´§ ±º ®«²¬·³» ½¸»½µ·²¹ ±º ·²¬»¹»® ±ª»®º´±© ¿²¼ «²¼»®º´±©ò Þ§ ¼»º¿«´¬ô
¬¸» ½±³°·´»® ©·´´ º´¿¹ ½±³°·´»ó¬·³» ±ª»®º´±© ¿²¼ «²¼»®º´±© ¿ ¿² »®®±® ®»¹¿®¼´» ±º ¬¸» ½±³°·´»®
©·¬½¸ §±« «»ò Ú±® »¨¿³°´»ô ¬¸» ¬¿¬»³»²¬

¸±®¬ ã íîéêé õ ïå

· ¿´©¿§ ¿ ½±³°·´»ó¬·³» »®®±® ¾»½¿«» ¬¸» ¿¼¼·¬·±² · »ª¿´«¿¬»¼ ¼«®·²¹ ½±³°·´¿¬·±²ò Ø±©»ª»®ô ·¬ ·
°±·¾´» ¬± «» ¬¸» «²½¸»½µ»¼ µ»§©±®¼ ¬± ±ª»®®·¼» ½±³°·´»ó¬·³» ±ª»®º´±© ¿²¼ «²¼»®º´±© ½¸»½µ·²¹ò
Ú±® »¨¿³°´»ô «°°±» §±« ¼»º·²» ¬©± ½±²¬ ·²¬»¹»® ´·µ» ±æ

½±²¬ ·²¬ ·ï ã êëëíêå

½±²¬ ·²¬ ·î ã êëëíêå

Ì¸» »¨°®»·±²

·²¬ ·í ã ·ï ö ·îå

©·´´ ²±®³¿´´§ ½¿«» ¿ ½±³°·´»ó¬·³» »®®±®ò Þ»½¿«» ·ï ¿²¼ ·î ¿®» ¾±¬¸ ½±²¬ ª¿´«»ô ¬¸» ½±³°·´»®
¿¬¬»³°¬ ¬± »ª¿´«¿¬» ¬¸» »¨°®»·±² ¿²¼ »²½±«²¬»® ¿² ±ª»®º´±©ò ß ½±³°·´»® ©·¬½¸ ©±²ù¬ ±ª»®®·¼»
¬¸¿¬ ¾»¸¿ª·±®ô ¾«¬ ¬¸» «²½¸»½µ»¼ µ»§©±®¼ ©·´´æ

·²¬ ·í ã «²½¸»½µ»¼ ø·ï ö ·î÷å

Ì¸¿¬ ¬¿¬»³»²¬ ©·´´ ½±³°·´» º·²» ¿²¼ »¨»½«¬» ©·¬¸±«¬ ®¿··²¹ ¿² »¨½»°¬·±²ò

Ç±« ¸±«´¼ °®±¾¿¾´§ ©®·¬» §±«® °®±¹®¿³ ¬± ½±³°·´» ¿²¼ ®«² ½±®®»½¬´§ «²¼»® »·¬¸»® ½±³°·´»® ±°¬·±²ò
É¸»²»ª»® ¬¸»®»ù ¿ ¼¿²¹»® ±º ±ª»®º´±© ±® «²¼»®º´±© ¬¸¿¬ §±« ©¿²¬ ¬± ½¿¬½¸ô »²½´±» ¬¸» ¬¿¬»³»²¬ ·²
¿ ½¸»½µ»¼ ¾´±½µ ©·¬¸·² ¿ ¬®§ ¾´±½µò É¸»²»ª»® §±« ¼±²ù¬ ½¿®» ¿¾±«¬ ±ª»®º´±© ±® «²¼»®º´±©ô ±® §±«
©¿²¬ ¬± »¨°´±·¬ ±ª»®º´±© ±® «²¼»®º´±© ·² ±³» ©¿§ô »²½´±» ¬¸» ¬¿¬»³»²¬ ·² ¿² «²½¸»½µ»¼ ¾´±½µò

Î»¹¿®¼´» ±º ¿²§ ½±³°·´»® ©·¬½¸» ±® ¬¸» °®»»²½» ±º ¬¸» ½¸»½µ»¼ ¿²¼ «²½¸»½µ»¼ µ»§©±®¼ô
·²¬»¹»® ¼·ª··±² ¾§ ¦»®± ¿´©¿§ ®¿·» ¿ Ü·ª·¼»Þ§Æ»®±Û¨½»°¬·±²ò

Ì¸» Ü»½·³¿´ Ì§°»

Ì¸» Ýý ²«³»®·½ ¬§°» ¬¸¿¬ · »²¬·®»´§ ²»© ¬± Ý °®±¹®¿³³»® · ¬¸» ¼»½·³¿´ ¬§°»ô ©¸·½¸ «» ïê ¾§¬»
øïîè ¾·¬÷ ¬± ¬±®» »¿½¸ ª¿´«»ò Ì¸» ïîè ¾·¬ ¾®»¿µ ¼±©² ·²¬± ¿ çêó¾·¬ ·²¬»¹®¿´ °¿®¬ô ¿ ïó¾·¬ ·¹²ô ¿²¼ ¿
½¿´·²¹ º¿½¬±® ¬¸¿¬ ½¿² ®¿²¹» º®±³ ð ¬¸®±«¹¸ îèò Ó¿¬¸»³¿¬·½¿´´§ô ¬¸» ½¿´·²¹ º¿½¬±® · ¿ ²»¹¿¬·ª»
°±©»® ±º ïð ¿²¼ ·²¼·½¿¬» ¬¸» ²«³¾»® ±º ¼»½·³¿´ °´¿½» ·² ¬¸» ²«³¾»®ò

Ü±²ù¬ ½±²º«» ¬¸» ¼»½·³¿´ ¬§°» ©·¬¸ ¿ ¾·²¿®§ó½±¼»¼ ¼»½·³¿´ øÞÝÜ÷ ¬§°»ò ×² ¿ ÞÝÜ ¬§°»ô »¿½¸
¼»½·³¿´ ¼·¹·¬ · ¬±®»¼ «·²¹ ì ¾·¬ò Ì¸» ¼»½·³¿´ ¬§°» ¬±®» ¬¸» ²«³¾»® ¿ ¿ ¾·²¿®§ ·²¬»¹»®ò

Ú±® »¨¿³°´»ô ·º §±« ¼»º·²» ¿ ¼»½·³¿´ »¯«¿´ ¬± ïîòíìô ¬¸» ²«³¾»® · ¬±®»¼ ¿ ¬¸» ·²¬»¹»® ð¨ìÜî ø±®
ïîíì÷ ©·¬¸ ¿ ½¿´·²¹ º¿½¬±® ±º îò ß ÞÝÜ »²½±¼·²¹ ©±«´¼ ¬±®» ¬¸» ²«³¾»® ¿ ð¨ïîíìò

ß ´±²¹ ¿ ¿ ¼»½·³¿´ ²«³¾»® ¸¿ îè ·¹²·º·½¿²¬ ¼·¹·¬ ø±® º»©»®÷ ¿²¼ îè ¼»½·³¿´ °´¿½» ø±® º»©»®÷ô
¬¸» ¼»½·³¿´ ¼¿¬¿ ¬§°» ¬±®» ¬¸» ²«³¾»® »¨¿½¬´§ò Ì¸· · ²±¬ ¬®«» ©·¬¸ º´±¿¬·²¹ °±·²¬ÿ ×º §±« ¼»º·²» ¿
º´±¿¬ »¯«¿´ ¬± ïîòíìô ·¬ù »»²¬·¿´´§ ¬±®»¼ ¿ ¬¸» ª¿´«» ð¨Ýëéðßì ø±® ïîôçíçôìîè÷ ¼·ª·¼»¼ ¾§
ð¨ïððððð ø±® ïôðìèôëéê÷ô ©¸·½¸ · ±²´§ ¿°°®±¨·³¿¬»´§ ïîòíìò Ûª»² ·º §±« ¼»º·²» ¿ ¼±«¾´» »¯«¿´ ¬±
ïîòíìô ·¬ù ¬±®»¼ ¿ ¬¸» ª¿´«» ð¨ïèßÛïìéßÛïìéßÛ ø±® êôçìêôèðîôìîëôîïèôççð÷ ¼·ª·¼»¼ ¾§
ð¨îðððððððððððð ø±® ëêîôçìçôçëíôìîïôíïî÷ô ©¸·½¸ ¿¹¿·² ±²´§ ¿°°®±¨·³¿¬»´§ »¯«¿´ ïîòíìò

ß²¼ ¬¸¿¬ù ©¸§ §±« ¸±«´¼ «» ¼»½·³¿´ ©¸»² §±«ù®» °»®º±®³·²¹ ½¿´½«´¿¬·±² ©¸»®» §±« ¼±²ù¬ ©¿²¬
°»²²·» ¬± ³§¬»®·±«´§ ½®±° «° ¿²¼ ¼·¿°°»¿®ò Ì¸» º´±¿¬·²¹ó°±·²¬ ¼¿¬¿ ¬§°» · ¹®»¿¬ º±® ½·»²¬·º·½ ¿²¼
»²¹·²»»®·²¹ ¿°°´·½¿¬·±² ¾«¬ ±º¬»² «²¼»·®¿¾´» º±® º·²¿²½·¿´ ±²»ò

×º §±« ©¿²¬ ¬± »¨°´±®» ¬¸» ·²¬»®²¿´ ±º ¬¸» ¼»½·³¿´ô §±« ½¿² ³¿µ» «» ±º ¬¸» º±´´±©·²¹ ½±²¬®«½¬±®æ

Ü»½·³¿´ Ý±²¬®«½¬±® ø»´»½¬·±²÷

Ü»½·³¿´ø·²¬ ·Ô±©ô ·²¬ ·Ó·¼¼´»ô ·²¬ ·Ø·¹¸ô ¾±±´ ¾Ò»¹¿¬·ª»ô ¾§¬» ¾§Í½¿´»÷

ß´¬¸±«¹¸ ¼»º·²»¼ ¿ ·²¬»¹»®ô ¬¸» º·®¬ ¬¸®»» ¿®¹«³»²¬ ±º ¬¸» ½±²¬®«½¬±® ¿®» ¬®»¿¬»¼ ¿ «²·¹²»¼
·²¬»¹»® ¬± º±®³ ¿ ½±³°±·¬» çêó¾·¬ «²·¹²»¼ ·²¬»¹»®ò Ì¸» ¾§Í½¿´» ¿®¹«³»²¬ ø©¸·½¸ ½¿² ®¿²¹» º®±³
ð ¬¸®±«¹¸ îè÷ · ¬¸» ²«³¾»® ±º ¼»½·³¿´ °´¿½»ò Ú±® »¨¿³°´»ô ¬¸» »¨°®»·±²

²»© Ü»½·³¿´øïîíìëêéèçô ðô ðô º¿´»ô ë÷

½®»¿¬» ¬¸» ¼»½·³¿´ ²«³¾»®

ïîíìòëêéèç

Ì¸» ´¿®¹»¬ °±·¬·ª» ¼»½·³¿´ ²«³¾»® ·

²»© Ü»½·³¿´øóïô óïô óïô º¿´»ô ð÷

±®

éçôîîèôïêîôëïìôîêìôííéôëçíôëìíôçëðôííë

©¸·½¸ §±« ½¿² ¿´± ±¾¬¿·² º®±³ ¬¸» Ó¿¨Ê¿´«» º·»´¼ ±º ¬¸» Ü»½·³¿´ ¬®«½¬«®»æ

Ü»½·³¿´òÓ¿¨Ê¿´«»

Ì¸» ³¿´´»¬ ¼»½·³¿´ ²«³¾»® ½´±»¬ ¬± ð ·

²»© Ü»½·³¿´øïô ðô ðô º¿´»ô îè÷

©¸·½¸ »¯«¿´

ðòðððððððððððððððððððððððððððï

±®

ï I ïð�îè

×º §±« ¼·ª·¼» ¬¸· ²«³¾»® ¾§ î ·² ¿ Ýý °®±¹®¿³ô ¬¸» ®»«´¬ · ðò

×¬ù ¿´± °±·¾´» ¬± ±¾¬¿·² ¬¸» ¾·¬ «»¼ ¬± ¬±®» ¿ ¼»½·³¿´ ª¿´«»æ

Ü»½·³¿´ Í¬¿¬·½ Ó»¬¸±¼ ø»´»½¬·±²÷

·²¬ÅÃ Ù»¬Þ·¬ø¼»½·³¿´ ³Ê¿´«»÷

Ì¸· ³»¬¸±¼ ®»¬«®² ¿² ¿®®¿§ ±º º±«® ·²¬»¹»®ò Ì¸» º·®¬ô »½±²¼ô ¿²¼ ¬¸·®¼ »´»³»²¬ ±º ¬¸» ¿®®¿§ ¿®»
¬¸» ´±©ô ³»¼·«³ô ¿²¼ ¸·¹¸ ½±³°±²»²¬ ±º ¬¸» çêó¾·¬ «²·¹²»¼ ·²¬»¹»®ò Ì¸» º±«®¬¸ »´»³»²¬ ½±²¬¿·²
¬¸» ·¹² ¿²¼ ¬¸» ½¿´·²¹ º¿½¬±®æ ¾·¬ ð ¬¸®±«¹¸ ïë ¿®» ðå ¾·¬ ïê ¬¸®±«¹¸ îí ½±²¬¿·² ¿ ½¿´·²¹ ª¿´«»
¾»¬©»»² ð ¿²¼ îèå ¾·¬ îì ¬¸®±«¹¸ íð ¿®» ðå ¿²¼ ¾·¬ íï · ð º±® °±·¬·ª» ¿²¼ ï º±® ²»¹¿¬·ª»ò

×º §±« ¸¿ª» ¿ ¼»½·³¿´ ²«³¾»® ²¿³»¼ ³Ê¿´«»ô §±« ½¿² »¨»½«¬» ¬¸» ¬¿¬»³»²¬

·²¬ÅÃ ¿· ã Ü»½·³¿´òÙ»¬Þ·¬ø³Ê¿´«»÷å

×º ¿·ÅíÃ · ²»¹¿¬·ª»ô ¬¸» ¼»½·³¿´ ²«³¾»® · ²»¹¿¬·ª»ò Ì¸» ½¿´·²¹ º¿½¬±® ·

ø¿·ÅíÃ ââ ïê÷ ú ð¨ÚÚ

× ¿´®»¿¼§ ·²¼·½¿¬»¼ ¸±© º´±¿¬·²¹ó°±·²¬ ®»°®»»²¬¿¬·±² · ±º¬»² ±²´§ ¿°°®±¨·³¿¬»ò É¸»² §±« ¬¿®¬
°»®º±®³·²¹ ¿®·¬¸³»¬·½ ±°»®¿¬·±² ±² º´±¿¬·²¹ó°±·²¬ ²«³¾»®ô ¬¸» ¿°°®±¨·³¿¬·±² ½¿² ¹»¬ ©±®»ò
ß´³±¬ »ª»®§±²» ©¸± ¸¿ «»¼ º´±¿¬·²¹ °±·²¬ · ©»´´ ¿©¿®» ¬¸¿¬ ¿ ²«³¾»® ¬¸¿¬ ¸±«´¼ ¾» ìòëë øº±®
»¨¿³°´»÷ · ±º¬»² ¬±®»¼ ¿ ìòëìçççç ±® ìòëëðððïò

Ì¸» ¼»½·³¿´ ®»°®»»²¬¿¬·±² · ³«½¸ ¾»¬¬»® ¾»¸¿ª»¼ò Ú±® »¨¿³°´»ô «°°±» ³ï · ¼»º·²»¼ ´·µ» ±æ

¼»½·³¿´ ³ï ã ïîòíìå

×²¬»®²¿´´§ô ³ï ¸¿ ¿² ·²¬»¹»® °¿®¬ ±º ïîíì ¿²¼ ¿ ½¿´·²¹ º¿½¬±® ±º îò ß´±ô «°°±» ³î · ¼»º·²»¼ ´·µ»
¬¸·æ

¼»½·³¿´ ³î ã ëêòéèçå

Ì¸» ·²¬»¹»® °¿®¬ · ëêéèçô ¿²¼ ¬¸» ½¿´·²¹ º¿½¬±® · íò Ò±© ¿¼¼ ¬¸»» ¬©± ²«³¾»®æ

¼»½·³¿´ ³í ã ³ï õ ³îå

×²¬»®²¿´´§ô ¬¸» ·²¬»¹»® °¿®¬ ±º ³ï · ³«´¬·°´·»¼ ¾§ ïð ø¬± ¹»¬ ïîíìð÷ô ¿²¼ ¬¸» ½¿´·²¹ º¿½¬±® · »¬ ¬± íò
Ò±© ¬¸» ·²¬»¹»® °¿®¬ ½¿² ¾» ¿¼¼»¼ ¼·®»½¬´§æ ïîíìð °´« ëêéèç »¯«¿´ êçïîç ©·¬¸ ¿ ½¿´·²¹ º¿½¬±® ±º
íò Ì¸» ¿½¬«¿´ ²«³¾»® · êçòïîçò Ûª»®§¬¸·²¹ · »¨¿½¬ò

Ò±© ³«´¬·°´§ ¬¸» ¬©± ²«³¾»®æ

¼»½·³¿´ ³ì ã ³ï ö ³îå

×²¬»®²¿´´§ô ¬¸» ¬©± ·²¬»¹®¿´ °¿®¬ ¿®» ³«´¬·°´·»¼ øïîíì ¬·³» ëêéèç »¯«¿´ éðôðééôêîê÷ô ¿²¼ ¬¸»
½¿´·²¹ º¿½¬±® ¿®» ¿¼¼»¼ øî °´« í »¯«¿´ ë÷ò Ì¸» ¿½¬«¿´ ²«³»®·½ ®»«´¬ · éððòééêîêò ß¹¿·²ô ¬¸»
½¿´½«´¿¬·±² · »¨¿½¬ò

É¸»² ¼·ª·¼·²¹�©»´´ô ¼·ª··±² · ³»§ ²± ³¿¬¬»® ¸±© §±« ¼± ·¬ò Þ«¬ º±® ¬¸» ³±¬ °¿®¬ô ©¸»² «·²¹
¼»½·³¿´ô §±« ¸¿ª» ³«½¸ ¾»¬¬»® ½±²¬®±´ ±ª»® ¬¸» °®»½··±² ¿²¼ ¿½½«®¿½§ ±º §±«® ®»«´¬ò

Ú´±¿¬·²¹óÐ±·²¬ ×²º·²·¬§ ¿²¼ Ò¿Ò

Ì¸» ¬©± º´±¿¬·²¹ó°±·²¬ ¼¿¬¿ ¬§°»�º´±¿¬ ¿²¼ ¼±«¾´»�¿®» ¼»º·²»¼ ·² ¿½½±®¼¿²½» ©·¬¸ ¬¸» ßÒÍ×ñ×ÛÛÛ
Í¬¼ éëìóïçèëô ¬¸» ×ÛÛÛ Í¬¿²¼¿®¼ º±® Þ·²¿®§ Ú´±¿¬·²¹óÐ±·²¬ ß®·¬¸³»¬·½ò

ß º´±¿¬ ª¿´«» ½±²·¬ ±º ¿ îìó¾·¬ ·¹²»¼ ³¿²¬·¿ ¿²¼ ¿² èó¾·¬ ·¹²»¼ »¨°±²»²¬ò Ì¸» °®»½··±² ·
¿°°®±¨·³¿¬»´§ »ª»² ¼»½·³¿´ ¼·¹·¬ò Ê¿´«» ®¿²¹» º®±³

�íòìðîèîí I ïðíè

¬±

íòìðîèîí I ïðíè

Ì¸» ³¿´´»¬ °±·¾´» º´±¿¬ ª¿´«» ¹®»¿¬»® ¬¸¿² ð ·

ïòìðïîçè I ïðóìë

Ç±« ½¿² ±¾¬¿·² ¬¸»» ¬¸®»» ª¿´«» ¿ º·»´¼ ·² ¬¸» Í·²¹´» ¬®«½¬«®»æ

Í·²¹´» Í¬®«½¬«®» Ý±²¬¿²¬ Ú·»´¼ ø»´»½¬·±²÷

Ì§°» Ú·»´¼

º´±¿¬ Ó·²Ê¿´«»

º´±¿¬ Ó¿¨Ê¿´«»

º´±¿¬ Û°·´±²

ß ¼±«¾´» ª¿´«» ½±²·¬ ±º ¿ ëíó¾·¬ ·¹²»¼ ³¿²¬·¿ ¿²¼ ¿² ïïó¾·¬ ·¹²»¼ »¨°±²»²¬ò Ì¸» °®»½··±² ·
¿°°®±¨·³¿¬»´§ ïë ¬± ïê ¼»½·³¿´ ¼·¹·¬ò Ê¿´«» ®¿²¹» º®±³

�ïòéçéêçíïíìèêîíî I ïð íðè

¬±

ïòéçéêçíïíìèêîíî I ïð íðè

Ì¸» ³¿´´»¬ °±·¾´» ¼±«¾´» ª¿´«» ¹®»¿¬»® ¬¸¿² ð ·

ìòçìðêëêìëèìïîìé I ïð óíîì

Ì¸» Ó·²Ê¿´«»ô Ó¿¨Ê¿´«»ô ¿²¼ Û°·´±² º·»´¼ ¿®» ¿´± ¼»º·²»¼ ·² ¬¸» Ü±«¾´» ¬®«½¬«®»ò

Ø»®»ù ±³» ½±¼» ¬¸¿¬ ¼·ª·¼» ¿ º´±¿¬·²¹ó°±·²¬ ²«³¾»® ¾§ ðæ

º´±¿¬ ºï ã ïå

º´±¿¬ ºî ã ðå

º´±¿¬ ºí ã ºï ñ ºîå

×º ¬¸»» ©»®» ·²¬»¹»®ô ¿ Ü·ª·¼»Þ§Æ»®±Û¨½»°¬·±² ©±«´¼ ¾» ®¿·»¼ò Þ«¬ ¬¸»» ¿®» ×ÛÛÛ º´±¿¬·²¹ó°±·²¬
²«³¾»®ò ß² »¨½»°¬·±² · ²±¬ ®¿·»¼ò ×²¼»»¼ô º´±¿¬·²¹ó°±·²¬ ±°»®¿¬·±² ²»ª»® ®¿·» »¨½»°¬·±²ò
×²¬»¿¼ô ·² ¬¸· ½¿»ô ºí ¬¿µ» ±² ¿ °»½·¿´ ª¿´«»ò ×º §±« «» Ý±²±´»òÉ®·¬»Ô·²» ¬± ¼·°´¿§ ºíô ·¬ ©·´´
¼·°´¿§ ¬¸» ©±®¼

×²º·²·¬§

×º §±« ½¸¿²¹» ¬¸» ·²·¬·¿´·¦¿¬·±² ±º ºï ¬± óïô Ý±²±´»òÉ®·¬»Ô·²» ©·´´ ¼·°´¿§

ó×²º·²·¬§

×² ¬¸» ×ÛÛÛ ¬¿²¼¿®¼ô °±·¬·ª» ·²º·²·¬§ ¿²¼ ²»¹¿¬·ª» ·²º·²·¬§ ¿®» ´»¹·¬·³¿¬» ª¿´«» ±º º´±¿¬·²¹ó°±·²¬
²«³¾»®ò Ç±« ½¿² »ª»² °»®º±®³ ¿®·¬¸³»¬·½ ±² ·²º·²·¬» ª¿´«»ò Ú±® »¨¿³°´»ô ¬¸» »¨°®»·±²

ï ñ ºí

»¯«¿´ ðò

×º §±« ½¸¿²¹» ¬¸» ·²·¬·¿´·¦¿¬·±² ±º ºï ·² ¬¸» °®»½»¼·²¹ ½±¼» ¬± ðô ¬¸»² ºí ©·´´ »¯«¿´ ¿ ª¿´«» µ²±©² ¿
Ò±¬ ¿ Ò«³¾»®ô ©¸·½¸ · «²·ª»®¿´´§ ¿¾¾®»ª·¿¬»¼ ¿ Ò¿Ò ¿²¼ °®±²±«²½»¼ þ²¿²òþ Ø»®»ù ¸±©
Ý±²±´»òÉ®·¬»Ô·²» ¼·°´¿§ ¿ Ò¿Òæ

Ò¿Ò

Ç±« ½¿² ¿´± ½®»¿¬» ¿ Ò¿Ò ¾§ ¿¼¼·²¹ ¿ °±·¬·ª» ·²º·²·¬§ ¬± ¿ ²»¹¿¬·ª» ·²º·²·¬§ ±® ¾§ ¿ ²«³¾»® ±º ±¬¸»®
½¿´½«´¿¬·±²ò

Þ±¬¸ ¬¸» Í·²¹´» ¿²¼ Ü±«¾´» ¬®«½¬«®» ¸¿ª» ¬¿¬·½ ³»¬¸±¼ ¬± ¼»¬»®³·²» ©¸»¬¸»® ¿ º´±¿¬ ±® ¼±«¾´»
ª¿´«» · ·²º·²·¬§ ±® Ò¿Òò Ø»®» ¿®» ¬¸» ³»¬¸±¼ ·² ¬¸» Í·²¹´» ¬®«½¬«®»æ

Í·²¹´» Í¬®«½¬«®» Í¬¿¬·½ Ó»¬¸±¼ ø»´»½¬·±²÷

¾±±´ ××²º·²·¬§øº´±¿¬ ºÊ¿´«»÷

¾±±´ ×Ð±·¬·ª»×²º·²·¬§øº´±¿¬ ºÊ¿´«»÷

¾±±´ ×Ò»¹¿¬·ª»×²º·²·¬§øº´±¿¬ ºÊ¿´«»÷

¾±±´ ×Ò¿Òøº´±¿¬ ºÊ¿´«»÷

Ú±® »¨¿³°´»ô ¬¸» »¨°®»·±²

Í·²¹´»ò××²º·²·¬§øºÊ¿´÷

®»¬«®² ¬®«» ·º ºÊ¿´ · »·¬¸»® °±·¬·ª» ·²º·²·¬§ ±® ²»¹¿¬·ª» ·²º·²·¬§ò

Ì¸» Í·²¹´» ¬®«½¬«®» ¿´± ¸¿ ½±²¬¿²¬ º·»´¼ ¬¸¿¬ ®»°®»»²¬ ¬¸»» ª¿´«»æ

Í·²¹´» Í¬®«½¬«®» Ý±²¬¿²¬ Ú·»´¼ ø»´»½¬·±²÷

Ì§°» Ú·»´¼

º´±¿¬ Ð±·¬·ª»×²º·²·¬§

º´±¿¬ Ò»¹¿¬·ª»×²º·²·¬§

º´±¿¬ Ò¿Ò

×¼»²¬·½¿´ º·»´¼ ¿®» ¼»º·²»¼ ·² ¬¸» Ü±«¾´» ¬®«½¬«®»ò Ì¸»» ª¿´«» ½±®®»°±²¼ ¬± °»½·º·½ ¾·¬ °¿¬¬»®²
¼»º·²»¼ ·² ¬¸» ×ÛÛÛ ¬¿²¼¿®¼ò

Ì¸» Ó¿¬¸ Ý´¿

Ì¸» Ó¿¬¸ ½´¿ ·² ¬¸» Í§¬»³ ²¿³»°¿½» ½±²·¬ ±´»´§ ±º ¿ ½±´´»½¬·±² ±º ¬¿¬·½ ³»¬¸±¼ ¿²¼ ¬¸»
º±´´±©·²¹ ¬©± ½±²¬¿²¬ º·»´¼æ

Ó¿¬¸ Ý±²¬¿²¬ Ú·»´¼

Ì§°» Ú·»´¼ Ê¿´«»

¼±«¾´» Ð× íòïìïëçîêëíëèçéç

¼±«¾´» Û îòéïèîèïèîèìëçðë

Ó¿¬¸òÐ×ô ±º ½±«®»ô · ¬¸» ®¿¬·± ±º ¬¸» ½·®½«³º»®»²½» ±º ¿ ½·®½´» ¬± ·¬ ¼·¿³»¬»®ô ¿²¼ Ó¿¬¸òÛ · ¬¸» ´·³·¬
±º

¿ ² ¿°°®±¿½¸» ·²º·²·¬§ò

Ó±¬ ±º ¬¸» ³»¬¸±¼ ·² ¬¸» Ó¿¬¸ ½´¿ ¿®» ¼»º·²»¼ ±²´§ º±® ¼±«¾´» ª¿´«»ò Ø±©»ª»®ô ±³» ³»¬¸±¼
¿®» ¼»º·²»¼ º±® ·²¬»¹»® ¿²¼ ¼»½·³¿´ ª¿´«» ¿ ©»´´ò Ì¸» º±´´±©·²¹ ¬©± ³»¬¸±¼ ¿®» ¼»º·²»¼ º±® »ª»®§
²«³»®·½ ¬§°»æ

Ó¿¬¸ Í¬¿¬·½ Ó»¬¸±¼ ø»´»½¬·±²÷

¬§°» Ó¿¨ø²«³»®·½ó¬§°» ²ïô ²«³»®·½ó¬§°» ²î÷

¬§°» Ó·²ø²«³»®·½ó¬§°» ²ïô ²«³»®·½ó¬§°» ²î÷

Ì¸» ¬©± ª¿´«» ³«¬ ¾» ¬¸» ¿³» ¬§°»ò

Ì¸» º±´´±©·²¹ ¬©± ³»¬¸±¼ ¿®» ¼»º·²»¼ º±® º´±¿¬ô ¼±«¾´»ô ¼»½·³¿´ô ¿²¼ ¿´´ ·¹²»¼ ·²¬»¹»® ¬§°»æ

Ó¿¬¸ Í¬¿¬·½ Ó»¬¸±¼ ø»´»½¬·±²÷

·²¬ Í·¹²ø·¹²»¼ó¬§°» ÷

¬§°» ß¾ø·¹²»¼ó¬§°» ÷

Ì¸» Í·¹² ³»¬¸±¼ ®»¬«®² ï ·º ¬¸» ¿®¹«³»²¬ · °±·¬·ª»ô óï ·º ¬¸» ¿®¹«³»²¬ · ²»¹¿¬·ª»ô ¿²¼ ð ·º ¬¸»
¿®¹«³»²¬ · ðò Ì¸» ß¾ ³»¬¸±¼ ®»¬«®² ¬¸» ¿®¹«³»²¬ ·º ·¬ù ð ±® °±·¬·ª»ô ¿²¼ ¬¸» ²»¹¿¬·ª» ª¿´«» ±º
¬¸» ¿®¹«³»²¬ ·º ¬¸» ¿®¹«³»²¬ · ²»¹¿¬·ª»ò

Ì¸» ß¾ ³»¬¸±¼ · ¬¸» ±²´§ ³»¬¸±¼ ±º ¬¸» Ó¿¬¸ ½´¿ ¬¸¿¬ ½¿² ¬¸®±© ¿² »¨½»°¬·±²ô ¿²¼ ¬¸»² ±²´§ º±®
·²¬»¹®¿´ ¿®¹«³»²¬ô ¿²¼ ±²´§ º±® ±²» °¿®¬·½«´¿® ª¿´«» º±® »¿½¸ ·²¬»¹®¿´ ¬§°»ò ×º ¬¸» ¿®¹«³»²¬ · ¬¸»
Ó·²Ê¿´«» ±º ¬¸» °¿®¬·½«´¿® ·²¬»¹®¿´ ¬§°» øº±® »¨¿³°´»ô óíîéêè º±® ¸±®¬÷ô ¬¸»² ¿² Ñª»®º´±©Û¨½»°¬·±² ·
®¿·»¼ ¾»½¿«» íîéêè ½¿²ù¬ ¾» ®»°®»»²¬»¼ ¾§ ¿ ¸±®¬ò

Ì¸» º±´´±©·²¹ ³»¬¸±¼ °»®º±®³ ª¿®·±« ¬§°» ±º ®±«²¼·²¹ ±² ¼±«¾´» ¿²¼ ¼»½·³¿´ ª¿´«»æ

Ó¿¬¸ Í¬¿¬·½ Ó»¬¸±¼ ø»´»½¬·±²÷

¼±«¾´» Ú´±±®ø¼±«¾´» ¼Ê¿´«»÷

¼±«¾´» Ý»·´·²¹ø¼±«¾´» ¼Ê¿´«»÷

¼±«¾´» Î±«²¼ø¼±«¾´» ¼Ê¿´«»÷

¼±«¾´» Î±«²¼ø¼±«¾´» ¼Ê¿´«»ô ·²¬ ·Ü»½·³¿´÷

¼»½·³¿´ Î±«²¼ø¼»½·³¿´ ³Ê¿´«»÷

¼»½·³¿´ Î±«²¼ø¼»½·³¿´ ³Ê¿´«»ô ·²¬ ·Ü»½·³¿´÷

Ú´±±® ®»¬«®² ¬¸» ´¿®¹»¬ ©¸±´» ²«³¾»® ´» ¬¸¿² ±® »¯«¿´ ¬± ¬¸» ¿®¹«³»²¬å Ý»·´·²¹ ®»¬«®² ¬¸»
³¿´´»¬ ©¸±´» ²«³¾»® ¹®»¿¬»® ¬¸¿² ±® »¯«¿´ ¬± ¬¸» ¿®¹«³»²¬ò Ì¸» ½¿´´

Ó¿¬¸òÚ´±±®øíòë÷

®»¬«®² íô ¿²¼

Ó¿¬¸òÝ»·´·²¹øíòë÷

®»¬«®² ìò Ì¸» ¿³» ®«´» ¿°°´§ ¬± ²»¹¿¬·ª» ²«³¾»®ò Ì¸» ½¿´´

Ó¿¬¸òÚ´±±®øóíòë÷

®»¬«®² óìô ¿²¼

Ó¿¬¸òÝ»·´·²¹øóíòë÷

®»¬«®² óíò

Ì¸» Ú´±±® ³»¬¸±¼ ®»¬«®² ¬¸» ²»¿®»¬ ©¸±´» ²«³¾»® ·² ¬¸» ¼·®»½¬·±² ±º ²»¹¿¬·ª» ·²º·²·¬§ô ¿²¼ ¬¸¿¬ù
©¸§ ·¬ù ±³»¬·³» ¿´± µ²±©² ¿ ®±«²¼·²¹ ¬±©¿®¼ ²»¹¿¬·ª» ·²º·²·¬§å ´·µ»©·»ô Ý»·´·²¹ ®»¬«®² ¬¸»
²»¿®»¬ ©¸±´» ²«³¾»® ·² ¬¸» ¼·®»½¬·±² ±º °±·¬·ª» ·²º·²·¬§ ¿²¼ · ±³»¬·³» ½¿´´»¼ ®±«²¼·²¹ ¬±©¿®¼
°±·¬·ª» ·²º·²·¬§ò ×¬ù ¿´± °±·¾´» ¬± ®±«²¼ ¬±©¿®¼ ðô ©¸·½¸ · ¬± ±¾¬¿·² ¬¸» ²»¿®»¬ ©¸±´» ²«³¾»®
½´±»¬ ¬± ðò Ç±« ®±«²¼ ¬±©¿®¼ ð ¾§ ½¿¬·²¹ ¬± ¿² ·²¬»¹»®ò Ì¸» »¨°®»·±²

ø·²¬÷ íòë

®»¬«®² íô ¿²¼

ø·²¬÷ �íòë

®»¬«®² óíò Î±«²¼·²¹ ¬±©¿®¼ ð · ±³»¬·³» ½¿´´»¼ ¬®«²½¿¬·±²ò

Ì¸» Î±«²¼ ³»¬¸±¼ ©·¬¸ ¿ ·²¹´» ¿®¹«³»²¬ ®»¬«®² ¬¸» ©¸±´» ²«³¾»® ²»¿®»¬ ¬± ¬¸» ¿®¹«³»²¬ò ×º ¬¸»
¿®¹«³»²¬ ¬± Î±«²¼ · ³·¼©¿§ ¾»¬©»»² ¬©± ©¸±´» ²«³¾»®ô ¬¸» ®»¬«®² ª¿´«» · ¬¸» ²»¿®»¬ »ª»²
²«³¾»®ò Ú±® »¨¿³°´»ô ¬¸» ½¿´´

Ó¿¬¸òÎ±«²¼øìòë÷

®»¬«®² ìô ¿²¼

Ó¿¬¸òÎ±«²¼øëòë÷

®»¬«®² êò Ç±« ½¿² ±°¬·±²¿´´§ «°°´§ ¿² ·²¬»¹»® ¬¸¿¬ ·²¼·½¿¬» ¬¸» ²«³¾»® ±º ¼»½·³¿´ °´¿½» ·² ¬¸»
®»¬«®² ª¿´«»ò Ú±® »¨¿³°´»ô

Ó¿¬¸òÎ±«²¼øëòîèëô î÷

®»¬«®² ëòîèò

Ú´±¿¬·²¹óÐ±·²¬ Î»³¿·²¼»®

Ó«½¸ ½±²º«·±² «®®±«²¼ º«²½¬·±² ¬¸¿¬ ½¿´½«´¿¬» º´±¿¬·²¹ó°±·²¬ ®»³¿·²¼»®ò Ì¸» Ýý ®»³¿·²¼»® ±®
³±¼«´« ±°»®¿¬±® øû÷ · ¼»º·²»¼ º±® ¿´´ ²«³»®·½ ¬§°»ò ø×² Ýô ¬¸» ³±¼«´« ±°»®¿¬±® · ²±¬ ¼»º·²»¼ º±®
º´±¿¬ ¿²¼ ¼±«¾´»ô ¬¸» º³±¼ º«²½¬·±² ³«¬ ¾» «»¼ ·²¬»¿¼ò÷ Ø»®»ù ¿ Ýý ¬¿¬»³»²¬ «·²¹ º´±¿¬
²«³¾»® ©·¬¸ ¬¸» ®»³¿·²¼»® ±°»®¿¬±®æ

ºÎ»«´¬ ã ºÜ·ª·¼»²¼ û ºÜ·ª·±®å

Ì¸» ·¹² ±º ºÎ»«´¬ · ¬¸» ¿³» ¿ ¬¸» ·¹² ±º ºÜ·ª·¼»²¼ô ¿²¼ ºÎ»«´¬ ½¿² ¾» ½¿´½«´¿¬»¼ ©·¬¸ ¬¸»
º±®³«´¿

ºÎ»«´¬ ã ºÜ·ª·¼»²¼ � ² ö ºÜ·ª·±®

©¸»®» ² · ¬¸» ´¿®¹»¬ °±·¾´» ·²¬»¹»® ´» ¬¸¿² ±® »¯«¿´ ¬± ºÜ·ª·¼»²¼ ñ ºÜ·ª·±®ò Ú±® »¨¿³°´»ô ¬¸»
»¨°®»·±²

ìòë û ïòîë

»¯«¿´ ðòéëò Ô»¬ù ®«² ¬¸®±«¹¸ ¬¸» ½¿´½«´¿¬·±²ò Ì¸» »¨°®»·±² ìòë ñ ïòîë »¯«¿´ íòêô ± ² »¯«¿´ íò
Ì¸» ¯«¿²¬·¬§ ìòë ³·²« øí ¬·³» ïòîë÷ »¯«¿´ ðòéëò

Ì¸» ×ÛÛÛ ¬¿²¼¿®¼ ¼»º·²» ¿ ®»³¿·²¼»® ¿ ´·¬¬´» ¼·ºº»®»²¬´§ô ©¸»®» ² · ¬¸» ·²¬»¹»® ½´±»¬ ¬± ºÜ·ª·¼»²¼
ñ ºÜ·ª·±®ò Ç±« ½¿² ½¿´½«´¿¬» ¿ ®»³¿·²¼»® ·² ¿½½±®¼¿²½» ©·¬¸ ¬¸» ×ÛÛÛ ¬¿²¼¿®¼ «·²¹ ¬¸· ³»¬¸±¼æ

Ó¿¬¸ Í¬¿¬·½ Ó»¬¸±¼ ø»´»½¬·±²÷

¼±«¾´» ×ÛÛÛÎ»³¿·²¼»®ø¼±«¾´» ¼Ü·ª·¼»²¼ô ¼±«¾´» ¼Ü·ª·±®÷

Ì¸» »¨°®»·±²

Ó¿¬¸ò×ÛÛÛÎ»³¿·²¼»®øìòëô ïòîë÷

®»¬«®² óðòëò Ì¸¿¬ù ¾»½¿«» ìòë ñ ïòîë »¯«¿´ íòêô ¿²¼ ¬¸» ½´±»¬ ·²¬»¹»® ¬± íòê · ìò É¸»² ² »¯«¿´
ìô ¬¸» ¯«¿²¬·¬§ ìòë ³·²« øì ¬·³» ïòîë÷ »¯«¿´ óðòëò

Ð±©»® ¿²¼ Ô±¹¿®·¬¸³

Ì¸®»» ³»¬¸±¼ ±º ¬¸» Ó¿¬¸ ½´¿ ·²ª±´ª» °±©»®æ

Ó¿¬¸ Í¬¿¬·½ Ó»¬¸±¼ ø»´»½¬·±²÷

¼±«¾´» Ð±©ø¼±«¾´» ¼Þ¿»ô ¼±«¾´» ¼Ð±©»®÷

¼±«¾´» Û¨°ø¼±«¾´» ¼Ð±©»®÷

¼±«¾´» Í¯®¬ø¼±«¾´» ¼Ê¿´«»÷

Ð±© ½¿´½«´¿¬» ¬¸» ª¿´«»

¼Þ¿»¼Ð±©»®

Ì¸» »¨°®»·±²

Ó¿¬¸òÛ¨°ø¼Ð±©»®÷

· »¯«·ª¿´»²¬ ¬±

Ó¿¬¸òÐ±©øÓ¿¬¸òÛô ¼Ð±©»®÷

¿²¼ ¬¸» ¯«¿®» ®±±¬ º«²½¬·±²

Ó¿¬¸òÍ¯®¬ø¼Ê¿´«»÷

· »¯«·ª¿´»²¬ ¬±

Ó¿¬¸òÐ±©ø¼Ê¿´«»ô ðòë÷

Ì¸» Í¯®¬ ³»¬¸±¼ ®»¬«®² Ò¿Ò ·º ¬¸» ¿®¹«³»²¬ · ²»¹¿¬·ª»ò

Ì¸» Ó¿¬¸ ½´¿ ¸¿ ¬¸®»» ³»¬¸±¼ ¬¸¿¬ ½¿´½«´¿¬» ´±¹¿®·¬¸³æ

Ó¿¬¸ Í¬¿¬·½ Ó»¬¸±¼ ø»´»½¬·±²÷

¼±«¾´» Ô±¹ïðø¼±«¾´» ¼Ê¿´«»÷

¼±«¾´» Ô±¹ø¼±«¾´» ¼Ê¿´«»÷

¼±«¾´» Ô±¹ø¼±«¾´» ¼Ê¿´«»ô ¼±«¾´» ¼Þ¿»÷

Ì¸» »¨°®»·±²

Ó¿¬¸òÔ±¹ïðø¼Ê¿´«»÷

· »¯«·ª¿´»²¬ ¬±

Ó¿¬¸òÔ±¹ø¼Ê¿´«»ô ïð÷

¿²¼

Ó¿¬¸òÔ±¹ø¼Ê¿´«»÷

· »¯«·ª¿´»²¬ ¬±

Ó¿¬¸òÔ±¹ø¼Ê¿´«»ô Ó¿¬¸òÛ÷

Ì¸» ´±¹¿®·¬¸³ ³»¬¸±¼ ®»¬«®² Ð±·¬·ª»×²º·²·¬§ º±® ¿² ¿®¹«³»²¬ ±º ð ¿²¼ Ò¿Ò º±® ¿² ¿®¹«³»²¬ ´»
¬¸¿² ðò

Ì®·¹±²±³»¬®·½ Ú«²½¬·±²

Ì®·¹±²±³»¬®·½ º«²½¬·±² ¼»½®·¾» ¬¸» ®»´¿¬·±²¸·° ¾»¬©»»² ¬¸» ·¼» ¿²¼ ¿²¹´» ±º ¬®·¿²¹´»ò Ì¸» ¬®·¹
º«²½¬·±² ¿®» ¼»º·²»¼ º±® ®·¹¸¬ ¬®·¿²¹´»æ

Ú±® ¿²¹´» ¿ ·² ¿ ®·¹¸¬ ¬®·¿²¹´» ©¸»®» ¨ · ¬¸» ¿¼¶¿½»²¬ ´»¹ô § · ¬¸» ±°°±·¬» ´»¹ô ¿²¼ ® · ¬¸»
¸§°±¬»²«»ô ¬¸» ¬¸®»» ¾¿·½ ¬®·¹±²±³»¬®·½ º«²½¬·±² ¿®»

·²ø¿÷ ã § ñ ®
½±ø¿÷ ã ¨ ñ ®
¬¿²ø¿÷ ã § ñ ¨

Ì®·¹±²±³»¬®·½ º«²½¬·±² ½¿² ¿´± ¾» «»¼ ¬± ¼»º·²» ½·®½´» ¿²¼ »´´·°»ò Ú±® ½±²¬¿²¬ ® ¿²¼ ¿ ®¿²¹·²¹
º®±³ ð ¼»¹®»» ¬± íêð ¼»¹®»»ô ¬¸» »¬ ±º ½±±®¼·²¿¬» ø ¨ô §÷ ©¸»®»

¨ ã ® i ·²ø¿÷
§ ã ® i ½±ø¿÷

¼»º·²» ¿ ½·®½´» ½»²¬»®»¼ ¿¬ ¬¸» ±®·¹·² ©·¬¸ ®¿¼·« ®ò Ý¸¿°¬»® ë ¸±© ¸±© ¬± «» ¬®·¹±²±³»¬®·½
º«²½¬·±² ¬± ¼®¿© ½·®½´» ¿²¼ »´´·°»ò Ì®·¹ º«²½¬·±² ¿´± ¸±© «° ·² ª¿®·±« ¹®¿°¸·½ »¨»®½·» ·²
Ý¸¿°¬»® ïíô ïëô ïéô ¿²¼ ïçò

Ì¸» ¬®·¹±²±³»¬®·½ º«²½¬·±² ·² ¬¸» Ó¿¬¸ ½´¿ ®»¯«·®» ¿²¹´» °»½·º·»¼ ·² ®¿¼·¿² ®¿¬¸»® ¬¸¿² ¼»¹®»»ò
Ì¸»®» ¿®» î° ®¿¼·¿² ·² íêð ¼»¹®»»ò Ì¸» ®¿¬·±²¿´» º±® «·²¹ ®¿¼·¿² ½¿² ¾» ·´´«¬®¿¬»¼ ¾§
½±²·¼»®·²¹ ¬¸» º±´´±©·²¹ ¿®½ ´ «¾¬»²¼»¼ ¾§ ¿²¹´» ¿æ

É¸¿¬ · ¬¸» ´»²¹¬¸ ±º ¿®½ ´á Þ»½¿«» ¬¸» ½·®½«³º»®»²½» ±º ¬¸» »²¬·®» ½·®½´» »¯«¿´ î°®ô ¬¸» ´»²¹¬¸ ±º
¿®½ ´ »¯«¿´ ø¿ñíêð÷î°®ô ©¸»®» ¿ · ³»¿«®»¼ ·² ¼»¹®»»ò Ø±©»ª»®ô ·º ¿ · ³»¿«®»¼ ·² ®¿¼·¿²ô ¬¸»²
¬¸» ´»²¹¬¸ ±º ¿®½ ´ ·³°´§ »¯«¿´ ¿®ò Ú±® ¿ «²·¬ ½·®½´» ø®¿¼·« »¯«¿´ ¬± ï÷ô ¬¸» ´»²¹¬¸ ±º ¿®½ ´ »¯«¿´ ¬¸»
¿²¹´» ¿ ·² ®¿¼·¿²ò ß²¼ ¬¸¿¬ù ¸±© ¬¸» ®¿¼·¿² · ¼»º·²»¼æ ·² ¿ «²·¬ ½·®½´»ô ¿² ¿®½ ±º ´»²¹¬¸ ´ ·
«¾¬»²¼»¼ ¾§ ¿² ¿²¹´» ·² ®¿¼·¿² »¯«¿´ ¬± ´ò

Ú±® »¨¿³°´»ô ¿² ¿²¹´» ±º çð ¼»¹®»» ·² ¿ «²·¬ ½·®½´» «¾¬»²¼ ¿² ¿®½ ©·¬¸ ´»²¹¬¸ °ñîò Ì¸«ô çð
¼»¹®»» · »¯«·ª¿´»²¬ ¬± °ñî ®¿¼·¿²ò ß² ¿²¹´» ±º ïèð ¼»¹®»» · »¯«·ª¿´»²¬ ¬± ° ®¿¼·¿²ò Ì¸»®» ¿®»
î° ®¿¼·¿² ·² íêð ¼»¹®»»ò

Ø»®» ¿®» ¬¸» ¬¸®»» ¾¿·½ ¬®·¹±²±³»¬®·½ º«²½¬·±² ¼»º·²»¼ ·² ¬¸» Ó¿¬¸ ½´¿æ

Ó¿¬¸ Í¬¿¬·½ Ó»¬¸±¼ ø»´»½¬·±²÷

¼±«¾´» Í·²ø¼±«¾´» ¼ß²¹´»÷

¼±«¾´» Ý±ø¼±«¾´» ¼ß²¹´»÷

¼±«¾´» Ì¿²ø¼±«¾´» ¼ß²¹´»÷

×º §±« ¸¿ª» ¿² ¿²¹´» ·² ¼»¹®»»ô ³«´¬·°´§ ¾§ ° ¿²¼ ¼·ª·¼» ¾§ ïèð ¬± ½±²ª»®¬ ¬± ®¿¼·¿²æ

Ó¿¬¸òÍ·²øÓ¿¬¸òÐ× ö ¼ß²¹´»×²Ü»¹®»» ñ ïèð÷

Ì¸» Í·² ¿²¼ Ý± ³»¬¸±¼ ®»¬«®² ª¿´«» ®¿²¹·²¹ º®±³ óï ¬± ïò ×² ¬¸»±®§ô ¬¸» Ì¿² ³»¬¸±¼ ¸±«´¼
®»¬«®² ·²º·²·¬§ ¿¬ °ñî øçð ¼»¹®»»÷ ¿²¼ í°ñî øîéð ¼»¹®»»÷ô ¾«¬ ·¬ ®»¬«®² ª»®§ ´¿®¹» ª¿´«» ·²¬»¿¼ò

Ì¸» º±´´±©·²¹ ³»¬¸±¼ ¿®» ·²ª»®» ±º ¬¸» ¬®·¹±²±³»¬®·½ º«²½¬·±²ò Ì¸»§ ®»¬«®² ¿²¹´» ·² ®¿¼·¿²æ

Ó¿¬¸ Í¬¿¬·½ Ó»¬¸±¼ ø»´»½¬·±²÷

Ó»¬¸±¼ ß®¹«³»²¬ Î»¬«®² Ê¿´«»

¼±«¾´» ß·²ø¼±«¾´» ¼Ê¿´«»÷ óï ¬¸®±«¹¸ ï ó°ñî ¬¸®±«¹¸ °ñî

¼±«¾´» ß½±ø¼±«¾´» ¼Ê¿´«»÷ óï ¬¸®±«¹¸ ï ° ¬¸®±«¹¸ ð

¼±«¾´» ß¬¿²ø¼±«¾´» ¼Ê¿´«»÷ ó{ ¬¸®±«¹¸ { ó°ñî ¬¸®±«¹¸ °ñî

¼±«¾´» ß¬¿²îø¼±«¾´» §ô ¼±«¾´»
¨÷

ó{ ¬¸®±«¹¸ { ó° ¬¸®±«¹¸ °

Ì± ½±²ª»®¬ ¬¸» ®»¬«®² ª¿´«» ¬± ¼»¹®»»ô ³«´¬·°´§ ¾§ ïèð ¿²¼ ¼·ª·¼» ¾§ °ò

Ì¸» ß·² ¿²¼ ß½± ³»¬¸±¼ ®»¬«®² Ò¿Ò ·º ¬¸» ¿®¹«³»²¬ · ²±¬ ·² ¬¸» °®±°»® ®¿²¹»ò Ì¸» ß¬¿²î
³»¬¸±¼ «» ¬¸» ·¹² ±º ¬¸» ¬©± ¿®¹«³»²¬ ¬± ¼»¬»®³·²» ¬¸» ¯«¿¼®¿²¬ ±º ¬¸» ¿²¹´»æ

ß¬¿²î Î»¬«®² Ê¿´«»

§ ß®¹«³»²¬ ¨ ß®¹«³»²¬ Î»¬«®² Ê¿´«»

Ð±·¬·ª» Ð±·¬·ª» ð ¬¸®±«¹¸ °ñî

Ð±·¬·ª» Ò»¹¿¬·ª» °ñî ¬¸®±«¹¸ °

Ò»¹¿¬·ª» Ò»¹¿¬·ª» ° ¬¸®±«¹¸ í°ñî

Ò»¹¿¬·ª» Ð±·¬·ª» í°ñî ¬¸®±«¹¸ î°

Ô» ½±³³±²´§ «»¼ ¿®» ¬¸» ¸§°»®¾±´·½ ¬®·¹±²±³»¬®·½ º«²½¬·±²ò É¸·´» ¬¸» ½±³³±² ¬®·¹±²±³»¬®·½
º«²½¬·±² ¼»º·²» ½·®½´» ¿²¼ »´´·°»ô ¬¸» ¸§°»®¾±´·½ ¬®·¹ º«²½¬·±² ¼»º·²» ¸§°»®¾±´¿æ

Ó¿¬¸ Í¬¿¬·½ Ó»¬¸±¼ ø»´»½¬·±²÷

¼±«¾´» Í·²¸ø¼±«¾´» ¼ß²¹´»÷

¼±«¾´» Ý±¸ø¼±«¾´» ¼ß²¹´»÷

¼±«¾´» Ì¿²¸ø¼±«¾´» ¼ß²¹´»÷

Ì¸» ¿²¹´» · »¨°®»»¼ ·² ¸§°»®¾±´·½ ®¿¼·¿²ò

ß°°»²¼·¨ Dæ Í¬®·²¹ Ì¸»±®§

Ñª»®ª·»©

Ö«¬ ¿¾±«¬ »ª»®§ °®±¹®¿³³·²¹ ´¿²¹«¿¹» »ª»® ·²ª»²¬»¼ ·³°´»³»²¬ ¬»¨¬ ¬®·²¹ ¿ ´·¬¬´» ¼·ºº»®»²¬´§ò
Ë²´·µ» º´±¿¬·²¹ó°±·²¬ ²«³¾»®ô ¬®·²¹ ¿®» ²±¬ ¾´»»¼ ø±® ½«®»¼÷ ©·¬¸ ¿² ·²¼«¬®§ ¬¿²¼¿®¼ò Ì¸» Ý
°®±¹®¿³³·²¹ ´¿²¹«¿¹» ¼±»²ù¬ »ª»² ¸¿ª» ¿ »°¿®¿¬» ¼¿¬¿ ¬§°» º±® ¬®·²¹ò ß ¬®·²¹ · ·³°´§ ¿²
¿®®¿§ ±º ½¸¿®¿½¬»® ¬»®³·²¿¬»¼ ©·¬¸ ¿ ¦»®± ¾§¬»ò ß °®±¹®¿³ ®»º»®»²½» ¬¸» ¬®·²¹ ¾§ ¿ °±·²¬»® ¬± ¬¸»
º·®¬ ½¸¿®¿½¬»® ·² ¬¸» ¿®®¿§ò Ý °®±¹®¿³³»® ¿°°®»½·¿¬» ¬¸» »¿» ©·¬¸ ©¸·½¸ ¬®·²¹ ½¿² ¾» ³¿²·
°«´¿¬»¼ ·² ³»³±®§ò Ý °®±¹®¿³³»® ¿®» ¿´± ¯«·¬» º¿³·´·¿® ©·¬¸ ¬¸» »¿» ·² ©¸·½¸ »»³·²¹´§
·²²±½»²¬ ¬®·²¹ ³¿²·°«´¿¬·±² ½¿² ¾»½±³» ²¿¬§ ¾«¹ò

×² Ýýô ¬¸» ¬»¨¬ ¬®·²¹ · ·¬ ±©² ¼¿¬¿ ¬§°» ²¿³»¼ ¬®·²¹ô ©¸·½¸ · ¿² ¿´·¿ º±® ¬¸» ½´¿ Í§¬»³òÍ¬®·²¹ò
Ì¸» ¬®·²¹ ¼¿¬¿ ¬§°» · ®»´¿¬»¼ ¬± ¬¸» ½¸¿® ¼¿¬¿ ¬§°»ô ±º ½±«®»æ ¿ ¬®·²¹ ±¾¶»½¬ ½¿² ¾» ½±²¬®«½¬»¼
º®±³ ¿² ¿®®¿§ ±º ½¸¿®¿½¬»® ¿²¼ ¿´± ½±²ª»®¬»¼ ·²¬± ¿² ¿®®¿§ ±º ½¸¿®¿½¬»®ò Þ«¬ ¿ ¬®·²¹ ¿²¼ ¿ ½¸¿®
¿®®¿§ ¿®» ¬©± ¼·¬·²½¬ ¼¿¬¿ ¬§°»ò

Ýý ¬®·²¹ ¿®» ²±¬ ¦»®±ó¬»®³·²¿¬»¼ò ß ¬®·²¹ ¸¿ ¿ °»½·º·½ ´»²¹¬¸ô ¿²¼ ±²½» ¿ ¬®·²¹ · ½®»¿¬»¼ô ·¬
´»²¹¬¸ ½¿²ù¬ ¾» ½¸¿²¹»¼ò Ò±® ½¿² ¿²§ ±º ¬¸» ·²¼·ª·¼«¿´ ½¸¿®¿½¬»® ¬¸¿¬ ³¿µ» «° ¿ ¬®·²¹ ¾» ½¸¿²¹»¼ò
ß Ýý ¬®·²¹ · ¬¸« ¿·¼ ¬± ¾» ·³³«¬¿¾´»ò É¸»²»ª»® §±« ²»»¼ ¬± ½¸¿²¹» ¿ ¬®·²¹ ·² ±³» ©¿§ô §±«
³«¬ ½®»¿¬» ¿²±¬¸»® ¬®·²¹ò Ó¿²§ ³»¬¸±¼ ±º ¬¸» Í¬®·²¹ ½´¿ ½®»¿¬» ²»© ¬®·²¹ ¾¿»¼ ±² »¨·¬·²¹
¬®·²¹ò Ó¿²§ ³»¬¸±¼ ¿²¼ °®±°»®¬·» ¬¸®±«¹¸±«¬ ¬¸» òÒÛÌ Ú®¿³»©±®µ ½®»¿¬» ¿²¼ ®»¬«®² ¬®·²¹ò

Ø»®»ù ¿ ½±³³±² °·¬º¿´´æ §±« ³·¹¸¬ »¨°»½¬ ¬¸¿¬ ¬¸»®»ù ¿ ³»¬¸±¼ ±º Í¬®·²¹ ²¿³»¼ Ì±Ë°°»® ¬¸¿¬
½±²ª»®¬ ¿´´ ¬¸» ½¸¿®¿½¬»® ·² ¿ ¬®·²¹ ¬± «°°»®½¿»ô ¿²¼ ¬¸¿¬ù °®»½·»´§ ¬¸» ½¿»ò Þ«¬ º±® ¿ ¬®·²¹
·²¬¿²½» ²¿³»¼ ¬®ô §±« ½¿²ù¬ ¶«¬ ½¿´´ ¬¸» ³»¬¸±¼ ´·µ» ±æ

¬®òÌ±Ë°°»®ø÷å ññ É±²ù¬ ¼± ¿²§¬¸·²¹ÿ

Í§²¬¿½¬·½¿´´§ô ¬¸· ¬¿¬»³»²¬ · ª¿´·¼ô ¾«¬ ·¬ ¸¿ ²± »ºº»½¬ ±² ¬¸» ¬® ª¿®·¿¾´»ò Í¬®·²¹ ¿®» ·³³«¬¿¾´»ô
¿²¼ ¸»²½» ¬¸» ½¸¿®¿½¬»® ±º ¬® ½¿²ù¬ ¾» ¿´¬»®»¼ò Ì¸» Ì±Ë°°»® ³»¬¸±¼ ½®»¿¬» ¿ ²»© ¬®·²¹ò Ç±«
²»»¼ ¬± ¿·¹² ¬¸» ®»¬«®² ª¿´«» ±º Ì±Ë°°»® ¬± ¿²±¬¸»® ¬®·²¹ ª¿®·¿¾´»æ

¬®·²¹ ¬®Ë°°»® ã ¬®òÌ±Ë°°»®ø÷å

Ñ® §±« ½±«´¼ ¿·¹² ·¬ ¬± ¬¸» ¿³» ¬®·²¹ ª¿®·¿¾´»æ

¬® ã ¬®òÌ±Ë°°»®ø÷å

×² ¬¸» »½±²¼ ½¿»ô ¬¸» ±®·¹·²¿´ ¬®·²¹ ø¬¸» ±²» ½±²¬¿·²·²¹ ´±©»®½¿» ´»¬¬»®÷ ¬·´´ »¨·¬ô ¾«¬ ·²½» ·¬ù
°®±¾¿¾´§ ²± ´±²¹»® ®»º»®»²½»¼ ¿²§©¸»®» ·² ¬¸» °®±¹®¿³ô ·¬ ¾»½±³» »´·¹·¾´» º±® ¹¿®¾¿¹» ½±´´»½¬·±²ò

Ø»®»ù ¿²±¬¸»® »¨¿³°´»ò Í«°°±» §±« ¼»º·²» ¿ ¬®·²¹ ´·µ» ±æ

¬®·²¹ ¬® ã þ¿¾½¼·º¹þå

Ç±« ½¿² ¿½½» ¿ °¿®¬·½«´¿® ½¸¿®¿½¬»® ±º ¬¸» ¬®·²¹ ¾§ ·²¼»¨·²¹ ¬¸» ¬®·²¹ ª¿®·¿¾´»æ

½¸¿® ½¸ ã ¬®ÅìÃå

×² ¬¸· ½¿»ô ½¸ · ¬¸» ½¸¿®¿½¬»® ù·ùò Þ«¬ §±« ½¿²ù¬ »¬ ¿ °¿®¬·½«´¿® ½¸¿®¿½¬»® ±º ¿ ¬®·²¹æ

¬®ÅìÃ ã ù»ùå ññ É±²ù¬ ©±®µÿ

Ì¸» ·²¼»¨»® °®±°»®¬§ ±º ¬¸» Í¬®·²¹ ½´¿ · ®»¿¼ó±²´§ò

Í±ô ¸±© ¼± §±« ®»°´¿½» ½¸¿®¿½¬»® ·² ¿ Ýý ¬®·²¹á Ì¸»®» ¿®» ¿ ½±«°´» ©¿§ò Ì¸» ³»¬¸±¼ ½¿´´

¬® ã ¬®òÎ»°´¿½»øù·ùô ù»ù÷å

©·´´ ®»°´¿½» ¿´´ ±½½«®®»²½» ±º ù·ù ©·¬¸ ù»ùò ß´¬»®²¿¬·ª»´§ô §±« ½¿² º·®¬ ½¿´´ Î»³±ª» ¬± ½®»¿¬» ¿ ²»©
¬®·²¹ ©·¬¸ ±²» ±® ³±®» ½¸¿®¿½¬»® ®»³±ª»¼ ¿¬ ¿ °»½·º·»¼ ·²¼»¨ ©·¬¸ ¿ °»½·º·»¼ ´»²¹¬¸ò Ú±® »¨¿³°´»ô
¬¸» ½¿´´

¬® ã ¬®òÎ»³±ª»øìô ï÷å

®»³±ª» ±²» ½¸¿®¿½¬»® ¿¬ ¬¸» º±«®¬¸ °±·¬·±² ø¬¸» ù·ù÷ò Ç±« ½¿² ¬¸»² ½¿´´ ×²»®¬ ¬± ·²»®¬ ¿ ²»© ¬®·²¹ô
©¸·½¸ ·² ¬¸· ½¿» · ¿ ·²¹´» ½¸¿®¿½¬»®æ

¬® ã ¬®ò×²»®¬øìô þ»þ÷å

Ñ® §±« ½¿² ¼± ¾±¬¸ ¶±¾ ·² ±²» ¬¿¬»³»²¬æ

¬® ã ¬®òÎ»³±ª»øìô ï÷ò×²»®¬øìô þ»þ÷å

Ü»°·¬» ¬¸» «» ±º ¿ ·²¹´» ¬®·²¹ ª¿®·¿¾´» ²¿³»¼ ¬®ô ¬¸» ¬©± ³»¬¸±¼ ½¿´´ ·² ¬¸· ´¿¬ ¬¿¬»³»²¬
½®»¿¬» ¬©± ¿¼¼·¬·±²¿´ ¬®·²¹ô ¿²¼ ¬¸» ¯«±¬»¼ ù»ù · §»¬ ¿²±¬¸»® ¬®·²¹ò

ß²±¬¸»® ¿°°®±¿½¸ · ¿´± °±·¾´»ò Ç±« ½¿² ½±²ª»®¬ ¬¸» ¬®·²¹ ·²¬± ¿ ½¸¿®¿½¬»® ¿®®¿§ô »¬ ¬¸»
¿°°®±°®·¿¬» »´»³»²¬ ±º ¬¸» ¿®®¿§ô ¿²¼ ¬¸»² ½±²¬®«½¬ ¿ ²»© ¬®·²¹ ¾¿»¼ ±² ¬¸» ½¸¿®¿½¬»® ¿®®¿§æ

½¸¿®ÅÃ ¿½¸ ã ¬®òÌ±Ý¸¿®ß®®¿§ø÷å

¿½¸ÅìÃ ã ù»ùå

¬® ã ²»© Í¬®·²¹ø¿½¸÷å

Ñ® §±« ½¿² °¿¬½¸ ¬±¹»¬¸»® ¿ ²»© ¬®·²¹ º®±³ «¾¬®·²¹æ

¬® ã ¬®òÍ«¾¬®·²¹øðô ì÷ õ þ»þ õ ¬®òÍ«¾¬®·²¹øë÷å

×ù´´ ¼·½« ¿´´ ¬¸»» Í¬®·²¹ ½´¿ ³»¬¸±¼ ³±®» º±®³¿´´§ ·² ¬¸» ½±«®» ±º ¬¸· ¿°°»²¼·¨ò

Ì¸» ½¸¿® Ì§°»

Û¿½¸ »´»³»²¬ ±º ¿ ¬®·²¹ · ¿ ½¸¿®ô ©¸·½¸ · ¿² ¿´·¿ º±® ¬¸» òÒÛÌ ¬®«½¬«®» Í§¬»³òÝ¸¿®ò ß °®±¹®¿³
½¿² °»½·º§ ¿ ·²¹´» ´·¬»®¿´ ½¸¿®¿½¬»® «·²¹ ·²¹´» ¯«±¬¿¬·±² ³¿®µæ

½¸¿® ½¸ ã ùßùå

ß´¬¸±«¹¸ Ý¸¿® · ¼»®·ª»¼ º®±³ Ê¿´«»Ì§°»ô ¿ ½¸¿® ª¿®·¿¾´» ·²ù¬ ¼·®»½¬´§ «¿¾´» ¿ ¿ ²«³¾»®ò Ì±
½±²ª»®¬ ¿ ½¸¿® ª¿®·¿¾´» ²¿³»¼ ½¸ ¬± ¿² ·²¬»¹»®ô º±® »¨¿³°´»ô ®»¯«·®» ½¿¬·²¹æ

·²¬ · ã ø·²¬÷ ½¸å

Ý¸¿®¿½¬»® ª¿®·¿¾´» ¸¿ª» ²«³»®·½ ª¿´«» º®±³ ð¨ðððð ¬¸®±«¹¸ ð¨ÚÚÚÚ ¿²¼ ®»º»® ¬± ½¸¿®¿½¬»® ·² ¬¸»
Ë²·½±¼» ½¸¿®¿½¬»® »¬ò Ì¸» ¾±±µ Ì¸» Ë²·½±¼» Í¬¿²¼¿®¼ Ê»®·±² íòð øß¼¼·±²óÉ»´»§ô îððð÷ · ¬¸»
»»²¬·¿´ ®»º»®»²½» ¬± Ë²·½±¼»ò

ß ·² Ýô ¬¸» ¾¿½µ´¿¸ øÄ÷ · ¿ °»½·¿´ »½¿°» ½¸¿®¿½¬»®ò Ì¸» ½¸¿®¿½¬»® º±´´±©·²¹ ¬¸» ¾¿½µ´¿¸ ¸¿ ¿
°»½·¿´ ·²¬»®°®»¬¿¬·±²ô ¿ ¸±©² ·² ¬¸» º±´´±©·²¹ ¬¿¾´»æ

Ýý Ý±²¬®±´ Ý¸¿®¿½¬»®

Ý¸¿®¿½¬»® Ó»¿²·²¹ Ê¿´«»

Äð Ò«´´ ð¨ðððð

Ä¿ ß´»®¬ ð¨ðððé

Ä¾ Þ¿½µ°¿½» ð¨ðððè

Ä¬ Ì¿¾ ð¨ðððç

Ä² Ò»© ´·²» ð¨ðððß

Äª Ê»®¬·½¿´ ¬¿¾ ð¨ðððÞ

Äº Ú±®³ º»»¼ ð¨ðððÝ

Ä® Ý¿®®·¿¹» ®»¬«®² ð¨ðððÜ

Äþ Ü±«¾´» ¯«±¬» ð¨ððîî

Äù Í·²¹´» ¯«±¬» ð¨ððîé

ÄÄ Þ¿½µ´¿¸ ð¨ððëÝ

×² ¿¼¼·¬·±²ô §±« ½¿² °»½·º§ ¿ ·²¹´» Ë²·½±¼» ½¸¿®¿½¬»® «·²¹ ¬¸» °®»º¿½» Ä¨ ±® Ä« º±´´±©»¼ ¾§ ¿ º±«®ó
¼·¹·¬ ¸»¨¿¼»½·³¿´ ²«³¾»®ò Ì¸» ½¸¿®¿½¬»® ùÄ¨ðíßçù ¿²¼ ùÄ«ðíßçù ¾±¬¸ ®»º»® ¬± ¬¸» Ù®»»µ ½¿°·¬¿´
±³»¹¿ øÉ÷ò

×² Ýô ¿ §±« µ²±©ô §±« ½¿² «» º«²½¬·±² ¼»º·²»¼ ·² ¬¸» ½¬§°»ò¸ ¸»¿¼»® º·´» ¬± ¼»¬»®³·²» ©¸»¬¸»® ¿
°¿®¬·½«´¿® ½¸¿®¿½¬»® · ¿ ´»¬¬»®ô ²«³¾»®ô ½±²¬®±´ ½¸¿®¿½¬»®ô ±® ©¸¿¬»ª»®ò ×² Ýýô §±« «» ¬¿¬·½ ³»¬¸±¼
¼»º·²»¼ ·² ¬¸» Ý¸¿® ¬®«½¬«®»ò Ì¸» ¿®¹«³»²¬ · »·¬¸»® ¿ ½¸¿®¿½¬»® ±® ¿ ¬®·²¹ ©·¬¸ ¿² ·²¼»¨ ª¿´«»ò

Ý¸¿® Í¬¿¬·½ Ó»¬¸±¼ ø»´»½¬·±²÷

¾±±´ ×Ý±²¬®±´ø½¸¿® ½¸÷

¾±±´ ×Ý±²¬®±´ø¬®·²¹ ¬®ô ·²¬ ·×²¼»¨÷

¾±±´ ×Í»°¿®¿¬±®ø½¸¿® ½¸÷

¾±±´ ×Í»°¿®¿¬±®ø¬®·²¹ ¬®ô ·²¬ ·×²¼»¨÷

¾±±´ ×É¸·¬»Í°¿½»ø½¸¿® ½¸÷

¾±±´ ×É¸·¬»Í°¿½»ø¬®·²¹ ¬®ô ·²¬ ·×²¼»¨÷

¾±±´ ×Ð«²½¬«¿¬·±²ø½¸¿® ½¸÷

¾±±´ ×Ð«²½¬«¿¬·±²ø¬®·²¹ ¬®ô ·²¬ ·×²¼»¨÷

¾±±´ ×Í§³¾±´ø½¸¿® ½¸÷

¾±±´ ×Í§³¾±´ø¬®·²¹ ¬®ô ·²¬ ·×²¼»¨÷

¾±±´ ×Ü·¹·¬ø½¸¿® ½¸÷

¾±±´ ×Ü·¹·¬ø¬®·²¹ ¬®ô ·²¬ ·×²¼»¨÷

¾±±´ ×Ò«³¾»®ø½¸¿® ½¸÷

¾±±´ ×Ò«³¾»®ø¬®·²¹ ¬®ô ·²¬ ·×²¼»¨÷

¾±±´ ×Ô»¬¬»®ø½¸¿® ½¸÷

¾±±´ ×Ô»¬¬»®ø¬®·²¹ ¬®ô ·²¬ ·×²¼»¨÷

¾±±´ ×Ë°°»®ø½¸¿® ½¸÷

¾±±´ ×Ë°°»®ø¬®·²¹ ¬®ô ·²¬ ·×²¼»¨÷

¾±±´ ×Ô±©»®ø½¸¿® ½¸÷

¾±±´ ×Ô±©»®ø¬®·²¹ ¬®ô ·²¬ ·×²¼»¨÷

¾±±´ ×Ô»¬¬»®Ñ®Ü·¹·¬ø½¸¿® ½¸÷

¾±±´ ×Ô»¬¬»®Ñ®Ü·¹·¬ø¬®·²¹ ¬®ô ·²¬ ·×²¼»¨÷

¾±±´ ×Í«®®±¹¿¬»ø½¸¿® ½¸÷

¾±±´ ×Í«®®±¹¿¬»ø¬®·²¹ ¬®ô ·²¬ ·×²¼»¨÷

Ì¸» ½¿´´

Ý¸¿®ò×Ý±²¬®±´ø¬®Å·×²¼»¨Ã÷

· »¯«·ª¿´»²¬ ¬±

Ý¸¿®ò×Ý±²¬®±´ø¬®ô ·×²¼»¨÷

Ç±« ³·¹¸¬ ¾» ¿¾´» ¬± ¿ª±·¼ «·²¹ ¬¸»» ³»¬¸±¼ º±® ßÍÝ×× ½¸¿®¿½¬»® ø½¸¿®¿½¬»® ª¿´«» ð¨ðððð
¬¸®±«¹¸ ð¨ððéÚ÷ô ¾«¬ ¬¸»» ³»¬¸±¼ ¿´± ¿°°´§ ¬± ¿´´ Ë²·½±¼» ½¸¿®¿½¬»®ò Ì¸» ×Í«®®±¹¿¬» ³»¬¸±¼
®»º»® ¬± ¬¸» ¿®»¿ ±º Ë²·½±¼» ©·¬¸ ª¿´«» ð¨Üèðð ¬¸®±«¹¸ ð¨ÜÚÚÚ ¬¸¿¬ · ®»»®ª»¼ º±® »¨°¿²·±²ò

Ì¸» Ý¸¿® ¬®«½¬«®» ¿´± ¼»º·²» ¿ ½±«°´» ±¬¸»® ¸¿²¼§ ³»¬¸±¼ò Ñ²» ®»¬«®² ¿ ³»³¾»® ±º ¬¸»
Ë²·½±¼»Ý¿¬»¹±®§ »²«³»®¿¬·±² ø¼»º·²»¼ ·² Í§¬»³òÙ´±¾¿´·¦¿¬·±²÷ô ¿²¼ ¬¸» ±¬¸»® ®»¬«®² ¬¸» ²«³»®·½
ª¿´«» ±º ¬¸» ½¸¿®¿½¬»® ½±²ª»®¬»¼ ¬± ¿ ¼±«¾´»æ

Ý¸¿® Í¬¿¬·½ Ó»¬¸±¼ ø»´»½¬·±²÷

Ë²·½±¼»Ý¿¬»¹±®§ Ù»¬Ë²·½±¼»Ý¿¬»¹±®§ø½¸¿® ½¸÷

Ë²·½±¼»Ý¿¬»¹±®§ Ù»¬Ë²·½±¼»Ý¿¬»¹±®§ø¬®·²¹ ¬®ô ·²¬ ·×²¼»¨÷

¼±«¾´» Ù»¬Ò«³»®·½Ê¿´«»ø½¸¿® ½¸÷

¼±«¾´» Ù»¬Ò«³»®·½Ê¿´«»ø¬®·²¹ ¬®ô ·²¬ ·×²¼»¨÷

Í¬®·²¹ Ý±²¬®«½¬±® ¿²¼ Ð®±°»®¬·»

×² ³¿²§ ½¿»ô §±«ù´´ ¼»º·²» ¿ ¬®·²¹ ª¿®·¿¾´» «·²¹ ¿ ´·¬»®¿´æ

¬®·²¹ ¬® ã þØ»´´±ô ©±®´¼ÿþå

±® ¿ ´·¬»®¿´ ·²»®¬»¼ ®·¹¸¬ ·² ¿ º«²½¬·±² ½¿´´æ

Ý±²±´»òÉ®·¬»Ô·²»øþØ»´´±ô ©±®´¼ÿþ÷å

±® ¿ ¬¸» ®»¬«®² ª¿´«» º®±³ ±²» ±º ¬¸» ³¿²§ ³»¬¸±¼ ¬¸¿¬ ®»¬«®² ¬®·²¹ ª¿®·¿¾´»ò Ñ²» «¾·¯«·¬±«
¬®·²¹ó®»¬«®²·²¹ ³»¬¸±¼ · ²¿³»¼ Ì±Í¬®·²¹ ¿²¼ ½±²ª»®¬ ¿² ±¾¶»½¬ ¬± ¿ ¬®·²¹ò Ú±® »¨¿³°´»ô ¬¸»
»¨°®»·±²

ëëòÌ±Í¬®·²¹ø÷å

®»¬«®² ¬¸» ¬®·²¹ þëëþò

×º §±« °®»º¿½» ¿ ¬®·²¹ ´·¬»®¿´ ©·¬¸ ¬¸» à ·¹²ô ¬¸» ¾¿½µ´¿¸ · ²±¬ ·²¬»®°®»¬»¼ ¿ ¿² »½¿°»
½¸¿®¿½¬»®ò Ì¸· ¬»½¸²·¯«» · ¸¿²¼§ º±® °»½·º§·²¹ ¼·®»½¬±®·»æ

¬®·²¹ ¬® ã àþ½æÄ¬»³°Ä³§ º·´»þå

Ì± ·²½´«¼» ¿ ¼±«¾´» ¯«±¬¿¬·±² ³¿®µ ·² «½¸ ¿ ¬®·²¹ô «» ¬©± ¼±«¾´» ¯«±¬¿¬·±² ³¿®µ ·² «½½»·±²ò

Ñ²» ±º ¬¸» ´» ½±³³±² ³»¬¸±¼ ±º ½®»¿¬·²¹ ¿ ¬®·²¹ · ¾§ «·²¹ ±²» ±º ¬¸» »·¹¸¬ Í¬®·²¹ ½±²¬®«½¬±®ò
Ú·ª» ±º ¬¸» Í¬®·²¹ ½±²¬®«½¬±® ·²ª±´ª» °±·²¬»® ¿²¼ ¿®» ²±¬ ½±³°´·¿²¬ ©·¬¸ ¬¸» Ý±³³±² Ô¿²¹«¿¹»
Í°»½·º·½¿¬·±² øÝÔÍ÷ò Ì¸» ®»³¿·²·²¹ ¬¸®»» Í¬®·²¹ ½±²¬®«½¬±® ½®»¿¬» ¿ Í¬®·²¹ ±¾¶»½¬ ¾§ ®»°»¿¬·²¹ ¿
·²¹´» ½¸¿®¿½¬»® ±® ½±²ª»®¬·²¹ º®±³ ¿² ¿®®¿§ ±º ½¸¿®¿½¬»®æ

Í¬®·²¹ Ý±²¬®«½¬±® ø»´»½¬·±²÷

Í¬®·²¹ø½¸¿® ½¸ô ·²¬ ·Ý±«²¬÷

Í¬®·²¹ø½¸¿®ÅÃ ¿½¸÷

Í¬®·²¹ø½¸¿®ÅÃ ¿½¸ô ·²¬ ·Í¬¿®¬×²¼»¨ô ·²¬ ·Ý±«²¬÷

×² ¬¸» ¬¸·®¼ ½±²¬®«½¬±®ô ·Í¬¿®¬×²¼»¨ · ¿² ·²¼»¨ ·²¬± ¬¸» ½¸¿®¿½¬»® ¿®®¿§ ¿²¼ ·Ý±«²¬ ·²¼·½¿¬» ¿
²«³¾»® ±º ½¸¿®¿½¬»® ¾»¹·²²·²¹ ¿¬ ¬¸¿¬ ·²¼»¨ò Ì¸» ´»²¹¬¸ ±º ¬¸» ®»«´¬¿²¬ ¬®·²¹ ©·´´ »¯«¿´ ·Ý±«²¬ò

Ì¸» Í¬®·²¹ ½´¿ ¸¿ ¶«¬ ¬©± °®±°»®¬·»ô ¾±¬¸ ±º ©¸·½¸ ¿®» ®»¿¼ó±²´§æ

Í¬®·²¹ Ð®±°»®¬·»

Ì§°» Ð®±°»®¬§ ß½½»·¾·´·¬§

·²¬ Ô»²¹¬¸ ¹»¬

½¸¿® ÅÃ ¹»¬

Ì¸» º·®¬ ·²¼·½¿¬» ¬¸» ²«³¾»® ±º ½¸¿®¿½¬»® ·² ¬¸» ¬®·²¹å ¬¸» »½±²¼ · ¿² ·²¼»¨»® ¬¸¿¬ ´»¬ §±«
¿½½» ¬¸» ·²¼·ª·¼«¿´ ½¸¿®¿½¬»® ±º ¬¸» ¬®·²¹ò

Ç±« ½¿² ¼»º·²» ¿ ¬®·²¹ ª¿®·¿¾´» ©·¬¸±«¬ ·²·¬·¿´·¦·²¹ ·¬æ

¬®·²¹ ¬®ïå

ß²§ ¿¬¬»³°¬ ¬± «» ¬¸¿¬ ¬®·²¹ ©·´´ ½¿«» ¬¸» ½±³°·´»® ¬± ®»°±®¬ ¬¸¿¬ ¬¸» ¬®·²¹ ª¿®·¿¾´» · «²¿·¹²»¼ò
Þ»½¿«» Í¬®·²¹ · ¿ ®»º»®»²½» ¬§°»ô §±« ½¿² ¿·¹² ¿ ¬®·²¹ ª¿®·¿¾´» ¬¸» ª¿´«» ²«´´æ

¬®·²¹ ¬®î ã ²«´´å

É¸¿¬ ¬¸» ²«´´ ª¿´«» ³»¿² · ¬¸¿¬ ²± ³»³±®§ ¸¿ ¾»»² ¿´´±½¿¬»¼ º±® ¬¸» ¬®·²¹ò Ø¿ª·²¹ ¿ ²«´´ ª¿´«» ·
¼·ºº»®»²¬ º®±³ ¸¿ª·²¹ ¿² »³°¬§ ¬®·²¹æ

¬®·²¹ ¬®í ã þþå

ß² »³°¬§ ¬®·²¹ ¸¿ ³»³±®§ ¿´´±½¿¬»¼ º±® ¬¸» ·²¬¿²½» ±º ¬¸» ¬®·²¹ô ¾«¬ ¬¸» ¬®íòÔ»²¹¬¸ °®±°»®¬§
»¯«¿´ ðò ß¬¬»³°¬·²¹ ¬± ¼»¬»®³·²» ¬¸» ´»²¹¬¸ ±º ¿ ²«´´ ¬®·²¹�³¿µ·²¹ ®»º»®»²½» ¬± ¬®îòÔ»²¹¬¸ô º±®
»¨¿³°´»�½¿«» ¿² »¨½»°¬·±² ¬± ¾» ¬¸®±©²ò

Ç±« ½¿² ¿´± ·²·¬·¿´·¦» ¿ ¬®·²¹ ª¿®·¿¾´» ¬± ¿² »³°¬§ ¬®·²¹ «·²¹ ¬¸» ±²´§ °«¾´·½ º·»´¼ ±º ¬¸» Í¬®·²¹
½´¿æ

Í¬®·²¹ Í¬¿¬·½ Ú·»´¼

Ì§°» Ú·»´¼ ß½½»·¾·´·¬§

¬®·²¹ Û³°¬§ ®»¿¼ó±²´§

Ú±® »¨¿³°´»ô

¬®·²¹ ¬® ã ¬®·²¹òÛ³°¬§å

Ç±« ½¿² ¼»º·²» ¿² ¿®®¿§ ±º ¬®·²¹ ´·µ» ±æ

¬®·²¹ÅÃ ¿¬® ã ²»© ¬®·²¹ÅëÃå

ß² ¿®®¿§ ±º º·ª» ¬®·²¹ · ½®»¿¬»¼ô »¿½¸ ±º ©¸·½¸ · ²«´´ò Ç±« ½¿² ¿´± ½®»¿¬» ¿² ¿®®¿§ ±º ·²·¬·¿´·¦»¼
¬®·²¹æ

¬®·²¹ÅÃ ¿¬® ã ¥ þ¿¾½þô þ¼»º¹¸·þô þ¶µ´þ £å

Ì¸· ¬¿¬»³»²¬ ½®»¿¬» ¿² ¿®®¿§ ©·¬¸ ¬¸®»» »´»³»²¬å ¬¸¿¬ ·ô ¿¬®òÔ»²¹¬¸ ®»¬«®² íò Û¿½¸ ¬®·²¹ ¸¿ ¿
°»½·º·½ ´»²¹¬¸å º±® »¨¿³°´»ô ¿¬®ÅïÃòÔ»²¹¬¸ ®»¬«®² êò

Ì¸» Í¬®·²¹ ½´¿ ·³°´»³»²¬ ¬¸» ×Ý±³°¿®¿¾´»ô ×Ý´±²»¿¾´»ô ×Ý±²ª»®¬·¾´»ô ¿²¼ ×Û²«³»®¿¾´» ·²¬»®º¿½»ô
©¸·½¸ ·³°´·» ¬¸¿¬ ¬¸» Í¬®·²¹ ½´¿ ½±²¬¿·² ½»®¬¿·² ³»¬¸±¼ ¼»º·²»¼ ·² ¬¸»» ·²¬»®º¿½»ò Þ»½¿«»
Í¬®·²¹ ·³°´»³»²¬ ¬¸» ×Û²«³»®¿¾´» ·²¬»®º¿½»ô §±« ½¿² «» Í¬®·²¹ ©·¬¸ ¬¸» º±®»¿½¸ ¬¿¬»³»²¬ ¬±
»²«³»®¿¬» ¬¸» ½¸¿®¿½¬»® ·² ¿ ¬®·²¹ò Ì¸» ¬¿¬»³»²¬

º±®»¿½¸ ø½¸¿® ½¸ ·² ¬®÷

¥

£

· »¯«·ª¿´»²¬ ¬± ø¿²¼ ¯«·¬» ¿ ¾·¬ ¸±®¬»® ¬¸¿²÷

º±® ø·²¬ · ã ðå · ä ¬®òÔ»²¹¬¸å ·õõ÷

¥

 ½¸¿® ½¸ ã ¬®Å·Ãå

£

×² ¬¸» º±®»¿½¸ ¾´±½µô ½¸ · ®»¿¼ó±²´§ò ×² ¬¸» º±® ¾´±½µô ½¸ · ²±¬ ®»¿¼ó±²´§ ¾«¬ ø¿ ««¿´÷ ¬¸» ¬®·²¹
½¸¿®¿½¬»® ½¿²ù¬ ¾» ¿´¬»®»¼ò

ßº¬»® ×Û²«³»®¿¾´»ô °»®¸¿° ¬¸» ²»¨¬ ³±¬ ·³°±®¬¿²¬ ·²¬»®º¿½» ¬¸¿¬ Í¬®·²¹ ·³°´»³»²¬ · ×Ý±³°¿®¿¾´»ô
©¸·½¸ ³»¿² ¬¸¿¬ ¬¸» Í¬®·²¹ ½´¿ ·³°´»³»²¬ ¿ ³»¬¸±¼ ²¿³»¼ Ý±³°¿®»Ì± ¬¸¿¬ ´»¬ §±« «» ¿®®¿§
±º ¬®·²¹ ©·¬¸ ¬¸» Þ·²¿®§Í»¿®½¸ ¿²¼ Í±®¬ ³»¬¸±¼ ¼»º·²»¼ ·² ¬¸» ß®®¿§ ½´¿ò ×ù´´ ¹± ±ª»® ¬¸»»
³»¬¸±¼ ´¿¬»® ·² ¬¸· ¿°°»²¼·¨ò

Ý±°§·²¹ Í¬®·²¹

Ì¸»®» ¿®» »ª»®¿´ ©¿§ ¬± ½±°§ ¿ ¬®·²¹ò Ð»®¸¿° ¬¸» ·³°´»¬ · «·²¹ ¬¸» »¯«¿´ ·¹²æ

¬®·²¹ ¬®Ý±°§ ã ¬®å

Ô·µ» »ª»®§ ½´¿ ·² ¬¸» òÒÛÌ Ú®¿³»©±®µô ¬¸» Í¬®·²¹ ½´¿ ·²¸»®·¬ ¬¸» Ì±Í¬®·²¹ ³»¬¸±¼ º®±³ Ñ¾¶»½¬ò
Þ»½¿«» ¬¸» Í¬®·²¹ ½´¿ ·³°´»³»²¬ ×Ý´±²»¿¾´»ô ·¬ ¿´± ·³°´»³»²¬ ¬¸» Ý´±²» ³»¬¸±¼ò Ì¸»»
³»¬¸±¼ °®±ª·¼» ¿¼¼·¬·±²¿´ ø·º ±³»©¸¿¬ ®»¼«²¼¿²¬÷ ³»¬¸±¼ ¬± ½±°§ ¬®·²¹æ

Í¬®·²¹ Ó»¬¸±¼ ø»´»½¬·±²÷

¬®·²¹ Ì±Í¬®·²¹ø÷

±¾¶»½¬ Ý´±²»ø÷

×º §±« «» Ý´±²»ô §±« ³«¬ ½¿¬ ¬¸» ®»«´¬ ¬± ¿ ¬®·²¹æ

¬®·²¹ ¬®Ý±°§ ã ø¬®·²¹÷ ¬®òÝ´±²»ø÷å

Ì¸» Í¬®·²¹ ½´¿ ¿´± ·³°´»³»²¬ ¿ ¬¿¬·½ ³»¬¸±¼ ¬¸¿¬ ½±°·» ¿ ¬®·²¹æ

Í¬®·²¹ Ý±°§ Í¬¿¬·½ Ó»¬¸±¼

¬®·²¹ Ý±°§ø¬®·²¹ ¬®÷

Þ»½¿«» ¬®·²¹ · ¿² ¿´·¿ º±® Í§¬»³òÍ¬®·²¹ô §±« ½¿² °®»º¿½» ¬¸» ³»¬¸±¼ ²¿³» ©·¬¸ ¬¸» ´±©»®½¿»
¬®·²¹æ

¬®·²¹ ¬®Ý±°§ ã ¬®·²¹òÝ±°§ø¬®÷å

±® ©·¬¸ ¬¸» º«´´§ ¯«¿´·º·»¼ ½´¿ ²¿³»æ

¬®·²¹ ¬®Ý±°§ ã Í§¬»³òÍ¬®·²¹òÝ±°§ø¬®÷å

×º §±« ¸¿ª» ¿ «·²¹ Í§¬»³ ¬¿¬»³»²¬ ·² ¬¸» °®±¹®¿³ô §±« ½¿² °®»º·¨ ¬¸» ³»¬¸±¼ ²¿³» ©·¬¸ ¬¸»
«°°»®½¿» Í¬®·²¹ ½´¿ ²¿³»æ

¬®·²¹ ¬®Ý±°§ ã Í¬®·²¹òÝ±°§ø¬®÷å

Ì©± ±º ¬¸» Í¬®·²¹ ½±²¬®«½¬±® ½±²ª»®¬ ¿ ½¸¿®¿½¬»® ¿®®¿§ ¬± ¿ ¬®·²¹ò Ç±« ½¿² ¿´± ½±²ª»®¬ ¿ ¬®·²¹
¾¿½µ ¬± ¿ ½¸¿®¿½¬»® ¿®®¿§æ

Í¬®·²¹ Ó»¬¸±¼ ø»´»½¬·±²÷

½¸¿®ÅÃ Ì±Ý¸¿®ß®®¿§ø÷

½¸¿®ÅÃ Ì±Ý¸¿®ß®®¿§ø·²¬ ·Í¬¿®¬×²¼»¨ô ·²¬ ·Ý±«²¬÷

ª±·¼ Ý±°§Ì±ø·²¬ ·Í¬¿®¬×²¼»¨Í®½ô ½¸¿®ÅÃ ¿½¸Ü¬ô ·²¬ ·Í¬¿®¬×²¼»¨Ü¬ô

·²¬ ·Ý±«²¬÷

Ì¸» Ì±Ý¸¿®ß®®¿§ ³»¬¸±¼ ½®»¿¬» ¬¸» ½¸¿®¿½¬»® ¿®®¿§ò Ì¸» ·Í¬¿®¬×²¼»¨ ¿®¹«³»²¬ ®»º»® ¬± ¿ ¬¿®¬·²¹
·²¼»¨ ·² ¬¸» ¬®·²¹ò Ì± «» ¬¸» Ý±°§Ì± ³»¬¸±¼ô ¬¸» ¿½¸Ü¬ ¿®®¿§ ³«¬ ¿´®»¿¼§ »¨·¬ò Ì¸» º·®¬
¿®¹«³»²¬ · ¿ ¬¿®¬·²¹ ·²¼»¨ º±® ¬¸» ¬®·²¹å ¬¸» ¬¸·®¼ ¿®¹«³»²¬ · ¿ ¬¿®¬·²¹ ·²¼»¨ ·² ¬¸» ½¸¿®¿½¬»®
¿®®¿§ò Ì¸» Ý±°§Ì± ³»¬¸±¼ · ¬¸» »¯«·ª¿´»²¬ ±º

º±® ø·²¬ · ã ðå · ä ·Ý±«²¬å ·õõ÷

 ¿½¸Ü¬Å·Í¬¿®¬×²¼»¨Ü¬ õ ·Ã ã ¬®Å·Í¬¿®¬×²¼»¨Í®½ õ ·Ãå

Ì¸» Í«¾¬®·²¹ ³»¬¸±¼ ½®»¿¬» ¿ ²»© ¬®·²¹ ¬¸¿¬ · ¿ »½¬·±² ±º ¿² »¨·¬·²¹ ¬®·²¹æ

Í¬®·²¹ Í«¾¬®·²¹ Ó»¬¸±¼

¬®·²¹ Í«¾¬®·²¹ø·²¬ ·Í¬¿®¬×²¼»¨÷

¬®·²¹ Í«¾¬®·²¹ø·²¬ ·Í¬¿®¬×²¼»¨ô ·²¬ ·Ý±«²¬÷

Ì¸» º·®¬ ª»®·±² ®»¬«®² ¿ «¾¬®·²¹ ¬¸¿¬ ¾»¹·² ¿¬ ¬¸» ·²¼»¨ ¿²¼ ½±²¬·²«» ¬± ¬¸» »²¼ ±º ¬¸» ¬®·²¹ò

Ý±²ª»®¬·²¹ Í¬®·²¹

Ì©± ³»¬¸±¼ô »¿½¸ ©·¬¸ ¬©± ª»®·±²ô ½±²ª»®¬ ¬®·²¹ ¬± ´±©»®½¿» ±® «°°»®½¿»æ

Í¬®·²¹ Ó»¬¸±¼ ø»´»½¬·±²÷

¬®·²¹ Ì±Ë°°»®ø÷

¬®·²¹ Ì±Ë°°»®øÝ«´¬«®»×²º± ½·÷

¬®·²¹ Ì±Ô±©»®ø÷

¬®·²¹ Ì±Ô±©»®øÝ«´¬«®»×²º± ½·÷

Ì¸» Ý«´¬«®»×²º± ½´¿ · ¼»º·²»¼ ·² Í§¬»³òÙ´±¾¿´·¦¿¬·±² ¿²¼ ·² ¬¸· ½¿» ®»º»® ¬± ¿ °¿®¬·½«´¿®
´¿²¹«¿¹» ¿ «»¼ ·² ¿ °¿®¬·½«´¿® ½±«²¬®§ò

Ý±²½¿¬»²¿¬·²¹ Í¬®·²¹

×¬ù ±º¬»² ²»½»¿®§ ¬± ¬¿½µ ¬±¹»¬¸»® ¬©± ±® ³±®» ¬®·²¹ô ¿ °®±½» µ²±©² ¿ ¬®·²¹ ½±²½¿¬»²¿¬·±²ò ×²
Ýô §±« «» ¬¸» ´·¾®¿®§ º«²½¬·±² ¬®½¿¬ ¿²¼ ¬®²½¿¬ò Ú±® ½±²ª»²·»²½»ô ¬¸» Ýý ¿¼¼·¬·±² ±°»®¿¬±® ·
±ª»®´±¿¼»¼ ¬± °»®º±®³ ¬®·²¹ ½±²½¿¬»²¿¬·±²æ

¬®·²¹ ¬® ã ¬®ï õ ¬®îå

Ì¸» ½±²½¿¬»²¿¬·±² ±°»®¿¬±® · ½±²ª»²·»²¬ º±® ¼»º·²·²¹ ¿ ¬®·²¹ ´·¬»®¿´ ¬¸¿¬ù ¿ ´·¬¬´» ¬±± ´±²¹ ¬± º·¬ ±² ¿
·²¹´» ´·²»æ

¬®·²¹ ¬® ã þÌ¸±» ©¸± °®±º» ¬± º¿ª±® º®»»¼±³ ¿²¼ §»¬ ¼»°®»½·¿¬» þ õ

 þ¿¹·¬¿¬·±²ò ò ò©¿²¬ ½®±° ©·¬¸±«¬ °´±©·²¹ «° ¬¸» ¹®±«²¼ô ¬¸»§
þ õ

 þ©¿²¬ ®¿·² ©·¬¸±«¬ ¬¸«²¼»® ¿²¼ ´·¹¸¬²·²¹ò Ì¸»§ ©¿²¬ ¬¸» ±½»¿²
þ õ

 þ©·¬¸±«¬ ¬¸» ¿©º«´ ®±¿® ±º ·¬ ³¿²§ ©¿¬»®ò Ä¨îðïì Ú®»¼»®·½µ
þ õ

 þÜ±«¹´¿þå

Ç±« ½¿² ¿´± «» ¬¸» õã ±°»®¿¬±® ¬± ¿°°»²¼ ¿ ¬®·²¹ ¬± ¬¸» »²¼ ±º ¿² »¨·¬·²¹ ¬®·²¹æ

¬® õã þÄ®Ä²þå

Ì¸» Í¬®·²¹ ½´¿ ¿´± ¼»º·²» ¿ ¬¿¬·½ Ý±²½¿¬ ³»¬¸±¼æ

Í¬®·²¹ Ý±²½¿¬ Í¬¿¬·½ Ó»¬¸±¼ ø»´»½¬·±²÷

¬®·²¹ Ý±²½¿¬ø¬®·²¹ ¬®ïô ¬®·²¹ ¬®î÷

¬®·²¹ Ý±²½¿¬ø¬®·²¹ ¬®ïô ¬®·²¹ ¬®îô ¬®·²¹ ¬®í÷

¬®·²¹ Ý±²½¿¬ø¬®·²¹ ¬®ïô ¬®·²¹ ¬®îô ¬®·²¹ ¬®íô ¬®·²¹ ¬®ì÷

¬®·²¹ Ý±²½¿¬ø°¿®¿³ ¬®·²¹ÅÃ ¿¬®÷

Ò±¬·½» ¬¸» °¿®¿³ µ»§©±®¼ ·² ¬¸» ´¿¬ ª»®·±² ±º Ý±²½¿¬ò É¸¿¬ ¬¸¿¬ µ»§©±®¼ ³»¿² ·² ¬¸· ½¿» ·
¬¸¿¬ §±« ½¿² °»½·º§ »·¬¸»® ¿² ¿®®¿§ ±º ¬®·²¹ ±® ¿²§ ²«³¾»® ±º ¬®·²¹ò Ú±® »¨¿³°´»ô ·º §±« ¸¿ª» ¿²
¿®®¿§ ±º ¬®·²¹ ¼»º·²»¼ ¿

¬®·²¹ÅÃ ¿¬® ã ¥ þ¿¾½þô þ¼»ºþô þ¹¸·þô þ¶µ´þô þ³²±þô þ°¯®þ £å

¿²¼ §±« °¿ ¬¸¿¬ ¿®®¿§ ¬± ¬¸» Ý±²½¿¬ ³»¬¸±¼

¬®·²¹ ¬® ã ¬®·²¹òÝ±²½¿¬ø¿¬®÷å

¬¸» ®»«´¬ · ¬¸» ¬®·²¹ þ¿¾½¼»º¹¸·¶µ´³²±°¯®þò ß´¬»®²¿¬·ª»´§ô §±« ½¿² °¿ ¬¸» ·²¼·ª·¼«¿´ ¬®·²¹ ¼·®»½¬´§
¬± ¬¸» Ý±²½¿¬ ³»¬¸±¼æ

¬®·²¹ ¬® ã ¬®·²¹òÝ±²½¿¬øþ¿¾½þô þ¼»ºþô þ¹¸·þô þ¶µ´þô þ³²±þô þ°¯®þ÷å

ß´¬¸±«¹¸ ¬¸» Í¬®·²¹ ½´¿ ¼»º·²» Ý±²½¿¬ ª»®·±² ©·¬¸ ¬©±ô ¬¸®»»ô º±«®ô ±® ¿ ª¿®·¿¾´» ²«³¾»® ±º
¿®¹«³»²¬ô ±²´§ ¬¸» ª»®·±² ©·¬¸ ¬¸» °¿®¿³ ¿®¹«³»²¬ · ²»½»¿®§ò Ì¸¿¬ ³»¬¸±¼ ¿½¬«¿´´§
»²½±³°¿» ¬¸» ±¬¸»® ¬¸®»» ³»¬¸±¼ò

ß²±¬¸»® »¬ ±º Ý±²½¿¬ ³»¬¸±¼ ¿®» ¬¸» ¿³» »¨½»°¬ ©·¬¸ ±¾¶»½¬ ¿®¹«³»²¬æ

Í¬®·²¹ Ý±²½¿¬ Í¬¿¬·½ Ó»¬¸±¼ ø»´»½¬·±²÷

¬®·²¹ Ý±²½¿¬ø±¾¶»½¬ ±¾¶÷

¬®·²¹ Ý±²½¿¬ø±¾¶»½¬ ±¾¶ïô ±¾¶»½¬ ±¾¶î÷

¬®·²¹ Ý±²½¿¬ø±¾¶»½¬ ±¾¶ïô ±¾¶»½¬ ±¾¶îô ±¾¶»½¬ ±¾¶í÷

¬®·²¹ Ý±²½¿¬ø°¿®¿³ ±¾¶»½¬ÅÃ ¿±¾¶÷

Ì¸» ±¾¶»½¬ ¿®¹«³»²¬ ¿®» ½±²ª»®¬»¼ ¬± ¬®·²¹ ¾§ ¬¸» ±¾¶»½¬ù Ì±Í¬®·²¹ ³»¬¸±¼ò Ì¸» ½¿´´

¬®·²¹òÝ±²½¿¬øëëô þóþô ííô þãþô ëë ó íí÷

½®»¿¬» ¬¸» ¬®·²¹ þëëóííãîîþò

×¬ù ±³»¬·³» ²»½»¿®§ ¬± ½±²½¿¬»²¿¬» ¿² ¿®®¿§ ±º ¬®·²¹ ¾«¬ ©·¬¸ ±³» µ·²¼ ±º »°¿®¿¬±® ¾»¬©»»²
»¿½¸ ¿®®¿§ »´»³»²¬ò Ç±« ½¿² ¼± ¬¸¿¬ «·²¹ ¬¸» Ö±·² ¬¿¬·½ ³»¬¸±¼æ

Í¬®·²¹ Ö±·² Í¬¿¬·½ Ó»¬¸±¼

¬®·²¹ Ö±·²ø¬®·²¹ ¬®Í»°¿®¿¬±®ô ¬®·²¹ÅÃ ¿¬®÷

¬®·²¹ Ö±·²ø¬®·²¹ ¬®Í»°¿®¿¬±®ô ¬®·²¹ÅÃ ¿¬®ô ·²¬ ·Í¬¿®¬×²¼»¨ô ·²¬
·Ý±«²¬÷

Ú±® »¨¿³°´»ô ·º §±« ¸¿ª» ¿² ¿®®¿§ ±º ¬®·²¹ ¼»º·²»¼ ¿

¬®·²¹ÅÃ ¿¬® ã ¥ þ¿¾½þô þ¼»ºþô þ¹¸·þô þ¶µ´þô þ³²±þô þ°¯®þ £å

§±« ³·¹¸¬ ©¿²¬ ¬± ½®»¿¬» ¿ ½±³°±·¬» ¬®·²¹ ©·¬¸ »²¼ó±ºó´·²» ·²¼·½¿¬±® ¾»¬©»»² »¿½¸ °¿·®ò Ý¿´´

¬®·²¹ ¬® ã ¬®·²¹òÖ±·²øþÄ®Ä²þô ¿¬®÷å

Ì¸» ®»«´¬ · ¬¸» ¬®·²¹

¿¾½Ä®Ä²¼»ºÄ®Ä²¹¸·Ä®Ä²¶µ´Ä®Ä²³²±Ä®Ä²°¯®

Ì¸» »°¿®¿¬±® · ²±¬ ¿°°»²¼»¼ º±´´±©·²¹ ¬¸» ´¿¬ ¬®·²¹ò

Ì¸» »½±²¼ ª»®·±² ±º Ö±·² ´»¬ §±« »´»½¬ ¿ ½±²¬·¹«±« «¾»¬ ±º ¬®·²¹ º®±³ ¬¸» ¿®®¿§ ¾»º±®»
¶±·²·²¹ ¬¸»³ò

Ý±³°¿®·²¹ Í¬®·²¹

Í¬®·²¹ · ¿ ½´¿ ø²±¬ ¿ ¬®«½¬«®»÷ô ¿²¼ ¬®·²¹ · ¿ ®»º»®»²½» ¬§°» ø²±¬ ¿ ª¿´«» ¬§°»÷ò Ò±®³¿´´§ ¬¸¿¬
©±«´¼ ·³°´§ ¬¸¿¬ ¬¸» ½±³°¿®·±² ±°»®¿¬±® øãã ¿²¼ ÿã÷ ©±«´¼²ù¬ ©±®µ ½±®®»½¬´§ º±® ¬®·²¹ò Ç±«ù¼ ¾»
½±³°¿®·²¹ ±¾¶»½¬ ®»º»®»²½» ®¿¬¸»® ¬¸¿² ½¸¿®¿½¬»®ò Ø±©»ª»®ô ¬¸» ãã ¿²¼ ÿã ±°»®¿¬±® ¸¿ª» ¾»»²
®»¼»º·²»¼ º±® ¬®·²¹ ¿²¼ ©±®µ ¿ §±«ù¼ »¨°»½¬ò Ì¸» »¨°®»·±²

ø¬® ãã þÒ»© Ç±®µþ÷

¿²¼

ø¬® ÿã þÒ»© Ö»®»§þ÷

®»¬«®² ¾±±´ ª¿´«» ¾¿»¼ ±² ¿ ½¿»ó»²·¬·ª» ½¸¿®¿½¬»®ó¾§ó½¸¿®¿½¬»® ½±³°¿®·±²ò

Ì¸»®» ¿®» »ª»®¿´ ³»¬¸±¼ ¼»º·²»¼ ·² ¬¸» Í¬®·²¹ ½´¿ ¬¸¿¬ ®»¬«®² ¾±±´ ª¿´«» ·²¼·½¿¬·²¹ ¬¸» ®»«´¬ ±º
¿ ½¿»ó»²·¬·ª» ¬®·²¹ ½±³°¿®·±²æ

Í¬®·²¹ Ó»¬¸±¼ ø»´»½¬·±²÷

¾±±´ Û¯«¿´ø¬®·²¹ ¬®÷

¾±±´ Û¯«¿´ø±¾¶»½¬ ±¾¶÷

¾±±´ Í¬¿®¬É·¬¸ø¬®·²¹ ¬®÷

¾±±´ Û²¼É·¬¸ø¬®·²¹ ¬®÷

×º ¿ ¬®·²¹ · ¼»º·²»¼ ¿

¬®·²¹ ¬® ã þÌ¸» »²¼ ±º ¬·³»þå

¬¸»²

¬®òÍ¬¿®¬É·¬¸øþÌ¸»þ÷

®»¬«®² ¬®«» ¾«¬

¬®òÍ¬¿®¬É·¬¸øþ¬¸»þ÷

®»¬«®² º¿´»ò

Ì¸»®»ù ¿´± ¿ ¬¿¬·½ ª»®·±² ±º ¬¸» Û¯«¿´ ³»¬¸±¼æ

Í¬®·²¹ Í¬¿¬·½ Ó»¬¸±¼ ø»´»½¬·±²÷

¾±±´ Û¯«¿´ø¬®·²¹ ¬®ïô ¬®·²¹ ¬®î÷

Ú±® »¨¿³°´»ô ·²¬»¿¼ ±º

·º ø¬® ãã þÒ»© Ç±®µþ÷

§±« ½¿² «»

·º øÛ¯«¿´ø¬®ô þÒ»© Ç±®µþ÷÷

Ó»¬¸±¼ ´·µ» ¬¸· ±²» ¿®» °®±ª·¼»¼ °®·³¿®·´§ º±® ´¿²¹«¿¹» ¬¸¿¬ ¼±²ù¬ ¸¿ª» ±°»®¿¬±® º±® ½±³°¿®·±²ò

Ì¸» ®»³¿·²·²¹ ½±³°¿®·±² ³»¬¸±¼ ·³°´»³»²¬»¼ ·² Í¬®·²¹ô ©¸·½¸ ×ù´´ ¼·½« ³±³»²¬¿®·´§ô ®»¬«®² ¿²
·²¬»¹»® ª¿´«» ¬¸¿¬ ·²¼·½¿¬» ©¸»¬¸»® ±²» ¬®·²¹ · ´» ¬¸¿²ô »¯«¿´ ¬±ô ±® ¹®»¿¬»® ¬¸¿² ¿²±¬¸»® ¬®·²¹æ

Í¬®·²¹ Ý±³°¿®·±² Ó»¬¸±¼ Î»¬«®² Ê¿´«»

Î»¬«®² Ê¿´«» Ó»¿²·²¹

Ò»¹¿¬·ª» ¬®ï ä ¬®î

Æ»®± ¬®ï ãã ¬®î

Ð±·¬·ª» ¬®ï â ¬®î

É¿¬½¸ ±«¬æ ¬¸» ½±³°¿®·±² ³»¬¸±¼ ¿®» ¼»º·²»¼ ¿ ®»¬«®²·²¹ ²»¹¿¬·ª»ô ¦»®±ô ±® °±·¬·ª» ·²¬»¹»®ô ²±¬
óïô ðô ±® ïò

Ë«¿´´§ ·º §±«ù®» ·²¬»®»¬»¼ ·² ©¸»¬¸»® ±²» ¬®·²¹ · ´» ¬¸¿² ±® ¹®»¿¬»® ¬¸¿² ¿²±¬¸»®ô ·¬ù ¾»½¿«»
§±«ù®» ±®¬·²¹ ¬¸» ¬®·²¹ ·² ±³» ©¿§ò ß²¼ ¬¸¿¬ ·³°´·» ¬¸¿¬ §±« °®±¾¿¾´§ ¼±²ù¬ ©¿²¬ ¬± °»®º±®³ ¿
½±³°¿®·±² ¾¿»¼ ±² ¬¸» ¬®·½¬ ²«³»®·½ ª¿´«» ±º ¬¸» ½¸¿®¿½¬»® ½±¼»ò Ú±® »¨¿³°´»ô §±« °®±¾¿¾´§
©¿²¬ ¬¸» ½¸¿®¿½¬»® » ¿²¼ 7 ¬± ¾» ®»¹¿®¼»¼ ¿ ´» ¬¸¿² Úô ¼»°·¬» ¬¸» ¸·¹¸»® ª¿´«» ±º ¬¸»·®

½¸¿®¿½¬»® ½±¼»ò Í«½¸ ¿ ½±³°¿®·±² · µ²±©² ¿ ¿ ´»¨·½¿´ ½±³°¿®·±² ®¿¬¸»® ¬¸¿² ¿ ²«³»®·½
½±³°¿®·±²ò

Ø»®»ù ¬¸» ®»´¿¬·±²¸·° ¿³±²¹ ¿ º»© »´»½¬ ½¸¿®¿½¬»® ©¸»² ½±³°¿®»¼ ²«³»®·½¿´´§æ

Ü ä Û ä Ú ä ¼ ä » ä º ä X ä W ä V ä U ä 8 ä 7 ä 6 ä 5

ß²¼ ¸»®»ù ¬¸» ´»¨·½¿´ ½±³°¿®·±²æ

¼ ä Ü ä » ä Û ä 7 ä W ä 8 ä X ä 6 ä V ä 5 ä U ä º ä Ú

× ¿ ´»¨·½¿´ ½±³°¿®·±² ¿´± ½¿» ·²»²·¬·ª»á Ó±¬´§ ·¬ ·ò Ú±® »¨¿³°´»ô ¬¸» ¬®·²¹ þÒ»© Ö»®»§þ ·
½±²·¼»®»¼ ´» ¬¸¿² þ²»© Ç±®µþ ¼»°·¬» ¬¸» ´±©»®½¿» ù²ù ·² ¬¸» »½±²¼ ¬®·²¹ò Þ«¬ ©¸»² ¬©± ¬®·²¹
¿®» ·¼»²¬·½¿´ »¨½»°¬ º±® ½¿»ô ´±©»®½¿» ´»¬¬»® ¿®» ½±²·¼»®»¼ ´» ¬¸¿² «°°»®½¿» ´»¬¬»®ô ¬¸¿¬ ·ô
þ¬¸»þ · ´» ¬¸¿² þÌ¸»þò Ø±©»ª»®ô þÌ¸»³þ · ´» ¬¸¿² þ¬¸»²þò

×² ±¬¸»® ©±®¼ô ¾§ ¼»º¿«´¬ô ¿ ´»¨·½¿´ ½±³°¿®·±² · ½¿» »²·¬·ª» ±²´§ ©¸»² ¿ ³»¬¸±¼ ³«¬ ¼»½·¼»
©¸»¬¸»® ±® ²±¬ ¬± ®»¬«®² ðò Ñ¬¸»®©·»ô ·¬ù ½¿» ·²»²·¬·ª»ò

Ì¸» ´»¨·½¿´ ½±³°¿®·±² ¿´± ·³°´·» ¿ ½»®¬¿·² ®»´¿¬·±²¸·° ¿³±²¹ ´»¬¬»®ô ²«³¾»®ô ¿²¼ ±¬¸»®
½¸¿®¿½¬»®ò ×² ¹»²»®¿´ô ½±²¬®±´ ½¸¿®¿½¬»® ¿®» ½±²·¼»®»¼ ¬± ¾» ´» ¬¸¿² ·²¹´» ¯«±¬» ¿²¼ ¼¿¸»ô
©¸·½¸ ¿®» ´» ¬¸¿² ©¸·¬»ó°¿½» ½¸¿®¿½¬»®ò Ò»¨¬ ½±³» °«²½¬«¿¬·±² ¿²¼ ±¬¸»® §³¾±´ô ¼·¹·¬ øð
¬¸®±«¹¸ ç÷ô ¿²¼ º·²¿´´§ ´»¬¬»®ò ß ²«´´ ¬®·²¹ · ´» ¬¸¿² ¬¸» »³°¬§ ¬®·²¹ô ©¸·½¸ · ´» ¬¸¿² ¿²§ ±¬¸»®
½¸¿®¿½¬»®ò Ú±® »¨¿³°´»ô

þÒ»©þ ä þÒ»© Ç±®µþ ä þÒ»©¿®µþ

Ì¸» ²±²¬¿¬·½ ³»¬¸±¼ Ý±³°¿®»Ì± °»®º±®³ ¿ ´»¨·½¿´ ½±³°¿®·±² ¾»¬©»»² ¿ ¬®·²¹ ·²¬¿²½» ¿²¼ ¿²
¿®¹«³»²¬æ

Í¬®·²¹ Ý±³°¿®»Ì± Ó»¬¸±¼

·²¬ Ý±³°¿®»Ì±ø¬®·²¹ ¬®î÷

·²¬ Ý±³°¿®»Ì±ø±¾¶»½¬ ±¾¶î÷

Ì¸» º·®¬ ¬®·²¹ · ¬¸» ¬®·²¹ ±¾¶»½¬ §±«ù®» ½¿´´·²¹ Ý±³°¿®»Ì± ±²ô º±® »¨¿³°´»ô

¬®ïòÝ±³°¿®»Ì±ø¬®î÷

Ì¸» Ý±³°¿®»Ì± ³»¬¸±¼ ©·¬¸ ¬¸» ±¾¶»½¬ ¿®¹«³»²¬ · ²»½»¿®§ ¬± ·³°´»³»²¬ ¬¸» ×Ý±³°¿®¿¾´»
·²¬»®º¿½»ò Ì¸» Ý±³°¿®»Ì± ³»¬¸±¼ · «»¼ ¾§ ¬¸» ¬¿¬·½ ß®®¿§òÞ·²¿®§Í»¿®½¸ ¿²¼ ß®®¿§òÍ±®¬ ³»¬¸±¼ô
¿ ×ù´´ ¼·½« ¸±®¬´§ò

ß´´ ¬¸» ±¬¸»® ½±³°¿®·±² ³»¬¸±¼ ¿®» ¬¿¬·½ò Ì¸» Ý±³°¿®»Ñ®¼·²¿´ ³»¬¸±¼ °»®º±®³ ¿ ¬®·½¬ ²«³»®·½
½±³°¿®·±² ¾¿»¼ ±² ¬¸» ½¸¿®¿½¬»® ª¿´«»æ

Í¬®·²¹ Ý±³°¿®»Ñ®¼·²¿´ Í¬¿¬·½ Ó»¬¸±¼

·²¬ Ý±³°¿®»Ñ®¼·²¿´ø¬®·²¹ ¬®ïô ¬®·²¹ ¬®î÷

·²¬ Ý±³°¿®»Ñ®¼·²¿´ø¬®·²¹ ¬®ïô ·²¬ ·Í¬¿®¬×²¼»¨ïô ¬®·²¹ ¬®îô

 ·²¬ ·Í¬¿®¬×²¼»¨îô ·²¬ ·Ý±«²¬÷

Ì¸» ¬¿¬·½ Ý±³°¿®» ³»¬¸±¼ °»®º±®³ ¿ ´»¨·½¿´ ½±³°¿®·±²æ

Í¬®·²¹ Ý±³°¿®» Í¬¿¬·½ Ó»¬¸±¼

·²¬ Ý±³°¿®»ø¬®·²¹ ¬®ïô ¬®·²¹ ¬®î÷

·²¬ Ý±³°¿®»ø¬®·²¹ ¬®ïô ¬®·²¹ ¬®îô ¾±±´ ¾×¹²±®»Ý¿»÷

·²¬ Ý±³°¿®»ø¬®·²¹ ¬®ïô ¬®·²¹ ¬®îô ¾±±´ ¾×¹²±®»Ý¿»ô Ý«´¬«®»×²º± ½·÷

·²¬ Ý±³°¿®»ø¬®·²¹ ¬®ïô ·²¬ ·Í¬¿®¬×²¼»¨ïô ¬®·²¹ ¬®îô ·²¬ ·Í¬¿®¬×²¼»¨îô

·²¬ ·Ý±«²¬÷

·²¬ Ý±³°¿®»ø¬®·²¹ ¬®ïô ·²¬ ·Í¬¿®¬×²¼»¨ïô ¬®·²¹ ¬®îô ·²¬ ·Í¬¿®¬×²¼»¨îô

·²¬ ·Ý±«²¬ô ¾±±´ ¾×¹²±®»Ý¿»÷

·²¬ Ý±³°¿®»ø¬®·²¹ ¬®ïô ·²¬ ·Í¬¿®¬×²¼»¨ïô ¬®·²¹ ¬®îô ·²¬ ·Í¬¿®¬×²¼»¨îô

·²¬ ·Ý±«²¬ô ¾±±´ ¾×¹²±®»Ý¿»ô Ý«´¬«®»×²º± ½·÷

Ì¸» ¾×¹²±®»Ý¿» ¿®¹«³»²¬ ¿ºº»½¬ ¬¸» ®»¬«®² ª¿´«» ±²´§ ©¸»² ¬¸» ¬©± ¬®·²¹ ¿®» ¬¸» ¿³» »¨½»°¬
º±® ½¿»ò Ý¿»ó·²»²·¬·ª» ½±³°¿®·±² ¿®» ³«½¸ ³±®» «»º«´ º±® »¿®½¸·²¹ ®¿¬¸»® ¬¸¿² ±®¬·²¹ò Ì¸»
³»¬¸±¼ ½¿´´

¬®·²¹òÝ±³°¿®»øþ5þô þUþ÷

¿²¼

¬®·²¹òÝ±³°¿®»øþ5þô þUþô º¿´»÷

¾±¬¸ ®»¬«®² ²»¹¿¬·ª» ª¿´«»ô ¾«¬

¬®·²¹òÝ±³°¿®»øþ5þô þUþô ¬®«»÷

®»¬«®² ðò Ì¸» ½¿´´

¬®·²¹òÝ±³°¿®»øþ»þô þ5þô ¾×¹²±®»Ý¿»÷

¿²¼

¬®·²¹òÝ±³°¿®»øþ»þô þUþô ¾×¹²±®»Ý¿»÷

¿´©¿§ ®»¬«®² ²»¹¿¬·ª» ª¿´«»ô ®»¹¿®¼´» ±º ¬¸» °®»»²½» ±® ª¿´«» ±º ¬¸» ¾×¹²±®»Ý¿» ¿®¹«³»²¬ò

Ì¸»®» · ²± ½±³°¿®·±² ³»¬¸±¼ ·³°´»³»²¬»¼ ·² ¬¸» Í¬®·²¹ ½´¿ ¬¸¿¬ ®»°±®¬ ¬¸¿¬ þß²¼®7þ »¯«¿´
þß²¼®»þò

Í»¿®½¸·²¹ ¬¸» Í¬®·²¹

Ì¸» Ý ´·¾®¿®§ º«²½¬·±² ¬®½¸® ¿²¼ ¬®¬® »¿®½¸ ¿ ¬®·²¹ º±® ¬¸» º·®¬ ±½½«®®»²½» ±º ¿ °»½·º·½ ½¸¿®¿½¬»®
±® ¿²±¬¸»® ¬®·²¹ ¿²¼ ®»¬«®² ¿ °±·²¬»® ¬± ¬¸¿¬ ±½½«®®»²½»ò Ì¸» Ýý »¯«·ª¿´»²¬�©¸·½¸ ¿®» ¿´´ ª»®·±²
±º ¬¸» ×²¼»¨Ñº ³»¬¸±¼�®»¬«®² ¿² ·²¼»¨ ·² ¬¸» ±«®½» ¬®·²¹ ®¿¬¸»® ¬¸¿² ¿ °±·²¬»®ò

Í¬®·²¹ ×²¼»¨Ñº Ó»¬¸±¼

·²¬ ×²¼»¨Ñºø½¸¿® ½¸÷

·²¬ ×²¼»¨Ñºø½¸¿® ½¸ô ·²¬ ·Í¬¿®¬×²¼»¨÷

·²¬ ×²¼»¨Ñºø½¸¿® ½¸ô ·²¬ ·Í¬¿®¬×²¼»¨ô ·²¬ ·Ý±«²¬÷

·²¬ ×²¼»¨Ñºø¬®·²¹ ¬®÷

·²¬ ×²¼»¨Ñºø¬®·²¹ ¬®ô ·²¬ ·Í¬¿®¬×²¼»¨÷

·²¬ ×²¼»¨Ñºø¬®·²¹ ¬®ô ·²¬ ·Í¬¿®¬×²¼»¨ô ·²¬ ·Ý±«²¬÷

Ç±« ½¿² »¿®½¸ º±® ¿ °»½·º·½ ½¸¿®¿½¬»® ±® ¿²±¬¸»® ¬®·²¹ò Ì¸» »¿®½¸ · ½¿» »²·¬·ª»ò Ì¸» ³»¬¸±¼
®»¬«®² óï ·º ¬¸» ½¸¿®¿½¬»® ±® ¬®·²¹ ·²ù¬ º±«²¼ò Ç±« ½¿² ±°¬·±²¿´´§ ·²½´«¼» ¿ ¬¿®¬·²¹ ·²¼»¨ ¿²¼ ¿
½¸¿®¿½¬»® ½±«²¬ò Ì¸» ®»¬«®² ª¿´«» · ³»¿«®»¼ º®±³ ¬¸» ¾»¹·²²·²¹ ±º ¬¸» ¬®·²¹ô ²±¬ º®±³ ¬¸» ¬¿®¬·²¹
·²¼»¨ò

É·¬¸ ¿ ¬®·²¹ ¼»º·²»¼ ¿

¬®·²¹ ¬® ã þ¸»´´± ©±®´¼þå

¬¸»²

¬®ò×²¼»¨Ñºøù±ù÷

®»¬«®² ìô ¿²¼

¬®ò×²¼»¨Ñºøþ©±þ÷

®»¬«®² êò

Ç±« ½¿² ¿´± °»®º±®³ ¬¸» »¿®½¸ ¬¿®¬·²¹ ¿¬ ¬¸» »²¼ ±º ¬¸» ¬®·²¹æ

Í¬®·²¹ Ô¿¬×²¼»¨Ñº Ó»¬¸±¼

·²¬ Ô¿¬×²¼»¨Ñºø½¸¿® ½¸÷

·²¬ Ô¿¬×²¼»¨Ñºø½¸¿® ½¸ô ·²¬ ·Í¬¿®¬×²¼»¨÷

·²¬ Ô¿¬×²¼»¨Ñºø½¸¿® ½¸ô ·²¬ ·Í¬¿®¬×²¼»¨ô ·²¬ ·Ý±«²¬÷

·²¬ Ô¿¬×²¼»¨Ñºø¬®·²¹ ¬®÷

·²¬ Ô¿¬×²¼»¨Ñºø¬®·²¹ ¬®ô ·²¬ ·Í¬¿®¬×²¼»¨÷

·²¬ Ô¿¬×²¼»¨Ñºø¬®·²¹ ¬®ô ·²¬ ·Í¬¿®¬×²¼»¨ô ·²¬ ·Ý±«²¬÷

ß´¬¸±«¹¸ ¬¸» ³»¬¸±¼ »¿®½¸ º®±³ ¬¸» »²¼ ±º ¬¸» ¬®·²¹ô ¬¸» ®»¬«®²»¼ ·²¼»¨ · ¬·´´ ³»¿«®»¼ º®±³ ¬¸»
¾»¹·²²·²¹ ±º ¬¸» ¬®·²¹ò Ú±® ¬¸» ¬®·²¹ ¸±©² ¿¾±ª»ô ¬¸» ½¿´´

¬®òÔ¿¬×²¼»¨Ñºøù±ù÷

®»¬«®² éô ¿²¼

¬®òÔ¿¬×²¼»¨Ñºøþ©±þ÷

®»¬«®² êò

Ì¸» º±´´±©·²¹ ³»¬¸±¼ ¸¿ª» ¿ º·®¬ ¿®¹«³»²¬ ¬¸¿¬ · ¿² ¿®®¿§ ±º ½¸¿®¿½¬»®ò Ì¸» ³»¬¸±¼ ¼»¬»®³·²»
¬¸» º·®¬ ±® ´¿¬ ·²¼»¨ ·² ¬¸» ¬®·²¹ ±º ¿ ½¸¿®¿½¬»® ¬¸¿¬ ³¿¬½¸» ¿²§ ½¸¿®¿½¬»® ·² ¬¸» ¿®®¿§æ

Í¬®·²¹ Ó»¬¸±¼ ø»´»½¬·±²÷

·²¬ ×²¼»¨Ñºß²§ø½¸¿®ÅÃ ¿½¸÷

·²¬ ×²¼»¨Ñºß²§ø½¸¿®ÅÃ ¿½¸ô ·²¬ ·Í¬¿®¬×²¼»¨÷

·²¬ ×²¼»¨Ñºß²§ø½¸¿®ÅÃ ¿½¸ô ·²¬ ·Í¬¿®¬×²¼»¨ô ·²¬ ·Ý±«²¬÷

·²¬ Ô¿¬×²¼»¨Ñºß²§ø½¸¿®ÅÃ ¿½¸÷

·²¬ Ô¿¬×²¼»¨Ñºß²§ø½¸¿®ÅÃ ¿½¸ô ·²¬ ·Í¬¿®¬×²¼»¨÷

·²¬ Ô¿¬×²¼»¨Ñºß²§ø½¸¿®ÅÃ ¿½¸ô ·²¬ ·Í¬¿®¬×²¼»¨ô ·²¬ ·Ý±«²¬÷

×º ¿ ½¸¿®¿½¬»® ¿®®¿§ ¿²¼ ¿ ¬®·²¹ ¿®» ¼»º·²»¼ ´·µ» ±æ

½¸¿®ÅÃ ¿½¸Ê±©»´ ã ¥ ù¿ùô ù»ùô ù·ùô ù±ùô ù«ù £å

¬®·²¹ ¬® ã þ¸»´´± ©±®´¼þå

¬¸»²

¬®ò×²¼»¨Ñºß²§ø¿½¸Ê±©»´÷

®»¬«®² ïô ¿²¼

¬®òÔ¿¬×²¼»¨Ñºß²§ø¿½¸Ê±©»´÷

®»¬«®² éò

Ì®·³³·²¹ ¿²¼ Ð¿¼¼·²¹

Í±³»¬·³» ©¸»² °®±½»·²¹ ¬»¨¬ º·´» ø«½¸ ¿ °®±¹®¿³ ±«®½» ½±¼» º·´»÷ô ·¬ù ½±²ª»²·»²¬ ¬± ®»³±ª»
©¸·¬» °¿½»ô ©¸·½¸ · ¬¸» ²±²ª··¾´» ½¸¿®¿½¬»® ¬¸¿¬ »°¿®¿¬» ±¬¸»® »´»³»²¬ ·² ¬¸» ¬®·²¹ò Ì¸» Í¬®·²¹
½´¿ ¸¿ ³»¬¸±¼ ¬± ¼± ±ò Ú±® °«®°±» ±º ¬¸»» ³»¬¸±¼ô ©¸·¬»ó°¿½» ½¸¿®¿½¬»® ¿®» ¿«³»¼ ¬±
¾» ¬¸» º±´´±©·²¹ Ë²·½±¼» ½¸¿®¿½¬»®æ
Ë²·½±¼» É¸·¬»óÍ°¿½» Ý¸¿®¿½¬»®

ð¨ðððç ø¬¿¾÷ ð¨îððí ø»³ °¿½»÷

ð¨ðððß ø´·²» º»»¼÷ ð¨îððì ø¬¸®»»ó°»®ó»³ °¿½»÷

ð¨ðððÞ øª»®¬·½¿´ ¬¿¾÷ ð¨îððë øº±«®ó°»®ó»³ °¿½»÷

ð¨ðððÝ øº±®³ º»»¼÷ ð¨îððê ø·¨ó°»®ó»³ °¿½»÷

ð¨ðððÜ ø½¿®®·¿¹» ®»¬«®²÷ ð¨îððé øº·¹«®» °¿½»÷

ð¨ððîð ø°¿½»÷ ð¨îððè ø°«²½¬«¿¬·±² °¿½»÷

ð¨ððßð ø²±ó¾®»¿µ °¿½»÷ ð¨îððç ø¬¸·² °¿½»÷

ð¨îððð ø»² ¯«¿¼÷ ð¨îððß ø¸¿·® °¿½»÷

ð¨îððï ø»³ ¯«¿¼÷ ð¨îððÞ ø¦»®±ó©·¼¬¸ °¿½»÷

ð¨îððî ø»² °¿½»÷ ð¨íððð ø·¼»±¹®¿°¸·½ °¿½»÷

Ç±« ½¿² »·¬¸»® «» ¬¸» °®»¼»º·²»¼ ©¸·¬»ó°¿½» ½¸¿®¿½¬»® ±® ¼»º·²» §±«® ±©² ¿®®¿§ ±º ½¸¿®¿½¬»®ò

Í¬®·²¹ Ó»¬¸±¼ ø»´»½¬·±²÷

¬®·²¹ Ì®·³ø÷

¬®·²¹ Ì®·³ø°¿®¿³ ½¸¿®ÅÃ ¿½¸÷

¬®·²¹ Ì®·³Í¬¿®¬ø°¿®¿³ ½¸¿®ÅÃ ¿½¸÷

¬®·²¹ Ì®·³Û²¼ø°¿®¿³ ½¸¿®ÅÃ ¿½¸÷

Ì± ®»³±ª» ¬¸» °®»¼»º·²»¼ ©¸·¬»ó°¿½» ½¸¿®¿½¬»® º®±³ ¬¸» ¾»¹·²²·²¹ ¿²¼ »²¼ ±º ¿ ¬®·²¹ ²¿³»¼ ¬®ô
«»

¬®òÌ®·³ø÷

±®

¬®òÌ®·³ø²«´´÷

Ç±« ½¿² ¿´± ®»³±ª» ¬¸» °®»¼»º·²»¼ ©¸·¬»ó°¿½» ½¸¿®¿½¬»® º®±³ ¬¸» ¾»¹·²²·²¹ ±º ¿ ¬®·²¹ô ¿ ¸»®»æ

¬®òÌ®·³Í¬¿®¬ø²«´´÷

±® ¬¸» »²¼ô ¿ ¸»®»æ

¬®òÌ®·³Û²¼ø²«´´÷

ß´¬»®²¿¬·ª»´§ô §±« ½¿² °»½·º§ ¬¸» ½¸¿®¿½¬»® ø²±¬ ²»½»¿®·´§ ©¸·¬»ó°¿½» ½¸¿®¿½¬»®÷ §±« ©¿²¬
®»³±ª»¼ º®±³ ¬¸» ¾»¹·²²·²¹ ±® »²¼ ±º ¿ ¬®·²¹ò Ç±« ½¿² »·¬¸»® ¼»º·²» ¿ ½¸¿®¿½¬»® ¿®®¿§ ¿²¼ °¿ ¬¸¿¬
¬± ¬¸» Ì®·³ ø±® Ì®·³Í¬¿®¬ ±® Ì®·³Û²¼÷ ³»¬¸±¼

½¸¿®ÅÃ ¿½¸Ì®·³ ã ¥ ù ùô ùóùô ùÁù £å

¬®òÌ®·³ø¿½¸Ì®·³÷

±® ´·¬ ¬¸» ½¸¿®¿½¬»® »¨°´·½·¬´§ ·² ¬¸» ³»¬¸±¼ ½¿´´æ

¬®òÌ®·³øù ùô ùóùô ùÁù÷å

Þ±¬¸ ³»¬¸±¼ ½¿´´ ½¿«» ¬¸»» ¬¸®»» ½¸¿®¿½¬»® ¬± ¾» ¬®·°°»¼ º®±³ ¬¸» ¾»¹·²²·²¹ ¿²¼ »²¼ ±º ¬¸»
¬®·²¹ò

Ç±« ½¿² ¿´± ¿¼¼ °¿½» ø±® ¿²§ ±¬¸»® ½¸¿®¿½¬»®÷ ¬± ¬¸» ¾»¹·²²·²¹ ±® »²¼ ±º ¿ ¬®·²¹ ¬± ¿½¸·»ª» ¿
°»½·º·»¼ ¬±¬¿´ ©·¼¬¸æ

Í¬®·²¹ Ó»¬¸±¼ ø»´»½¬·±²÷

¬®·²¹ Ð¿¼Ô»º¬ø·²¬ ·Ì±¬¿´Ô»²¹¬¸÷

¬®·²¹ Ð¿¼Ô»º¬ø·²¬ ·Ì±¬¿´Ô»²¹¬¸ô ½¸¿® ½¸÷

¬®·²¹ Ð¿¼Î·¹¸¬ø·²¬ ·Ì±¬¿´Ô»²¹¬¸÷

¬®·²¹ Ð¿¼Î·¹¸¬ø·²¬ ·Ì±¬¿´Ô»²¹¬¸ô ½¸¿® ½¸÷

Í¬®·²¹ Ó¿²·°«´¿¬·±²

Ø»®» ¿®» ±³» ³·½»´´¿²»±« ³»¬¸±¼ ¬¸¿¬ ´»¬ §±« ·²»®¬ ±²» ¬®·²¹ ·²¬± ¿²±¬¸»®ô ®»³±ª» ¿ ®¿²¹» ±º
½¸¿®¿½¬»®ô ¿²¼ ®»°´¿½» ¿ °¿®¬·½«´¿® ½¸¿®¿½¬»® ±® ¬®·²¹ ©·¬¸·² ¿ ¬®·²¹ò × ¸±©»¼ »¨¿³°´» ±º ¿´´ ¬¸»»
³»¬¸±¼ ¿¬ ¬¸» ¾»¹·²²·²¹ ±º ¬¸· ¿°°»²¼·¨æ

Í¬®·²¹ Ó»¬¸±¼ ø»´»½¬·±²÷

¬®·²¹ ×²»®¬ø·²¬ ·×²¼»¨ô ¬®·²¹ ¬®×²»®¬÷

¬®·²¹ Î»³±ª»ø·²¬ ·×²¼»¨ô ·²¬ ·Ý±«²¬÷

¬®·²¹ Î»°´¿½»ø½¸¿® ½¸Ñ´¼ô ½¸¿® ½¸Ò»©÷

¬®·²¹ Î»°´¿½»ø¬®·²¹ ¬®Ñ´¼ô ¬®·²¹ ¬®Ò»©÷

Ç±« ³¿§ ¸¿ª» ¸¿¼ ±½½¿·±² ¬± «» ¬¸» Ý ´·¾®¿®§ º«²½¬·±² ¬®¬±µò Ì¸· º«²½¬·±² · ·²¬»²¼»¼ ¬± ¾®»¿µ ¿
¬®·²¹ ¼±©² ·²¬± ¬±µ»²ô ©¸·½¸ ¿®» «¾¬®·²¹ ¼»´·³·¬»¼ ¾§ ½»®¬¿·² º·¨»¼ ½¸¿®¿½¬»®ô ««¿´´§ ©¸·¬»ó
°¿½» ½¸¿®¿½¬»®ò ×² Ýô §±« ½¿´´ ¬®¬±µ ®»°»¿¬»¼´§ «²¬·´ ¬¸» ±«®½» ¬®·²¹ ¸¿ ²± ³±®» ¬±µ»²ò ×² Ýýô
§±« ½¿² ¼± ¬¸» ©±®µ ±º ¬®¬±µ ©·¬¸ ¿ ·²¹´» ½¿´´ ¬± ¬¸» Í°´·¬ ³»¬¸±¼æ

Í¬®·²¹ Í°´·¬ Ó»¬¸±¼

¬®·²¹ÅÃ Í°´·¬ø°¿®¿³ ½¸¿®ÅÃ ¿½¸Í»°¿®¿¬±®÷

¬®·²¹ÅÃ Í°´·¬ø°¿®¿³ ½¸¿®ÅÃ ¿½¸Í»°¿®¿¬±®ô ·²¬ ·Î»¬«®²Ý±«²¬÷

×º §±« »¬ ¬¸» º·®¬ ¿®¹«³»²¬ ¬± ²«´´ô ¬¸» ³»¬¸±¼ «» ¬¸» »¬ ±º ©¸·¬»ó°¿½» ½¸¿®¿½¬»® ¸±©² »¿®´·»®ò

Ú±®³¿¬¬·²¹ Í¬®·²¹

ß §±« µ²±© º®±³ Ý¸¿°¬»® ïô ¬¸» º·®¬ ¿®¹«³»²¬ ±º ¬¸» Ý±²±´»òÉ®·¬» ±® Ý±²±´»òÉ®·¬»Ô·²» ³»¬¸±¼
½¿² ¾» ¿ ¬®·²¹ ¬¸¿¬ ¼»½®·¾» ¬¸» º±®³¿¬¬·²¹ ±º ¬¸» ®»³¿·²·²¹ ¿®¹«³»²¬ò ×º ¬¸»» ¬©± ³»¬¸±¼ ¿®»
¬¸» Ýý »¯«·ª¿´»²¬ ±º ¬¸» Ý °®·²¬º º«²½¬·±²ô ¬¸» ¬¿¬·½ Ú±®³¿¬ ³»¬¸±¼ ±º Í¬®·²¹ · ¬¸» Ýý »¯«·ª¿´»²¬ ±º
¬¸» Ý °®·²¬º º«²½¬·±²æ

Í¬®·²¹ Ú±®³¿¬ Í¬¿¬·½ Ó»¬¸±¼ ø»´»½¬·±²÷

¬®·²¹ Ú±®³¿¬ø¬®·²¹ ¬®Ú±®³¿¬ô ±¾¶»½¬ ±¾¶ð÷

¬®·²¹ Ú±®³¿¬ø¬®·²¹ ¬®Ú±®³¿¬ô ±¾¶»½¬ ±¾¶ðô ±¾¶»½¬ ±¾¶ï÷

¬®·²¹ Ú±®³¿¬ø¬®·²¹ ¬®Ú±®³¿¬ô ±¾¶»½¬ ±¾¶ðô ±¾¶»½¬ ±¾¶ïô ±¾¶»½¬ ±¾¶î÷

¬®·²¹ Ú±®³¿¬ø¬®·²¹ ¬®Ú±®³¿¬ô °¿®¿³ ±¾¶»½¬ÅÃ ¿±¾¶÷

Ú±® »¨¿³°´»ô ¬¸» º±´´±©·²¹ ½¿´´ ¬± Ú±®³¿¬ô

¬®·²¹ ¬® ã Í¬®·²¹òÚ±®³¿¬øþÌ¸» «³ ±º ¥ð£ ¿²¼ ¥ï£ · ¥î£þô îô íô î õ í÷å

½®»¿¬» ¬¸» ¬®·²¹ þÌ¸» «³ ±º î ¿²¼ í · ëþò

ß®®¿§ Í±®¬·²¹ ¿²¼ Í»¿®½¸·²¹

Ì¸» Í¬®·²¹ ½´¿ ·³°´»³»²¬ ¬¸» ×Ý±³°¿®¿¾´» ·²¬»®º¿½»ô ©¸·½¸ ³»®»´§ ®»¯«·®» ¬¸¿¬ ·¬ ·³°´»³»²¬ ¬¸»
º±´´±©·²¹ ³»¬¸±¼æ

×Ý±³°¿®¿¾´» Ó»¬¸±¼

·²¬ Ý±³°¿®»Ì±ø±¾¶»½¬ ±¾¶÷

Ì¸· ³»¬¸±¼ · ½¿´´»¼ ¾§ ¬©± «»º«´ ¬¿¬·½ ³»¬¸±¼ ±º ß®®¿§ ²¿³»¼ Í±®¬ ¿²¼ Þ·²¿®§Í»¿®½¸ò Ç±« ½¿²
«» ¬¸»» ¬©± ³»¬¸±¼ ©·¬¸ ¿®®¿§ ±º ±¾¶»½¬ ±º ¿²§ ½´¿ ¬¸¿¬ ·³°´»³»²¬ ×Ý±³°¿®¿¾´»ò

Ø»®» ¿®» ¬¸» ¬©± ¾¿·½ Í±®¬ ³»¬¸±¼æ

ß®®¿§ Í±®¬ Í¬¿¬·½ Ó»¬¸±¼ ø»´»½¬·±²÷

ª±·¼ Í±®¬øß®®¿§ ¿®®÷

ª±·¼ Í±®¬øß®®¿§ ¿®®ô ·²¬ ·Í¬¿®¬×²¼»¨ô ·²¬ ·Ý±«²¬÷

Ì¸» »½±²¼ ª»®·±² ¿´´±© §±« ¬± «» ¿ «¾»¬ ±º ¬¸» ¿®®¿§ò Í«°°±» §±« ¼»º·²» ¿² ¿®®¿§ ±º ¬®·²¹
´·µ» ±æ

¬®·²¹ÅÃ ¿¬® ã ¥ þÒ»© Ö»®»§þô þÒ»© Ç±®µþô þ²»© Ó»¨·½±þô þÒ»© Ø¿³°¸·®»þ
£å

Ò±¬·½» ¬¸» ´±©»®½¿» ² ·² ¬¸» ¬¸·®¼ ¬®·²¹ò ßº¬»® ½¿´´·²¹

ß®®¿§òÍ±®¬ø¿¬®÷å

¬¸» »´»³»²¬ ±º ¬¸» ¿®®¿§ ¿®» ®»±®¼»®»¼ ¬± ¾» þÒ»© Ø¿³°¸·®»þô þÒ»© Ö»®»§þô þ²»© Ó»¨·½±þô ¿²¼
þÒ»© Ç±®µþò Þ»½¿«» ¬¸» Í±®¬ ³»¬¸±¼ «» ¬¸» Ý±³°¿®»Ì± ³»¬¸±¼ ±º Í¬®·²¹ô ¬¸» ±®¬·²¹ · ½¿»
·²»²·¬·ª»ò Ø±©»ª»®ô ·º ¬¸» ¿®®¿§ ¿´± ·²½´«¼»¼ þÒ»© Ó»¨·½±þ ø©·¬¸ ¿² «°°»®½¿» Ò÷ô þÒ»© Ó»¨·½±þ
©±«´¼ ¾» ¿°°»¿® ¿º¬»® þ²»© Ó»¨·½±þ ·² ¬¸» ±®¬»¼ ¿®®¿§ò

Ì¸» ²»¨¬ ¬©± ª»®·±² ±º ¬¸» Í±®¬ ³»¬¸±¼ ®»¯«·®» ¬©± ½±®®»°±²¼·²¹ ¿®®¿§ ±º »¯«¿´ ·¦»ô ±°¬·±²¿´´§
©·¬¸ ¿ ¬¿®¬·²¹ ·²¼»¨ ¿²¼ ¿² »´»³»²¬ ½±«²¬æ

ß®®¿§ Í±®¬ Í¬¿¬·½ Ó»¬¸±¼ ø»´»½¬·±²÷

ª±·¼ Í±®¬øß®®¿§ ¿®®Õ»§ô ß®®¿§ ¿®®×¬»³÷

ª±·¼ Í±®¬øß®®¿§ ¿®®Õ»§ô ß®®¿§ ¿®®×¬»³ô ·²¬ ·Í¬¿®¬×²¼»¨ô ·²¬ ·Ý±«²¬÷

Ì¸» ³»¬¸±¼ ±®¬ ¬¸» º·®¬ ¿®®¿§ ¿²¼ ®»±®¼»® ¬¸» »½±²¼ ¿®®¿§ ¿½½±®¼·²¹´§ò × «» ¬¸· ª»®·±² ±º ¬¸»
Í±®¬ ³»¬¸±¼ ·² ¬¸» Í§×²º±Î»º´»½¬·±²Í¬®·²¹ °®±¹®¿³ ·² Ý¸¿°¬»® ì ¬± ±®¬ ¿² ¿®®¿§ ±º
Í§¬»³×²º±®³¿¬·±² °®±°»®¬§ ²¿³» ¬±®»¼ ·² ¿¬®Ô¿¾»´æ

ß®®¿§òÍ±®¬ø¿¬®Ô¿¾»´ô ¿¬®Ê¿´«»÷å

Ì¸» ½±®®»°±²¼·²¹ ¿®®¿§ ±º Í§¬»³×²º±®³¿¬·±² ª¿´«» ¬±®»¼ ·² ¿¬®Ê¿´«» · ¿´± ®»±®¼»®»¼ ± ¬¸¿¬
¬¸» ¿®®¿§ »´»³»²¬ ¬·´´ ½±®®»°±²¼ ¬± »¿½¸ ±¬¸»®ò

×º §±« ©¿²¬ ¬± °»®º±®³ ¿ ±®¬ «·²¹ ¿ ³»¬¸±¼ ±¬¸»® ¬¸¿² Ý±³°¿®»Ì±ô §±« «» ±²» ±º ¬¸» º±´´±©·²¹
Í±®¬ ³»¬¸±¼æ

ß®®¿§ Í±®¬ Í¬¿¬·½ Ó»¬¸±¼ ø»´»½¬·±²÷

ª±·¼ Í±®¬øß®®¿§ ¿®®ô ×Ý±³°¿®»® ½±³°÷

ª±·¼ Í±®¬øß®®¿§ ¿®®ô ·²¬ ·Í¬¿®¬×²¼»¨ô ·²¬ ·Ý±«²¬ô ×Ý±³°¿®»® ½±³°÷

ª±·¼ Í±®¬øß®®¿§ ¿®®Õ»§ô ß®®¿§ ¿®®×¬»³ô ×Ý±³°¿®»® ½±³°÷

ª±·¼ Í±®¬øß®®¿§ ¿®®Õ»§ô ß®®¿§ ¿®®×¬»³ô ·²¬ ·Í¬¿®¬×²¼»¨ô ·Ý±«²¬ô

 ×Ý±³°¿®»® ½±³°÷

Ì¸» ¿®¹«³»²¬ ±º ¬§°» ×Ý±³°¿®»® ½¿² ¾» ¿² ·²¬¿²½» ±º ¿²§ ½´¿ ¬¸¿¬ ·³°´»³»²¬ ¬¸» ×Ý±³°¿®»®
·²¬»®º¿½»ò Ì¸¿¬ù ²±¬ ¬¸» Í¬®·²¹ ½´¿ÿ Í¬®·²¹ ·³°´»³»²¬ ¬¸» ×Ý±³°¿®¿¾´» ·²¬»®º¿½»ô ²±¬ ×Ý±³°¿®»®ò

Ì¸» ×Ý±³°¿®»® ·²¬»®º¿½» · ¼»º·²»¼ ·² ¬¸» Í§¬»³òÝ±´´»½¬·±² ²¿³»°¿½»ò ß ½´¿ ¬¸¿¬ ·³°´»³»²¬
×Ý±³°¿®»® ³«¬ ¼»º·²» ¬¸» º±´´±©·²¹ ³»¬¸±¼æ

×Ý±³°¿®»® Ó»¬¸±¼

·²¬ Ý±³°¿®»ø±¾¶»½¬ ±¾¶ïô ±¾¶»½¬ ±¾¶î÷

Ì¸· ³»¬¸±¼ · ²±¬ ¬¿¬·½ô ¿²¼ ¸»²½»ô · ²±¬ ¼»º·²»¼ ·² ¬¸» Í¬®·²¹ ½´¿ò øÌ¸» ±²´§ ³»¬¸±¼ ²¿³»¼
Ý±³°¿®» ·³°´»³»²¬»¼ ·² Í¬®·²¹ ¿®» ¬¿¬·½ ³»¬¸±¼ò÷

Ì¸» Í§¬»³òÝ±´´»½¬·±² ²¿³»°¿½» ½±²¬¿·² ¬©± ½´¿» ¬¸¿¬ ·³°´»³»²¬ ×Ý±³°¿®»®ô ©¸·½¸ ¿®»
Ý±³°¿®»® ø¬± °»®º±®³ ¿ ½¿»ó»²·¬·ª» ½±³°¿®·±² ¶«¬ ´·µ» ¬¸» ¼»º¿«´¬÷ ¿²¼
Ý¿»×²»²·¬·ª»Ý±³°¿®»® øº±® ¿ ½¿»ó·²»²·¬·ª» ¬®·²¹ ½±³°¿®·±²÷ò Þ±¬¸ ¬¸»» ½´¿» ¸¿ª» ¿
¬¿¬·½ ³»³¾»® ²¿³»¼ Ü»º¿«´¬ ¬¸¿¬ ®»¬«®² ¿² ·²¬¿²½» ±º ¬¸» ½´¿ò

Ú±® »¨¿³°´»ô ¬± °»®º±®³ ¿ ½¿»ó»²·¬·ª» ±®¬ ±º ¬¸» ¬®·²¹ ¿®®¿§ ¿¬®ô ½¿´´

ß®®¿§òÍ±®¬ø¿¬®÷å

±®

ß®®¿§òÍ±®¬ø¿¬®ô Ý±³°¿®»®òÜ»º¿«´¬÷å

Ì± °»®º±®³ ¿ ½¿»ó·²»²·¬·ª» ±®¬ô ½¿´´

ß®®¿§òÍ±®¬ø¿¬®ô Ý¿»×²»²·¬·ª»Ý±³°¿®»®òÜ»º¿«´¬÷å

Ì¸» ½¿»ó·²»²·¬·ª» ½±³°¿®» · ³«½¸ ³±®» «»º«´ ·² ¬¸» Þ·²¿®§Í»¿®½¸ ³»¬¸±¼ ®¿¬¸»® ¬¸¿² ¬¸» Í±®¬
³»¬¸±¼ ø±® ©¸»² ±®¬·²¹ ·² °®»°¿®¿¬·±² º±® ¿ ¾·²¿®§ »¿®½¸÷æ

ß®®¿§ Þ·²¿®§Í»¿®½¸ Í¬¿¬·½ Ó»¬¸±¼

·²¬ Þ·²¿®§Í»¿®½¸øß®®¿§ ¿®®ô ±¾¶»½¬ ±¾¶÷

·²¬ Þ·²¿®§Í»¿®½¸øß®®¿§ ¿®®ô ·²¬ ·Í¬¿®¬×²¼»¨ô ·²¬ ·Ý±«²¬ô ±¾¶»½¬ ±¾¶÷

·²¬ Þ·²¿®§Í»¿®½¸øß®®¿§ ¿®®ô ±¾¶»½¬ ±¾¶ô ×Ý±³°¿®»® ½±³°÷

·²¬ Þ·²¿®§Í»¿®½¸øß®®¿§ ¿®®ô ·²¬ ·Í¬¿®¬×²¼»¨ô ·²¬ ·Ý±«²¬ô ±¾¶»½¬ ±¾¶ô

 ×Ý±³°¿®»® ½±³°÷

Ì± °»®º±®³ ¿ ¾·²¿®§ »¿®½¸ô ¬¸» ¿®®¿§ ³«¬ ¾» ±®¬»¼ò Ì¸» ±®¬»¼ ¿®®¿§ ±º º±«® ¬¿¬» ²¿³» ½±²¬¿·²
¬¸» »´»³»²¬

þÒ»© Ø¿³°¸·®»þô þÒ»© Ö»®»§þô þ²»© Ó»¨·½±þô þÒ»© Ç±®µþ

Ì¸» ½¿´´

ß®®¿§òÞ·²¿®§Í»¿®½¸ø¿¬®ô þÒ»© Ç±®µþ÷

®»¬«®² í ¾»½¿«» ¬¸» ¬®·²¹ · ·¼»²¬·½¿´ ¬± ¿¬®ÅíÃò Ì¸» ½¿´´

ß®®¿§òÞ·²¿®§Í»¿®½¸ø¿¬®ô þÒ»© Ó»¨·½±þ÷

®»¬«®² óìò Ì¸» ²»¹¿¬·ª» ²«³¾»® ·²¼·½¿¬» ¬¸¿¬ ¬¸» ¬®·²¹ ·²ù¬ ·² ¬¸» ¿®®¿§ò øÎ»³»³¾»®ô ¾§ ¼»º¿«´¬
¬¸» »¿®½¸ · ½¿» »²·¬·ª»ÿ÷ Ì¸» ½±³°´»³»²¬ ±º ¬¸» ®»¬«®² ª¿´«» · íô ©¸·½¸ ³»¿² ¬¸¿¬ ¿¬®ÅíÃ ·
¬¸» ²»¨¬ ¸·¹¸»¬ »´»³»²¬ ±º ¬¸» ¿®®¿§ò

Ì¸» ½¿´´

ß®®¿§òÞ·²¿®§Í»¿®½¸ø¿¬®ô þ²»© Ó»¨·½±þ÷÷å

®»¬«®² î ¾»½¿«» ¬¸» ¿®¹«³»²¬ ³¿¬½¸» ¿¬®ÅîÃò Ì¸» ½¿´´

ß®®¿§òÞ·²¿®§Í»¿®½¸ø¿¬®ô þÒ»© Ó»¨·½±þô Ý¿»×²»²·¬·ª»Ý±³°¿®»®òÜ»º¿«´¬÷÷å

°»®º±®³ ¿ ½¿»ó·²»²·¬·ª» »¿®½¸ ¿²¼ ¿´± ®»¬«®² îò

Ì¸» Í¬®·²¹Þ«·´¼»® Ý´¿

Ç±« ³¿§ ©±²¼»® ·º ¬¸»®»ù ¿ °»®º±®³¿²½» °»²¿´¬§ ¿±½·¿¬»¼ ©·¬¸ º®»¯«»²¬ ®»ó½®»¿¬·±² ±º Í¬®·²¹
±¾¶»½¬ò Í±³»¬·³» ¬¸»®» ·ò Ý±²·¼»® ¬¸» º±´´±©·²¹ °®±¹®¿³ô ©¸·½¸ «» ¬¸» õã ±°»®¿¬±® ·² ïðôððð
¬®·²¹ó¿°°»²¼·²¹ ±°»®¿¬·±² ¬± ½±²¬®«½¬ ¿ ´¿®¹» ¬®·²¹ò

Í¬®·²¹ß°°»²¼ò½

ññóóó

ññ Í¬®·²¹ß°°»²¼ò½ w îððï ¾§ Ý¸¿®´» Ð»¬¦±´¼

ññóóó

«·²¹ Í§¬»³å

½´¿ Í¬®·²¹ß°°»²¼

¥

 ½±²¬ ·²¬ ·×¬»®¿¬·±² ã ïððððå

 °«¾´·½ ¬¿¬·½ ª±·¼ Ó¿·²ø÷

 ¥

 Ü¿¬»Ì·³» ¼¬ ã Ü¿¬»Ì·³»òÒ±©å

 ¬®·²¹ ¬® ã Í¬®·²¹òÛ³°¬§å

 º±® ø·²¬ · ã ðå · ä ·×¬»®¿¬·±²å ·õõ÷

 ¬® õã þ¿¾½¼»º¹¸·¶µ´³²±°¯®¬«ª©¨§¦Ä®Ä²þå

 Ý±²±´»òÉ®·¬»Ô·²»øÜ¿¬»Ì·³»òÒ±© ó ¼¬÷å

 £

£

Ì¸» °®±¹®¿³ ½¿´´ ¬¸» Ò±© ³»¬¸±¼ ±º ¬¸» Ü¿¬»Ì·³» ½´¿ ¿¬ ¬¸» ¾»¹·²²·²¹ ¿²¼ »²¼ ¬± ½¿´½«´¿¬» ¿²
»´¿°»¼ ¬·³»ô ©¸·½¸ · ¼·°´¿§»¼ ·² ¸±«®ô ³·²«¬»ô »½±²¼ô ¿²¼ «²·¬ ±º ïðð ²¿²±»½±²¼ò øÍ»»
Ý¸¿°¬»® ïð º±® ·²º±®³¿¬·±² ¿¾±«¬ Ü¿¬»Ì·³» ¿²¼ ®»´¿¬»¼ ½´¿»ò÷ Û¿½¸ ¬®·²¹ó¿°°»²¼·²¹ ±°»®¿¬·±²
½¿«» ¿ ²»© Í¬®·²¹ ±¾¶»½¬ ¬± ¾» ½®»¿¬»¼ô ©¸·½¸ ®»¯«·®» ¿²±¬¸»® ³»³±®§ ¿´´±½¿¬·±²ò Û¿½¸ °®»ª·±«
¬®·²¹ · ³¿®µ»¼ º±® ¹¿®¾¿¹» ½±´´»½¬·±²ò

Ø±© º¿¬ ¬¸· °®±¹®¿³ ®«² ¼»°»²¼ ±² ¸±© º¿¬ §±«® ³¿½¸·²» ·ò ×¬ ½±«´¼ ¬¿µ» ¿¾±«¬ ¿ ³·²«¬» ±® ±ò

ß ¾»¬¬»® ±´«¬·±² ·² ¿ ½¿» ´·µ» ¬¸· · ¬¸» ¿°°®±°®·¿¬»´§ ²¿³»¼ Í¬®·²¹Þ«·´¼»® ½´¿ô ¼»º·²»¼ ·² ¬¸»
Í§¬»³òÌ»¨¬ ²¿³»°¿½»ò Ë²´·µ» ¬¸» ¬®·²¹ ³¿·²¬¿·²»¼ ¾§ ¬¸» Í¬®·²¹ ½´¿ô ¬¸» ¬®·²¹ ³¿·²¬¿·²»¼ ¾§
Í¬®·²¹Þ«·´¼»® ½¿² ¾» ¿´¬»®»¼ò Í¬®·²¹Þ«·´¼»® ¼§²¿³·½¿´´§ ®»¿´´±½¿¬» ¬¸» ³»³±®§ «»¼ º±® ¬¸» ¬®·²¹ò
É¸»²»ª»® ¬¸» ·¦» ±º ¬¸» ¬®·²¹ · ¿¾±«¬ ¬± »¨½»»¼ ¬¸» ·¦» ±º ¬¸» ³»³±®§ ¾«ºº»®ô ¬¸» ¾«ºº»® ·
¼±«¾´»¼ ·² ·¦»ò Ì± ½±²ª»®¬ ¿ Í¬®·²¹Þ«·´¼»® ±¾¶»½¬ ¬± ¿ Í¬®·²¹ ±¾¶»½¬ô ½¿´´ ¬¸» Ì±Í¬®·²¹ ³»¬¸±¼ò

Ø»®»ù ¿ ®»ª·»¼ ª»®·±² ±º ¬¸» °®±¹®¿³ô ©¸·½¸ «» Í¬®·²¹Þ«·´¼»®ò

Í¬®·²¹Þ«·´¼»®ß°°»²¼ò½

ññóó

ññ Í¬®·²¹Þ«·´¼»®ß°°»²¼ò½ w îððï ¾§ Ý¸¿®´» Ð»¬¦±´¼

ññóó

«·²¹ Í§¬»³å

«·²¹ Í§¬»³òÌ»¨¬å

½´¿ Í¬®·²¹Þ«·´¼»®ß°°»²¼

¥

 ½±²¬ ·²¬ ·×¬»®¿¬·±² ã ïððððå

 °«¾´·½ ¬¿¬·½ ª±·¼ Ó¿·²ø÷

 ¥

 Ü¿¬»Ì·³» ¼¬ ã Ü¿¬»Ì·³»òÒ±©å

 Í¬®·²¹Þ«·´¼»® ¾ ã ²»© Í¬®·²¹Þ«·´¼»®ø÷å

 º±® ø·²¬ · ã ðå · ä ·×¬»®¿¬·±²å ·õõ÷

 ¾òß°°»²¼øþ¿¾½¼»º¹¸·¶µ´³²±°¯®¬«ª©¨§¦Ä®Ä²þ÷å

 ¬®·²¹ ¬® ã ¾òÌ±Í¬®·²¹ø÷å

 Ý±²±´»òÉ®·¬»Ô·²»øÜ¿¬»Ì·³»òÒ±© ó ¼¬÷å

 £

£

Ç±«ù´´ °®±¾¿¾´§ º·²¼ ¬¸¿¬ ¬¸· °®±¹®¿³ ¼±» ·¬ ©±®µ ·² ©»´´ «²¼»® ¿ »½±²¼ò ×¬ »»³ ¬± ®«² ·² «²¼»®
ïñïððð ¬¸» ¬·³» ±º ¬¸» ±®·¹·²¿´ ª»®·±²ò

ß²±¬¸»® »ºº·½·»²¬ ¿°°®±¿½¸ · ¬± «» ¬¸» Í¬®·²¹É®·¬»® ½´¿ ¼»º·²»¼ ·² ¬¸» Í§¬»³ò×Ñ ²¿³»°¿½»ò ß ×
³»²¬·±²»¼ ·² ß°°»²¼·¨ ßô ¾±¬¸ Í¬®·²¹É®·¬»® ¿²¼ Í¬®»¿³É®·¬»® ø©¸·½¸ §±« «» º±® ©®·¬·²¹ ¬± ¬»¨¬ º·´»÷
¼»®·ª» º®±³ ¬¸» ¿¾¬®¿½¬ Ì»¨¬É®·¬»® ½´¿ò Ô·µ» Í¬®·²¹Þ«·´¼»®ô Í¬®·²¹É®·¬»® ¿»³¾´» ¿ ½±³°±·¬»
¬®·²¹ò Ì¸» ¾·¹ ¿¼ª¿²¬¿¹» ©·¬¸ Í¬®·²¹É®·¬»® · ¬¸¿¬ §±« ½¿² «» ¬¸» ©¸±´» ¿®®¿§ ±º É®·¬» ¿²¼
É®·¬»Ô·²» ³»¬¸±¼ ¼»º·²»¼ ·² ¬¸» Ì»¨¬É®·¬»® ½´¿ò Ø»®»ù ¿ ¿³°´» °®±¹®¿³ ¬¸¿¬ °»®º±®³ ¬¸» ¿³»
¬¿µ ¿ ¬¸» °®»ª·±« ¬©± °®±¹®¿³ ¾«¬ «·²¹ ¿ Í¬®·²¹É®·¬»® ±¾¶»½¬ò

Í¬®·²¹É®·¬»®ß°°»²¼ò½

ññóóó

ññ Í¬®·²¹É®·¬»®ß°°»²¼ò½ w îððï ¾§ Ý¸¿®´» Ð»¬¦±´¼

ññóóó

«·²¹ Í§¬»³å

«·²¹ Í§¬»³ò×Ñå

½´¿ Í¬®·²¹É®·¬»®ß°°»²¼

¥

 ½±²¬ ·²¬ ·×¬»®¿¬·±² ã ïððððå

 °«¾´·½ ¬¿¬·½ ª±·¼ Ó¿·²ø÷

 ¥

 Ü¿¬»Ì·³» ¼¬ ã Ü¿¬»Ì·³»òÒ±©å

 Í¬®·²¹É®·¬»® © ã ²»© Í¬®·²¹É®·¬»®ø÷å

 º±® ø·²¬ · ã ðå · ä ·×¬»®¿¬·±²å ·õõ÷

 ©òÉ®·¬»Ô·²»øþ¿¾½¼»º¹¸·¶µ´³²±°¯®¬«ª©¨§¦þ÷å

 ¬®·²¹ ¬® ã ©òÌ±Í¬®·²¹ø÷å

 Ý±²±´»òÉ®·¬»Ô·²»øÜ¿¬»Ì·³»òÒ±© ó ¼¬÷å

 £

£

Ì¸» °»»¼ ±º ¬¸· °®±¹®¿³ · ½±³°¿®¿¾´» ¬± Í¬®·²¹Þ«·´¼»®ß°°»²¼ò

Ì¸»®»ù ¿ ´»±² ·² ¿´´ ¬¸·ò ß ±°»®¿¬·²¹ §¬»³ô °®±¹®¿³³·²¹ ´¿²¹«¿¹»ô ½´¿ ´·¾®¿®·»ô ¿²¼
º®¿³»©±®µ °®±ª·¼» ¿² »ª»® ·²½®»¿·²¹´§ ¸·¹¸»® ´»ª»´ ±º ¿¾¬®¿½¬·±²ô ©» °®±¹®¿³³»® ½¿² ±³»¬·³»
´±» ·¹¸¬ ±º ¿´´ ¬¸» ³»½¸¿²·³ ¹±·²¹ ±² ¾»²»¿¬¸ ¬¸» «®º¿½»ò É¸¿¬ ´±±µ ´·µ» ¿ ·³°´» ¿¼¼·¬·±² ·²
½±¼» ½¿² ¿½¬«¿´´§ ·²ª±´ª» ³¿²§ ´¿§»® ±º ´±©ó´»ª»´ ¿½¬·ª·¬§ò

É» ³¿§ ¾» ·²«´¿¬»¼ º®±³ ¬¸· ´±©ó´»ª»´ ¿½¬·ª·¬§ô ¾«¬ ©» ³«¬ ¬®¿·² ±«®»´ª» ¬± ¬·´´ º»»´ ¬¸» ¸»¿¬ò ×º ¿
°¿®¬·½«´¿® ±°»®¿¬·±² »»³ ´±© ¬± §±«ô ±® ¬± ®»¯«·®» ¬±± ³«½¸ ³»³±®§ô ±® ¬± ·²ª±´ª» ·²±®¼·²¿¬»´§
½±²ª±´«¬»¼ ½±¼»ô ¬®§ ¬± ¼»¬»®³·²» ©¸§ ¿²¼ ¬¸»² »¿®½¸ º±® ¿² ¿´¬»®²¿¬·ª»ò ×¬ù ´·µ»´§ ¬¸¿¬ ±³»±²» ¸¿
¿´®»¿¼§ °®±ª·¼»¼ »¨¿½¬´§ ©¸¿¬ §±« ²»»¼ò

Appendix E: Files and Streams

Ñª»®ª·»©

Ó±¬ º·´» ×ñÑ «°°±®¬ ·² ¬¸» òÒÛÌ Ú®¿³»©±®µ · ·³°´»³»²¬»¼ ·² ¬¸» Í§¬»³ò×Ñ ²¿³»°¿½»ò Ñ² º·®¬
»¨°´±®¿¬·±²ô ¸±©»ª»®�¿²¼ »ª»² ¼«®·²¹ «¾»¯«»²¬ º±®¿§� Í§¬»³ò×Ñ ½¿² ¾» ¿ º±®¾·¼¼·²¹ °´¿½»ò ×¬
¼±»²ù¬ ¸»´° ¬± ¾» ®»¿«®»¼ ¬¸¿¬ ¬¸» òÒÛÌ Ú®¿³»©±®µ ±ºº»® ¿ ®·½¸ ¿®®¿§ ±º º·´» ×ñÑ ½´¿» ¿²¼ ¬±±´ò
Ú±® ¿ Ý °®±¹®¿³³»® ©¸±» ³¿·² ¿®»²¿´ ±º º·´» ×ñÑ ¬±±´ ½±²·¬ ±º ´·¾®¿®§ º«²½¬·±² «½¸ ¿ º±°»²ô
º®»¿¼ô º©®·¬»ô ¿²¼ º°®·²¬ºô ¬¸» òÒÛÌ º·´» ×ñÑ «°°±®¬ ½¿² »»³ »¨½»·ª»´§ ½±²ª±´«¬»¼ ¿²¼ ½±³°´»¨ò

Ì¸· ¿°°»²¼·¨ · ·²¬»²¼»¼ ¬± °®±ª·¼» ¿ ´±¹·½¿´ °®±¹®»·±² ¬± ¹«·¼» §±« ¬¸®±«¹¸ Í§¬»³ò×Ñò × ©¿²¬ ¬±
·¼»²¬·º§ ¬¸» ®»¿´´§ ·³°±®¬¿²¬ ¬«ºº ¿²¼ ¿´± ´»¬ §±« µ²±© ±³» ±º ¬¸» ®¿¬·±²¿´» º±® ¬¸» ³«´¬·¬«¼» ±º
½´¿»ò

Ì¸» òÒÛÌ Ú®¿³»©±®µ ¼·¬·²¹«·¸» ¾»¬©»»² º·´» ¿²¼ ¬®»¿³ò ß º·´» · ¿ ½±´´»½¬·±² ±º ¼¿¬¿ ¬±®»¼ ±²
¿ ¼·µ ©·¬¸ ¿ ²¿³» ¿²¼ ø±º¬»²÷ ¿ ¼·®»½¬±®§ °¿¬¸ò É¸»² §±« ±°»² ¿ º·´» º±® ®»¿¼·²¹ ±® ©®·¬·²¹ô ·¬
¾»½±³» ¿ ¬®»¿³ò ß ¬®»¿³ · ±³»¬¸·²¹ ±² ©¸·½¸ §±« ½¿² °»®º±®³ ®»¿¼ ¿²¼ ©®·¬» ±°»®¿¬·±²ò Þ«¬
¬®»¿³ »²½±³°¿ ³±®» ¬¸¿² ¶«¬ ±°»² ¼·µ º·´»ò Ü¿¬¿ ½±³·²¹ ±ª»® ¿ ²»¬©±®µ · ¿ ¬®»¿³ô ¿²¼ §±«
½¿² ¿´± ½®»¿¬» ¿ ¬®»¿³ ·² ³»³±®§ò ×² ¿ ½±²±´» ¿°°´·½¿¬·±²ô µ»§¾±¿®¼ ·²°«¬ ¿²¼ ¬»¨¬ ±«¬°«¬ ¿®»
¿´± ¬®»¿³ò

Ì¸» Ó±¬ Û»²¬·¿´ Ú·´» ×ñÑ Ý´¿

×º §±« ´»¿®² ¶«¬ ±²» ½´¿ ·² ¬¸» Í§¬»³ò×Ñ ²¿³»°¿½»ô ´»¬ ·¬ ¾» Ú·´»Í¬®»¿³ò Ç±« «» ¬¸· ¾¿·½ ½´¿
¬± ±°»²ô ®»¿¼ º®±³ô ©®·¬» ¬±ô ¿²¼ ½´±» º·´»ò Ú·´»Í¬®»¿³ ·²¸»®·¬ º®±³ ¬¸» ¿¾¬®¿½¬ ½´¿ Í¬®»¿³ô ¿²¼
³¿²§ ±º ·¬ °®±°»®¬·» ¿²¼ ³»¬¸±¼ ¿®» ¼»®·ª»¼ º®±³ Í¬®»¿³ò

Ì± ±°»² ¿² »¨·¬·²¹ º·´» ±® ½®»¿¬» ¿ ²»© º·´»ô §±« ½®»¿¬» ¿² ±¾¶»½¬ ±º ¬§°» Ú·´»Í¬®»¿³ò Ì¸»» º·ª»
Ú·´»Í¬®»¿³ ½±²¬®«½¬±® ¸¿ª» ¿ ²·½» ±®¼»®´§ »¬ ±º ±ª»®´±¿¼æ

Ú·´»Í¬®»¿³ Ý±²¬®«½¬±® ø»´»½¬·±²÷

Ú·´»Í¬®»¿³ø¬®·²¹ ¬®Ú·´»Ò¿³»ô Ú·´»Ó±¼» º³÷

Ú·´»Í¬®»¿³ø¬®·²¹ ¬®Ú·´»Ò¿³»ô Ú·´»Ó±¼» º³ô Ú·´»ß½½» º¿÷

Ú·´»Í¬®»¿³ø¬®·²¹ ¬®Ú·´»Ò¿³»ô Ú·´»Ó±¼» º³ô Ú·´»ß½½» º¿ô Ú·´»Í¸¿®» º÷

Ú·´»Í¬®»¿³ø¬®·²¹ ¬®Ú·´»Ò¿³»ô Ú·´»Ó±¼» º³ô Ú·´»ß½½» º¿ô Ú·´»Í¸¿®» ºô

·²¬ ·Þ«ºº»®Í·¦»÷

Ú·´»Í¬®»¿³ø¬®·²¹ ¬®Ú·´»Ò¿³»ô Ú·´»Ó±¼» º³ô Ú·´»ß½½» º¿ô Ú·´»Í¸¿®» ºô

·²¬ ·Þ«ºº»®Í·¦»ô ¾±±´ ¾ß§²½÷

Ì¸»®» ¿®» º±«® ¿¼¼·¬·±²¿´ Ú·´»Í¬®»¿³ ½±²¬®«½¬±® ¾¿»¼ ±² ¬¸» ±°»®¿¬·²¹ §¬»³ º·´» ¸¿²¼´»ò Ì¸±»
¿®» «»º«´ º±® ·²¬»®º¿½·²¹ ©·¬¸ »¨·¬·²¹ ½±¼»ò Ú·´»Ó±¼»ô Ú·´»ß½½»ô ¿²¼ Ú·´»Í¸¿®» ¿®» ¿´´
»²«³»®¿¬·±² ¼»º·²»¼ ·² ¬¸» Í§¬»³ò×Ñ ²¿³»°¿½»ò

Ì¸» Ú·´»Ó±¼» »²«³»®¿¬·±² ·²¼·½¿¬» ©¸»¬¸»® §±« ©¿²¬ ¬± ±°»² ¿² »¨·¬·²¹ º·´» ±® ½®»¿¬» ¿ ²»© º·´»
¿²¼ ©¸¿¬ ¸±«´¼ ¸¿°°»² ©¸»² ¬¸» º·´» §±« ©¿²¬ ¬± ±°»² ¼±»²ù¬ »¨·¬ ±® ¬¸» º·´» §±« ©¿²¬ ¬± ½®»¿¬»
¿´®»¿¼§ »¨·¬æ

Ú·´»Ó±¼» Û²«³»®¿¬·±²

Ó»³¾»® Ê¿´«» Ü»½®·°¬·±²

Ý®»¿¬»Ò»© ï Ú¿·´ ·º º·´» »¨·¬

Ý®»¿¬» î Ü»´»¬» º·´» ½±²¬»²¬ ·º º·´» ¿´®»¿¼§ »¨·¬

Ñ°»² í Ú¿·´ ·º º·´» ¼±» ²±¬ »¨·¬

Ñ°»²Ñ®Ý®»¿¬» ì Ý®»¿¬» ²»© º·´» ·º º·´» ¼±» ²±¬ »¨·¬

Ú·´»Ó±¼» Û²«³»®¿¬·±²

Ó»³¾»® Ê¿´«» Ü»½®·°¬·±²

Ì®«²½¿¬» ë Ú¿·´ ·º º·´» ¼±» ²±¬ »¨·¬å ¼»´»¬» ½±²¬»²¬ ±º º·´»

ß°°»²¼ ê Ú¿·´ ·º º·´» · ±°»²»¼ º±® ®»¿¼·²¹å ½®»¿¬» ²»© º·´» ·º º·´» ¼±» ²±¬
»¨·¬å »»µ ¬± »²¼ ±º º·´»

Þ§ º¿·´ô × ³»¿² ¬¸¿¬ ¬¸» Ú·´»Í¬®»¿³ ½±²¬®«½¬±® ¬¸®±© ¿² »¨½»°¬·±² «½¸ ¿ ×ÑÛ¨½»°¬·±² ±®
Ú·´»Ò±¬Ú±«²¼Û¨½»°¬·±²ò ß´³±¬ ¿´©¿§ô §±« ¸±«´¼ ½¿´´ ¬¸» Ú·´»Í¬®»¿³ ½±²¬®«½¬±® ·² ¿ ¬®§ ¾´±½µ ¬±
¹®¿½»º«´´§ ®»½±ª»® º®±³ ¿²§ °®±¾´»³ ®»¹¿®¼·²¹ ¬¸» °®»«³»¼ »¨·¬»²½» ±® ²±²»¨·¬»²½» ±º ¬¸» º·´»ò

Ë²´» §±« °»½·º§ ¿ Ú·´»ß½½» ¿®¹«³»²¬ô ¬¸» º·´» · ±°»²»¼ º±® ¾±¬¸ ®»¿¼·²¹ ¿²¼ ©®·¬·²¹ò Ì¸»
Ú·´»ß½½» ¿®¹«³»²¬ ·²¼·½¿¬» ©¸»¬¸»® §±« ©¿²¬ ¬± ®»¿¼ º®±³ ¬¸» º·´»ô ©®·¬» ¬± ·¬ô ±® ¾±¬¸æ

Ú·´»ß½½» Û²«³»®¿¬·±²

Ó»³¾»® Ê¿´«» Ü»½®·°¬·±²

Î»¿¼ ï Ú¿·´ º±® Ú·´»Ó±¼»òÝ®»¿¬»Ò»©ô Ú·´»Ó±¼»òÝ®»¿¬»ô
Ú·´»Ó±¼»òÌ®«²½¿¬»ô ±® Ú·´»Ó±¼»òß°°»²¼

É®·¬» î Ú¿·´ ·º º·´» · ®»¿¼ó±²´§

Î»¿¼É®·¬» í Ú¿·´ º±® Ú·´»Ó±¼»òß°°»²¼ ±® ·º º·´» · ®»¿¼ó±²´§

Ì¸»®»ù ±²» ½¿» ·² ©¸·½¸ ¿ Ú·´»ß½½» ¿®¹«³»²¬ · ®»¯«·®»¼æ ©¸»² §±« ±°»² ¿ º·´» ©·¬¸
Ú·´»Ó±¼»òß°°»²¼ô ¬¸» ½±²¬®«½¬±® º¿·´ ·º ¬¸» º·´» · ±°»²»¼ º±® ®»¿¼·²¹ò Þ»½¿«» º·´» ¿®» ±°»²»¼ º±®
®»¿¼·²¹ ¿²¼ ©®·¬·²¹ ¾§ ¼»º¿«´¬ô ¬¸» º±´´±©·²¹ ½±²¬®«½¬±® ¿´©¿§ º¿·´æ

²»© Ú·´»Í¬®»¿³ø¬®Ú·´»Ò¿³»ô Ú·´»Ó±¼»òß°°»²¼÷

×º §±« ©¿²¬ ¬± «» Ú·´»Ó±¼»òß°°»²¼ô §±« ¿´± ²»»¼ ¬± ·²½´«¼» ¿² ¿®¹«³»²¬ ±º Ú·´»ß½½»òÉ®·¬»æ

²»© Ú·´»Í¬®»¿³ø¬®Ú·´»Ò¿³»ô Ú·´»Ó±¼»òß°°»²¼ô Ú·´»ß½½»òÉ®·¬»÷

Ë²´» §±« °»½·º§ ¿ Ú·´»Í¸¿®» ¿®¹«³»²¬ô ¬¸» º·´» · ±°»² º±® »¨½´«·ª» «» ¾§ §±«® °®±½»ò Ò±
±¬¸»® °®±½» ø±® ¬¸» ¿³» °®±½»÷ ½¿² ±°»² ¬¸» ¿³» º·´»ò Ó±®»±ª»®ô ·º ¿²§ ±¬¸»® °®±½» ¿´®»¿¼§
¸¿ ¬¸» º·´» ±°»² ¿²¼ §±« ¼±²ù¬ °»½·º§ ¿ Ú·´»Í¸¿®» ¿®¹«³»²¬ô ¬¸» Ú·´»Í¬®»¿³ ½±²¬®«½¬±® ©·´´ º¿·´ò
Ì¸» Ú·´»Í¸¿®» ¿®¹«³»²¬ ´»¬ §±« ¾» ³±®» °»½·º·½ ¿¾±«¬ º·´» ¸¿®·²¹æ

Ú·´»Í¸¿®» Û²«³»®¿¬·±² ø»´»½¬·±²÷

Ó»³¾»® Ê¿´«» Ü»½®·°¬·±²

Ò±²» ð ß´´±© ±¬¸»® °®±½»» ²± ¿½½» ¬± ¬¸» º·´»å ¼»º¿«´¬

Î»¿¼ ï ß´´±© ±¬¸»® °®±½»» ¬± ®»¿¼ ¬¸» º·´»

É®·¬» î ß´´±© ±¬¸»® °®±½»» ¬± ©®·¬» ¬± ¬¸» º·´»

Î»¿¼É®·¬» í ß´´±© ±¬¸»® °®±½»» º«´´ ¿½½» ¬± ¬¸» º·´»

É¸»² §±« ±²´§ ²»»¼ ¬± ®»¿¼ º®±³ ¿ º·´»ô ·¬ù ½±³³±² ¬± ¿´´±© ±¬¸»® °®±½»» ¬± ®»¿¼ º®±³ ·¬ ¿´±å ·²
±¬¸»® ©±®¼ô Ú·´»ß½½»òÎ»¿¼ ¸±«´¼ ««¿´´§ ¾» ¿½½±³°¿²·»¼ ¾§ Ú·´»Í¸¿®»òÎ»¿¼ò Ì¸· ½±«®¬»§
¹±» ¾±¬¸ ©¿§æ ·º ¿²±¬¸»® °®±½» ¸¿ ¿ º·´» ±°»² ©·¬¸ Ú·´»ß½½»òÎ»¿¼ ¿²¼ Ú·´»Í¸¿®»òÎ»¿¼ô §±«®
°®±½» ©±²ù¬ ¾» ¿¾´» ¬± ±°»² ·¬ «²´» §±« °»½·º§ ¾±¬¸ º´¿¹ ¿ ©»´´ò

Ú·´»Í¬®»¿³ Ð®±°»®¬·» ¿²¼ Ó»¬¸±¼

Ñ²½» §±«ùª» ±°»²»¼ ¿ º·´» ¾§ ½®»¿¬·²¹ ¿² ±¾¶»½¬ ±º ¬§°» Ú·´»Í¬®»¿³ô §±« ¸¿ª» ¿½½» ¬± ¬¸» º±´´±©·²¹
º·ª» °®±°»®¬·» ·³°´»³»²¬»¼ ·² Í¬®»¿³ ¬¸¿¬ ¬¸» Ú·´»Í¬®»¿³ ½´¿ ±ª»®®·¼»æ

Í¬®»¿³ Ð®±°»®¬·»

Ì§°» Ð®±°»®¬§ ß½½»·¾·´·¬§

¾±±´ Ý¿²Î»¿¼ ¹»¬

Í¬®»¿³ Ð®±°»®¬·»

Ì§°» Ð®±°»®¬§ ß½½»·¾·´·¬§

¾±±´ Ý¿²É®·¬» ¹»¬

¾±±´ Ý¿²Í»»µ ¹»¬

´±²¹ Ô»²¹¬¸ ¹»¬

´±²¹ Ð±·¬·±² ¹»¬ñ»¬

Ì¸» º·®¬ ¬©± °®±°»®¬·» ¼»°»²¼ ±² ¬¸» Ú·´»ß½½» ª¿´«» §±« «»¼ ¬± ½®»¿¬» ¬¸» Ú·´»Í¬®»¿³ ±¾¶»½¬ò
Ì¸» Ý¿²Í»»µ °®±°»®¬§ · ¿´©¿§ ¬®«» º±® ±°»² º·´»ò Ì¸» °®±°»®¬§ ½¿² ®»¬«®² º¿´» º±® ±¬¸»® ¬§°» ±º
¬®»¿³ ø«½¸ ¿ ²»¬©±®µ ¬®»¿³÷ò

Ì¸» Ô»²¹¬¸ ¿²¼ Ð±·¬·±² °®±°»®¬·» ¿®» ¿°°´·½¿¾´» ±²´§ ¬± »»µ¿¾´» ¬®»¿³ò Ò±¬·½» ¬¸¿¬ ¾±¬¸ Ô»²¹¬¸
¿²¼ Ð±·¬·±² ¿®» ´±²¹ ·²¬»¹»®ô ¿²¼ ·² ¬¸»±®§ ¿´´±© º·´» ·¦» «° ¬± ç I ïðïîô ±® ç ¬»®¿¾§¬»ô ©¸·½¸
¸±«´¼ ¾» ¿ «ºº·½·»²¬ ³¿¨·³«³ º·´» ·¦» º±® ¿¬ ´»¿¬ ¿ ½±«°´» §»¿®ò

Í»¬¬·²¹ ¬¸» Ð±·¬·±² °®±°»®¬§ · ¿ ¬®¿·¹¸¬º±®©¿®¼ ©¿§ ±º »»µ·²¹ ·² ¬¸» º·´»ò ø×ù´´ ¼·½« ¿ ³±®»
½±²ª»²¬·±²¿´ Í»»µ ³»¬¸±¼ ¸±®¬´§ò÷ Ú±® »¨¿³°´»ô ·º º · ¿² ±¾¶»½¬ ±º ¬§°» Ú·´»Í¬®»¿³ô §±« ½¿² »»µ
¬± ¬¸» ïðð¬¸ ¾§¬» ·² ¬¸» º·´» ©·¬¸ ¬¸» ¬¿¬»³»²¬

ºòÐ±·¬·±² ã ïððå

Ç±« ½¿² »»µ ¬± ¬¸» »²¼ ±º ¿ º·´» øº±® ¿°°»²¼·²¹ ¬± ¬¸» º·´»÷ ©·¬¸ ¬¸» ¬¿¬»³»²¬

ºòÐ±·¬·±² ã ºòÔ»²¹¬¸å

ß´´ ¬¸» º±´´±©·²¹ ³»¬¸±¼ ·³°´»³»²¬»¼ ¾§ Í¬®»¿³ ¿®» ±ª»®®·¼¼»² ¾§ Ú·´»Í¬®»¿³æ

Í¬®»¿³ Ó»¬¸±¼ ø»´»½¬·±²÷

·²¬ Î»¿¼Þ§¬»ø÷

·²¬ Î»¿¼ø¾§¬»ÅÃ ¿¾§Þ«ºº»®ô ·²¬ ·Þ«ºº»®Ñºº»¬ô ·²¬ ·Ý±«²¬÷

ª±·¼ É®·¬»Þ§¬»ø¾§¬» ¾§Ê¿´«»÷

ª±·¼ É®·¬»ø¾§¬»ÅÃ ¿¾§Þ«ºº»®ô ·²¬ ·Þ«ºº»®Ñºº»¬ô ·²¬ ·Ý±«²¬÷

´±²¹ Í»»µø´±²¹ ´Ñºº»¬ô Í»»µÑ®·¹·² ±÷

ª±·¼ Í»¬Ô»²¹¬¸ø´±²¹ ´Í·¦»÷å

ª±·¼ Ú´«¸ø÷

ª±·¼ Ý´±»ø÷

Ç±« ½¿² ®»¿¼ »·¬¸»® ·²¼·ª·¼«¿´ ¾§¬» ©·¬¸ Î»¿¼Þ§¬» ±® ³«´¬·°´» ¾§¬» ©·¬¸ Î»¿¼ò Þ±¬¸ ³»¬¸±¼ ®»¬«®²
¿² ·²¬ ª¿´«»ô ¾«¬ ¬¸¿¬ ª¿´«» ³»¿² ¼·ºº»®»²¬ ¬¸·²¹ ¬± »¿½¸ ±º ¬¸» ³»¬¸±¼ò Î»¿¼Þ§¬» ²±®³¿´´§ ®»¬«®²
¬¸» ²»¨¬ ¾§¬» º®±³ ¬¸» º·´» ½¿¬ ¬± ¿² ·²¬ ©·¬¸±«¬ ·¹² »¨¬»²·±²ò Ú±® »¨¿³°´»ô ¬¸» ¾§¬» ð¨ÚÚ ¾»½±³»
¬¸» ·²¬»¹»® ð¨ððððððÚÚô ±® îëëò ß ®»¬«®² ª¿´«» ±º óï ·²¼·½¿¬» ¿² ¿¬¬»³°¬ ¬± ®»¿¼ °¿¬ ¬¸» »²¼ ±º ¬¸»
º·´»ò

Î»¿¼ ®»¬«®² ¬¸» ²«³¾»® ±º ¾§¬» ®»¿¼ ·²¬± ¬¸» ¾«ºº»®ô «° ¬± ·Ý±«²¬ò Ú±® º·´»ô Î»¿¼ ®»¬«®² ¬¸» ¿³»
ª¿´«» ¿ ¬¸» ·Ý±«²¬ ¿®¹«³»²¬ «²´» ·Ý±«²¬ · ¹®»¿¬»® ¬¸¿² ¬¸» ®»³¿·²·²¹ ²«³¾»® ±º ¾§¬» ·² ¬¸» º·´»ò
ß ®»¬«®² ª¿´«» ±º ð ·²¼·½¿¬» ¬¸¿¬ ¬¸»®» ¿®» ²± ³±®» ¾§¬» ¬± ¾» ®»¿¼ ·² ¬¸» º·´»ò Ú±® ±¬¸»® ¬§°» ±º
¬®»¿³ ø²»¬©±®µ ¬®»¿³ô º±® »¨¿³°´»÷ô Î»¿¼ ½¿² ®»¬«®² ¿ ª¿´«» ´» ¬¸¿² ·Ý±«²¬ ¾«¬ ¿´©¿§ ¿¬
´»¿¬ ï «²´» ¬¸» »²¬·®» ¬®»¿³ ¸¿ ¾»»² ®»¿¼ò Ì¸» »½±²¼ ¿®¹«³»²¬ ¬± Î»¿¼ ¿²¼ É®·¬» · ¿² ±ºº»¬
·²¬± ¬¸» ¾«ºº»®ô ²±¬ ¿² ±ºº»¬ ·²¬± ¬¸» ¬®»¿³ÿ

Ì¸» Í»»µ ³»¬¸±¼ · ·³·´¿® ¬± ¬¸» º·´»ó»»µ·²¹ º«²½¬·±² ·² Ýò Ì¸» Í»»µÑ®·¹·² »²«³»®¿¬·±² ¼»º·²»
©¸»®» ¬¸» ´Ñºº»¬ ¿®¹«³»²¬ ¬± ¬¸» Í»»µ ³»¬¸±¼ · ³»¿«®»¼ º®±³æ

Í»»µÑ®·¹·² Û²«³»®¿¬·±²

Ó»³¾»® Ê¿´«»

Þ»¹·² ð

Ý«®®»²¬ ï

Û²¼ î

×º ¬¸» ¬®»¿³ · ©®·¬¿¾´» ¿²¼ »»µ¿¾´»ô ¬¸» Í»¬Ô»²¹¬¸ ³»¬¸±¼ »¬ ¿ ²»© ´»²¹¬¸ º±® ¬¸» º·´»ô °±·¾´§
¬®«²½¿¬·²¹ ¬¸» ½±²¬»²¬ ·º ¬¸» ²»© ´»²¹¬¸ · ¸±®¬»® ¬¸¿² ¬¸» »¨·¬·²¹ ´»²¹¬¸ò Ú´«¸ ½¿«» ¿´´ ¼¿¬¿ ·²
³»³±®§ ¾«ºº»® ¬± ¾» ©®·¬¬»² ¬± ¬¸» º·´»ò

Ü»°·¬» ©¸¿¬ ³¿§ ±® ³¿§ ²±¬ ¸¿°°»² ¿ ¿ ®»«´¬ ±º ¹¿®¾¿¹» ½±´´»½¬·±² ±² ¬¸» Ú·´»Í¬®»¿³ ±¾¶»½¬ô §±«
¸±«´¼ ¿´©¿§ »¨°´·½·¬´§ ½¿´´ ¬¸» Ý´±» ³»¬¸±¼ º±® ¿²§ º·´» §±« ±°»²ò

×º §±« ·¹²±®» »¨½»°¬·±² ¸¿²¼´·²¹ô ·² ³±¬ ½¿»ô §±« ½¿² ®»¿¼ ¿² »²¬·®» º·´» ·²¬± ³»³±®§�·²½´«¼·²¹
¿´´±½¿¬·²¹ ¿ ³»³±®§ ¾«ºº»® ¾¿»¼ ±² ¬¸» ·¦» ±º ¬¸» º·´»�·² ¶«¬ º±«® ¬¿¬»³»²¬æ

Ú·´»Í¬®»¿³ º ã ²»© Ú·´»Í¬®»¿³øþÓ§Ú·´»þô Ú·´»Ó±¼»òÑ°»²ô

 Ú·´»ß½½»òÎ»¿¼ô Ú·´»Í¸¿®»òÎ»¿¼÷å

Þ§¬»ÅÃ ¿¾§Þ«ºº»® ã ²»© Þ§¬»ÅºòÔ»²¹¬¸Ãå

ºòÎ»¿¼ø¿¾§Þ«ºº»®ô ðô ø·²¬÷ ºòÔ»²¹¬¸÷å

ºòÝ´±»ø÷å

× ¿§ þ·² ³±¬ ½¿»þ ¾»½¿«» ¬¸· ½±¼» ¿«³» ¬¸» º·´» · ´» ¬¸¿² î íï ¾§¬» ø±® î ¹·¹¿¾§¬»÷ò Ì¸¿¬
¿«³°¬·±² ½±³» ·²¬± °´¿§ ·² ¬¸» ½¿¬·²¹ ±º ¬¸» ´¿¬ ¿®¹«³»²¬ ±º ¬¸» Î»¿¼ ³»¬¸±¼ º®±³ ¿ êìó¾·¬
´±²¹ ¬± ¿ íîó¾·¬ ·²¬ò ×º ¬¸» º·´» · ´¿®¹»® ¬¸¿² î ¹·¹¿¾§¬»ô §±«ù´´ ¸¿ª» ¬± ®»¿¼ ·¬ ·² ³«´¬·°´» ½¿´´ ¬± Î»¿¼ò
øÞ«¬ §±« °®±¾¿¾´§ ¸±«´¼²ù¬ »ª»² ¾» ¬®§·²¹ ¬± ®»¿¼ ¿ ³«´¬·¹·¹¿¾§¬» º·´» »²¬·®»´§ ·²¬± ³»³±®§ÿ÷

Ú·´»Í¬®»¿³ · ¿² »¨½»´´»²¬ ½¸±·½» º±® ¿ ¬®¿¼·¬·±²¿´ ¸»¨ó¼«³° °®±¹®¿³ò

Ø»¨Ü«³°ò½

ññóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóó

ññ Ø»¨Ü«³°ò½ w îððï ¾§ Ý¸¿®´» Ð»¬¦±´¼

ññóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóó

«·²¹ Í§¬»³å

«·²¹ Í§¬»³ò×Ñå

½´¿ Ø»¨Ü«³°

¥

 °«¾´·½ ¬¿¬·½ ·²¬ Ó¿·²ø¬®·²¹ÅÃ ¿¬®ß®¹÷

 ¥

 ·º ø¿¬®ß®¹òÔ»²¹¬¸ ãã ð÷

 ¥

 Ý±²±´»òÉ®·¬»Ô·²»øþÍ§²¬¿¨æ Ø»¨Ü«³° º·´»ï º·´»î òòòþ÷å

 ®»¬«®² ïå

 £

 º±®»¿½¸ ø¬®·²¹ ¬®Ú·´»Ò¿³» ·² ¿¬®ß®¹÷

 Ü«³°Ú·´»ø¬®Ú·´»Ò¿³»÷å

 ®»¬«®² ðå

 £

 °®±¬»½¬»¼ ¬¿¬·½ ª±·¼ Ü«³°Ú·´»ø¬®·²¹ ¬®Ú·´»Ò¿³»÷

 ¥

 Ú·´»Í¬®»¿³ ºå

 ¬®§

 ¥

 º ã ²»© Ú·´»Í¬®»¿³ø¬®Ú·´»Ò¿³»ô Ú·´»Ó±¼»òÑ°»²ô

Ú·´»ß½½»òÎ»¿¼ô Ú·´»Í¸¿®»òÎ»¿¼÷å

 £

 ½¿¬½¸ øÛ¨½»°¬·±² »¨½÷

 ¥

 Ý±²±´»òÉ®·¬»Ô·²»øþØ»¨Ü«³°æ ¥ð£þô »¨½òÓ»¿¹»÷å

 ®»¬«®²å

 £

 Ý±²±´»òÉ®·¬»Ô·²»ø¬®Ú·´»Ò¿³»÷å

 Ü«³°Í¬®»¿³øº÷å

 ºòÝ´±»ø÷å

 £

 °®±¬»½¬»¼ ¬¿¬·½ ª±·¼ Ü«³°Í¬®»¿³øÍ¬®»¿³ ¬®»¿³÷

 ¥

 ¾§¬»ÅÃ ¿¾§Þ«ºº»® ã ²»© ¾§¬»ÅïêÃå

 ´±²¹ ´ß¼¼®» ã ðå

 ·²¬ ·Ý±«²¬å

 ©¸·´» øø·Ý±«²¬ ã ¬®»¿³òÎ»¿¼ø¿¾§Þ«ºº»®ô ðô ïê÷÷ â ð÷

 ¥

 Ý±²±´»òÉ®·¬»Ô·²»øÝ±³°±»Ô·²»ø´ß¼¼®»ô ¿¾§Þ«ºº»®ô
·Ý±«²¬÷÷å

 ´ß¼¼®» õã ïêå

 £

 £

 °«¾´·½ ¬¿¬·½ ¬®·²¹ Ý±³°±»Ô·²»ø´±²¹ ´ß¼¼®»ô ¾§¬»ÅÃ ¿¾§Þ«ºº»®ô

 ·²¬ ·Ý±«²¬÷

 ¥

 ¬®·²¹ ¬® ã Í¬®·²¹òÚ±®³¿¬øþ¥ðæÈì£ó¥ïæÈì£ þô

 ø«·²¬÷ ´ß¼¼®» ñ êëëíêô ø«¸±®¬÷ ´ß¼¼®»÷å

 º±® ø·²¬ · ã ðå · ä ïêå ·õõ÷

 ¥

 ¬® õã ø· ä ·Ý±«²¬÷ á

 Í¬®·²¹òÚ±®³¿¬øþ¥ðæÈî£þô ¿¾§Þ«ºº»®Å·Ã÷ æ þ
þå

 ¬® õã ø· ãã é úú ·Ý±«²¬ â é÷ á þóþ æ þ þå

 £

 ¬® õã þ þå

 º±® ø·²¬ · ã ðå · ä ïêå ·õõ÷

 ¥

 ½¸¿® ½¸ ã ø· ä ·Ý±«²¬÷ á Ý±²ª»®¬òÌ±Ý¸¿®ø¿¾§Þ«ºº»®Å·Ã÷ æ ù
ùå

 ¬® õã Ý¸¿®ò×Ý±²¬®±´ø½¸÷ á þòþ æ ½¸òÌ±Í¬®·²¹ø÷å

 £

 ®»¬«®² ¬®å

 £

£

Ì¸· °®±¹®¿³ «» ¬¸» ª»®·±² ±º Ó¿·² ¬¸¿¬ ¸¿ ¿ ·²¹´» ¿®¹«³»²¬ò Ì¸» ¿®¹«³»²¬ · ¿² ¿®®¿§ ±º
¬®·²¹ô »¿½¸ ±º ©¸·½¸ · ¿ ½±³³¿²¼ó´·²» ¿®¹«³»²¬ ¬± ¬¸» °®±¹®¿³ò Ë²´·µ» ¬¸» ³¿·² º«²½¬·±² ·² Ýô ¬¸»
Ó¿·² ³»¬¸±¼ ·² Ýý ¼±»²ù¬ ·²½´«¼» ¿² ¿®¹«³»²¬ ½±«²¬ ¿²¼ ¿´± ¼±»²ù¬ ·²½´«¼» ¬¸» °®±¹®¿³ ²¿³»
¿³±²¹ ¬¸» ¿®¹«³»²¬ò ×º §±« ®«² ¬¸» °®±¹®¿³ ´·µ» ±æ

Ø»¨Ü«³° º·´»ïò½ º·´»îò»¨»

¬¸»² ¬¸» ¿®¹«³»²¬ ¬± Ó¿·² · ¿ ¬®·²¹ ¿®®¿§ ©·¬¸ ¬©± »´»³»²¬ò ß²§ ©·´¼½¿®¼ ·² ¬¸» ¿®¹«³»²¬ ¿®»
²±¬ ¿«¬±³¿¬·½¿´´§ »¨°¿²¼»¼ò ø×ù´´ ¹»¬ ¬± ©·´¼½¿®¼ »¨°¿²·±² ´¿¬»® ·² ¬¸· ¿°°»²¼·¨ò÷

Ñ²½» Ø»¨Ü«³° «½½»º«´´§ ±°»² »¿½¸ º·´»ô ¬¸» °®±¹®¿³ «» ¬¸» Î»¿¼ ³»¬¸±¼ ¬± ®»¿¼ ïêó¾§¬»
½¸«²µ º®±³ ¬¸» º·´»ô ¿²¼ ¬¸»² Ø»¨Ü«³°ù Ý±³°±»Ô·²» ³»¬¸±¼ ¼·°´¿§ ¬¸»³ò ×ùª» ®»«»¼ ¬¸»
Ý±³°±»Ô·²» ³»¬¸±¼ ·² ¬¸» Ø»¿¼Ü«³° °®±¹®¿³ ·² Ý¸¿°¬»® ïêò

Ú·´»Í¬®»¿³ ¸¿ ¿ ½±«°´» ³±®» º»¿¬«®» × ©¿²¬ ¬± ³»²¬·±² ¾®·»º´§ò Ú±® º·´» ¸¿®·²¹ô §±« ½¿² ´±½µ ¿²¼
«²´±½µ »½¬·±² ±º ¬¸» º·´» º±® »¨½´«·ª» «»æ

Ú·´»Í¬®»¿³ Ó»¬¸±¼ ø»´»½¬·±²÷

ª±·¼ Ô±½µø´±²¹ ´Ð±·¬·±²ô ´±²¹ ´Ô»²¹¬¸÷

ª±·¼ Ë²´±½µø´±²¹ ´Ð±·¬·±²ô ´±²¹ ´Ô»²¹¬¸÷

×º ¬¸» º·´» §¬»³ «°°±®¬ ¿§²½¸®±²±« ®»¿¼·²¹ ¿²¼ ©®·¬·²¹ô ¿²¼ ·º §±« «» ¬¸» ´¿¬ ½±²¬®«½¬±® ·²
¬¸» ¬¿¾´» ¸±©² »¿®´·»® ©·¬¸ ¿ ´¿¬ ¿®¹«³»²¬ ±º ¬®«»ô §±« ½¿² «» ¬¸» Þ»¹·²Î»¿¼ô Û²¼Î»¿¼ô
Þ»¹·²É®·¬»ô ¿²¼ Û²¼É®·¬» ³»¬¸±¼ ¬± ®»¿¼ º®±³ ¿²¼ ©®·¬» ¬± ¬¸» º·´» ¿§²½¸®±²±«´§ò

Ì¸» Ð®±¾´»³ ©·¬¸ Ú·´»Í¬®»¿³

× ¿»®¬»¼ »¿®´·»® ¬¸¿¬ Ú·´»Í¬®»¿³ · ¬¸» ³±¬ »»²¬·¿´ ½´¿ ·² Í§¬»³ò×Ñ ¾»½¿«» ·¬ ±°»² º·´» ¿²¼
´»¬ §±« ®»¿¼ ¿²¼ ©®·¬» ¾§¬»ò É¸¿¬ ½±«´¼ ¾» ³±®» ¾¿·½ ¿²¼ ª·¬¿´ ¬¸¿² ¬¸¿¬á

Ì¸» °®±¾´»³ô ¸±©»ª»®ô · ¬¸¿¬ Ýý · ²±¬ ²»¿®´§ ¿ º´»¨·¾´» ¿ Ý ·² ½¿¬·²¹ò Ú±® »¨¿³°´»ô ¿ Ý
°®±¹®¿³³»® ³·¹¸¬ ®»¿¼ ¿² ·²¬ º®±³ ¿ º·´» ¾§ ¬¿µ·²¹ ¬¸» ¿¼¼®» ±º ¿² ·²¬»¹»® ª¿®·¿¾´» ¿²¼ ½¿¬·²¹ ·¬ ¬±
¿ ¾§¬» °±·²¬»® º±® ¬¸» º®»¿¼ º«²½¬·±²ò Þ«¬ ½¿¬·²¹ ±³»¬¸·²¹ »´» ¬± ¿ ¾§¬» ¿®®¿§ ©±²ù¬ ©±®µ ·² Ýýò Ì¸»
Î»¿¼ ¿²¼ É®·¬» ³»¬¸±¼ ·² Ú·´»Í¬®»¿³ ©±®µ ©·¬¸ ¾§¬» ¿®®¿§ ¿²¼ ²±¬¸·²¹ ¾«¬ ¾§¬» ¿®®¿§ò

Ñº ½±«®»ô ¾»½¿«» ¬¸» ¾§¬» · ¬¸» ´±©»¬ ½±³³±² ¼»²±³·²¿¬±®ô §±« ½¿² ¿´©¿§ ®»¿¼ ¾§¬» ¿²¼
¿»³¾´» ¬¸»³ ·²¬± ±¬¸»® ¾¿·½ ¼¿¬¿ ¬§°» ø«½¸ ¿ ½¸¿® ±® ·²¬÷ô ¿²¼ §±« ½¿² ¼·¿»³¾´» ¾¿·½
¬§°» ·²¬± ¾§¬» ·² °®»°¿®¿¬·±² º±® ©®·¬·²¹ò É±«´¼ §±« ´·µ» ¬± ¼± ¬¸· §±«®»´ºá × ¼·¼²ù¬ ¬¸·²µ ±ò

Í±ô «²´» ®»¿¼·²¹ ¿²¼ ©®·¬·²¹ ¿®®¿§ ±º ¾§¬» · »²¬·®»´§ ¿¬·º¿½¬±®§ ¬± §±«ô §±« °®±¾¿¾´§ ½¿²ù¬ ´·³·¬
§±«® µ²±©´»¼¹» ±º º·´» ×ñÑ ¬± ¬¸» Ú·´»Í¬®»¿³ ½´¿ò ß ×ù´´ »¨°´¿·² ¸±®¬´§ô §±« «» ¬¸» Í¬®»¿³Î»¿¼»®
¿²¼ Í¬®»¿³É®·¬»® ½´¿» º±® ®»¿¼·²¹ ¿²¼ ©®·¬·²¹ ¬»¨¬ º·´»ô ¿²¼ Þ·²¿®§Î»¿¼»® ¿²¼ Þ·²¿®§É®·¬»® º±®
®»¿¼·²¹ ¿²¼ ©®·¬·²¹ ¾·²¿®§ º·´» ±º ¬§°» ±¬¸»® ¬¸¿² ¾§¬» ¿®®¿§ò

Ñ¬¸»® Í¬®»¿³ Ý´¿»

Ì¸» Ú·´»Í¬®»¿³ ½´¿ · ±²» ±º »ª»®¿´ ½´¿» ¼»½»²¼»¼ º®±³ ¬¸» ¿¾¬®¿½¬ ½´¿ Í¬®»¿³ò Ú±® ¿
½´¿ ¬¸¿¬ ½¿²ù¬ ¾» ·²¬¿²¬·¿¬»¼ô Í¬®»¿³ °´¿§ ¿ ª»®§ ·³°±®¬¿²¬ ®±´» ·² ¬¸» òÒÛÌ Ú®¿³»©±®µò Ì¸·
¸·»®¿®½¸§ ¼·¿¹®¿³ ¸±© ·¨ ½´¿» ¼»½»²¼»¼ º®±³ Í¬®»¿³æ

Ì¸» ¬®»¿³ ½´¿» ©·¬¸ ¿² ¿¬»®·µ ¿®» ¼»º·²»¼ ·² ²¿³»°¿½» ±¬¸»® ¬¸¿² Í§¬»³ò×Ñò

×² ¿¼¼·¬·±²ô ¿ ²«³¾»® ±º ³»¬¸±¼ ·² ±¬¸»® ½´¿» ½¿¬¬»®»¼ ¬¸®±«¹¸±«¬ ¬¸» òÒÛÌ Ú®¿³»©±®µ ®»¬«®²
±¾¶»½¬ ±º ¬§°» Í¬®»¿³ò Ú±® »¨¿³°´»ô ¿ ×ù´´ ¼»³±²¬®¿¬» ´¿¬»® ·² ¬¸· ¿°°»²¼·¨ô ¿ òÒÛÌ °®±¹®¿³ ¬¸¿¬
®»¿¼ º·´» º®±³ ¬¸» É»¾ ¼±» ± «·²¹ ¿ Í¬®»¿³ ±¾¶»½¬ò ß °®±¹®¿³ ·² Ý¸¿°¬»® ïï ¼»³±²¬®¿¬» ¬¸¿¬
§±« ½¿² ¿´± ´±¿¼ ·³¿¹» º·´» ø«½¸ ¿ ÖÐÛÙ÷ º®±³ ¬®»¿³ò

Ú±® °»®º±®³¿²½» °«®°±»ô ¬¸» Ú·´»Í¬®»¿³ ½´¿ ½®»¿¬» ¿ ¾«ºº»®»¼ ¬®»¿³ò ß² ¿®»¿ ±º ³»³±®§ ·
³¿·²¬¿·²»¼ ± ¬¸¿¬ »ª»®§ ½¿´´ ¬± Î»¿¼Þ§¬»ô Î»¿¼ô É®·¬»Þ§¬»ô ¿²¼ É®·¬» ¼±»²ù¬ ²»½»¿®·´§ ®»«´¬ ·² ¿
½¿´´ ¬± ¬¸» ±°»®¿¬·²¹ §¬»³ ¬± ®»¿¼ º®±³ ±® ©®·¬» ¬± ¬¸» º·´»ò

×º §±« ¸¿ª» ¿ Í¬®»¿³ ±¾¶»½¬ ¬¸¿¬ ·²ù¬ ¿ ¾«ºº»®»¼ ¬®»¿³ô §±« ½¿² ½±²ª»®¬ ·¬ ¬± ¿ ¾«ºº»®»¼ ¬®»¿³ «·²¹
¬¸» Þ«ºº»®»¼Í¬®»¿³ ½´¿ò

Ì¸» Ó»³±®§Í¬®»¿³ ½´¿ ´»¬ §±« ½®»¿¬» ¿² »¨°¿²¼¿¾´» ¿®»¿ ±º ³»³±®§ ¬¸¿¬ §±« ½¿² ¿½½» «·²¹
¬¸» Í¬®»¿³ ³»¬¸±¼ò × ¼»³±²¬®¿¬» ¸±© ¬± «» ¬¸» Ó»³±®§Í¬®»¿³ ½´¿ ·² ¬¸»
Ý®»¿¬»Ó»¬¿º·´»Ó»³±®§ °®±¹®¿³ ·² Ý¸¿°¬»® îí ¿²¼ ·² »ª»®¿´ °®±¹®¿³ ·² Ý¸¿°¬»® îìò

Î»¿¼·²¹ ¿²¼ É®·¬·²¹ Ì»¨¬

Ñ²» ·³°±®¬¿²¬ ¬§°» ±º º·´» · ¬¸» ¬»¨¬ º·´»ô ©¸·½¸ ½±²·¬ »²¬·®»´§ ±º ´·²» ±º ¬»¨¬ »°¿®¿¬»¼ ¾§ »²¼ó±ºó
´·²» ³¿®µ»®ò Ì¸» Í§¬»³ò×Ñ ½´¿ ¸¿ °»½·º·½ ½´¿» ¬± ®»¿¼ ¿²¼ ©®·¬» ¬»¨¬ º·´»ò Ø»®»ù ¬¸» ±¾¶»½¬
¸·»®¿®½¸§æ

ß´¬¸±«¹¸ ¬¸»» ½´¿» ¿®» ²±¬ ¼»½»²¼»¼ º®±³ Í¬®»¿³ô ¬¸»§ ¿´³±¬ ½»®¬¿·²´§ ³¿µ» «» ±º ¬¸»
Í¬®»¿³ ½´¿ò

Ì¸» ¬©± ½´¿» ×ù³ ¹±·²¹ ¬± º±½« ±² ¸»®» ¿®» Í¬®»¿³Î»¿¼»® ¿²¼ Í¬®»¿³É®·¬»®ô ©¸·½¸ ¿®»
¼»·¹²»¼ º±® ®»¿¼·²¹ ¿²¼ ©®·¬·²¹ ¬»¨¬ º·´» ±® ¬»¨¬ ¬®»¿³ò Ì¸» ¬©± ±¬¸»® ²±²¿¾¬®¿½¬ ½´¿» ¿®»
Í¬®·²¹Î»¿¼»® ¿²¼ Í¬®·²¹É®·¬»®ô ©¸·½¸ ¿®» ²±¬ ¬®·½¬´§ º·´» ×ñÑ ½´¿»ò Ì¸»§ «» ·³·´¿® ³»¬¸±¼ ¬±

®»¿¼ ¬± ¿²¼ ©®·¬» º®±³ ¬®·²¹ò × ¼·½« ¬¸»» ½´¿» ¾®·»º´§ ¿¬ ¬¸» »²¼ ±º ß°°»²¼·¨ Ý ¿²¼
¼»³±²¬®¿¬» ¬¸» Í¬®·²¹É®·¬»® ½´¿ ·² ¬¸» Û²«³Ó»¬¿º·´» °®±¹®¿³ ·² Ý¸¿°¬»® îíò

Ì»¨¬ ³¿§ »»³ ¬± ¾» ¿ ª»®§ ·³°´» º±®³ ±º ¼¿¬¿ ¬±®¿¹»ô ¾«¬ ·² ®»½»²¬ §»¿®ô ¬»¨¬ ¸¿ ¿«³»¼ ¿
´¿§»® ±º ½±³°´»¨·¬§ ¿ ¿ ®»«´¬ ±º ¬¸» ·²½®»¿»¼ «» ±º Ë²·½±¼»ò

Ì¸» Í§¬»³òÝ¸¿® ¼¿¬¿ ¬§°» ·² òÒÛÌ�¿²¼ ¬¸» ½¸¿® ¿´·¿ ·² Ýý�· ¿ ïêó¾·¬ ª¿´«» ®»°®»»²¬·²¹ ¿
½¸¿®¿½¬»® ·² ¬¸» Ë²·½±¼» ½¸¿®¿½¬»® »¬ò Ì¸» òÒÛÌ Í§¬»³òÍ¬®·²¹ ¬§°» ø¿²¼ ¬¸» Ýý ¬®·²¹ ¿´·¿÷
®»°®»»²¬ ¿ ¬®·²¹ ±º Ë²·½±¼» ½¸¿®¿½¬»®ò Þ«¬ ©¸¿¬ ¸¿°°»² ©¸»² §±« ©®·¬» ¬®·²¹ º®±³ ¿ Ýý
°®±¹®¿³ ¬± ¿ º·´»á Ü± §±« ©¿²¬ ¬± ©®·¬» ¬¸»³ ¿ Ë²·½±¼»á Ì¸¿¬ ³¿µ» »²» ±²´§ ·º »ª»®§ ¿°°´·½¿¬·±²
¬¸¿¬ ®»¿¼ ¬¸» º·´» §±« ½®»¿¬» »¨°»½¬ ¬± ¾» ®»¿¼·²¹ Ë²·½±¼»ÿ Ç±« °®±¾¿¾´§ ©¿²¬ ¬± ¿ª±·¼ Ë²·½±¼» ·º
§±« µ²±© ¬¸¿¬ ±¬¸»® ¿°°´·½¿¬·±² ®»¿¼·²¹ ¬¸» º·´» ¿®» ¿²¬·½·°¿¬·²¹ »²½±«²¬»®·²¹ èó¾·¬ ßÍÝ×× ½¸¿®¿½¬»®ò

Ì¸» º·®¬ îëê ½¸¿®¿½¬»® ·² Ë²·½±¼» ¿®» ¬¸» ¿³» ¿ ¬¸» ïîè ½¸¿®¿½¬»® ±º ßÍÝ×× ¿²¼ ¬¸» ïîè
½¸¿®¿½¬»® ±º ¬¸» ×ÍÑ Ô¿¬·² ß´°¸¿¾»¬ Ò±ò ï »¨¬»²·±² ¬± ßÍÝ××ò øÌ¸» ½±³¾·²¿¬·±² ±º ¬¸»» ¬©±
½¸¿®¿½¬»® »¬ · ±º¬»² ®»º»®®»¼ ¬± ·² É·²¼±© ßÐ× ¼±½«³»²¬¿¬·±² ¿ ¬¸» ßÒÍ× ½¸¿®¿½¬»® »¬ò÷ Ú±®
»¨¿³°´»ô ¬¸» ½¿°·¬¿´ ß · ð¨ìï ·² ßÍÝ×× ¿²¼ ð¨ððìï ·² Ë²·½±¼»ò Ë²·½±¼» ¬®·²¹ ¬¸¿¬ ½±²¬¿·²
»¨½´«·ª»´§ ø±® ³±¬´§÷ ßÍÝ×× ½±²¬¿·² ¿ ´±¬ ±º ¦»®±ò Ì¸»» ¦»®± ½¿«» °®±¾´»³ º±® ¿ ´±¬ ±º
¬®¿¼·¬·±²¿´ Ýó¾¿»¼ ¿²¼ ËÒ×Èó¾¿»¼ °®±¹®¿³ ¾»½¿«» ¬¸±» °®±¹®¿³ ·²¬»®°®»¬ ¿ ¦»®± ¾§¬» ¿ ¿
¬®·²¹ó¬»®³·²¿¬·±² ½¸¿®¿½¬»®ò

Ì± ¿´´»ª·¿¬» ¬¸»» °®±¾´»³ô ¬¸» Í¬®»¿³É®·¬»® ½´¿ ´»¬ §±« ¸¿ª» ½±²¬®±´ ±ª»® ¸±© ¬¸» Ë²·½±¼»
¬®·²¹ ·² §±«® Ýý °®±¹®¿³ ¿®» ½±²ª»®¬»¼ º±® ¬±®¿¹» ·² ¿ º·´»ò Ç±« ¿»®¬ ¬¸· ½±²¬®±´ ª·¿ ½´¿»
¼»º·²»¼ ·² ¬¸» Í§¬»³òÌ»¨¬ ²¿³»°¿½»ò Í·³·´¿®´§ô Í¬®»¿³Î»¿¼»® ´»¬ §±«® °®±¹®¿³ ®»¿¼ ¬»¨¬ º·´» ·²
ª¿®·±« º±®³¿¬ ¿²¼ ½±²ª»®¬ ¬¸» ¬»¨¬ º®±³ ¬¸» º·´» ¬± Ë²·½±¼» ¬®·²¹ ·² §±«® °®±¹®¿³ò

Ô»¬ù ´±±µ ¿¬ Í¬®»¿³É®·¬»® º·®¬ò Ç±« «» ¬¸· ½´¿ ¬± ©®·¬» ¬± ²»© ±® »¨·¬·²¹ ¬»¨¬ º·´»ò

Ú±«® ±º ¬¸» Í¬®»¿³É®·¬»® ½±²¬®«½¬±® ´»¬ §±« ½®»¿¬» ¿² ±¾¶»½¬ ±º ¬§°» Í¬®»¿³É®·¬»® ¾¿»¼ ±² ¿
º·´»²¿³»æ

Í¬®»¿³É®·¬»® Ý±²¬®«½¬±® ø»´»½¬·±²÷

Í¬®»¿³É®·¬»®ø¬®·²¹ ¬®Ú·´»Ò¿³»÷

Í¬®»¿³É®·¬»®ø¬®·²¹ ¬®Ú·´»Ò¿³»ô ¾±±´ ¾ß°°»²¼÷

Í¬®»¿³É®·¬»®ø¬®·²¹ ¬®Ú·´»Ò¿³»ô ¾±±´ ¾ß°°»²¼ô Û²½±¼·²¹ »²½÷

Í¬®»¿³É®·¬»®ø¬®·²¹ ¬®Ú·´»Ò¿³»ô ¾±±´ ¾ß°°»²¼ô Û²½±¼·²¹ »²½ô ·²¬
·Þ«ºº»®Í·¦»÷

Ì¸»» ½±²¬®«½¬±® ±°»² ¬¸» º·´» º±® ©®·¬·²¹ô °®±¾¿¾´§ «·²¹ ¿ Ú·´»Í¬®»¿³ ½±²¬®«½¬±® ·²¬»®²¿´´§ò Þ§
¼»º¿«´¬ô ·º ¬¸» º·´» »¨·¬ô ¬¸» ½±²¬»²¬ ©·´´ ¾» ¼»¬®±§»¼ò Ì¸» ¾ß°°»²¼ ¿®¹«³»²¬ ¿´´±© §±« ¬±
±ª»®®·¼» ¬¸¿¬ ¼»º¿«´¬ ¿½¬·±²ò Ì¸» ®»³¿·²·²¹ ½±²¬®«½¬±® ½®»¿¬» ¿² ±¾¶»½¬ ±º ¬§°» Í¬®»¿³É®·¬»® ¾¿»¼
±² ¿² »¨·¬·²¹ Í¬®»¿³ ±¾¶»½¬æ

Í¬®»¿³É®·¬»® Ý±²¬®«½¬±® ø»´»½¬·±²÷

Í¬®»¿³É®·¬»®øÍ¬®»¿³ ¬®»¿³÷

Í¬®»¿³É®·¬»®øÍ¬®»¿³ ¬®»¿³ô Û²½±¼·²¹ »²½÷

Í¬®»¿³É®·¬»®øÍ¬®»¿³ ¬®»¿³ô Û²½±¼·²¹ »²½ô ·²¬ ·Þ«ºº»®Í·¦»÷

×º §±« «» ¿ ½±²¬®«½¬±® ©·¬¸±«¬ ¿² Û²½±¼·²¹ ¿®¹«³»²¬ô ¬¸» ®»«´¬¿²¬ Í¬®»¿³É®·¬»® ±¾¶»½¬ ©·´´ ²±¬
¬±®» ¬®·²¹ ¬± ¬¸» º·´» ·² ¿ Ë²·½±¼» º±®³¿¬ ©·¬¸ î ¾§¬» °»® ½¸¿®¿½¬»®ò Ò±® ©·´´ ·¬ ½±²ª»®¬ §±«® ¬®·²¹
¬± ßÍÝ××ò ×²¬»¿¼ô ¬¸» Í¬®»¿³É®·¬»® ±¾¶»½¬ ©·´´ ¬±®» ¬®·²¹ ·² ¿ º±®³¿¬ µ²±©² ¿ ËÌÚóèô ©¸·½¸ ·
±³»¬¸·²¹ ×ù´´ ¹± ±ª»® ¸±®¬´§ò

×º §±« «» ±²» ±º ¬¸» Í¬®»¿³É®·¬»® ½±²¬®«½¬±® ©·¬¸ ¿² Û²½±¼·²¹ ¿®¹«³»²¬ô §±« ²»»¼ ¿² ±¾¶»½¬ ±º
¬§°» Û²½±¼·²¹ô ©¸·½¸ · ¿ ½´¿ ¼»º·²»¼ ·² ¬¸» Í§¬»³òÌ»¨¬ ²¿³»°¿½»ò ×¬ù »¿·»¬ ø¿²¼ ·² ³¿²§
½¿»ô «ºº·½·»²¬÷ ¬± «» ±²» ±º ¬¸» ¬¿¬·½ °®±°»®¬·» ±º ¬¸» Û²½±¼·²¹ ½´¿ ¬± ±¾¬¿·² ¬¸· ±¾¶»½¬æ

Û²½±¼·²¹ Í¬¿¬·½ Ð®±°»®¬·»

Ì§°» Ð®±°»®¬§ ß½½»·¾·´·¬§

Û²½±¼·²¹ Ü»º¿«´¬ ¹»¬

Û²½±¼·²¹ Ë²·½±¼» ¹»¬

Û²½±¼·²¹ Þ·¹Û²¼·¿²Ë²·½±¼» ¹»¬

Û²½±¼·²¹ ËÌÚè ¹»¬

Û²½±¼·²¹ ËÌÚé ¹»¬

Û²½±¼·²¹ ßÍÝ×× ¹»¬

Ì¸» Û²½±¼·²¹ ¿®¹«³»²¬ ¬± ¬¸» Í¬®»¿³É®·¬»® ½±²¬®«½¬±® ½¿² ¿´± ¾» ¿² ·²¬¿²½» ±º ±²» ±º ¬¸»
½´¿» ·² Í§¬»³òÌ»¨¬ ¬¸¿¬ ¼»®·ª» º®±³ Û²½±¼·²¹ô ©¸·½¸ ¿®» ßÍÝ××Û²½±¼·²¹ô Ë²·½±¼»Û²½±¼·²¹ô
ËÌÚéÛ²½±¼·²¹ô ¿²¼ ËÌÚèÛ²½±¼·²¹ò Ì¸» ½±²¬®«½¬±® º±® ¬¸»» ½´¿» ±º¬»² ¸¿ª» ¿ º»© ±°¬·±²ô ±
§±« ³¿§ ©¿²¬ ¬± ½¸»½µ ¬¸»³ ±«¬ ·º ¬¸» ¬¿¬·½ °®±°»®¬·» ¿®»²ù¬ ¼±·²¹ °®»½·»´§ ©¸¿¬ §±« ©¿²¬ò

É¸»² §±« °»½·º§ ¿² »²½±¼·²¹ ±º Û²½±¼·²¹òË²·½±¼»ô »¿½¸ ½¸¿®¿½¬»® · ©®·¬¬»² ¬± ¬¸» º·´» ·² î ¾§¬»
©·¬¸ ¬¸» ´»¿¬ ·¹²·º·½¿²¬ ¾§¬» º·®¬ô ·² ¿½½±®¼¿²½» ©·¬¸ ¬¸» ±ó½¿´´»¼ ´·¬¬´»ó»²¼·¿² ¿®½¸·¬»½¬«®» ±º ×²¬»´
³·½®±°®±½»±®ò Ì¸» º·´» ±® ¬®»¿³ ¾»¹·² ©·¬¸ ¬¸» ¾§¬» ð¨ÚÚ ¿²¼ ð¨ÚÛô ©¸·½¸ ½±®®»°±²¼ ¬± ¬¸»
Ë²·½±¼» ½¸¿®¿½¬»® ð¨ÚÛÚÚô ©¸·½¸ · ¼»º·²»¼ ·² ¬¸» Ë²·½±¼» ¬¿²¼¿®¼ ¿ ¬¸» ¾§¬» ±®¼»® ³¿®µ øÞÑÓ÷ò

ß² »²½±¼·²¹ ±º Û²½±¼·²¹òÞ·¹Û²¼·¿²Ë²·½±¼» ¬±®» ¬¸» ³±¬ ·¹²·º·½¿²¬ ¾§¬» ±º »¿½¸ ½¸¿®¿½¬»® º·®¬ò
Ì¸» º·´» ±® ¬®»¿³ ¾»¹·² ©·¬¸ ¬¸» ¾§¬» ð¨ÚÛ ¿²¼ ð¨ÚÚô ©¸·½¸ ¿´± ½±®®»°±²¼ ¬± ¬¸» Ë²·½±¼»
½¸¿®¿½¬»® ð¨ÚÛÚÚò Ì¸» Ë²·½±¼» ½¸¿®¿½¬»® ð¨ÚÚÚÛ · ·²¬»²¬·±²¿´´§ «²¼»º·²»¼ ± ¬¸¿¬ ¿°°´·½¿¬·±² ½¿²
¼»¬»®³·²» ¬¸» ¾§¬» ±®¼»®·²¹ ±º ¿ Ë²·½±¼» º·´» º®±³ ·¬ º·®¬ ¬©± ¾§¬»ò

×º §±« ©¿²¬ ¬± ¬±®» ¬®·²¹ ·² Ë²·½±¼» ¾«¬ §±« ¼±²ù¬ ©¿²¬ ¬¸» ¾§¬» ±®¼»® ³¿®µ »³·¬¬»¼ô §±« ½¿²
·²¬»¿¼ ±¾¬¿·² ¿² Û²½±¼·²¹ ¿®¹«³»²¬ º±® ¬¸» Í¬®»¿³É®·¬»® ½±²¬®«½¬±® ¾§ ½®»¿¬·²¹ ¿² ±¾¶»½¬ ±º ¬§°»
Ë²·½±¼»Û²½±¼·²¹æ

²»© Ë²·½±¼»Û²½±¼·²¹ø¾Þ·¹Û²¼·¿²ô ¾×²½´«¼»Þ§¬»Ñ®¼»®Ó¿®µ÷

Í»¬ ¬¸» ¬©± Þ±±´»¿² ¿®¹«³»²¬ ¿°°®±°®·¿¬»´§ò

ËÌÚóè · ¿ ½¸¿®¿½¬»® »²½±¼·²¹ ¼»·¹²»¼ ¬± ®»°®»»²¬ Ë²·½±¼» ½¸¿®¿½¬»® ©·¬¸±«¬ «·²¹ ¿²§ ¦»®±
¾§¬» ø¿²¼ ¸»²½»ô ¬± ¾» Ý ¿²¼ ËÒ×È º®·»²¼´§÷ò ËÌÚ ¬¿²¼ º±® ËÝÍ Ì®¿²º±®³¿¬·±² Ú±®³¿¬ò ËÝÍ
¬¿²¼ º±® Ë²·ª»®¿´ Ý¸¿®¿½¬»® Í»¬ô ©¸·½¸ · ¿²±¬¸»® ²¿³» º±® ×ÍÑ ïðêìêô ¿ ½¸¿®¿½¬»®ó»²½±¼·²¹
¬¿²¼¿®¼ ©·¬¸ ©¸·½¸ Ë²·½±¼» · ½±³°¿¬·¾´»ò

×² ËÌÚóèô »¿½¸ Ë²·½±¼» ½¸¿®¿½¬»® · ¬®¿²´¿¬»¼ ¬± ¿ »¯«»²½» ±º ï ¬± ê ²±²¦»®± ¾§¬»ò Ë²·½±¼»
½¸¿®¿½¬»® ·² ¬¸» ßÍÝ×× ®¿²¹» øð¨ðððð ¬¸®±«¹¸ ð¨ððéÚ÷ ¿®» ¬®¿²´¿¬»¼ ¼·®»½¬´§ ¬± ·²¹´»ó¾§¬» ª¿´«»ò
Ì¸«ô Ë²·½±¼» ¬®·²¹ ¬¸¿¬ ½±²¬¿·² ±²´§ ßÍÝ×× ¿®» ¬®¿²´¿¬»¼ ¬± ßÍÝ×× º·´»ò ËÌÚóè · ¼±½«³»²¬»¼ ·²
ÎÚÝ îîéçò øÎÚÝ ¬¿²¼ º±® Î»¯«»¬ º±® Ý±³³»²¬ò ÎÚÝ ¿®» ¼±½«³»²¬¿¬·±² ±º ×²¬»®²»¬ ¬¿²¼¿®¼ò
Ç±« ½¿² ±¾¬¿·² ÎÚÝ º®±³ ³¿²§ ±«®½»ô ·²½´«¼·²¹ ¬¸» É»¾ ·¬» ±º ¬¸» ×²¬»®²»¬ Û²¹·²»»®·²¹ Ì¿µ
Ú±®½»ô ¸¬¬°æññ©©©ò·»¬ºò±®¹ò÷

É¸»² §±« °»½·º§ Û²½±¼·²¹òËÌÚèô ¬¸» Í¬®»¿³É®·¬»® ½´¿ ½±²ª»®¬ ¬¸» Ë²·½±¼» ¬»¨¬ ¬®·²¹ ¬± ËÌÚó
èò ×² ¿¼¼·¬·±²ô ·¬ ©®·¬» ¬¸» ¬¸®»» ¾§¬» ð¨ÛÚô ð¨ÞÞô ¿²¼ ð¨ÞÚ ¬± ¬¸» ¾»¹·²²·²¹ ±º ¬¸» º·´» ±® ¬®»¿³ò
Ì¸»» ¾§¬» ¿®» ¬¸» Ë²·½±¼» ÞÑÓ ½±²ª»®¬»¼ ¬± ËÌÚóèò

×º §±« ©¿²¬ ¬± «» ËÌÚóè »²½±¼·²¹ ¾«¬ §±« ¼±²ù¬ ©¿²¬ ¬¸±» ¬¸®»» ¾§¬» »³·¬¬»¼ô ¼±²ù¬ «»
Û²½±¼·²¹òËÌÚèò Ë» Û²½±¼·²¹òÜ»º¿«´¬ ·²¬»¿¼ ±® ±²» ±º ¬¸» ½±²¬®«½¬±® ¬¸¿¬ ¼±»²ù¬ ¸¿ª» ¿²
Û²½±¼·²¹ ¿®¹«³»²¬ò Ì¸»» ±°¬·±² ¿´± °®±ª·¼» ËÌÚóè »²½±¼·²¹ô ¾«¬ ¬¸» ¬¸®»» ·¼»²¬·º·½¿¬·±² ¾§¬»
¿®» ²±¬ »³·¬¬»¼ò

ß´¬»®²¿¬·ª»´§ô §±« ½¿² ½®»¿¬» ¿² ±¾¶»½¬ ±º ¬§°» ËÌÚèÛ²½±¼·²¹ ¿²¼ °¿ ¬¸¿¬ ±¾¶»½¬ ¿ ¬¸» ¿®¹«³»²¬
¬± Í¬®»¿³É®·¬»®ò Ë»

²»© ËÌÚèÛ²½±¼·²¹ø÷

±®

²»© ËÌÚèÛ²½±¼·²¹øº¿´»÷

¬± «°°®» ¬¸» ¬¸®»» ¾§¬»ô ¿²¼ «»

²»© ËÌÚèÛ²½±¼·²¹ø¬®«»÷

¬± »³·¬ ¬¸» ·¼»²¬·º·½¿¬·±² ¾§¬»ò

ËÌÚóé · ¼±½«³»²¬»¼ ·² ÎÚÝ îïëîò Ë²·½±¼» ½¸¿®¿½¬»® ¿®» ¬®¿²´¿¬»¼ ¬± ¿ »¯«»²½» ±º ¾§¬» ¬¸¿¬
¸¿ ¿² «°°»® ¾·¬ ±º ðò ËÌÚóé · ·²¬»²¼»¼ º±® »²ª·®±²³»²¬ ·² ©¸·½¸ ±²´§ éó¾·¬ ª¿´«» ½¿² ¾» «»¼ô
«½¸ ¿ »ó³¿·´ò Ë» Û²½±¼·²¹òËÌÚé ·² ¬¸» Í¬®»¿³É®·¬»® ½±²¬®«½¬±® º±® ËÌÚóé »²½±¼·²¹ò Ò±
·¼»²¬·º·½¿¬·±² ¾§¬» ¿®» ·²ª±´ª»¼ ©·¬¸ ËÌÚóéò

É¸»² §±« °»½·º§ ¿² »²½±¼·²¹ ±º Û²½±¼·²¹òßÍÝ××ô ¬¸» ®»«´¬¿²¬ º·´» ±® ¬®»¿³ ½±²¬¿·² ±²´§ ßÍÝ××
½¸¿®¿½¬»®ô ¬¸¿¬ ·ô ½¸¿®¿½¬»® ·² ¬¸» ®¿²¹» ð¨ðð ¬¸®±«¹¸ ð¨éÚò ß²§ Ë²·½±¼» ½¸¿®¿½¬»® ²±¬ ·² ¬¸·
®¿²¹» · ½±²ª»®¬»¼ ¬± ¿ ¯«»¬·±² ³¿®µ øßÍÝ×× ½±¼» ð¨íÚ÷ò Ì¸· · ¬¸» ±²´§ »²½±¼·²¹ ·² ©¸·½¸ ¼¿¬¿ ·
¿½¬«¿´´§ ´±¬ò

Ì¸» Í¬®»¿³É®·¬»® ½´¿ ¸¿ ¿ º»© ¸¿²¼§ °®±°»®¬·»æ

Í¬®»¿³É®·¬»® Ð®±°»®¬·» ø»´»½¬·±²÷

Ì§°» Ð®±°»®¬§ ß½½»·¾·´·¬§

Í¬®»¿³ Þ¿»Í¬®»¿³ ¹»¬

Û²½±¼·²¹ Û²½±¼·²¹ ¹»¬

¾±±´ ß«¬±Ú´«¸ ¹»¬ñ»¬

¬®·²¹ Ò»©Ô·²» ¹»¬ñ»¬

Ì¸» Þ¿»Í¬®»¿³ °®±°»®¬§ ®»¬«®² »·¬¸»® ¬¸» Í¬®»¿³ ±¾¶»½¬ §±« «»¼ ¬± ½®»¿¬» ¬¸» Í¬®»¿³É®·¬»®
±¾¶»½¬ ±® ¬¸» Í¬®»¿³ ±¾¶»½¬ ¬¸¿¬ ¬¸» Í¬®»¿³É®·¬»® ½´¿ ½®»¿¬»¼ ¾¿»¼ ±² ¬¸» º·´»²¿³» §±« «°°´·»¼ò
×º ¬¸» ¾¿» ¬®»¿³ «°°±®¬ »»µ·²¹ô §±« ½¿² «» ¬¸¿¬ ±¾¶»½¬ ¬± °»®º±®³ »»µ·²¹ ±°»®¿¬·±² ±² ¬¸¿¬
¬®»¿³ò

Ì¸» Û²½±¼·²¹ °®±°»®¬§ ®»¬«®² ¬¸» »²½±¼·²¹ §±« °»½·º·»¼ ·² ¬¸» ½±²¬®«½¬±® ±® ËÌÚèÛ²½±¼·²¹ ·º §±«
°»½·º·»¼ ²± »²½±¼·²¹ò Í»¬¬·²¹ ß«¬±Ú´«¸ ¬± ¬®«» °»®º±®³ ¿ º´«¸ ±º ¬¸» ¾«ºº»® ¿º¬»® »ª»®§ ©®·¬»ò

Ì¸» Ò»©Ô·²» °®±°»®¬§ · ·²¸»®·¬»¼ º®±³ Ì»¨¬É®·¬»®ò Þ§ ¼»º¿«´¬ô ·¬ù ¬¸» ¬®·²¹ þÄ®Ä²þ ø½¿®®·¿¹» ®»¬«®²
¿²¼ ´·²» º»»¼÷ô ¾«¬ §±« ½¿² ½¸¿²¹» ·¬ ¬± þÄ²þ ø´·²» º»»¼÷ò ×º §±« ½¸¿²¹» ·¬ ¬± ¿²§¬¸·²¹ »´»ô ¬¸» º·´»
©±²ù¬ ¾» ®»¿¼¿¾´» ¾§ Í¬®»¿³Î»¿¼»® ±¾¶»½¬ò

Ì¸» ª»®¿¬·´·¬§ ±º ¬¸» Í¬®»¿³É®·¬»® ½´¿ ·²ª±´ª» ¬¸» É®·¬» ¿²¼ É®·¬»Ô·²» ³»¬¸±¼ ¬¸¿¬ ¬¸» ½´¿
·²¸»®·¬ º®±³ Ì»¨¬É®·¬»®æ

Ì»¨¬É®·¬»® Ó»¬¸±¼ ø»´»½¬·±²÷

ª±·¼ É®·¬»øòòò÷

ª±·¼ É®·¬»Ô·²»øòòò÷

ª±·¼ Ú´«¸ø÷

ª±·¼ Ý´±»ø÷

Ì»¨¬É®·¬»® «°°±®¬ ø¿²¼ Í¬®»¿³É®·¬»® ·²¸»®·¬÷ ïé ª»®·±² ±º É®·¬» ¿²¼ ïè ª»®·±² ±º É®·¬»Ô·²»
¬¸¿¬ ´»¬ §±« °»½·º§ ¿²§ ±¾¶»½¬ ¿ ¿² ¿®¹«³»²¬ ¬± ¬¸» ³»¬¸±¼ò Ì¸» ±¾¶»½¬ §±« °»½·º§ · ½±²ª»®¬»¼ ¬±
¿ ¬®·²¹ ¾§ ¬¸» «» ±º ·¬ Ì±Í¬®·²¹ ³»¬¸±¼ò Ì¸» É®·¬»Ô·²» ³»¬¸±¼ º±´´±© ¬¸» ¬®·²¹ ©·¬¸ ¿² »²¼ó±ºó
´·²» ³¿®µ»®ò ß ª»®·±² ±º É®·¬»Ô·²» ©·¬¸ ²± ¿®¹«³»²¬ ©®·¬» ¶«¬ ¿² »²¼ó±ºó´·²» ³¿®µ»®ò Ì¸» É®·¬»
¿²¼ É®·¬»Ô·²» ³»¬¸±¼ ¿´± ·²½´«¼» ª»®·±² ©·¬¸ º±®³¿¬¬·²¹ ¬®·²¹ô ¶«¬ ¿ ¬¸» Ý±²±´»òÉ®·¬» ¿²¼
Ý±²±´»òÉ®·¬»Ô·²» ³»¬¸±¼ ¼±ò

Ø»®»ù ¿ ¬·²§ °®±¹®¿³ ¬¸¿¬ ¿°°»²¼ ¬»¨¬ ¬± ¬¸» ¿³» º·´» »ª»®§ ¬·³» §±« ®«² ¬¸» °®±¹®¿³ò

Í¬®»¿³É®·¬»®Ü»³±ò½

ññóóó

ññ Í¬®»¿³É®·¬»®Ü»³±ò½ w îððï ¾§ Ý¸¿®´» Ð»¬¦±´¼

ññóóó

«·²¹ Í§¬»³å

«·²¹ Í§¬»³ò×Ñå

½´¿ Í¬®»¿³É®·¬»®Ü»³±

¥

 °«¾´·½ ¬¿¬·½ ª±·¼ Ó¿·²ø÷

 ¥

 Í¬®»¿³É®·¬»® © ã ²»© Í¬®»¿³É®·¬»®øþÍ¬®»¿³É®·¬»®Ü»³±ò¬¨¬þô
¬®«»÷å

 ©òÉ®·¬»Ô·²»øþÇ±« ®¿² ¬¸» Í¬®»¿³É®·¬»®Ü»³± °®±¹®¿³ ±² ¥ð£þô

Ü¿¬»Ì·³»òÒ±©÷å

 ©òÝ´±»ø÷å

 £

£

Ò±¬·½» ¬¸» ¬®«» ¿®¹«³»²¬ ¬± ¬¸» ½±²¬®«½¬±®ô ·²¼·½¿¬·²¹ ¬¸¿¬ ¬¸» º·´» ©·´´ ¾» ¿°°»²¼»¼ ¬±ò Ì¸» Ë²·½±¼»
¬®·²¹ ·² ¬¸» °®±¹®¿³ ¿®» ½±²ª»®¬»¼ ¬± ËÌÚóèô ¾«¬ ¬¸»§ ©·´´ ¿°°»¿® ¬± ¾» ßÍÝ××ò

× ³»²¬·±²»¼ ¬¸» Ý±²±´» ½´¿ ¿ ³±³»²¬ ¿¹±ò Ì¸» ·²°«¬ ¿²¼ ±«¬°«¬ ¼»ª·½» ·² ¬¸¿¬ ½´¿ ¿®» ¼»º·²»¼
¿ ±¾¶»½¬ ±º ¬§°» Ì»¨¬É®·¬»®ò Ì®§ ·²»®¬·²¹ ¬¸» º±´´±©·²¹ ´·²» ¿¬ ¬¸» ¾»¹·²²·²¹ ±º ¬¸» Ó¿·² ³»¬¸±¼ ·²
Ø»¨Ü«³°æ

Í¬®»¿³É®·¬»® © ã ²»© Í¬®»¿³É®·¬»®øþ°®²þô º¿´»ô Û²½±¼·²¹òßÍÝ××÷å

Ý±²±´»òÍ»¬Ñ«¬ø©÷å

Ç±«ù´´ ¿´± ²»»¼ ¬± ¿¼¼ ¿ «·²¹ ¬¿¬»³»²¬æ

«·²¹ Í§¬»³òÌ»¨¬å

Ò±© ¿´´ ¬¸» ±«¬°«¬ º®±³ ¬¸» °®±¹®¿³ ¹±» ¬± ¬¸» °®·²¬»®ò

Ì¸» Í¬®»¿³Î»¿¼»® ½´¿ · º±® ®»¿¼·²¹ ¬»¨¬ º·´» ±® ¬®»¿³ò Ì¸»®» ¿®» º·ª» ½±²¬®«½¬±® º±® ±°»²·²¹ ¿
¬»¨¬ º·´» º±® ®»¿¼·²¹æ

Í¬®»¿³Î»¿¼»® Ý±²¬®«½¬±® ø»´»½¬·±²÷

Í¬®»¿³Î»¿¼»®ø¬®·²¹ ¬®Ú·´»Ò¿³»÷

Í¬®»¿³Î»¿¼»®ø¬®·²¹ ¬®Ú·´»Ò¿³»ô Û²½±¼·²¹ »²½÷

Í¬®»¿³Î»¿¼»®ø¬®·²¹ ¬®Ú·´»Ò¿³»ô ¾±±´ ¾Ü»¬»½¬÷

Í¬®»¿³Î»¿¼»®ø¬®·²¹ ¬®Ú·´»Ò¿³»ô Û²½±¼·²¹ »²½ô ¾±±´ ¾Ü»¬»½¬÷

Í¬®»¿³Î»¿¼»®ø¬®·²¹ ¬®Ú·´»Ò¿³»ô Û²½±¼·²¹ »²½ô ¾±±´ ¾Ü»¬»½¬ô ·²¬
·Þ«ºº»®Í·¦»÷

Ì¸»®» · ¿² ¿¼¼·¬·±²¿´ »¬ ±º º·ª» ½±²¬®«½¬±® º±® ½®»¿¬·²¹ ¿ Í¬®»¿³Î»¿¼»® ±¾¶»½¬ ¾¿»¼ ±² ¿²
»¨·¬·²¹ ¬®»¿³æ

Í¬®»¿³Î»¿¼»® Ý±²¬®«½¬±® ø»´»½¬·±²÷

Í¬®»¿³Î»¿¼»®øÍ¬®»¿³ ¬®»¿³÷

Í¬®»¿³Î»¿¼»®øÍ¬®»¿³ ¬®»¿³ô Û²½±¼·²¹ »²½÷

Í¬®»¿³Î»¿¼»®øÍ¬®»¿³ ¬®»¿³ô ¾±±´ ¾Ü»¬»½¬÷

Í¬®»¿³Î»¿¼»®øÍ¬®»¿³ ¬®»¿³ô Û²½±¼·²¹ »²½ô ¾±±´ ¾Ü»¬»½¬÷

Í¬®»¿³Î»¿¼»®øÍ¬®»¿³ ¬®»¿³ô Û²½±¼·²¹ »²½ô ¾±±´ ¾Ü»¬»½¬ô ·²¬ ·Þ«ºº»®Í·¦»÷

×º §±« »¬ ¾Ü»¬»½¬ ¬± ¬®«»ô ¬¸» ½±²¬®«½¬±® ©·´´ ¿¬¬»³°¬ ¬± ¼»¬»®³·²» ¬¸» »²½±¼·²¹ ±º ¬¸» º·´» º®±³ ¬¸»
º·®¬ ¬©± ±® ¬¸®»» ¾§¬»ò Ñ® §±« ½¿² °»½·º§ ¬¸» »²½±¼·²¹ »¨°´·½·¬´§ò ×º §±« »¬ ¾Ü»¬»½¬ ¬± ¬®«» ¿²¼ ¿´±
°»½·º§ ¿² »²½±¼·²¹ô ¬¸» ½±²¬®«½¬±® ©·´´ «» ¬¸» °»½·º·»¼ »²½±¼·²¹ ±²´§ ·º ·¬ ½¿²ù¬ ¼»¬»½¬ ¬¸»
»²½±¼·²¹ ±º ¬¸» º·´»ò øÚ±® »¨¿³°´»ô ßÍÝ×× ¿²¼ ËÌÚóé ½¿²ù¬ ¾» ¼·ºº»®»²¬·¿¬»¼ ¾§ ·²°»½¬·±² ¾»½¿«»
¬¸»§ ¼±²ù¬ ¾»¹·² ©·¬¸ ¿ ÞÑÓ ¿²¼ ¾±¬¸ ½±²¬¿·² ±²´§ ¾§¬» ·² ¬¸» ®¿²¹» ð¨ðð ¬¸®±«¹¸ ð¨éÚò÷

Ì¸» Í¬®»¿³Î»¿¼»® ½´¿ ¸¿ ¬¸» º±´´±©·²¹ ¬©±ô ®»¿¼ó±²´§ °®±°»®¬·»æ

Í¬®»¿³Î»¿¼»® Ð®±°»®¬·»

Ì§°» Ð®±°»®¬§ ß½½»·¾·´·¬§

Í¬®»¿³ Þ¿»Í¬®»¿³ ¹»¬

Û²½±¼·²¹ Ý«®®»²¬Û²½±¼·²¹ ¹»¬

Ì¸» Ý«®®»²¬Û²½±¼·²¹ °®±°»®¬§ ³¿§ ½¸¿²¹» ¾»¬©»»² ¬¸» ¬·³» ¬¸» ±¾¶»½¬ · ½±²¬®«½¬»¼ ¿²¼ ¬¸» º·®¬
®»¿¼ ±°»®¿¬·±² °»®º±®³»¼ ±² ¬¸» º·´» ±® ¬®»¿³ ¾»½¿«» ¬¸» ±¾¶»½¬ ¸¿ µ²±©´»¼¹» ±º ·¼»²¬·º·½¿¬·±²
¾§¬» ±²´§ ¿º¬»® ¬¸» º·®¬ ®»¿¼ò

Ø»®» ¿®» ¬¸» ³»¬¸±¼ ¬± °»»µô ®»¿¼ô ¿²¼ ½´±» ¬»¨¬ º·´»æ

Í¬®»¿³Î»¿¼»® Ó»¬¸±¼ ø»´»½¬·±²÷

·²¬ Ð»»µø÷

·²¬ Î»¿¼ø÷

·²¬ Î»¿¼ø½¸¿®ÅÃ ¿½¸Þ«ºº»®ô ·²¬ ·Þ«ºº»®Ñºº»¬ô ·²¬ ·Ý±«²¬÷

¬®·²¹ Î»¿¼Ô·²»ø÷

¬®·²¹ Î»¿¼Ì±Û²¼ø÷

ª±·¼ Ý´±»ø÷

Ì¸» Ð»»µ ¿²¼ ¬¸» º·®¬ Î»¿¼ ³»¬¸±¼ ¾±¬¸ ®»¬«®² ¬¸» ²»¨¬ ½¸¿®¿½¬»® ·² ¬¸» ¬®»¿³ ±® óï ·º ¬¸» »²¼ ±º
¬¸» ¬®»¿³ ¸¿ ¾»»² ®»¿½¸»¼ò Ç±« ³«¬ »¨°´·½·¬´§ ½¿¬ ¬¸» ®»¬«®² ª¿´«» ¬± ¿ ½¸¿® ·º ¬¸» ®»¬«®² ª¿´«» ·
²±¬ óïò Ì¸» »½±²¼ Î»¿¼ ³»¬¸±¼ ®»¬«®² ¬¸» ²«³¾»® ±º ½¸¿®¿½¬»® ®»¿¼ ±® ð ·º ¬¸» »²¼ ±º ¬¸» ¬®»¿³
¸¿ ¾»»² ®»¿½¸»¼ò

Ì¸» Î»¿¼Ô·²» ³»¬¸±¼ ®»¿¼ ¬¸» ²»¨¬ ´·²» «° ¬± ¬¸» ²»¨¬ »²¼ó±ºó´·²» ³¿®µ»® ¿²¼ ¬®·° ¬¸» »²¼ó±ºó´·²»
½¸¿®¿½¬»® º®±³ ¬¸» ®»«´¬¿²¬ ¬®·²¹ò Ì¸» ³»¬¸±¼ ®»¬«®² ¿ ¦»®±ó´»²¹¬¸ ½¸¿®¿½¬»® ¬®·²¹ ·º ¬¸» ´·²» ±º
¬»¨¬ ½±²¬¿·² ±²´§ ¿² »²¼ó±ºó´·²» ³¿®µ»®å ¬¸» ³»¬¸±¼ ®»¬«®² ²«´´ ·º ¬¸» »²¼ ±º ¬¸» ¬®»¿³ ¸¿ ¾»»²
®»¿½¸»¼ò

Î»¿¼Ì±Û²¼ ®»¬«®² »ª»®§¬¸·²¹ º®±³ ¬¸» ½«®®»²¬ °±·¬·±² ¬± ¬¸» »²¼ ±º ¬¸» º·´»ò Ì¸» ³»¬¸±¼ ®»¬«®²
²«´´ ·º ¬¸» »²¼ ±º ¬¸» ¬®»¿³ ¸¿ ¾»»² ®»¿½¸»¼ò

Ø»®»ù ¿ °®±¹®¿³ ¬¸¿¬ ¿«³» ¬¸» ½±³³¿²¼ó´·²» ¿®¹«³»²¬ · ¿ ËÎ× øË²·ª»®¿´ Î»±«®½» ×¼»²¬·º·»®÷
±º ¿² ØÌÓÔ º·´» ø±® ±¬¸»® ¬»¨¬ º·´»÷ ±² ¬¸» É»¾ò ×¬ ±¾¬¿·² ¿ Í¬®»¿³ º±® ¬¸¿¬ º·´» «·²¹ ±³» ¾±·´»®°´¿¬»
½±¼» ·²ª±´ª·²¹ ¬¸» É»¾Î»¯«»¬ ¿²¼ É»¾Î»°±²» ½´¿»ò ×¬ ¬¸»² ½±²¬®«½¬ ¿ Í¬®»¿³Î»¿¼»®

±¾¶»½¬ º®±³ ¬¸¿¬ ¬®»¿³ô «» Î»¿¼Ô·²» ¬± ®»¿¼ »¿½¸ ´·²»ô ¿²¼ ¬¸»² ¼·°´¿§ »¿½¸ ´·²» «·²¹
Ý±²±´»òÉ®·¬»Ô·²» ©·¬¸ ¿ ´·²» ²«³¾»®ò

Ø¬³´Ü«³°ò½

ññóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóó

ññ Ø¬³´Ü«³°ò½ w îððï ¾§ Ý¸¿®´» Ð»¬¦±´¼

ññóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóóó

«·²¹ Í§¬»³å

«·²¹ Í§¬»³ò×Ñå

«·²¹ Í§¬»³òÒ»¬å

½´¿ Ø¬³´Ü«³°

¥

 °«¾´·½ ¬¿¬·½ ·²¬ Ó¿·²ø¬®·²¹ÅÃ ¿¬®ß®¹÷

 ¥

 ·º ø¿¬®ß®¹òÔ»²¹¬¸ ãã ð÷

 ¥

 Ý±²±´»òÉ®·¬»Ô·²»øþÍ§²¬¿¨æ Ø¬³´Ü«³° ËÎ×þ÷å

 ®»¬«®² ïå

 £

 É»¾Î»¯«»¬ ©»¾®»¯å

 É»¾Î»°±²» ©»¾®»å

 ¬®§

 ¥

 ©»¾®»¯ ã É»¾Î»¯«»¬òÝ®»¿¬»ø¿¬®ß®¹ÅðÃ÷å

 ©»¾®» ã ©»¾®»¯òÙ»¬Î»°±²»ø÷å

 £

 ½¿¬½¸ øÛ¨½»°¬·±² »¨½÷

 ¥

 Ý±²±´»òÉ®·¬»Ô·²»øþØ¬³´Ü«³°æ ¥ð£þô »¨½òÓ»¿¹»÷å

 ®»¬«®² ïå

 £

 ·º ø©»¾®»òÝ±²¬»²¬Ì§°»òÍ«¾¬®·²¹øðô ì÷ ÿã þ¬»¨¬þ÷

 ¥

 Ý±²±´»òÉ®·¬»Ô·²»øþØ¬³´Ü«³°æ ËÎ× ³«¬ ¾» ¿ ¬»¨¬ ¬§°»òþ÷å

 ®»¬«®² ïå

 £

 Í¬®»¿³ ¬®»¿³ ã ©»¾®»òÙ»¬Î»°±²»Í¬®»¿³ø÷å

 Í¬®»¿³Î»¿¼»® ¬®®¼® ã ²»© Í¬®»¿³Î»¿¼»®ø¬®»¿³÷å

 ¬®·²¹ ¬®Ô·²»å

 ·²¬ ·Ô·²» ã ïå

 ©¸·´» øø¬®Ô·²» ã ¬®®¼®òÎ»¿¼Ô·²»ø÷÷ ÿã ²«´´÷

 Ý±²±´»òÉ®·¬»Ô·²»øþ¥ðæÜë£æ ¥ï£þô ·Ô·²»õõô ¬®Ô·²»÷å

 ¬®»¿³òÝ´±»ø÷å

 ®»¬«®² ðå

 £

£

Þ·²¿®§ Ú·´» ×ñÑ

Þ§ ¼»º·²·¬·±²ô ¿²§ º·´» ¬¸¿¬ù ²±¬ ¿ ¬»¨¬ º·´» · ¿ ¾·²¿®§ º·´»ò ×ùª» ¿´®»¿¼§ ¼·½«»¼ ¬¸» Ú·´»Í¬®»¿³ ½´¿ô
©¸·½¸ ´»¬ §±« ®»¿¼ ¿²¼ ©®·¬» ¾§¬»ò Þ«¬ ³±¬ ¾·²¿®§ º·´» ½±²·¬ ±º ¼¿¬¿ ¬§°» ¬¸¿¬ ¿®» ¬±®»¼ ¿
³«´¬·°´» ¾§¬»ò Ë²´» §±« ©¿²¬ ¬± ©®·¬» ½±¼» ¬¸¿¬ ½±²¬®«½¬ ¿²¼ ¼»½±²¬®«½¬ ·²¬»¹»® ¿²¼ ±¬¸»®
¬§°» º®±³ ¬¸»·® ½±²¬·¬«»²¬ ¾§¬»ô §±«ù´´ ©¿²¬ ¬± ¬¿µ» ¿¼ª¿²¬¿¹» ±º ¬¸» Þ·²¿®§Î»¿¼»® ¿²¼
Þ·²¿®§É®·¬»® ½´¿»ô ¾±¬¸ ±º ©¸·½¸ ¿®» ¼»®·ª»¼ ±´»´§ º®±³ Ñ¾¶»½¬æ

Ì¸» ½±²¬®«½¬±® º±® ¬¸»» ½´¿» ®»¯«·®» ¿ Í¬®»¿³ ±¾¶»½¬ò ×º §±« ©¿²¬ ¬± «» ¿ º·´» ©·¬¸ ¬¸»»
½´¿»ô ½®»¿¬» ¿ ²»© Ú·´»Í¬®»¿³ ±¾¶»½¬ ø±® ±¾¬¿·² ±²» º®±³ ±³» ±¬¸»® ³»¿²÷ º·®¬ò Ú±® ¬¸»
Þ·²¿®§É®·¬»® ½´¿ô ¬¸» Û²½±¼·²¹ §±« ±°¬·±²¿´´§ °»½·º§ ¿ºº»½¬ ¬¸» ¬±®¿¹» ±º ¬»¨¬ ·² ¬¸» ¬®»¿³æ

Þ·²¿®§É®·¬»® Ý±²¬®«½¬±®

Þ·²¿®§É®·¬»®øÍ¬®»¿³ ¬®»¿³÷

Þ·²¿®§É®·¬»®øÍ¬®»¿³ ¬®»¿³ô Û²½±¼·²¹ »²½÷

Ì¸» ½±²¬®«½¬±® º±® Þ·²¿®§Î»¿¼»® ¿®» ·¼»²¬·½¿´æ

Þ·²¿®§Î»¿¼»® Ý±²¬®«½¬±®

Þ·²¿®§Î»¿¼»®øÍ¬®»¿³ ¬®»¿³÷

Þ·²¿®§Î»¿¼»®øÍ¬®»¿³ ¬®»¿³ô Û²½±¼·²¹ »²½÷

Þ±¬¸ ½´¿» ¸¿ª» ¿ ·²¹´» ®»¿¼ó±²´§ °®±°»®¬§ ²¿³»¼ Þ¿»Í¬®»¿³ ¬¸¿¬ · ¬¸» Í¬®»¿³ ±¾¶»½¬ §±«
°»½·º·»¼ ·² ¬¸» ½±²¬®«½¬±®ò

Ì¸» É®·¬» ³»¬¸±¼ ·² Þ·²¿®§É®·¬»® ¿®» ¼»º·²»¼ º±® ¿´´ ¬¸» ¾¿·½ ¬§°» ¿ ©»´´ ¿ º±® ¿®®¿§ ±º ¾§¬»
¿²¼ ½¸¿®¿½¬»®ò

Þ·²¿®§É®·¬»® Ð«¾´·½ Ó»¬¸±¼

ª±·¼ É®·¬»øòòò÷

ª±·¼ É®·¬»ø¾§¬»ÅÃ ¿¾§Þ«ºº»®ô ·²¬ ·Þ«ºº»®Ñºº»¬ô ·²¬ ·Þ§¬»Ì±É®·¬»÷

ª±·¼ É®·¬»ø½¸¿®ÅÃ ¿½¸Þ«ºº»®ô ·²¬ ·Þ«ºº»®Ñºº»¬ô ·²¬ ·Þ§¬»Ì±É®·¬»÷

´±²¹ Í»»µø·²¬ ·Ñºº»¬ô Í»»µÑ®·¹·² ±÷

ª±·¼ Ú´«¸ø÷

ª±·¼ Ý´±»ø÷

Ç±« ½¿² «» ¿² ±¾¶»½¬ ±º ¿²§ ¾¿·½ ¬§°» ø¾±±´ô ¾§¬»ô ¾§¬»ô ¾§¬»ÅÃô ½¸¿®ô ½¸¿®ÅÃô ¬®·²¹ô ¸±®¬ô «¸±®¬ô
·²¬ô «·²¬ô ´±²¹ô «´±²¹ô º´±¿¬ô ¼±«¾´»ô ±® ¼»½·³¿´÷ ¿ ¿² ¿®¹«³»²¬ ¬± É®·¬»ò

Ì¸»» ³»¬¸±¼ ¼± ²±¬ ¬±®» ¿²§ ·²º±®³¿¬·±² ¿¾±«¬ ¬¸» ¬§°» ±º ¬¸» ¼¿¬¿ò Û¿½¸ ¬§°» «» ¿ ³¿²§
¾§¬» ¿ ²»½»¿®§ò Ú±® »¨¿³°´»ô ¿ º´±¿¬ · ¬±®»¼ ·² ì ¾§¬»ò ß ¾±±´ ®»¯«·®» ï ¾§¬»ò Ì¸» ·¦» ±º
¿®®¿§ ¿®» ²±¬ ¬±®»¼ò ß îëêó»´»³»²¬ ¾§¬» ¿®®¿§ · ¬±®»¼ ·² îëê ¾§¬»ò

Í¬®·²¹ ¬±®»¼ ·² ¬¸» º·´» ¿®» °®»½»¼»¼ ¾§ ¬¸» ¾§¬» ´»²¹¬¸ ¬±®»¼ ¿ ¿ éó¾·¬ »²½±¼»¼ ·²¬»¹»®ò øÌ¸» éó¾·¬
·²¬»¹»® »²½±¼·²¹ «» ¿ ³¿²§ ¾§¬» ¿ ²»½»¿®§ ¬± ¬±®» ¿² ·²¬»¹»® ·² éó¾·¬ ½¸«²µò Ì¸» º·®¬ ¾§¬»
±º ¬±®¿¹» · ¬¸» ´±©»¬ é ¾·¬ ±º ¬¸» ·²¬»¹»®ô ¿²¼ ± º±®¬¸ò Ì¸» ¸·¹¸ ¾·¬ ±º »¿½¸ ¾§¬» · ï ·º ¬¸»®» ¿®»
³±®» ¾§¬»ò Ì¸» Þ·²¿®§É®·¬»® ½´¿ ·²½´«¼» ¿ °®±¬»½¬»¼ ³»¬¸±¼ ²¿³»¼ É®·¬»éÞ·¬Û²½±¼»¼×²¬ ¬¸¿¬
°»®º±®³ ¬¸· »²½±¼·²¹ò÷

Ì¸» Ý´±» ³»¬¸±¼ ½´±» ¬¸» «²¼»®´§·²¹ ¬®»¿³ ¬¸¿¬ ¬¸» Þ·²¿®§É®·¬»® ±¾¶»½¬ · ¾¿»¼ ±²ò

Ì¸» Þ·²¿®§Î»¿¼»® ½´¿ ¸¿ »°¿®¿¬» ³»¬¸±¼ ¬± ®»¿¼ ¿´´ ¬¸» ª¿®·±« ¬§°»ò

Þ·²¿®§Î»¿¼»® Ó»¬¸±¼ ø»´»½¬·±²÷

¾±±´ Î»¿¼Þ±±´»¿²ø÷

¾§¬» Î»¿¼Þ§¬»ø÷

¾§¬»ÅÃ Î»¿¼Þ§¬»ø·²¬ ·Ý±«²¬÷

¾§¬» Î»¿¼ÍÞ§¬»ø÷

½¸¿® Î»¿¼Ý¸¿®ø÷

½¸¿®ÅÃ Î»¿¼Ý¸¿®ø·²¬ ·Ý±«²¬÷

¸±®¬ Î»¿¼×²¬ïêø÷

·²¬ Î»¿¼×²¬íîø÷

´±²¹ Î»¿¼×²¬êìø÷

«¸±®¬ Î»¿¼Ë×²¬ïêø÷

«·²¬ Î»¿¼Ë×²¬íîø÷

«´±²¹ Î»¿¼Ë×²¬êìø÷

º´±¿¬ Î»¿¼Í·²¹´»ø÷

¼±«¾´» Î»¿¼Ü±«¾´»ø÷

¼»½·³¿´ Î»¿¼Ü»½·³¿´ø÷

Ì¸»» ³»¬¸±¼ ¬¸®±© ¿² »¨½»°¬·±² ±º ¬§°» Û²¼ÑºÍ¬®»¿³Û¨½»°¬·±² ·º ¬¸» »²¼ ±º ¬¸» ¬®»¿³ ¸¿ ¾»»²
®»¿½¸»¼ò ×² ³±¬ ½¿»ô §±«® °®±¹®¿³ ©·´´ µ²±© ¬¸» º±®³¿¬ ±º ¿ ¾·²¿®§ º·´» ·¬ù ¿½½»·²¹ ¿²¼ ½¿²
¿ª±·¼ »²¼ó±ºó¬®»¿³ ½±²¼·¬·±²ò Ø±©»ª»®ô º±® ³¿¨·³«³ °®±¬»½¬·±²ô §±« ¸±«´¼ °«¬ §±«® ®»¿¼
¬¿¬»³»²¬ ·² ¬®§ ¾´±½µ ·² ½¿» §±« »²½±«²¬»® ½±®®«°¬»¼ º·´»ò

Ç±« ½¿² ¿´± ®»¿¼ ·²¼·ª·¼«¿´ ½¸¿®¿½¬»®ô ±® ¿®®¿§ ±º ¾§¬» ±® ½¸¿®¿½¬»®æ

Þ·²¿®§Î»¿¼»® Ó»¬¸±¼ ø»´»½¬·±²÷

·²¬ Ð»»µÝ¸¿®ø÷

·²¬ Î»¿¼ø÷

ª±·¼ Î»¿¼ø¾§¬»ÅÃ ¿¾§Þ«ºº»®ô ·²¬ ·Þ«ºº»®Ñºº»¬ô ·²¬ ·Þ§¬»Ì±Î»¿¼÷

ª±·¼ Î»¿¼ø½¸¿®ÅÃ ¿½¸Þ«ºº»®ô ·²¬ ·Þ«ºº»®Ñºº»¬ô ·²¬ ·Þ§¬»Ì±Î»¿¼÷

ª±·¼ Ý´±»ø÷

Ì¸» Ð»»µÝ¸¿® ¿²¼ Î»¿¼ ³»¬¸±¼ ·²ª±´ª» ½¸¿®¿½¬»®ô ²±¬ ¾§¬»ô ¿²¼ ©·´´ ¿«³» ¬¸¿¬ ¬¸» º·´» · ËÌÚó
è »²½±¼»¼ ·º §±« ¼±²ù¬ »¨°´·½·¬´§ ·²¼·½¿¬» ¿² »²½±¼·²¹ ·² ¬¸» ½±²¬®«½¬±®ò Ì¸» ³»¬¸±¼ ®»¬«®² óï ·º ¬¸»
»²¼ ±º ¬¸» ¬®»¿³ ¸¿ ¾»»² ®»¿½¸»¼ò

×º §±« ¸¿ª» »¨°»®·»²½» ©·¬¸ º·´» ×ñÑ ·² Ý °®±¹®¿³ô §±«ù®» °®±¾¿¾´§ º¿³·´·¿® ©·¬¸ ½±³³±² ¬»½¸²·¯«»
¬± ®»¿¼ ¿²¼ ©®·¬» ¼¿¬¿ ¬®«½¬«®» ·² ¿ ¾·²¿®§ º±®³¿¬ò Ú±® »¨¿³°´»ô §±« ³¿§ ¼»º·²» ¿ ¬®«½¬«®» ´·µ» ±æ

¬§°»¼»º ¬®«½¬

¥

 ·²¬ ·å

 º´±¿¬ ºå

 ½¸¿® ½¸ÅïðÃå

 ·²¬ ¶å

 º´±¿¬ ¹å

£

ÍÌÎËÝÌÜÛÚå

¿²¼ ¿ ª¿®·¿¾´» ±º ¬§°» ÍÌÎËÝÌÜÛÚ ´·µ» ¬¸·æ

ÍÌÎËÝÌÜÛÚ ³§¬®«½¬å

×º §±« ±°»² ¿ º·´» ©·¬¸ º±°»² ¿²¼ ²¿³» ¬¸» Ú×ÔÛ °±·²¬»® º·´»ô §±« ½¿² ¬¸»² ©®·¬» ±«¬ ¬¸» ½±²¬»²¬ ±º
¬¸» ¬®«½¬«®» «·²¹ º©®·¬»ô ¿ ¸»®»ô

º©®·¬»øú³§¬®«½¬ô ·¦»±ºøÍÌÎËÝÌÜÛÚ÷ô ïô º·´»÷å

¿²¼ ®»¿¼ ·¬ ¾¿½µ ·² ·³·´¿®´§æ

º®»¿¼øú³§¬®«½¬ô ·¦»±ºøÍÌÎËÝÌÜÛÚ÷ô ïô º·´»÷å

Ì¸· ¶±¾ · ± »¿§ ¾»½¿«» Ý ¬±®» ¬¸» ½±²¬»²¬ ±º ¿ ¬®«½¬«®» ¿ ¶«¬ ¿ ¾´±½µ ±º ³»³±®§ò Ì¸» º·®¬
¿®¹«³»²¬ ±º ¬¸» º©®·¬» ¿²¼ º®»¿¼ º«²½¬·±² · ¼»º·²»¼ ¿ ¿ ª±·¼ °±·²¬»®ô ± §±« ½¿² °»½·º§ ¿ °±·²¬»®
¬± ¿²§¬¸·²¹ò

É·¬¸ Ýýô §±« ¼±²ù¬ ¸¿ª» ¯«·¬» ¬¸· ³«½¸ ½¿¬·²¹ º®»»¼±³ò Ç±«ù´´ °®±¾¿¾´§ ©¿²¬ ¬± ¬¿µ» ¿ ½±³°´»¬»´§
¼·ºº»®»²¬ ø¿²¼ ³±®» ¬®«½¬«®»¼÷ ¿°°®±¿½¸ ¬± ®»¿¼·²¹ ¿²¼ ©®·¬·²¹ ¾·²¿®§ ¼¿¬¿ò ×²¬»¿¼ ±º ¼»º·²·²¹
¬®«½¬«®» «½¸ ¿ ÍÌÎËÝÌÜÛÚô §±«ù´´ ¾» ¼»º·²·²¹ ½´¿»ò É¸»² §±« ¿ª» ¿² ·²¬¿²½» ±º ¿ ½´¿ ¬±
¿ º·´»ô §±« ©¿²¬ ¬± ¿ª» «ºº·½·»²¬ ·²º±®³¿¬·±² ¬± ®»ó½®»¿¬» ¬¸¿¬ ±¾¶»½¬ ©¸»² §±« ®»¿¼ ¬¸» º·´»ò ×² ¿ ©»´´ó
¼»·¹²»¼ Ýý ½´¿ô §±«ù´´ °®±¾¿¾´§ ¾» ¿ª·²¹ ¿´´ ¬¸» °®±°»®¬·» ±º ¬¸» ½´¿ ¬¸¿¬ ¿®» ²»½»¿®§ ¬± ®»ó
½®»¿¬» ¬¸» ±¾¶»½¬ò

Ô»¬ù ¿«³» §±« ¸¿ª» ¿ ½´¿ ²¿³»¼ Í¿³°´»Ý´¿ ¬¸¿¬ ¸¿ ¬¸®»» °®±°»®¬·» ²»½»¿®§ ¬± ®»ó½®»¿¬»
¬¸» ±¾¶»½¬æ ¿ º´±¿¬ ²¿³»¼ Ê¿´«»ô ¿ ¬®·²¹ ²¿³»¼ Ì»¨¬ô ¿²¼ ¿² ±¾¶»½¬ ±º ¬§°» Ú·¸ ¬±®»¼ ¿ ¿ °®±°»®¬§
²¿³»¼ Þ¿·½Ú·¸ò øÚ·¸ · ¿²±¬¸»® ½´¿ §±«ùª» ½®»¿¬»¼ò÷ Í¿³°´»Ý´¿ ¿´± ¸¿ ¿ ½±²¬®«½¬±®
¼»º·²»¼ ¬± ½®»¿¬» ¿ ²»© ±¾¶»½¬ º®±³ ¬¸»» ¬¸®»» ·¬»³æ

°«¾´·½ Í¿³°´»Ý´¿øº´±¿¬ ºÊ¿´«»ô ¬®·²¹ ¬®Ì»¨¬ô Ú·¸ º·¸÷

Ô»¬ù ¿´± ¿«³» ¬¸¿¬ §±« ²»»¼ ¬± «» ¿ ¾·²¿®§ º·´» ¬± ¬±®» ·²º±®³¿¬·±² ¬¸¿¬ ½±²·¬ ±º ³¿²§
±¾¶»½¬ô ·²½´«¼·²¹ ±¾¶»½¬ ±º ¬§°» Í¿³°´»Ý´¿ò Û¿½¸ ½´¿ §±« ½®»¿¬» ½¿² ·³°´»³»²¬ ¾±¬¸ ¿²
·²¬¿²½» ³»¬¸±¼ ²¿³»¼ É®·¬» ¿²¼ ¿ ¬¿¬·½ ³»¬¸±¼ ²¿³»¼ Î»¿¼ò Ø»®»ù ¬¸» É®·¬» ³»¬¸±¼ º±®
Í¿³°´»Ý´¿ò Ò±¬·½» ¬¸» Þ·²¿®§É®·¬»® ¿®¹«³»²¬ò

°«¾´·½ ª±·¼ É®·¬»øÞ·²¿®§É®·¬»® ¾©÷

¥

 ¾©òÉ®·¬»øÊ¿´«»÷å

 ¾©òÉ®·¬»øÌ»¨¬÷å

 Þ¿·½Ú·¸òÉ®·¬»ø¾©÷å

£

Þ»½¿«» ¬¸» Ê¿´«» ¿²¼ Ì»¨¬ °®±°»®¬·» ¿®» ¾¿·½ ¬§°»ô ¬¸· ³»¬¸±¼ ½¿² ·³°´§ ½¿´´ ¬¸» É®·¬»
³»¬¸±¼ ±º Þ·²¿®§É®·¬»® º±® ¬¸»³ò Þ«¬ º±® ¬¸» Þ¿·½Ú·¸ °®±°»®¬§ô ·¬ ³«¬ ½¿´´ ¬¸» ·³·´¿® É®·¬» ³»¬¸±¼
§±«ùª» ¿´± ·³°´»³»²¬»¼ ·² ¬¸» Ú·¸ ½´¿ô °¿·²¹ ¬± ·¬ ¬¸» Þ·²¿®§É®·¬»® ¿®¹«³»²¬ò

Ì¸» Î»¿¼ ³»¬¸±¼ · ¬¿¬·½ ¾»½¿«» ·¬ ³«¬ ½®»¿¬» ¿² ·²¬¿²½» ±º Í¿³°´»Ý´¿ ¿º¬»® ®»¿¼·²¹ ¾·²¿®§
¼¿¬¿ º®±³ ¬¸» º·´»æ

°«¾´·½ ¬¿¬·½ Í¿³°´»Ý´¿ Î»¿¼øÞ·²¿®§Î»¿¼»® ¾®÷

¥

 º´±¿¬ ºÊ¿´«» ã ¾®òÎ»¿¼Í·²¹´»ø÷å

 ¬®·²¹ ¬®Ì»¨¬ ã ¾®òÎ»¿¼Í¬®·²¹ø÷å

 Ú·¸ º·¸ ã Ú·¸òÎ»¿¼ø¾®÷å

 ®»¬«®² ²»© Í¿³°´»Ý´¿øºÊ¿´«»ô ¬®Ì»¨¬ô º·¸÷å

£

Ò±¬·½» ¬¸¿¬ ¬¸» Ú·¸ ½´¿ ³«¬ ¿´± ¸¿ª» ¿ ·³·´¿® ¬¿¬·½ Î»¿¼ ³»¬¸±¼ò

Ì¸» Û²ª·®±²³»²¬ Ý´¿

Ô»¬ù ´»¿ª» ¬¸» Í§¬»³ò×Ñ ²¿³»°¿½» ¾®·»º´§ ¬± ¬¿µ» ¿ ´±±µ ¿¬ ¬¸» Û²ª·®±²³»²¬ ½´¿ô ©¸·½¸ ·
¼»º·²»¼ ·² ¬¸» Í§¬»³ ²¿³»°¿½»ò Û²ª·®±²³»²¬ ¸¿ ¿ ½±´´»½¬·±² ±º ³·½»´´¿²»±« °®±°»®¬·» ¿²¼
³»¬¸±¼ ¬¸¿¬ ¿®» «»º«´ º±® ±¾¬¿·²·²¹ ·²º±®³¿¬·±² ¿¾±«¬ ¬¸» ³¿½¸·²» ±² ©¸·½¸ ¬¸» °®±¹®¿³ · ®«²²·²¹
¿²¼ ¬¸» ½«®®»²¬ «»® ´±¹¹»¼ ±² ¬± ¬¸» ³¿½¸·²»ò ß ·¬ ²¿³» «¹¹»¬ô ¬¸» Û²ª·®±²³»²¬ ½´¿ ¿´±
¿´´±© ¿ °®±¹®¿³ ¬± ±¾¬¿·² »²ª·®±²³»²¬ ¬®·²¹ò ø× ³¿µ» «» ±º ¬¸· ´¿¬¬»® º¿½·´·¬§ ·² ¬¸»
Û²ª·®±²³»²¬Ê¿® °®±¹®¿³ ·² Ý¸¿°¬»® ïèò÷

Ì©± ³»¬¸±¼ ·² Û²ª·®±²³»²¬ °®±ª·¼» ·²º±®³¿¬·±² ¿¾±«¬ ¬¸» º·´» §¬»³æ

Û²ª·®±²³»²¬ Í¬¿¬·½ Ó»¬¸±¼ ø»´»½¬·±²÷

¬®·²¹ÅÃ Ù»¬Ô±¹·½¿´Ü®·ª»ø÷

¬®·²¹ Ù»¬Ú±´¼»®Ð¿¬¸øÛ²ª·®±²³»²¬òÍ°»½·¿´Ú±´¼»® º÷

× ¸¿ª» ¿ º¿·®´§ ²±®³¿´ §¬»³ ©·¬¸ ¿ ÝÜóÎÑÓ ¼®·ª» ¿²¼ ¿² ×±³»¹¿ Æ·° ¼®·ª»ô ± ±² ³§ ³¿½¸·²»ô
Ù»¬Ô±¹·½¿´Ü®·ª» ®»¬«®² ¬¸» º±´´±©·²¹ º±«® ¬®·²¹ô ·² ¬¸· ±®¼»®æ

ßæÄ

ÝæÄ

ÜæÄ

ÛæÄ

Ì¸» ¿®¹«³»²¬ ¬± Ù»¬Ú±´¼»®Ð¿¬¸ · ¿ ³»³¾»® ±º ¬¸» Û²ª·®±²³»²¬òÍ°»½·¿´Ú±´¼»® »²«³»®¿¬·±²ò Ì¸»
®·¹¸¬³±¬ ½±´«³² ·² ¬¸» º±´´±©·²¹ ¬¿¾´» ·²¼·½¿¬» ¬¸» ®»¬«®² ¬®·²¹ º®±³ Ù»¬Ú±´¼»®Ð¿¬¸ ±² ¿ ³¿½¸·²»
®«²²·²¹ ¬¸» ¼»º¿«´¬ ·²¬¿´´¿¬·±² ±º É·²¼±© îðððô ©¸»®» ×ùª» «»¼ ¿² »´´·°· ¬± ·²¼·½¿¬» ¬¸¿¬ ¬¸»
®»¬«®² ¬®·²¹ ·²½´«¼» ¬¸» «»®ù ²¿³» ø©¸·½¸ · ¬¸» ¿³» ¿ ¬¸» ª¿´«» ®»¬«®²»¼ º®±³ ¬¸» ¬¿¬·½
°®±°»®¬§ Û²ª·®±²³»²¬òË»®Ò¿³»÷ò

Û²ª·®±²³»²¬òÍ°»½·¿´Ú±´¼»® Û²«³»®¿¬·±²

Ó»³¾»® Ê¿´«» Ý±³³±² Î»¬«®² Ê¿´«»

Ð®±¹®¿³ î ÝæÄÜ±½«³»²¬ ¿²¼ Í»¬¬·²¹ÄòòòÄÍ¬¿®¬ Ó»²«ÄÐ®±¹®¿³

Ð»®±²¿´ ë ÝæÄÜ±½«³»²¬ ¿²¼ Í»¬¬·²¹ÄòòòÄÓ§ Ü±½«³»²¬

Ú¿ª±®·¬» ê ÝæÄÜ±½«³»²¬ ¿²¼ Í»¬¬·²¹ÄòòòÄÚ¿ª±®·¬»

Í¬¿®¬«° é ÝæÄÜ±½«³»²¬ ¿²¼ Í»¬¬·²¹ÄòòòÄÍ¬¿®¬
Ó»²«ÄÐ®±¹®¿³ÄÍ¬¿®¬«°

Î»½»²¬ è ÝæÄÜ±½«³»²¬ ¿²¼ Í»¬¬·²¹ÄòòòÄÎ»½»²¬

Û²ª·®±²³»²¬òÍ°»½·¿´Ú±´¼»® Û²«³»®¿¬·±²

Ó»³¾»® Ê¿´«» Ý±³³±² Î»¬«®² Ê¿´«»

Í»²¼Ì± ç ÝæÄÜ±½«³»²¬ ¿²¼ Í»¬¬·²¹ÄòòòÄÍ»²¼Ì±

Í¬¿®¬Ó»²« ïï ÝæÄÜ±½«³»²¬ ¿²¼ Í»¬¬·²¹ÄòòòÄÍ¬¿®¬ Ó»²«

Ü»µ¬±°Ü·®»½¬±®§ ïê ÝæÄÜ±½«³»²¬ ¿²¼ Í»¬¬·²¹ÄòòòÄÜ»µ¬±°

Ì»³°´¿¬» îï ÝæÄÜ±½«³»²¬ ¿²¼ Í»¬¬·²¹ÄòòòÄÌ»³°´¿¬»

ß°°´·½¿¬·±²Ü¿¬¿ îê ÝæÄÜ±½«³»²¬ ¿²¼ Í»¬¬·²¹ÄòòòÄß°°´·½¿¬·±² Ü¿¬¿

Ô±½¿´ß°°´·½¿¬·±²Ü¿¬¿ îè ÝæÄÜ±½«³»²¬ ¿²¼ Í»¬¬·²¹ÄòòòÄÔ±½¿´ Í»¬¬·²¹Äß°°´·½¿¬·±²
Ü¿¬¿

×²¬»®²»¬Ý¿½¸» íî ÝæÄÜ±½«³»²¬ ¿²¼ Í»¬¬·²¹ÄòòòÄÔ±½¿´ Í»¬¬·²¹ÄÌ»³°±®¿®§
×²¬»®²»¬ Ú·´»

Ý±±µ·» íí ÝæÄÜ±½«³»²¬ ¿²¼ Í»¬¬·²¹ÄòòòÄÝ±±µ·»

Ø·¬±®§ íì ÝæÄÜ±½«³»²¬ ¿²¼ Í»¬¬·²¹ÄòòòÄÔ±½¿´ Í»¬¬·²¹ÄØ·¬±®§

Ý±³³±²ß°°´·½¿¬·±²Ü¿¬¿ íë ÝæÄÜ±½«³»²¬ ¿²¼ Í»¬¬·²¹Äß´´ Ë»®Äß°°´·½¿¬·±² Ü¿¬¿

Í§¬»³ íé ÝæÄÉ×ÒÒÌÄÍ§¬»³íî

Ð®±¹®¿³Ú·´» íè ÝæÄÐ®±¹®¿³ Ú·´»

Ý±³³±²Ð®±¹®¿³Ú·´» ìí ÝæÄÐ®±¹®¿³ Ú·´»ÄÝ±³³±² Ú·´»

Ñ¼¼´§ »²±«¹¸ô ¬¸» Í°»½·¿´Ú±´¼»® »²«³»®¿¬·±² · ¼»º·²»¼ ©·¬¸·² ¬¸» Û²ª·®±²³»²¬ ½´¿ò ×²¬»¿¼ ±º
½¿´´·²¹ Ù»¬Ú±´¼»®Ð¿¬¸ ¿

Û²ª·®±²³»²¬òÙ»¬Ú±´¼»®Ð¿¬¸øÍ°»½·¿´Ú±´¼»®òÐ»®±²¿´÷ ññ É±²ù¬ ©±®µÿ

§±« ²»»¼ ¬± °®»º¿½» Í°»½·¿´Ú±´¼»® ©·¬¸ ¬¸» ½´¿ ·² ©¸·½¸ ·¬ù ¼»º·²»¼æ

Û²ª·®±²³»²¬òÙ»¬Ú±´¼»®Ð¿¬¸øÛ²ª·®±²³»²¬òÍ°»½·¿´Ú±´¼»®òÐ»®±²¿´÷

Ì¸» Û²ª·®±²³»²¬ ½´¿ ¿´± ·²½´«¼» ¿ ½±«°´» °®±°»®¬·» ¬¸¿¬ ®»´¿¬» ¬± ¬¸» º·´» §¬»³ ¿²¼ º·´» ×ñÑæ

Û²ª·®±²³»²¬ Í¬¿¬·½ Ð®±°»®¬·» ø»´»½¬·±²÷

Ì§°» Ð®±°»®¬§ ß½½»·¾·´·¬§

¬®·²¹ Í§¬»³Ü·®»½¬±®§ ¹»¬

¬®·²¹ Ý«®®»²¬Ü·®»½¬±®§ ¹»¬ñ»¬

Ì¸» Í§¬»³Ü·®»½¬±®§ °®±°»®¬§ ®»¬«®² ¬¸» ¿³» ¬®·²¹ ¿ ¬¸» Ù»¬Ú±´¼»®Ð¿¬¸ ³»¬¸±¼ ©·¬¸ ¬¸»
Û²ª·®±²³»²¬òÍ°»½·¿´Ú±´¼»®òÍ§¬»³ ¿®¹«³»²¬ò

Ì¸» Ý«®®»²¬Ü·®»½¬±®§ °®±°»®¬§ ´»¬ ¿ °®±¹®¿³ ±¾¬¿·² ±® »¬ ¬¸» ½«®®»²¬ ¼®·ª» ¿²¼ ¼·®»½¬±®§ º±® ¬¸»
¿°°´·½¿¬·±²ò É¸»² »¬¬·²¹ ¬¸» ¼·®»½¬±®§ô §±« ½¿² «» ¿ ®»´¿¬·ª» ¼·®»½¬±®§ °¿¬¸ô ·²½´«¼·²¹ ¬¸» þòòþ ¬®·²¹
¬± ·²¼·½¿¬» ¬¸» °¿®»²¬ ¼·®»½¬±®§ò Ì± ½¸¿²¹» ¬± ¬¸» ®±±¬ ¼·®»½¬±®§ ±º ¿²±¬¸»® ¼®·ª»ô «» ¬¸» ¼®·ª» ´»¬¬»®
´·µ» ±æ

Û²ª·®±²³»²¬òÝ«®®»²¬Ü·®»½¬±®§ ã þÜæÄÄþå

×º ¬¸» ½«®®»²¬ ¼®·ª» ¿²¼ ¼·®»½¬±®§ ¿®» ±² ¿ ¼®·ª» ±¬¸»® ¬¸¿² Ý ¿²¼ §±« «»

Û²ª·®±²³»²¬òÝ«®®»²¬Ü·®»½¬±®§ ã þÝæþå

¬¸» ½«®®»²¬ ¼·®»½¬±®§ · »¬ ¬± ¬¸» ´¿¬ ½«®®»²¬ ¼·®»½¬±®§ ±² ¼®·ª» Ý ¾»º±®» ¬¸» ½«®®»²¬ ¼®·ª» ©¿
½¸¿²¹»¼ ¬± ±³»¬¸·²¹ ±¬¸»® ¬¸¿² Ýò Ì¸· ¬»½¸²·¯«» ¼±»²ù¬ »»³ ¬± ©±®µ ©·¬¸ ±¬¸»® ¼®·ª»ò Ì¸» ½¿´´

Û²ª·®±²³»²¬òÝ«®®»²¬Ü·®»½¬±®§ ã þÜæþå

¿´©¿§ »»³ ¬± »¬ ¬¸» ½«®®»²¬ ¼·®»½¬±®§ ¿ ¬¸» ®±±¬ ¼·®»½¬±®§ ±º ¼®·ª» Üò

ß §±«ù´´ »» ¸±®¬´§ô ±¬¸»® ½´¿» ¼»º·²»¼ ·² ¬¸» Í§¬»³ò×Ñ ²¿³»°¿½» ¸¿ª» »¯«·ª¿´»²¬ ¬±
Ù»¬Ô±¹·½¿´Ü®·ª» ¿²¼ Ý«®®»²¬Ü·®»½¬±®§ò

Ú·´» ¿²¼ Ð¿¬¸ Ò¿³» Ð¿®·²¹

ß¬ ¬·³»ô §±« ²»»¼ ¬± °¿®» ¿²¼ ½¿² º·´»²¿³» ¿²¼ °¿¬¸ ²¿³»ò Ú±® »¨¿³°´»ô §±«® °®±¹®¿³ ³¿§
¸¿ª» ¿ º«´´§ ¯«¿´·º·»¼ º·´»²¿³» ¿²¼ §±« ³¿§ ²»»¼ ¶«¬ ¬¸» ¼·®»½¬±®§ ±® ¬¸» ¼®·ª»ò Ì¸» Ð¿¬¸ ½´¿ô
¼»º·²»¼ ·² ¬¸» Í§¬»³ò×Ñ ²¿³»°¿½»ô ½±²·¬ ±´»´§ ±º ¬¿¬·½ ³»¬¸±¼ ¿²¼ ¬¿¬·½ ®»¿¼ó±²´§ º·»´¼
¬¸¿¬ »¿» ¶±¾ ´·µ» ¬¸»»ò

×² ¬¸» º±´´±©·²¹ ¬¿¾´»ô ¬¸» ®·¹¸¬ ¬©± ½±´«³² ¸±© ¿³°´» ®»¬«®² ª¿´«» º®±³ ¬¸» ³»¬¸±¼ ©¸»² ¬¸»
¬®Ú·´»Ò¿³» ¿®¹«³»²¬ · ¬¸» ·²¼·½¿¬»¼ ¬®·²¹ ¿¬ ¬¸» ¬±° ±º ¬¸» ½±´«³²ò ×² ¬¸»» »¨¿³°´»ô ×ù³
¿«³·²¹ ¬¸» ½«®®»²¬ ¼·®»½¬±®§ · ÝæÄÜ±½ò

Ð¿¬¸ Í¬¿¬·½ Ó»¬¸±¼ ø»¨¿³°´»÷

Ó»¬¸±¼ ÄÜ·®ßÄÓ§Ú·´» Ü·®ßÄÓ§Ú·´»ò¬¨¬

¾±±´ ×Ð¿¬¸Î±±¬»¼ø¬®·²¹
¬®Ú·´»Ò¿³»÷

¬®«» º¿´»

¾±±´ Ø¿Û¨¬»²·±²ø¬®·²¹
¬®Ú·´»Ò¿³»÷

º¿´» ¬®«»

¬®·²¹ Ù»¬Ú·´»Ò¿³»ø¬®·²¹
¬®Ú·´»Ò¿³»÷

Ó§Ú·´» Ó§Ú·´»ò¬¨¬

¬®·²¹ Ù»¬Ú·´»Ò¿³»É·¬¸±«¬Û¨¬»²·±²
ø¬®·²¹ ¬®Ú·´»Ò¿³»÷

Ó§Ú·´» Ó§Ú·´»

¬®·²¹ Ù»¬Û¨¬»²·±²ø¬®·²¹
¬®Ú·´»Ò¿³»÷

ò¬¨¬

¬®·²¹ Ù»¬Ü·®»½¬±®§Ò¿³»
ø¬®·²¹ ¬®Ú·´»Ò¿³»÷

ÄÜ·®ß Ü·®ß

¬®·²¹ Ù»¬Ú«´´Ð¿¬¸ø¬®·²¹
¬®Ú·´»Ò¿³»÷

ÝæÄÜ·®ßÄÓ§Ú·´» ÝæÄÜ±½ÄÜ·®ßÄÓ§Ú·´»ò¬¨¬

¬®·²¹ Ù»¬Ð¿¬¸Î±±¬ø¬®·²¹
¬®Ú·´»Ò¿³»÷

Ä

É¸¿¬ù ·²¬»®»¬·²¹ ¸»®» · ¬¸¿¬ ²»·¬¸»® Ü·®ß ²±® Ó§Ú·´» ¸¿ ¬± »¨·¬ º±® ¬¸»» ³»¬¸±¼ ¬± ©±®µò Ì¸»
³»¬¸±¼ ¿®» ¾¿·½¿´´§ °»®º±®³·²¹ ¬®·²¹ ³¿²·°«´¿¬·±²ô °±·¾´§ ·² ½±³¾·²¿¬·±² ©·¬¸ ¬¸» ½«®®»²¬
¼·®»½¬±®§ò

Ì¸» º±´´±©·²¹ ¬©± ³»¬¸±¼ ®»¬«®² ¿ ²»© °¿¬¸ ¿²¼ º·´»²¿³»æ

Ð¿¬¸ Í¬¿¬·½ Ó»¬¸±¼ ø»´»½¬·±²÷

¬®·²¹ Ý±³¾·²»ø¬®·²¹ ¬®Ô»º¬Ð¿®¬ô ¬®·²¹ ¬®Î·¹¸¬Ð¿®¬÷

¬®·²¹ Ý¸¿²¹»Û¨¬»²·±²ø¬®·²¹ ¬®Ú·´»Ò¿³»ô ¬®·²¹ ¬®Ò»©Û¨¬»²·±²÷

Ì¸» Ý±³¾·²» ³»¬¸±¼ ¶±·² ¬±¹»¬¸»® ¿ °¿¬¸ ²¿³» ø±² ¬¸» ´»º¬÷ ©·¬¸ ¿ °¿¬¸ ¿²¼ñ±® º·´»²¿³» ø±² ¬¸»
®·¹¸¬÷ò Ë» Ý±³¾·²» ®¿¬¸»® ¬¸¿² ¬®·²¹ ½±²½¿¬»²¿¬·±² º±® ¬¸· ¶±¾ò Ñ¬¸»®©·»ô §±« ¸¿ª» ¬± ©±®®§ ¿¾±«¬
©¸»¬¸»® ¿ ¾¿½µ´¿¸ · ¬¸» »²¼ ±º ¬¸» ´»º¬ °¿®¬ ±® ¬¸» ¾»¹·²²·²¹ ±º ¬¸» ®·¹¸¬ °¿®¬ò Ì¸»
Ý¸¿²¹»Û¨¬»²·±² ³»¬¸±¼ ·³°´§ ½¸¿²¹» ¬¸» º·´»²¿³» »¨¬»²·±² º®±³ ±²» ¬®·²¹ ¬± ¿²±¬¸»®ò ×²½´«¼»
¿ °»®·±¼ ·² ¬¸» ²»© »¨¬»²·±²ò Í»¬ ¬¸» ¬®Ò»©Û¨¬»²·±² ¿®¹«³»²¬ ¬± ²«´´ ¬± ®»³±ª» ¬¸» »¨¬»²·±²ò

Ì¸» º±´´±©·²¹ ³»¬¸±¼ ±¾¬¿·² ¿² ¿°°®±°®·¿¬» ¼·®»½¬±®§ º±® ¬±®·²¹ ¬»³°±®¿®§ ¼¿¬¿ ¿²¼ ¿ º«´´§ ¯«¿´·º·»¼
«²·¯«» º·´»²¿³» ¬¸» °®±¹®¿³ ½¿² «» ¬± ¬±®» ¬»³°±®¿®§ ¼¿¬¿æ

Ð¿¬¸ Í¬¿¬·½ Ó»¬¸±¼ ø»´»½¬·±²÷

¬®·²¹ Ù»¬Ì»³°Ð¿¬¸ø÷

¬®·²¹ Ù»¬Ì»³°Ú·´»Ò¿³»ø÷

×º §±« ³«¬ ¼± §±«® ±©² º·´» ¿²¼ °¿¬¸ ²¿³» °¿®·²¹ô ¼±²ù¬ ¸¿®¼ó½±¼» ½¸¿®¿½¬»® ¬¸¿¬ §±« ¬¸·²µ §±«ù´´
»²½±«²¬»® ·² ¬¸» ¬®·²¹ò Ë» ¬¸» º±´´±©·²¹ ¬¿¬·½ ®»¿¼ó±²´§ º·»´¼ ±º Ð¿¬¸ ·²¬»¿¼æ

Ð¿¬¸ Í¬¿¬·½ Ú·»´¼

Ì§°» Ú·»´¼ ß½½»·¾·´·¬§ É·²¼±© Ü»º¿«´¬

½¸¿® Ð¿¬¸Í»°¿®¿¬±® ®»¿¼ó±²´§ å

½¸¿® Ê±´«³»Í»°¿®¿¬±®Ý¸¿® ®»¿¼ó±²´§ æ

½¸¿® Ü·®»½¬±®§Í»°¿®¿¬±®Ý¸¿® ®»¿¼ó±²´§ Ä

½¸¿® ß´¬Ü·®»½¬±®§Í»°¿®¿¬±®Ý¸¿® ®»¿¼ó±²´§ ñ

½¸¿®ÅÃ ×²ª¿´·¼Ð¿¬¸Ý¸¿® ®»¿¼ó±²´§ þ ä â ¤

Ð¿®¿´´»´ Ý´¿»

ß²±¬¸»® ½±³³±² º·´» ×ñÑ ¶±¾ · ±¾¬¿·²·²¹ ¿ ´·¬ ±º ¿´´ º·´» ¿²¼ «¾¼·®»½¬±®·» ·² ¿ ¼·®»½¬±®§ò Ø·¬±®·½¿´´§ô
¬¸· ¶±¾ ¸¿ ¿´©¿§ ¾»»² ¿ ¾·¬ ¿©µ©¿®¼ò Ì¸» ¬¿²¼¿®¼ ´·¾®¿®·» ¿±½·¿¬»¼ ©·¬¸ ¬¸» Ý °®±¹®¿³³·²¹
´¿²¹«¿¹» ¼·¼²ù¬ ·²½´«¼» «½¸ ¿ º¿½·´·¬§ô °®±¾¿¾´§ ¾»½¿«» ËÒ×È ¼·®»½¬±®§ ´·¬ ©»®» ¬»¨¬ º·´» ¬¸¿¬
°®±¹®¿³ ½±«´¼ ¼·®»½¬´§ ¿½½» ¿²¼ °¿®»ò

Ú±«® ½´¿» °®±ª·¼» §±« ©·¬¸ ·²º±®³¿¬·±² ¿¾±«¬ º·´» ¿²¼ ¼·®»½¬±®·»æ Ü·®»½¬±®§ô Ú·´»ô Ü·®»½¬±®§×²º±ô
¿²¼ Ú·´»×²º±ò ß´´ º±«® ±º ¬¸»» ½´¿» ø¿ ©»´´ ¿ ¬¸» Ð¿¬¸ ½´¿ × ¶«¬ ¼»½®·¾»¼÷ ¿®» »¿´»¼ ¿²¼ ½¿²ù¬
¾» ·²¸»®·¬»¼ò Ø»®»ù ¬¸» ½´¿ ¸·»®¿®½¸§æ

Ü·®»½¬±®§ ¿²¼ Ú·´» ½¿²ù¬ ¾» ·²¬¿²¬·¿¬»¼å ¬¸» ¬©± ½´¿» ½±²·¬ ±´»´§ ±º ¬¿¬·½ ³»¬¸±¼ò

Ü·®»½¬±®§×²º± ¿²¼ Ú·´»×²º± ½±²¬¿·² ²± ¬¿¬·½ ³»¬¸±¼ ±® °®±°»®¬·»ô ¿²¼ §±« ³«¬ ±¾¬¿·² ¿² ±¾¶»½¬ ±º
¬§°» Ü·®»½¬±®§×²º± ±® Ú·´»×²º± ¬± «» ¬¸»» ½´¿»ò Þ±¬¸ ½´¿» ¼»®·ª» º®±³ ¬¸» ¿¾¬®¿½¬ ½´¿
Ú·´»Í§¬»³×²º±ô ± ¬¸»§ ¸¿®» ±³» °®±°»®¬·» ¿²¼ ³»¬¸±¼ò

ß ¬¸» ²¿³» «¹¹»¬ô Ü·®»½¬±®§ ¿²¼ Ü·®»½¬±®§×²º± °®±ª·¼» ·³·´¿® ³»¬¸±¼ô »¨½»°¬ ¬¸¿¬ ¬¸» Ü·®»½¬±®§
³»¬¸±¼ ¿®» ¬¿¬·½ ¿²¼ ®»¯«·®» ¿² ¿®¹«³»²¬ ¬¸¿¬ · ¿ ¼·®»½¬±®§ ²¿³»ò Ì¸» Ü·®»½¬±®§×²º± °®±°»®¬·»
¿²¼ ³»¬¸±¼ ¿®» ²±¬ ¬¿¬·½å ¬¸» ½±²¬®«½¬±® ¿®¹«³»²¬ ·²¼·½¿¬» ¬¸» ¼·®»½¬±®§ ²¿³» ¬± ©¸·½¸ ¬¸»
°®±°»®¬·» ¿²¼ ³»¬¸±¼ ¿°°´§ò

Í·³·´¿®´§ô Ú·´» ¿²¼ Ú·´»×²º± °®±ª·¼» ½±®®»°±²¼·²¹ ³»¬¸±¼ô »¨½»°¬ ¬¸¿¬ §±« ·²¼·½¿¬» ¿ °¿®¬·½«´¿®
º·´»²¿³» ·² ¬¸» ¬¿¬·½ Ú·´» ³»¬¸±¼ ½¿´´ ¿²¼ §±« ½®»¿¬» ¿² ·²¬¿²½» ±º Ú·´» ¾§ °»½·º§·²¹ ¿ º·´»²¿³» ·²
¬¸» ½±²¬®«½¬±®ò

×º §±« ²»»¼ ·²º±®³¿¬·±² ¿¾±«¬ ¿ °¿®¬·½«´¿® º·´»ô §±« ³¿§ ©±²¼»® ©¸»¬¸»® ·¬ù ¾»¬ ¬± «» Ú·´» ±®
Ú·´»×²º± ø±® ·³·´¿®´§ º±® ¼·®»½¬±®·»ô ©¸»¬¸»® ¬± «» Ü·®»½¬±®§ ±® Ü·®»½¬±®§×²º±÷ò ×º §±« ²»»¼ ±²´§ ±²»

·¬»³ ±º ·²º±®³¿¬·±²ô ·¬ù °®±¾¿¾´§ »¿·»¬ ¬± «» ¬¸» ¿°°®±°®·¿¬» ¬¿¬·½ ³»¬¸±¼ ·² Ú·´» ±® Ü·®»½¬±®§ò
Ø±©»ª»®ô ·º §±« ²»»¼ ³«´¬·°´» ·¬»³ô ·¬ ³¿µ» ³±®» »²» ¬± ½®»¿¬» ¿² ±¾¶»½¬ ±º ¬§°» Ú·´»×²º± ±®
Ü·®»½¬±®§×²º± ¿²¼ ¬¸»² «» ¬¸» ·²¬¿²½» °®±°»®¬·» ¿²¼ ³»¬¸±¼ò Þ«¬ ¼±²ù¬ º»»´ °®»«®»¼ ¬± «» ±²»
½´¿ ·² °®»º»®»²½» ¬± ¬¸» ±¬¸»®ò

É±®µ·²¹ ©·¬¸ Ü·®»½¬±®·»

Ô»¬ù ¾»¹·² ©·¬¸ ¬¸» Ü·®»½¬±®§ ¿²¼ Ü·®»½¬±®§×²º± ½´¿»ò Ì¸» º±´´±©·²¹ ¬¸®»» ¬¿¬·½ ³»¬¸±¼ ±º ¬¸»
Ü·®»½¬±®§ ½´¿ ¸¿ª» ²± »¯«·ª¿´»²¬ ·² ¬¸» Ü·®»½¬±®§×²º± ½´¿æ

Ü·®»½¬±®§ Í¬¿¬·½ Ó»¬¸±¼ ø»´»½¬·±²÷

¬®·²¹ÅÃ Ù»¬Ô±¹·½¿´Ü®·ª»ø÷

¬®·²¹ Ù»¬Ý«®®»²¬Ü·®»½¬±®§ø÷

ª±·¼ Í»¬Ý«®®»²¬Ü·®»½¬±®§ø¬®·²¹ ¬®Ð¿¬¸÷

Ì¸»» ³»¬¸±¼ »»²¬·¿´´§ ¼«°´·½¿¬» ¬¸» ¬¿¬·½ Ù»¬Ô±¹·½¿´Ü®·ª» ³»¬¸±¼ ¿²¼ ¬¸» Ý«®®»²¬Ü·®»½¬±®§
°®±°»®¬§ ±º ¬¸» Û²ª·®±²³»²¬ ½´¿ò

Ì± «» ¿²§ ±º ¬¸» °®±°»®¬·» ±® ³»¬¸±¼ ±º ¬¸» Ü·®»½¬±®§×²º± ½´¿ô §±« ²»»¼ ¿ Ü·®»½¬±®§×²º± ±¾¶»½¬ò
Ñ²» ±º ¬¸» ©¿§ ·² ©¸·½¸ §±« ½¿² ±¾¬¿·² «½¸ ¿² ±¾¶»½¬ · ¾§ «·²¹ ¬¸» Ü·®»½¬±®§×²º± ½±²¬®«½¬±®æ

Ü·®»½¬±®§×²º± Ý±²¬®«½¬±®

Ü·®»½¬±®§×²º±ø¬®·²¹ ¬®Ð¿¬¸÷

Ì¸» ¼·®»½¬±®§ ¼±»²ù¬ ¸¿ª» ¬± »¨·¬ò ×²¼»»¼ô ·º §±« ©¿²¬ ¬± ½®»¿¬» ¿ ²»© ¼·®»½¬±®§ô ½®»¿¬·²¹ ¿² ±¾¶»½¬
±º ¬§°» Ü·®»½¬±®§×²º± · ¿ º·®¬ ¬»°ò

ßº¬»® ½®»¿¬·²¹ ¿² ±¾¶»½¬ ±º ¬§°» Ü·®»½¬±®§×²º±ô §±« ½¿² ¼»¬»®³·²» ©¸»¬¸»® ¬¸» ¼·®»½¬±®§ »¨·¬ò Ûª»² ·º
¬¸» ¼·®»½¬±®§ ¼±»²ù¬ »¨·¬ô §±« ½¿² ±¾¬¿·² ½»®¬¿·² ·²º±®³¿¬·±² ¿¾±«¬ ¬¸» ¼·®»½¬±®§ ¿ ·º ·¬ ¼·¼ »¨·¬ò Ì¸»
¬©± ®·¹¸¬³±¬ ½±´«³² ±º ¬¸» º±´´±©·²¹ ¬¿¾´» ¸±© »¨¿³°´»ò Ì¸» ½±´«³² ¸»¿¼·²¹ · ¬¸» ¬®·²¹
°¿»¼ ¬± ¬¸» Ü·®»½¬±®§×²º± ½±²¬®«½¬±®ò Ì¸» ½«®®»²¬ ¼·®»½¬±®§ · ¿«³»¼ ¬± ¾» ÝæÄÜ±½ò

Ü·®»½¬±®§×²º± Ð®±°»®¬·» ø»´»½¬·±²÷

Ì§°» Ð®±°»®¬§ ß½½»·¾·´·¬§ Ü·®ß Ü·®ßÄÜ·®Þò¬¨¬

¾±±´ Û¨·¬ ¹»¬

¬®·²¹ Ò¿³» ¹»¬ Ü·®ß Ü·®Þò¬¨¬

¬®·²¹ Ú«´´Ò¿³» ¹»¬ ÝæÄÜ±½ÄÜ·®ß ÝæÄÜ±½ÄÜ·®ßÄÜ·®Þò¬¨¬

¬®·²¹ Û¨¬»²·±² ¹»¬ ò¬¨¬

Ü·®»½¬±®§×²º± Ð¿®»²¬ ¹»¬ ÝæÄÜ±½ ÝæÄÜ±½ÄÜ·®ß

Ü·®»½¬±®§×²º± Î±±¬ ¹»¬ ÝæÄ ÝæÄ

Ú«´´Ò¿³» ¿²¼ Û¨¬»²·±² ¿®» ·²¸»®·¬»¼ º®±³ ¬¸» Ú·´»Í§¬»³×²º± ½´¿ò

ß º»© ±º ¬¸»» °®±°»®¬·» ¿®» ¿´± ¼«°´·½¿¬»¼ ¿ ¬¿¬·½ ³»¬¸±¼ ·² ¬¸» Ü·®»½¬±®§ ½´¿ò Þ»½¿«» ¬¸»§
¿®» ¬¿¬·½ ³»¬¸±¼ô ¬¸»§ ®»¯«·®» ¿² ¿®¹«³»²¬ ·²¼·½¿¬·²¹ ¬¸» °¿¬¸ ²¿³» §±«ù®» ·²¬»®»¬»¼ ·²æ

Ü·®»½¬±®§ Í¬¿¬·½ Ó»¬¸±¼ ø»´»½¬·±²÷

¾±±´ Û¨·¬ø¬®·²¹ ¬®Ð¿¬¸÷

Ü·®»½¬±®§×²º± Ù»¬Ð¿®»²¬ø¬®·²¹ ¬®Ð¿¬¸÷

¬®·²¹ Ù»¬Ü·®»½¬±®§Î±±¬ø¬®·²¹ ¬®Ð¿¬¸÷

× ³»²¬·±²»¼ »¿®´·»® ¬¸¿¬ §±« ½¿² ½®»¿¬» ¿ Ü·®»½¬±®§×²º± ±¾¶»½¬ ¾¿»¼ ±² ¿ ¼·®»½¬±®§ ¬¸¿¬ ¼±»²ù¬ »¨·¬ò
Ç±« ½¿² ¬¸»² ½®»¿¬» ¬¸¿¬ ¼·®»½¬±®§ ±² ¬¸» ¼·µ ¾§ ½¿´´·²¹ ¬¸» Ý®»¿¬» ³»¬¸±¼ô ±® §±« ½¿² ½®»¿¬» ¿
«¾¼·®»½¬±®§ ±º ¬¸» ¼·®»½¬±®§æ

Ü·®»½¬±®§×²º± Ó»¬¸±¼ ø»´»½¬·±²÷

ª±·¼ Ý®»¿¬»ø÷

Ü·®»½¬±®§×²º± Ý®»¿¬»Í«¾¼·®»½¬±®§ø¬®·²¹ ¬®Ð¿¬¸÷

ª±·¼ Î»º®»¸ø÷

Ò±¬·½» ¬¸¿¬ ¬¸» Ý®»¿¬»Í«¾¼·®»½¬±®§ ½¿´´ ®»¬«®² ¿²±¬¸»® Ü·®»½¬±®§×²º± ±¾¶»½¬ ©·¬¸ ·²º±®³¿¬·±² ¿¾±«¬
¬¸» ²»© ¼·®»½¬±®§ò ×º ¬¸» ·²¼·½¿¬»¼ ¼·®»½¬±®§ ¿´®»¿¼§ »¨·¬ô ²± »¨½»°¬·±² · ¬¸®±©²ò Ì¸» ¼·®»½¬±®§ «»¼
¬± ½®»¿¬» ¬¸» Ü·®»½¬±®§×²º± ±¾¶»½¬ ±® °¿»¼ ¬± Ý®»¿¬»Í«¾¼·®»½¬±®§ ½¿² ½±²¬¿·² ³«´¬·°´» ´»ª»´ ±º
¼·®»½¬±®§ ²¿³»ò

×º ¬¸» ¼·®»½¬±®§ ¼±»²ù¬ »¨·¬ ©¸»² §±« ½®»¿¬» ¬¸» Ü·®»½¬±®§×²º± ±¾¶»½¬ ¿²¼ §±« ¬¸»² ½¿´´ Ý®»¿¬»ô ¬¸»
Û¨·¬ °®±°»®¬§ ©±²ù¬ «¼¼»²´§ ¾»½±³» ¬®«»ò Ç±« ³«¬ ½¿´´ ¬¸» Î»º®»¸ ³»¬¸±¼ ø·²¸»®·¬»¼ º®±³
Ú·´»Í§¬»³×²º±÷ ¬± ®»º®»¸ ¬¸» Ü·®»½¬±®§×²º± ·²º±®³¿¬·±²ò

Ì¸» Ü·®»½¬±®§ ½´¿ ¿´± ¸¿ ¿ ¬¿¬·½ ³»¬¸±¼ ¬± ½®»¿¬» ¿ ²»© ¼·®»½¬±®§æ

Ü·®»½¬±®§ Í¬¿¬·½ Ó»¬¸±¼ ø»´»½¬·±²÷

Ü·®»½¬±®§×²º± Ý®»¿¬»Ü·®»½¬±®§ø¬®·²¹ ¬®Ð¿¬¸÷

Ç±« ½¿² ¼»´»¬» ¼·®»½¬±®·» «·²¹ ¬¸» Ü»´»¬» ³»¬¸±¼ ±º Ü·®»½¬±®§×²º±æ

Ü·®»½¬±®§×²º± Ü»´»¬» Ó»¬¸±¼

ª±·¼ Ü»´»¬»ø÷

ª±·¼ Ü»´»¬»ø¾±±´ ¾Î»½«®·ª»÷

Ì¸» ³»¬¸±¼ ¸¿ª» ½±®®»°±²¼·²¹ ¬¿¬·½ ª»®·±² ·² ¬¸» Ü·®»½¬±®§ ½´¿æ

Ü·®»½¬±®§ Ü»´»¬» Í¬¿¬·½ Ó»¬¸±¼

ª±·¼ Ü»´»¬»ø¬®·²¹ ¬®Ð¿¬¸÷

ª±·¼ Ü»´»¬»ø¬®·²¹ ¬®Ð¿¬¸ô ¾±±´ ¾Î»½«®·ª»÷

×º §±« «» ¬¸» »½±²¼ ª»®·±² ±º Ü»´»¬» ·² »·¬¸»® ¬¿¾´» ¿²¼ §±« »¬ ¬¸» ¾Î»½«®·ª» ¿®¹«³»²¬ ¬± ¬®«»ô
¬¸» ³»¬¸±¼ ¿´± »®¿» ¿´´ º·´» ¿²¼ «¾¼·®»½¬±®·» ·² ¬¸» ·²¼·½¿¬»¼ ¼·®»½¬±®§ò Ñ¬¸»®©·»ô ¬¸» ¼·®»½¬±®§
³«¬ ¾» »³°¬§ ±® ¿² »¨½»°¬·±² ©·´´ ¾» ¬¸®±©²ò

ß´¬¸±«¹¸ ¬¸» º±´´±©·²¹ ·²º±®³¿¬·±² · ³±®» «»º«´ ·² ½±²²»½¬·±² ©·¬¸ º·´»ô ¬¸· ¬¿¾´» ±º º±«® °®±°»®¬·»
½±³°´»¬» ±«® «®ª»§ ±º ¬¸» Ü·®»½¬±®§×²º± °®±°»®¬·»æ

Ü·®»½¬±®§×²º± Ð®±°»®¬·» ø»´»½¬·±²÷

Ì§°» Ð®±°»®¬§ ß½½»·¾·´·¬§

Ú·´»ß¬¬®·¾«¬» ß¬¬®·¾«¬» ¹»¬ñ»¬

Ü¿¬»Ì·³» Ý®»¿¬·±²Ì·³» ¹»¬ñ»¬

Ü¿¬»Ì·³» Ô¿¬ß½½»Ì·³» ¹»¬ñ»¬

Ü¿¬»Ì·³» Ô¿¬É®·¬»Ì·³» ¹»¬ñ»¬

Ì¸»» °®±°»®¬·» ¿®» ¿´´ ·²¸»®·¬»¼ º®±³ ¬¸» Ú·´»Í§¬»³×²º± ½´¿ô ¿²¼ »¨½»°¬ º±® ß¬¬®·¾«¬»ô ¬¸»§ ¿®»
¿´´ ¼«°´·½¿¬»¼ ¾§ ¬¿¬·½ ³»¬¸±¼ ·² ¬¸» Ü·®»½¬±®§ ½´¿æ

Ü·®»½¬±®§ Í¬¿¬·½ Ó»¬¸±¼ ø»´»½¬·±²÷

Ü¿¬»Ì·³» Ù»¬Ý®»¿¬·±²Ì·³»ø¬®·²¹ ¬®Ð¿¬¸÷

Ü¿¬»Ì·³» Ù»¬Ô¿¬ß½½»Ì·³»ø¬®·²¹ ¬®Ð¿¬¸÷

Ü¿¬»Ì·³» Ù»¬Ô¿¬É®·¬»Ì·³»ø¬®·²¹ ¬®Ð¿¬¸÷

ª±·¼ Í»¬Ý®»¿¬·±²Ì·³»ø¬®·²¹ ¬®Ð¿¬¸ô Ü¿¬»Ì·³» ¼¬÷

ª±·¼ Í»¬Ô¿¬ß½½»Ì·³»ø¬®·²¹ ¬®Ð¿¬¸ô Ü¿¬»Ì·³» ¼¬÷

ª±·¼ Í»¬Ô¿¬É®·¬»Ì·³»ø¬®·²¹ ¬®Ð¿¬¸ô Ü¿¬»Ì·³» ¼¬÷

Ì¸» Ü¿¬»Ì·³» ¬®«½¬«®» · ¼»º·²»¼ ·² ¬¸» Í§¬»³ ²¿³»°¿½»ò Ú·´»ß¬¬®·¾«¬» · ¿ ½±´´»½¬·±² ±º ¾·¬ º´¿¹
¼»º·²»¼ ¿ ¿² »²«³»®¿¬·±²æ

Ú·´»ß¬¬®·¾«¬» Û²«³»®¿¬·±²

Ó»³¾»® Ê¿´«»

Î»¿¼Ñ²´§ ð¨ðððððððï

Ø·¼¼»² ð¨ðððððððî

Í§¬»³ ð¨ðððððððì

Ü·®»½¬±®§ ð¨ððððððïð

ß®½¸·ª» ð¨ððððððîð

Ü»ª·½» ð¨ððððððìð

Ò±®³¿´ ð¨ððððððèð

Ì»³°±®¿®§ ð¨ðððððïðð

Í°¿®»Ú·´» ð¨ðððððîðð

Î»°¿®»Ð±·²¬ ð¨ðððððìðð

Ý±³°®»»¼ ð¨ðððððèðð

Ñºº´·²» ð¨ððððïððð

Ò±¬Ý±²¬»²¬×²¼»¨»¼ ð¨ððððîððð

Û²½®§°¬»¼ ð¨ððððìððð

Ü·®»½¬±®·» ¿´©¿§ ¸¿ª» ¬¸» Ü·®»½¬±®§ ¾·¬ øð¨ïð÷ »¬ò

Ì± ³±ª» ¿ ¼·®»½¬±®§ ¿²¼ ¿´´ ·¬ ½±²¬»²¬ ¬± ¿²±¬¸»® ´±½¿¬·±² ±² ¬¸» ¿³» ¼·µô §±« ½¿² «» ¬¸»
Ó±ª»Ì± ³»¬¸±¼æ

Ü·®»½¬±®§×²º± Ó»¬¸±¼ ø»´»½¬·±²÷

ª±·¼ Ó±ª»Ì±ø¬®·²¹ ¬®Ð¿¬¸Ü»¬·²¿¬·±²÷

Ñ® §±« ½¿² «» ¬¸» ¬¿¬·½ Ó±ª» ³»¬¸±¼ ·² ¬¸» Ü·®»½¬±®§ ½´¿æ

Ü·®»½¬±®§ Í¬¿¬·½ Ó»¬¸±¼ ø»´»½¬·±²÷

ª±·¼ Ó±ª»ø¬®·²¹ ¬®Ð¿¬¸Í±«®½»ô ¬®·²¹ ¬®Ð¿¬¸Ü»¬·²¿¬·±²÷

É·¬¸ »·¬¸»® ³»¬¸±¼ ½¿´´ô ¬¸» ¼»¬·²¿¬·±² ³«¬ ²±¬ ½«®®»²¬´§ »¨·¬ò

Ì¸» ®»³¿·²·²¹ ³»¬¸±¼ ±º Ü·®»½¬±®§×²º± ¿²¼ Ü·®»½¬±®§ ±¾¬¿·² ¿² ¿®®¿§ ±º ¿´´ ¬¸» º·´» ¿²¼
«¾¼·®»½¬±®·» ·² ¿ ¼·®»½¬±®§ô ±® ±²´§ ¬¸±» ¼·®»½¬±®·» ¿²¼ º·´» ¬¸¿¬ ³¿¬½¸ ¿ °»½·º·»¼ °¿¬¬»®² «·²¹
©·´¼½¿®¼ ø¯«»¬·±² ³¿®µ ¿²¼ ¿¬»®·µ÷ò Ø»®» ¿®» ¬¸» ·¨ ³»¬¸±¼ ±º Ü·®»½¬±®§×²º±æ

Ü·®»½¬±®§×²º± Ó»¬¸±¼ ø»´»½¬·±²÷

Ü·®»½¬±®§×²º±ÅÃ Ù»¬Ü·®»½¬±®·»ø÷

Ü·®»½¬±®§×²º±ÅÃ Ù»¬Ü·®»½¬±®·»ø¬®·²¹ ¬®Ð¿¬¬»®²÷

Ú·´»×²º±ÅÃ Ù»¬Ú·´»ø÷

Ú·´»×²º±ÅÃ Ù»¬Ú·´»ø¬®·²¹ ¬®Ð¿¬¬»®²÷

Ú·´»Í§¬»³×²º±ÅÃ Ù»¬Ú·´»Í§¬»³×²º±ø÷

Ú·´»Í§¬»³×²º±ÅÃ Ù»¬Ú·´»Í§¬»³×²º±ø¬®·²¹ ¬®Ð¿¬¬»®²÷

Ì¸» Ù»¬Ü·®»½¬±®·» ³»¬¸±¼ ®»¬«®² ¿ ½±´´»½¬·±² ±º ¼·®»½¬±®·» ¿ ¿² ¿®®¿§ ±º Ü·®»½¬±®§×²º± ±¾¶»½¬ò
Ô·µ»©·»ô ¬¸» Ù»¬Ú·´» ³»¬¸±¼ ®»¬«®² ¿ ½±´´»½¬·±² ±º º·´» ¿ ¿² ¿®®¿§ ±º Ú·´»×²º± ±¾¶»½¬ò Ì¸»
Ù»¬Ú·´»Í§¬»³×²º± ³»¬¸±¼ ®»¬«®² ¾±¬¸ ¼·®»½¬±®·» ¿²¼ º·´» ¿ ¿² ¿®®¿§ ±º Ú·´»Í§¬»³×²º± ±¾¶»½¬ò
Ç±«ù´´ ®»½¿´´ ¬¸¿¬ Ú·´»Í§¬»³×²º± · ¬¸» °¿®»²¬ ½´¿ º±® ¾±¬¸ Ü·®»½¬±®§×²º± ¿²¼ Ú·´»×²º±ò

Ì¸» Ü·®»½¬±®§ ½´¿ ¸¿ ¿ ·³·´¿® »¬ ±º ·¨ ³»¬¸±¼ô ¾«¬ ¬¸»» ¿´´ ®»¬«®² ¿®®¿§ ±º ¬®·²¹æ

Ü·®»½¬±®§ Í¬¿¬·½ Ó»¬¸±¼ ø»´»½¬·±²÷

¬®·²¹ÅÃ Ù»¬Ü·®»½¬±®·»ø¬®·²¹ ¬®Ð¿¬¸÷

¬®·²¹ÅÃ Ù»¬Ü·®»½¬±®·»ø¬®·²¹ ¬®Ð¿¬¸ô ¬®·²¹ ¬®Ð¿¬¬»®²÷

¬®·²¹ÅÃ Ù»¬Ú·´»ø¬®·²¹ ¬®Ð¿¬¸÷

¬®·²¹ÅÃ Ù»¬Ú·´»ø¬®·²¹ ¬®Ð¿¬¸ô ¬®·²¹ ¬®Ð¿¬¬»®²÷

¬®·²¹ÅÃ Ù»¬Ú·´»Í§¬»³Û²¬®·»ø¬®·²¹ ¬®Ð¿¬¸÷

¬®·²¹ÅÃ Ù»¬Ú·´»Í§¬»³Û²¬®·»ø¬®·²¹ ¬®Ð¿¬¸ô ¬®·²¹ ¬®Ð¿¬¬»®²÷

É»ù®» ²±© º«´´§ »¯«·°°»¼ ¬± »²¸¿²½» ¬¸» Ø»¨Ü«³° °®±¹®¿³ ¸±©² »¿®´·»® ± ¬¸¿¬ ·¬ ©±®µ ©·¬¸
©·´¼½¿®¼ º·´» °»½·º·½¿¬·±² ±² ¬¸» ½±³³¿²¼ ´·²»ò Ø»®»ù É·´¼Ý¿®¼Ø»¨Ü«³°ò

É·´¼Ý¿®¼Ø»¨Ü«³°ò½

ññóó

ññ É·´¼Ý¿®¼Ø»¨Ü«³°ò½ w îððï ¾§ Ý¸¿®´» Ð»¬¦±´¼

ññóó

«·²¹ Í§¬»³å

«·²¹ Í§¬»³ò×Ñå

½´¿ É·´¼Ý¿®¼Ø»¨Ü«³°æ Ø»¨Ü«³°

¥

 °«¾´·½ ²»© ¬¿¬·½ ·²¬ Ó¿·²ø¬®·²¹ÅÃ ¿¬®ß®¹÷

 ¥

 ·º ø¿¬®ß®¹òÔ»²¹¬¸ ãã ð÷

 ¥

 Ý±²±´»òÉ®·¬»Ô·²»øþÍ§²¬¿¨æ É·´¼Ý¿®¼Ø»¨Ü«³° º·´»ï º·´»î
òòòþ÷å

 ®»¬«®² ïå

 £

 º±®»¿½¸ ø¬®·²¹ ¬® ·² ¿¬®ß®¹÷

 Û¨°¿²¼É·´¼Ý¿®¼ø¬®÷å

 ®»¬«®² ðå

 £

 ¬¿¬·½ ª±·¼ Û¨°¿²¼É·´¼Ý¿®¼ø¬®·²¹ ¬®É·´¼Ý¿®¼÷

 ¥

 ¬®·²¹ÅÃ ¿¬®Ú·´»å

 ¬®§

 ¥

 ¿¬®Ú·´» ã Ü·®»½¬±®§òÙ»¬Ú·´»ø¬®É·´¼Ý¿®¼÷å

 £

 ½¿¬½¸

 ¥

 ¬®§

 ¥

 ¬®·²¹ ¬®Ü·® ã Ð¿¬¸òÙ»¬Ü·®»½¬±®§Ò¿³»ø¬®É·´¼Ý¿®¼÷å

 ¬®·²¹ ¬®Ú·´» ã Ð¿¬¸òÙ»¬Ú·´»Ò¿³»ø¬®É·´¼Ý¿®¼÷å

 ·º ø¬®Ü·® ãã ²«´´ ¤¤ ¬®Ü·®òÔ»²¹¬¸ ãã ð÷

 ¬®Ü·® ã þòþå

 ¿¬®Ú·´» ã Ü·®»½¬±®§òÙ»¬Ú·´»ø¬®Ü·®ô ¬®Ú·´»÷å

 £

 ½¿¬½¸

 ¥

 Ý±²±´»òÉ®·¬»Ô·²»ø¬®É·´¼Ý¿®¼ õ þæ Ò± Ú·´» º±«²¼ÿþ÷å

 ®»¬«®²å

 £

 £

 ·º ø¿¬®Ú·´»òÔ»²¹¬¸ ãã ð÷

 Ý±²±´»òÉ®·¬»Ô·²»ø¬®É·´¼Ý¿®¼ õ þæ Ò± º·´» º±«²¼ÿþ÷å

 º±®»¿½¸ø¬®·²¹ ¬®Ú·´» ·² ¿¬®Ú·´»÷

 Ü«³°Ú·´»ø¬®Ú·´»÷å

 £

£

Þ»·¼» ²±®³¿´ ©·´¼½¿®¼ô × ©¿²¬»¼ ¬± ¾» ¿¾´» ¬± °»½·º§ ¶«¬ ¿ ¼·®»½¬±®§ ²¿³» ¿ ¿² ¿®¹«³»²¬ò Ú±®
»¨¿³°´»ô × ©¿²¬»¼

É·´¼Ý¿®¼Ø»¨Ü«³° ½æÄ

¬± ¾» ¬¸» »¯«·ª¿´»²¬ ±º

É·´¼Ý¿®¼Ø»¨Ü«³° ½æÄöòö

Ì¸» Û¨°¿²¼É·´¼Ý¿®¼ ³»¬¸±¼ ¾»¹·² ¾§ ¿¬¬»³°¬·²¹ ¬± ±¾¬¿·² ¿´´ ¬¸» º·´» ·² ¬¸» °¿®¬·½«´¿® ½±³³¿²¼ó
´·²» ¿®¹«³»²¬æ

¿¬®Ú·´» ã Ü·®»½¬±®§òÙ»¬Ú·´»ø¬®É·´¼Ý¿®¼÷å

Ì¸· ½¿´´ ©·´´ ©±®µ ·º ¬®É·´¼Ý¿®¼ °»½·º·» ±²´§ ¿ ¼·®»½¬±®§ ø«½¸ ¿ þ½æÄþ÷ò Ñ¬¸»®©·»ô ·¬ ¬¸®±© ¿²
»¨½»°¬·±²ò Ì¸¿¬ù ©¸§ ·¬ù ·² ¿ ¬®§ ¾´±½µò Ì¸» ½¿¬½¸ ¾´±½µ ¿«³» ¬¸¿¬ ¬¸» ½±³³¿²¼ó´·²» ¿®¹«³»²¬
¸¿ °¿¬¸ ¿²¼ º·´»²¿³» ½±³°±²»²¬ô ¿²¼ ·¬ ±¾¬¿·² ¬¸»» ½±³°±²»²¬ «·²¹ ¬¸» ¬¿¬·½
Ù»¬Ü·®»½¬±®§Ò¿³» ¿²¼ Ù»¬Ú·´»Ò¿³» ³»¬¸±¼ ±º Ð¿¬¸ò Ø±©»ª»®ô ¬¸» Ù»¬Ú·´» ³»¬¸±¼ ±º Ü·®»½¬±®§
¼±»²ù¬ ©¿²¬ ¿ º·®¬ ¿®¹«³»²¬ ¬¸¿¬ · ²«´´ ±® ¿² »³°¬§ ¬®·²¹ò Þ»º±®» ½¿´´·²¹ Ù»¬Ú·´»ô ¬¸» °®±¹®¿³
¿ª±·¼ ¬¸¿¬ °®±¾´»³ ¾§ »¬¬·²¹ ¬¸» °¿¬¸ ²¿³» ¬± þòþô ©¸·½¸ ·²¼·½¿¬» ¬¸» ½«®®»²¬ ¼·®»½¬±®§ò
Ú·´» Ó¿²·°«´¿¬·±² ¿²¼ ×²º±®³¿¬·±²

Ô·µ» ¬¸» Ü·®»½¬±®§ ¿²¼ Ü·®»½¬±®§×²º± ½´¿»ô ¬¸» Ú·´» ¿²¼ Ú·´»×²º± ½´¿» ¿®» ª»®§ ·³·´¿® ¿²¼ ¸¿®»
³¿²§ °®±°»®¬·» ¿²¼ ³»¬¸±¼ò Ô·µ» ¬¸» Ü·®»½¬±®§ ½´¿ô ¿´´ ¬¸» ³»¬¸±¼ ·² ¬¸» Ú·´» ½´¿ ¿®» ¬¿¬·½ô
¿²¼ ¬¸» º·®¬ ¿®¹«³»²¬ ¬± »ª»®§ ³»¬¸±¼ · ¿ ¬®·²¹ ¬¸¿¬ ·²¼·½¿¬» ¬¸» °¿¬¸ ²¿³» ±º ¬¸» º·´»ò Ì¸»
Ú·´»×²º± ½´¿ ·²¸»®·¬ º®±³ Ú·´»Í§¬»³×²º±ò Ç±« ½®»¿¬» ¿² ±¾¶»½¬ ±º ¬§°» Ú·´»×²º± ¾¿»¼ ±² ¿ º·´»²¿³»
¬¸¿¬ ½±«´¼ ·²½´«¼» ¿ º«´´ ±® ¿ ®»´¿¬·ª» ¼·®»½¬±®§ °¿¬¸ò

Ú·´»×²º± Ý±²¬®«½¬±®

Ú·´»×²º±ø¬®·²¹ ¬®Ú·´»Ò¿³»÷

Ì¸» º·´» ¼±»²ù¬ ¸¿ª» ¬± »¨·¬ò Ç±« ½¿² ¼»¬»®³·²» ©¸»¬¸»® ¬¸» º·´» »¨·¬ô ¿²¼ ¿´± ±³» ·²º±®³¿¬·±²
¿¾±«¬ ·¬ô ©·¬¸ ¬¸» º±´´±©·²¹ ®»¿¼ó±²´§ °®±°»®¬·»æ

Ú·´»×²º± Ð®±°»®¬·» ø»´»½¬·±²÷

Ì§°» Ð®±°»®¬§ ß½½»·¾·´·¬§

¾±±´ Û¨·¬ ¹»¬

¬®·²¹ Ò¿³» ¹»¬

¬®·²¹ Ú«´´Ò¿³» ¹»¬

¬®·²¹ Û¨¬»²·±² ¹»¬

¬®·²¹ Ü·®»½¬±®§Ò¿³» ¹»¬

Ü·®»½¬±®§×²º± Ü·®»½¬±®§ ¹»¬

´±²¹ Ô»²¹¬¸ ¹»¬

Ñ²´§ ±²» ±º ¬¸»» °®±°»®¬·» · ¼«°´·½¿¬»¼ ·² ¬¸» Ú·´» ½´¿æ

Ú·´» Ó»¬¸±¼

¾±±´ Û¨·¬ø¬®·²¹ ¬®Ú·´»Ò¿³»÷

Ú·´»×²º± ¸¿ º±«® ¿¼¼·¬·±²¿´ °®±°»®¬·» ¬¸¿¬ ®»ª»¿´ ¬¸» ¿¬¬®·¾«¬» ±º ¬¸» º·´» ¿²¼ ¬¸» ¼¿¬» ¬¸» º·´» ©¿
½®»¿¬»¼ô ´¿¬ ¿½½»»¼ô ¿²¼ ´¿¬ ©®·¬¬»² ¬±æ

Ú·´»×²º± Ð®±°»®¬·» ø»´»½¬·±²÷

Ì§°» Ð®±°»®¬§ ß½½»·¾·´·¬§

Ú·´»ß¬¬®·¾«¬» ß¬¬®·¾«¬» ¹»¬ñ»¬

Ü¿¬»Ì·³» Ý®»¿¬·±²Ì·³» ¹»¬ñ»¬

Ü¿¬»Ì·³» Ô¿¬ß½½»Ì·³» ¹»¬ñ»¬

Ü¿¬»Ì·³» Ô¿¬É®·¬»Ì·³» ¹»¬ñ»¬

Ì¸»» °®±°»®¬·»ô ¿´´ ±º ©¸·½¸ ¿®» ·²¸»®·¬»¼ º®±³ Ú·´»Í§¬»³×²º±ô ¿®» ¿´´ ¼«°´·½¿¬»¼ ¾§ ¬¿¬·½ ³»¬¸±¼
·² ¬¸» Ú·´» ½´¿æ

Ú·´» Í¬¿¬·½ Ó»¬¸±¼ ø»´»½¬·±²÷

Ú·´»ß¬¬®·¾«¬» Ù»¬ß¬¬®·¾«¬»ø¬®·²¹ ¬®Ú·´»Ò¿³»÷

Ü¿¬»Ì·³» Ù»¬Ý®»¿¬·±²Ì·³»ø¬®·²¹ ¬®Ú·´»Ò¿³»÷

Ü¿¬»Ì·³» Ù»¬Ô¿¬ß½½»Ì·³»ø¬®·²¹ ¬®Ú·´»Ò¿³»÷

Ü¿¬»Ì·³» Ù»¬Ô¿¬É®·¬»Ì·³»ø¬®·²¹ ¬®Ú·´»Ò¿³»÷

ª±·¼ Í»¬ß¬¬®·¾«¬»ø¬®·²¹ ¬®Ú·´»Ò¿³»ô Ú·´»ß¬¬®·¾«¬» º¿÷

ª±·¼ Í»¬Ý®»¿¬·±²Ì·³»ø¬®·²¹ ¬®Ú·´»Ò¿³»ô Ü¿¬»Ì·³» ¼¬÷

ª±·¼ Í»¬Ô¿¬ß½½»Ì·³»ø¬®·²¹ ¬®Ú·´»Ò¿³»ô Ü¿¬»Ì·³» ¼¬÷

ª±·¼ Í»¬Ô¿¬É®·¬»Ì·³»ø¬®·²¹ ¬®Ú·´»Ò¿³»ô Ü¿¬»Ì·³» ¼¬÷

Ì¸» º±´´±©·²¹ ³»¬¸±¼ ´»¬ §±« ½±°§ô ³±ª»ô ±® ¼»´»¬» ¬¸» º·´»ò ×ùª» ·²½´«¼»¼ ¬¸» Î»º®»¸ ³»¬¸±¼ ¸»®»ô
©¸·½¸ ®»º®»¸» ¬¸» ±¾¶»½¬ù °®±°»®¬·» ¿º¬»® §±«ùª» ³¿¼» ¿ ½¸¿²¹» ¬± ¬¸» º·´»æ

Ú·´»×²º± Ó»¬¸±¼ ø»´»½¬·±²÷

Ú·´»×²º± Ý±°§Ì±ø¬®·²¹ ¬®Ú·´»Ò¿³»÷

Ú·´»×²º± Ý±°§Ì±ø¬®·²¹ ¬®Ú·´»Ò¿³»ô ¾±±´ ¾Ñª»®©®·¬»÷

ª±·¼ Ó±ª»Ì±ø¬®·²¹ ¬®Ú·´»Ò¿³»÷

ª±·¼ Ü»´»¬»ø÷

ª±·¼ Î»º®»¸ø÷

Ì¸» ½±°§ô ³±ª»ô ¿²¼ ¼»´»¬» º¿½·´·¬·» ¿®» ¼«°´·½¿¬»¼ ·² ¬¸» Ú·´» ½´¿æ

Ú·´» Í¬¿¬·½ Ó»¬¸±¼ ø»´»½¬·±²÷

ª±·¼ Ý±°§ø¬®·²¹ ¬®Ú·´»Ò¿³»Í®½ô ¬®·²¹ ¬®Ú·´»Ò¿³»Ü¬÷

ª±·¼ Ý±°§ø¬®·²¹ ¬®Ú·´»Ò¿³»Í®½ô ¬®·²¹ ¬®Ú·´»Ò¿³»Ü¬ô ¾±±´ ¾Ñª»®©®·¬»÷

ª±·¼ Ó±ª»ø¬®·²¹ ¬®Ú·´»Ò¿³»Í®½ô ¬®·²¹ ¬®Ú·´»Ò¿³»Ü¬÷

ª±·¼ Ü»´»¬»ø¬®·²¹ ¬®Ú·´»Ò¿³»÷

ß²¼ º·²¿´´§ô ¬¸» Ú·´» ¿²¼ Ú·´»×²º± ½´¿» ¸¿ª» »ª»®¿´ ³»¬¸±¼ ¬± ±°»² º·´»æ

Ú·´»×²º± Ó»¬¸±¼ ø»´»½¬·±²÷

Ú·´»Í¬®»¿³ Ý®»¿¬»ø÷

Ú·´»Í¬®»¿³ Ñ°»²øÚ·´»Ó±¼» º³÷

Ú·´»Í¬®»¿³ Ñ°»²øÚ·´»Ó±¼» º³ô Ú·´»ß½½» º¿÷

Ú·´»Í¬®»¿³ Ñ°»²øÚ·´»Ó±¼» º³ô Ú·´»ß½½» º¿ô Ú·´»Í¸¿®» º÷

Ú·´»Í¬®»¿³ Ñ°»²Î»¿¼ø÷

Ú·´»Í¬®»¿³ Ñ°»²É®·¬»ø÷

Í¬®»¿³Î»¿¼»® Ñ°»²Ì»¨¬ø÷

Í¬®»¿³É®·¬»® Ý®»¿¬»Ì»¨¬ø÷

Í¬®»¿³É®·¬»® ß°°»²¼Ì»¨¬ø÷

Ì¸»» ¿®» ¸¿²¼§ ·º §±«ùª» ¶«¬ ±¾¬¿·²»¼ ¿² ¿®®¿§ ±º Ú·´»×²º± ±¾¶»½¬ º®±³ ¿ Ù»¬Ú·´» ½¿´´ ±² ¿
Ü·®»½¬±®§×²º± ±¾¶»½¬ ¿²¼ §±« ©¿²¬ ¬± °±µ» §±«® ²±» ·²¬± »¿½¸ ¿²¼ »ª»®§ º·´»ò

Ç±« ½¿² ¿´± «» ¬¸» ½±®®»°±²¼·²¹ ¬¿¬·½ ³»¬¸±¼ ·³°´»³»²¬»¼ ·² ¬¸» Ú·´» ½´¿æ

Ú·´» Í¬¿¬·½ Ó»¬¸±¼ ø»´»½¬·±²÷

Ú·´»Í¬®»¿³ Ý®»¿¬»ø¬®·²¹ ¬®Ú·´»Ò¿³»÷

Ú·´»Í¬®»¿³ Ñ°»²ø¬®·²¹ ¬®Ú·´»Ò¿³»ô Ú·´»Ó±¼» º³÷

Ú·´»Í¬®»¿³ Ñ°»²ø¬®·²¹ ¬®Ú·´»Ò¿³»ô Ú·´»Ó±¼» º³ô Ú·´»ß½½» º¿÷

Ú·´»Í¬®»¿³ Ñ°»²ø¬®·²¹ ¬®Ú·´»Ò¿³»ô Ú·´»Ó±¼» º³ô Ú·´»ß½½» º¿ô Ú·´»Í¸¿®»
º÷

Ú·´»Í¬®»¿³ Ñ°»²Î»¿¼ø¬®·²¹ ¬®Ú·´»Ò¿³»÷

Ú·´»Í¬®»¿³ Ñ°»²É®·¬»ø¬®·²¹ ¬®Ú·´»Ò¿³»÷

Í¬®»¿³Î»¿¼»® Ñ°»²Ì»¨¬ø¬®·²¹ ¬®Ú·´»Ò¿³»÷

Í¬®»¿³É®·¬»® Ý®»¿¬»Ì»¨¬ø¬®·²¹ ¬®Ú·´»Ò¿³»÷

Í¬®»¿³É®·¬»® ß°°»²¼Ì»¨¬ø¬®·²¹ ¬®Ú·´»Ò¿³»÷

Ø±©»ª»®ô ¬¸»» ³»¬¸±¼ ¼±²ù¬ °®±ª·¼» ¿²§ ®»¿´ ¿¼ª¿²¬¿¹» ±ª»® «·²¹ ¬¸» ¿°°®±°®·¿¬» ½±²¬®«½¬±® ±º
¬¸» Ú·´»Í¬®»¿³ô Í¬®»¿³Î»¿¼»®ô ±® Í¬®»¿³É®·¬»® ½´¿ò ×²¼»»¼ô ¬¸»·® ª»®§ °®»»²½» ·² ¬¸» Ú·´» ½´¿
©¿ ·²·¬·¿´´§ ±²» ±º ¬¸» ¿°»½¬ ±º ¬¸» »²¬·®» Í§¬»³ò×Ñ ²¿³»°¿½» ¬¸¿¬ × º±«²¼ ³±¬ ½±²º«·²¹ò ×¬
¼±»²ù¬ ³¿µ» »²» ¬± «» ¿ ½´¿ ´·µ» Ú·´» ³»®»´§ ¬± ±¾¬¿·² ¿² ±¾¶»½¬ ±º ¬§°» Ú·´»Í¬®»¿³ ± ¬¸¿¬ §±«
½¿² ¬¸»² «» Ú·´»Í¬®»¿³ °®±°»®¬·» ¿²¼ ³»¬¸±¼ò ×¬ù »¿·»® ¬± «» ¶«¬ ¿ ·²¹´» ½´¿ ·º ¬¸¿¬ù
«ºº·½·»²¬ º±® §±«® °«®°±»ò

