

Components

The Component class represents an object that is marshaled by reference and can exist

within a container. This figure shows the complete set of Windows Forms classes derived

from the System.ComponentModel.Component class.

The CommonDialog class represents a component that provides a standard interface for

common functionality required by Windows Forms applications. This figure shows the com-

plete set of Windows Forms classes derived from the System.Windows.Forms.Common-

Dialog class.

Common dialogs

Windows Forms
Programming with C#

ERIK BROWN

M A N N I N G

Greenwich
(74° w. long.)

For online information and ordering of this and other Manning books,
go to www.manning.com. The publisher offers discounts on this book
when ordered in quantity. For more information, please contact:

Special Sales Department

Manning Publications Co.

209 Bruce Park Avenue Fax: (203) 661-9018

Greenwich, CT 06830 email: orders@manning.com

©2002 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by means electronic, mechanical, photocopying, or otherwise, without prior
written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial
caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have the
books we publish printed on acid-free paper, and we exert our best efforts to that end.

Manning Publications Co. Copyeditor: Lois Patterson

209 Bruce Park Avenue Typesetter: Syd Brown

Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1930110-28-6

Printed in the United States of America

1 2 3 4 5 6 7 8 9 10 – VHG – 06 05 04 03 02

In memory of Thelma Rose Wilson,
and for her beautiful daughter whom I love

brief contents

Part 1 Hello Windows Forms 1
1 Getting started with Windows Forms 3
2 Getting started with Visual Studio .NET 34

Part 2 Basic Windows Forms 67
3 Menus 69
4 Status bars 102
5 Reusable libraries 126
6 Common file dialogs 161
7 Drawing and scrolling 194
8 Dialog boxes 224
9 Basic controls 263

10 List controls 314
11 More controls 353
12 A .NET assortment 383
13 Toolbars and tips 410

Part 3 Advanced Windows Forms 437
14 List views 439
15 Tree views 485
16 Multiple document interfaces 525
17 Data binding 564
18 Odds and ends .NET 603
vii

contents
brief contents vii

contents ix

preface xix

about this book xxi

acknowledgments xxviii

about .NET xxx

about the cover illustration xxxiv

Part 1 Hello Windows Forms 1

1 Getting started with Windows Forms 3
1.1 Programming in C# 4

Namespaces and classes 6 ✦ Constructors and
methods 8 ✦ C# types 9 ✦ The entry point 11
The Application class 11 ✦ Program execution 13

1.2 Adding controls 13
Shortcuts and fully qualified names 15
Fields and properties 16 ✦ The Controls property 18

1.3 Loading files 18
Events 20 ✦ The OpenFileDialog class 22
Bitmap images 24

1.4 Resizing forms 26
Desktop layout properties 28 ✦ The Anchor
property 29 ✦ The Dock property 31

1.5 Recap 33
ix

2 Getting started with Visual Studio .NET 34
2.1 Programming with Visual Studio .NET 35

Creating a project 36 ✦ Executing a program 39
Viewing the source code 39

2.2 Adding controls 43
The AssemblyInfo file 43 ✦ Renaming a form 46
The Toolbox window 48

2.3 Loading files 54
Event handlers in Visual Studio .NET 54
Exception handling 58

2.4 Resizing forms 61
Assign the Anchor property 63
Assign the MinimumSize property 64

2.5 Recap 65

Part 2 Basic Windows Forms 67
3 Menus 69

3.1 The nature of menus 70
The Menu class 71 ✦ The Menu class hierarchy 71
Derived classes 73

3.2 Menu bars 74
Adding the Main menu 74 ✦ Adding the File menu 77
Adding the dropdown menu 79 ✦ Adding a View menu 83

3.3 Click events 85
Adding handlers via the designer window 85
Adding handlers via the properties window 86

3.4 Popup events and shared handlers 88
Defining a shared handler 89 ✦ Handling Popup events 93

3.5 Context menus 97
Creating a context menu 98 ✦ Adding menu items 100

3.6 Recap 101

4 Status bars 102
4.1 The Control class 103

4.2 The StatusBar class 105
Adding a status bar 106 ✦ Assigning status bar text 109

4.3 Status bar panels 110
Adding panels to a status bar 111 ✦ Assigning panel text 116
x CONTENTS

4.4 Owner-drawn panels 118
The DrawItem event 118 ✦ Drawing a panel 121

4.5 Recap 125

5 Reusable libraries 126
5.1 C# classes and interfaces 127

Interfaces 128 ✦ Data collection classes 129

5.2 Class libraries 133
Creating the class library 134 ✦ Using the command-line
tools 138 ✦ Creating the PhotoAlbum class 139
Creating the Photograph class 141

5.3 Interfaces revisited 145
Supporting the ICollection interface 146
Supporting the IList interface 146
Implementing album position operations 148

5.4 Robustness issues 151
Handling an invalid bitmap 151 ✦ Overriding methods in
the Object class 154 ✦ Disposing of resources 157
Associating a file name with an album 159

5.5 Recap 160

6 Common file dialogs 161
6.1 Design issues 162

Changing the menu bar 162 ✦ Adding class variables 165

6.2 Multiple file selection 166
Adding images to an album 166
Removing images from an album 169

6.3 Paint events 169
Drawing the current photograph 170
Displaying the current position 171

6.4 Context menus revisited 173
Displaying the next photograph 174
Displaying the previous photograph 174

6.5 Files and paths 175
Creating a default album directory 175
Setting the title bar 179 ✦ Handling the New menu 180

6.6 Save file dialogs 181
Writing album data 182 ✦ Saving an album as a new file 186
Saving an existing album 188

6.7 Open file dialogs 189
Reading album data 190 ✦ Opening an album file 191

6.8 Recap 193
CONTENTS xi

7 Drawing and scrolling 194
7.1 Form class hierarchy 195

The ScrollableControl class 196 ✦ The Form class 196

7.2 Image drawing 198
Deleting the PictureBox control 198 ✦ Handling the
Image menu 199 ✦ Implementing the Stretch to
Fit option 202 ✦ Implementing a Scale to Fit option 205
Repainting when the form is resized 210

7.3 Automated scrolling 212
Properties for scrolling 213
Implementing automated scrolling 213

7.4 Panels 215
Adding a panel 217 ✦ Updating the menu handlers 218
Drawing the status bar panel 219 ✦ Drawing the image 220

7.5 Recap 222

8 Dialog boxes 224
8.1 Message boxes 225

The MessageBox.Show method 227 ✦ Creating an
OK dialog 227 ✦ Creating a YesNo dialog 229
Creating A YesNoCancel dialog 230

8.2 The Form.Close method 233
The relationship between Close and Dispose 233
Intercepting the Form.Close method 235

8.3 Modal dialog boxes 237
Adding captions to photos 238 ✦ Preserving caption values 239
Creating the CaptionDlg form 240 ✦ Adding properties to the
CaptionDlg form 247 ✦ Displaying the dialog in the
MainForm class 249

8.4 Modeless dialogs 252
Creating the PixelDlg form 253 ✦ Adding class members to
PixelDlg 255 ✦ Displaying the modeless PixelDlg form 256
Updating the PixelDlg form 259
Updating PixelDlg as the mouse moves 260

8.5 Recap 262

9 Basic controls 263
9.1 Form inheritance 264

Creating a base form 265 ✦ Creating a derived form 269

9.2 Labels and text boxes 271
Expanding the Photograph class 272
xii CONTENTS

Creating the PhotoEditDlg panel area 277
Creating the multiline text box 281 ✦ Adding PhotoEditDlg
to our main form 285 ✦ Using TextBox controls 287

9.3 Button classes 290
Expanding the PhotoAlbum class 293 ✦ Using the new album
settings 296 ✦ Creating the AlbumEditDlg panel area 298
Using radio buttons 300 ✦ Using check box buttons 304
Adding AlbumEditDlg to our main form 310

9.4 Recap 313

10 List controls 314
10.1 List boxes 315

Creating a list box 315 ✦ Handling selected items 322

10.2 Multiselection list boxes 325
Enabling multiple selection 325 ✦ Handling the Move Up and
Move Down buttons 328 ✦ Handling the Remove button 331

10.3 Combo boxes 333
Creating a combo box 333 ✦ Handling the selected item 336

10.4 Combo box edits 339
Replacing the photographer control 340
Updating the combo box dynamically 341

10.5 Owner-drawn lists 343
Adding a context menu 344 ✦ Setting the item height 346
Drawing the list items 348

10.6 Recap 352

11 More controls 353
11.1 Tab controls 354

The TabControl class 355 ✦ Creating a tab control 356

11.2 Tab pages 359
Creating tab pages dynamically 360
Creating tab pages in Visual Studio 363

11.3 Dates and Times 366
Dates and times 367
Customizing a DateTimePicker control 369

11.4 Calendars 372
Adding a MonthCalendar control 372
Initializing a calendar 374
Handling mouse clicks in a calendar control 376

11.5 Recap 381
CONTENTS xiii

12 A .NET assortment 383
12.1 Keyboard events 384

Handling the KeyPress event 384
Handling other keyboard events 386

12.2 Mouse events 387
The MouseEventArgs class 388 ✦ Handling mouse events 388

12.3 Image buttons 393
Implementing Next and Prev buttons 393 ✦ Drawing bitmaps for
our buttons 399 ✦ Placing images on our buttons 402

12.4 Icons 405
Replacing the icon on a form 406
Replacing the application icon 408

12.5 Recap 409

13 Toolbars and tips 410
13.1 Toolbars 411

The ToolBar class 411 ✦ Adding a toolbar 412
The ToolBarButton class 413

13.2 Image lists 416
The ImageList class 416 ✦ Creating an image list 417

13.3 Toolbar buttons 420
Adding a push button 420 ✦ Adding a dropdown button 424
Adding a toggle button 426

13.4 Tool tips 430
The ToolTip class 431 ✦ Creating tool tips 431

13.5 Recap 434

Part 3 Advanced Windows Forms 437

14 List views 439
14.1 The nature of list views 440

14.2 The ListView class 443
Creating the MyAlbumExplorer project 443
Creating a list view 445 ✦ Populating a ListView 448

14.3 ListView columns 453
Creating the columns 454 ✦ Populating the columns 456
Sorting a column 458

14.4 Selection and editing 464
Supporting item selection 464 ✦ Supporting label edits 468
xiv CONTENTS

14.5 Item activation 472
Handling item activation 473 ✦ Defining new columns 474
Populating the ListView 476 ✦ Sorting a column (again) 477
Updating the properties menu 480 ✦ Updating label
editing 481 ✦ Redisplaying the albums 483

14.6 Recap 483

15 Tree views 485
15.1 Tree view basics 486

15.2 The TreeView class 486
Creating a tree view 488 ✦ Using the Splitter class 489
Using the TreeNode class 492

15.3 Dynamic tree nodes 497
Assigning index constants 497 ✦ Creating the album nodes 498
Creating the photograph nodes 501

15.4 Node selection 505
Supporting node selection 506 ✦ Revisiting the list view 509

15.5 Fun with tree views 513
Displaying the photograph 514 ✦ Supporting label edits 516
Updating the properties menu 520

15.6 Recap 524

16 Multiple document interfaces 525
16.1 Interface styles 526

Single document interfaces 526 ✦ Explorer interfaces 526
Multiple document interfaces 527
Support in Windows Forms 529

16.2 MDI forms 530
Creating an MDI container form 531 ✦ Creating an MDI
child form 532 ✦ Adding a new entry point 533

16.3 Merged menus 535
Assigning merge types 535 ✦ Assigning merge order 537
Opening a child form 541

16.4 MDI children 543
Replacing the toolbar 543 ✦ Displaying pixel data 548
Opening an album twice 551 ✦ Updating the title bar 553
Revisiting the activation events 556

16.5 MDI child window management 557
Arranging MDI forms 558 ✦ Creating an MDI child list 561

16.6 Recap 563
CONTENTS xv

17 Data binding 564
17.1 Data grids 565

Creating the MyAlbumData project 568
Displaying data in a data grid 569

17.2 Data grid customization 573
Customizing table styles 574 ✦ Customizing column styles 576

17.3 Editable objects 580
The IEditableObject interface 580 ✦ Supporting the
IEditableObject interface 582 ✦ Using editable objects 584

17.4 Simple data binding 586
Altering the MyAlbumData application 587
Performing simple binding 590 ✦ Updating data bound
controls 594 ✦ Displaying the image 599
Saving changes to bound controls 601

17.5 Recap 602

18 Odds and ends .NET 603
18.1 Printing 604

Using the print classes 605 ✦ Drawing a print page 607

18.2 Timers 611
Creating a slide show form 612
Implementing the slide show behavior 615

18.3 Drag and drop 618
Initiating drag and drop 620 ✦ Receiving drag and drop 622

18.4 ActiveX controls 625
Creating the About box 626 ✦ Wrapping the web browser
control 629 ✦ Using the web browser control 631

18.5 Recap 635

A C# primer 637

B .NET namespaces 674

C Visual index 680

D For more information 690
bibliography 692

index 695
xvi CONTENTS

preface

In early 2001 I began using Microsoft’s .NET Framework for a project I was working
on with a small startup company. Unfortunately, the winds changed and I found
myself with more free time than I would normally hope for. So when Manning Pub-
lications asked me if I would contribute to a book on programming with the .NET
Framework, I welcomed the idea.

As events unfolded, I found myself with some fairly strong opinions about how
such a book should be organized, and offered up a proposal to write a solo book on
programming Windows Forms applications. I have always enjoyed the book Program-
ming Windows 95 with MFC by Jeff Prosise, so a book about developing Windows-
based applications with the .NET Framework seemed like an obvious subject.

The core idea behind my proposal was to build a single application over the course
of the book. The application would evolve to introduce each topic, so that by the end
of the manuscript readers would have a robust application they had built from scratch.
Manning Publications seemed to like the idea as well, and thus I suddenly found
myself writing this book.

In approaching the task, I set out to achieve two objectives. The first was to provide
ample coverage of most of the classes in the namespace. I have been frustrated by many
books that do not provide robust examples for a topic. So I try to provide detailed
examples that demonstrate how Windows Forms classes can be used and manipulated
in real applications.

A second objective was to present advanced user interface topics such as tree views
and drag and drop. While the book spends a good deal of time on fundamental classes,
such as menus and buttons, more than a cursory glance is given to some of the more
complex controls available for Windows-based programming.

The result of my proposal, these objectives, and a number of late nights is the book
you see before you. I take a tutorial approach to application development by creating
a common application throughout the book, and provide summaries of relevant
classes and other topics that might be of further interest. Hopefully, this approach pro-
vides enough detail to demonstrate how Windows-based applications are put together
with the .NET Framework, and yet offers additional information that should prove
helpful as you develop and expand your own .NET projects.
xvii

While the book is not specifically about C# and Visual Studio .NET, the text does
attempt to introduce and explain the syntax and usage of C# as well as the features and
functionality of Visual Studio .NET. These topics are presented “along-the-way” by
introducing relevant concepts and features as they are used in the examples. An over-
view of C# is also provided in appendix A at the back of the book.
xviii PREFACE

about this book

The .NET Framework contains such a large selection of topics that it is impossible to
cover all of them in a single book of any depth. This section introduces the focus of
this book, and provides an overview of the contents and conventions used in the text.
The end of this section describes the online forum available for any questions or com-
ments on the book, and explains how the source code used in the book can be down-
loaded from the Internet.

Before we discuss the book specifically, we should introduce the concept of
namespaces. A namespace defines a group, or scope, of related classes, structures, and
other types. A namespace is a bit like a family: it defines a group of distinct members
with a common name and some shared sense of purpose.

All objects in the .NET Framework, and indeed in C# itself, are organized into
namespaces. The System namespace, for example, includes objects related to the
framework itself, and most namespaces defined by .NET are nested within the Sys-
tem namespace. The System.Windows namespace defines types and namespaces
related to the Windows operating system, while the System.Web namespace defines
types and namespaces related to web pages and servers.

This organization into namespaces permits two objects with the same base name
to be distinct, much like two people can both share the same first name. For example,
the Button class in the System.Web.UI.WebControls namespace represents a
button on a web page, while the Button class in the System.Windows.Forms
namespace represents a button in an application window. Other namespaces in .NET
include the System.IO namespace for file and directory related objects, the Sys-
tem.Data namespace for database-related objects, the System.Drawing namespace
for graphical objects, and the System.Security namespace for security objects. An
overview of the more commonly used namespaces in .NET is provided in appendix B.

THE WINDOWS FORMS NAMESPACE

In addition to imposing structure on the vast collection of objects supported by the
.NET Framework, the namespace concept also provides some direction and focus for
writing a book. This book focuses on the System.Windows.Forms namespace,
xix

affectionately known as Windows Forms. Windows Forms applications are programs
that are executed by the Windows operating system, and that employ the user inter-
face features familiar to Windows desktop users everywhere.

The book attempts to provide a somewhat methodical approach to the Windows
Forms namespace. Most of the types defined by this namespace are covered in the book.
Appendix C provides a class diagram of the Windows Forms namespace, and includes
a reference to the location in the book where each class or other type is discussed.

The book contains 18 chapters organized into three parts.

PART 1: HELLO WINDOWS FORMS

The first part of the book introduces fundamental concepts behind C# in general and
Windows Forms specifically. Chapter 1 creates the application shown in figure 1
using a text editor. We discuss how a Windows Forms application is executed by the
.NET Framework, and how a Windows Forms program is structured in C#.

In chapter 2 we begin using Visual Studio .NET, the graphical development envi-
ronment from Microsoft for creating applications in the .NET Framework. This chap-
ter recreates the application constructed manually in chapter 1. We will call this
application MyPhotos.

PART 2: BASIC WINDOWS FORMS

In part 2 we begin a systematic approach to the classes in the Windows Forms
namespace. This part continues the development of our MyPhotos application,
shown in figure 2 as it appears in chapter 13. As you can see, part 2 covers the core
user interface components required to build Windows Forms applications, including
menus, status bars, dialog windows, text boxes, and combo boxes.

Figure 1

The MyPhotos application

as it appears in part 1.
xx ABOUT THIS BOOK

The MyPhotos application will display the contents of a photo album consisting
of one or more image files, or photographs. The application stores each photo album
in a file, and permits the user to view the images one at a time and edit the properties
of both albums and photographs.

PART 3: ADVANCED WINDOWS FORMS

More advanced topics such as list views and drag and drop are covered in part 3 of the
book. Part 3 builds a few different applications using the photo album concept,
including an application similar to Windows Explorer for browsing photo albums,
and a data-driven application that shows how to bind the contents of Windows
Forms controls to values taken from a data source.

Figure 3 shows the main window for our MyPhotos application as it appears in
chapter 18. The application is converted into a multiple document interface that can
display multiple albums. A number of additional features are added here as well, such
as dragging photos between albums and displaying the book’s web site from within the
application.

Figure 2 The MyPhotos application from chapter 13. This figure shows the main win-

dow along with a dialog box for editing the properties of a specific photograph.
THE WINDOWS FORMS NAMESPACE xxi

WHO SHOULD READ THIS BOOK?

Like any author, I would like everyone to read this book. The more the merrier! In
the interest of full disclosure, however, I wrote Windows Forms Programming with C#
with three kinds of people in mind:

• Windows programmers interested in developing desktop applications with .NET.

• Developers familiar with .NET or C# interested in learning more about Win-
dows Forms classes and programming.

• C++ programmers with little or no experience creating Windows applications.

Once again, I should point out that this book examines one portion of the .NET
Framework, namely the classes contained in the System.Windows.Forms

namespace. The book also provides a great deal of information about C# and Visual
Studio .NET, and in particular it will guide you through the steps necessary to build
each sample application using Visual Studio .NET. For additional information,
appendix D provides a list of additional resources for C# and .NET, and the bibliog-
raphy at the back of the book references a number of other books that cover various
aspects of C# and the .NET Framework.

Figure 3 The MyPhotos application from chapter 18. A parent window now exists within

which the MyPhotos window from part 2 of the book is displayed.
xxii ABOUT THIS BOOK

For a broad approach to the .NET Framework in general, check out Microsoft
.NET for Programmers by Fergal Grimes, also available from Manning Publications.

CONVENTIONS

The following typographical conventions appear throughout the book:

• Technical terms are introduced in italics.
• Code examples and fragments appear in a fixed-width font.
• Namespaces and types, as well as members of these types, also appear in a
fixed-width font.

• Sections of code that are of special significance appear in a bold fixed-width
font. Typically, these sections highlight changes made to code when compared
with a previous example.

• Many sections of code have numbered annotations which appear in the right
margin. These numbered annotations are then discussed more fully in a subse-
quent numbered list following the code.

In addition, a number of graphical conventions are used to present the information in
the text. Starting in chapter 2, all modifications made to example applications are
illustrated with an Action-Result table showing step-by-step instructions for making
the change in Visual Studio .NET. An example of this is shown here.

In addition to these tables, a number of classes and other types found in .NET are
summarized using a .NET Table. These tables provide an overview of a .NET Frame-
work class or other type discussed in a nearby section, and serve as a quick reference
when referring back to these pages at a later time. Full details on these and any other
members of the .NET Framework are available in the online documentation. For
example, in Visual Studio .NET, bring up the Index window and enter the name of
the class or member in which you are interested.

Of course, most of these .NET Tables describe members of the Windows Forms
namespace. An example of this format is shown here as .NET Table 1 using the Pic-
tureBox class.

DESCRIPTION OF THE TASK DESCRIBED BY THIS TABLE

 Action Result

1 Description of the action to per-
form.

Description of the result of this action. This is a textual
description, a graphic, or the resulting code.

2 The second action to perform.

How-to

a. Detailed steps required to per-
form the described action.

b. More steps if necessary.

The second result.

Note: A comment about or explanation of the
result.
CONVENTIONS xxiii

Note the following features of these tables:

• An initial paragraph defines the purpose of the class, the namespace that con-
tains the class, and the base class. If the namespace containing the base class is
not indicated, then it can be found in the same namespace containing the
described class. If the base class is not indicated, then the class is derived from
the System.Object class.

• A table shows the public members of the class, namely the properties, methods,
and events specific to this class.1 The members inherited from base classes are
not shown in these tables. In .NET Table 1, there are four members shown,
namely three properties, no methods, and one event.

A final convention in the book is the use of special paragraphs to highlight topics for
further exploration of Windows Forms and the .NET Framework. These are either
TRY IT! sections or More .NET sections.

TRY IT! These paragraphs provide suggestions or discussions of further changes that
can be made to the sample application using the material discussed in the
prior sections. TRY IT! paragraphs provide an opportunity to further your
understanding of the related topic. The code for these sections is not pro-
vided in the book, but is available on the book’s web site.

The TRY IT! paragraphs appear throughout the text, and occasionally discuss class
members that were not directly used in the sample code. The More .NET paragraphs,

.NET Table 1 PictureBox class

The PictureBox class represents a control that can display an image. Scroll bars are not
supported when the image is larger that the client area, so care must be taken to ensure that
the image appears properly within the control. This class is part of the System.Win-
dows.Forms namespace, and inherits from the Control class. See .NET Table 4.1 on
page 104 for more information on the Control class.

Public Properties

BorderStyle Gets or sets the style of border to display for the
control.

Image Gets or sets the image to display in the picture box.

SizeMode Gets or sets the PictureBoxSizeMode enumera-
tion value indicating how the image is displayed.
The default is Normal.

Public Events
SizeModeChanged Occurs when the value of the SizeMode property

changes.

1 We define exactly what these terms mean in part 1 of the book.
xxiv ABOUT THIS BOOK

an example of which follows, also appear throughout the text, although they more
often occur at the end of a chapter.

More .NET These paragraphs provide additional details about the .NET Framework or
sources of additional information accessible from the Internet. The URL
addresses shown in these paragraphs were valid as of January 1, 2002.

SOURCE CODE DOWNLOADS

All source code for the programs presented in Windows Forms Programing with C# is
available to purchasers of the book from the Manning web site. Visit the site at
www.manning.com/eebrown for instructions on downloading this source code.

AUTHOR ONLINE

Free access to a private Internet forum, Author Online, is included with the purchase
of this book. Visit the web site for detailed rules about the forum, to subscribe to and
access the forum, to retrieve the code for each chapter and section, and to view
updates and corrections to the material in the book. Make comments, good or bad,
about the book; ask technical questions, and receive help from the author and other
Windows Forms programmers. The forum is available at the book’s web site at
www.manning.com/eebrown.

Manning’s commitment to readers is to provide a venue where a meaningful dialog
among individual readers and among readers and the author can take place. It is not
a commitment to any specific amount of participation on the part of the author, whose
contribution remains voluntary (and unpaid).

Erik can be contacted directly at eebrown@eebrown.com or through his web site
at www.eebrown.com.
AUTHOR ONLINE xxv

acknowledgments

It never ceases to amaze me how the tangled threads of our lives come together to
produce a tangible result, in this case the book you are reading. While the front of
this book bears my name, a number of people knowingly or unknowingly contrib-
uted to its conception and development.

Special thanks go to my family: to my wife Bridgett for her patience and love; to
Katie and Sydney for their regular office visits and unconditional acceptance; and to
Bianca, my faithful companion, who curls up on the other chair in my office on a
daily basis.

I am also grateful for my parents, David and Janet, and teachers and others who
have supported me throughout my life. Special recognition goes to Steve Cox and
David Cobb, who first interested me in computer programming so long ago.

Thanks also go to my many friends who provided support and encouragement in
ways that only friends can do, most notably Jean Siegel, Janet Heffernan, Tony
Mason, and Marc Zapf. I would also thank my soccer team, the Haymarket Outer
Limits, for putting up with numerous impromptu practices while I was working on
the manuscript, and yet still producing a fun and productive season.

I am also indebted to the many reviewers from all corners of the globe who dedi-
cated their time and energy to reading early versions of various chapters. This book
would not be the same without their assistance and efforts. This includes Marc Zapf
for his technical review of the final manuscript; Javier Jarava for his exhaustive reviews
of the code and text in each chapter; Josh Mitts for his thoughtful and encouraging
comments; Andreas Häber for finding various important technical points (I apologize,
Andreas, that I never did cover the PropertyGrid control); Craig Fullerton for his
meticulous review of the first half of the book; Mark Boulter for his detailed comments
on the original chapters; Sam Raisanen for his thorough review of chapters 1, 3, and
16; and others who provided insightful comments and criticisms, including Dharmesh
Chauhan, Chris Muench, Tomas Restrepo, and Vijay Upadya.

I would also like to recognize the reviewers of my original outline, namely Steve Bin-
ney, Mark Boulter, Drew Marsh, Josh Mitts, and Kunle Odutola. Their suggestions
were critical to starting the book on the right note and producing the final manuscript.
xxvi

Finally, I would like to acknowledge the many people I worked with from and
through Manning Publications whom I have never met and yet provided critical sup-
port throughout the writing process. This especially includes Susan Capparelle for see-
ing some merit in my original proposal; Marjan Bace for his perceptive comments and
suggestions over numerous phone discussions; Ted Kennedy for coordinating all the
reviewers and their feedback; Syd Brown for reformatting my tables so many times and
for the final typesetting of the book itself; Leslie Haimes for redesigning the cover after
I had approved an earlier version; Mary Piergies for overseeing the production staff
and answering my many questions; Rebecca Pepper and Lianna Wlasiuk for encour-
aging me to change numerous structural elements of the book; Lois Patterson for her
detailed wordsmithing of the final manuscript; and finally Lee Fitzpatrick for signing
my royalty advance checks.
AUTHOR ONLINE xxvii

about .NET

The history of .NET is both long and brief. While the .NET Framework is based on
programming languages and development environments that came years before, it is
relatively new and its success in the marketplace is yet to be proven. This section pro-
vides an abbreviated history of the C# programming language, pronounced see-sharp,
and the .NET Windows Forms functionality.

The C programming language was originally developed in the early 1970s at Bell
Telephone Laboratories in conjunction with the UNIX operating system. It evolved
from a previous language called “B” which itself derived from a language called
“BPCL.” The language became popular throughout the 1970s and was eventually
standardized by the American National Standards Institute (ANSI) in the mid-1980s.
One of the more definitive books on C, first published in 1978, was and still is The
C Programming Language by Brian W. Kernighan and Dennis M. Ritchie.

The C++ language was designed by Bjarne Stroustrup, who originally published his
well-known book The C++ Programming Language in 1986. This language was also
standardized by ANSI and other organizations, and has grown in popularity to its
rather ubiquitous use today.

The C language was used with the Windows operating system early on, beginning
with Windows 1.0 in the mid 1980s. One of Microsoft’s first attempts at an interac-
tive development environment (IDE) occurred around 1990 with Microsoft C 1.0.
This environment grew to include C++ and eventually became the basis for Visual
C++ in the mid 1990’s and later Visual Studio 6.0 supporting C++, Visual Basic, and
a nonstandard variant of Java. The Windows operating system and Win32 API
formed the foundation on which these products were built and extended.

Also worth mentioning are two competitive products for Microsoft Visual Studio,
namely Borland C++Builder and Borland Delphi. Both products are highly successful
visual development tools and have likely influenced the design and development of the
.NET Framework. In fact, the Chief C# Language Architect at Microsoft, Anders
Hejlsberg, was one of the original designers of Borland Delphi.

Other products swirled through this history as well: dynamic link libraries, the
advent of OLE and COM, database technologies such as ODBC and ADO, the growth
xxviii

of the Internet, and the redesign of the DOS-based Windows into Windows NT and
Windows XP.

CASTING THE .NET

Against this backdrop of technologies and products, the Internet has been redefining
the way we as programmers think about user interfaces and application development.
With the success of the Internet and companies such as Netscape and Amazon.com, a
product or interface may now appear in a web browser rather than a more traditional
Windows application. The Java programming language has had much success in
UNIX and web server environments, and is the language of choice for many large-
scale web applications at present.

Perhaps in response to these changes, or perhaps because it became clear that the
line between a user’s desktop and the Internet was starting to blur, Microsoft set out
to revolutionize the way we think about and develop applications. The result of their
work is the .NET Framework and the C# programming language.2

The easiest way to understand C# might be to imagine someone writing down all
the annoying aspects of C++ and then designing a language to do away with each item
on this list. In C++, for example, dealing with pointers can be painful; a number of
coding errors are not caught by the compiler (such as if (x = 5)); manipulating
strings can be difficult; and there is no good way to safely “downcast” an object to a
derived type. The predecessors of C and C++, the B and BPCL languages, did not
define a formal type system, which may well account for the free-wheeling nature of
integers, pointers, and characters in these languages.

The C# language was redesigned from the ground up with the idea of retaining the
flexibility of C and C++ while formalizing the type system and language syntax. Many
common runtime errors in C++ are compiler errors in C#. Other distinct features
include a built-in string type, lack of global variables, and integration of critical system
and application errors into a common exception model. Appendix A of this book pro-
vides an overview of the syntax, keywords, and features of the C# language.

While not strictly required from a design perspective, the C# language and .NET
Framework will likely remain tightly intertwined for some time. The .NET Frame-
work is a programming interface and execution environment for Windows operating
systems, and large parts of the framework itself were written in C#.

The .NET Framework includes almost all of Microsoft’s development technologies
and environments that have evolved over time, from COM to XML and ASP to Visual
Studio. These technologies are recreated and reinvented under a single umbrella. While
backward compatibility has not been totally lost, the .NET Framework redefines the
classes and methods for these technologies and the products that use them. In particular,

2 The Visual Basic language was also redesigned, and numerous Microsoft products have been affected.
Visit the site www.microsoft.com/net for detailed information about the history and scope of .NET.
CASTING THE .NET xxix

the framework includes new support for Windows application development, web site
access and deployment, remote program communication, database interaction, security,
local and remote installation, and other technologies as well.

My goal is not to enumerate all of the technologies to be found in .NET, nor try
to convince you of its advantages or disadvantages. There are a number books and arti-
cles that provide this information, and you would probably not be reading this intro-
duction if you were not aware of at least some of them. My point is only to indicate
that Microsoft has taken a fresh approach to its many technologies and products, and
endeavored to integrate these various initiatives under a single offering called the
.NET Framework.

WINDOWS FORMS OVERVIEW

As we mentioned in the About this book section, all objects in the .NET Framework,
and indeed in C# itself, are organized into namespaces. Appendix B provides an over-
view of the more commonly-used namespaces defined by the .NET Framework.

This book focuses on the System.Windows.Forms namespace used to build
Windows-based applications. This section provides a summary of the classes defined
by this namespace. A graphical index of the Windows Forms namespace in given in
appendix C.

Before we discuss specific classes, there are three terms that are critical to under-
standing the .NET Framework in general and the Windows Forms namespace specif-
ically, namely components, containers, and controls. The book covers these terms in
detail, so this section will provide only a brief introduction and a few examples.

A component is an object that permits sharing between applications. The Compo-
nent class encapsulates this notion, and is the basis for most of the members of the
Windows Forms namespace. Also of note is the IComponent interface, which defines
the members supported by all components. We discuss interfaces in chapter 5, and the
Component class in chapter 3.

A container is an object that can hold zero or more components. A container is sim-
ply a grouping mechanism, and ensures that sets of components are encapsulated and
manipulated in similar ways. Containers are used throughout the Windows Forms
namespace whenever a group of objects is required. The Container class encapsu-
lates the container concept, with the IContainer interface defining the members
required by all containers.

A control is a component with a visual aspect. In the Windows Forms namespace,
a control is a component that presents a graphical interface on the Windows desktop.
The Windows Forms Control class, discussed in chapter 4, is the basis for all Win-
dows Forms controls. It is worth noting that the System.Web.UI namespace defines
a Control class as well to represent graphical objects that appear on web pages.

Generally speaking, any visual interface you see on the Windows desktop is a con-
trol, and any behind-the-scenes object is a component. For example, a status bar panel
xxx ABOUT .NET

is represented by the StatusBarPanel class, which is a component. The actual sta-
tus bar you see in an interface is represented by the StatusBar class, which is a con-
trol. Status bars are the subject of chapter 4.

Controls may also be containers in that they may contain a set of controls or com-
ponents. The StatusBar class is a container for zero or more StatusBarPanel
components. One of the more important container controls is the Form class, which
represents an application window for display on the Windows desktop. The Form
class is introduced in chapter 1 and discussed throughout the book, most notably in
chapter 7, “Drawing and scrolling,” chapter 8, “Dialog boxes,” and chapter 16, “Mul-
tiple document interfaces.”

Most visual elements of graphical interfaces such as buttons, text boxes, trees, and
dialog boxes are all represented by control classes. The one exception is menus, which
are the subject of chapter 3 and revisited again in chapter 16. Menu objects are all
components, and are treated in a special manner by the Form class itself.

The controls in the Windows Forms namespace are discussed throughout the
book. Many of the more common controls appear in chapter 9, “Basic controls,” chap-
ter 10, “List controls,” chapter 11, “More controls,” and chapter 13, “Tool bars and
tips.” Advanced controls such as list views, tree views, and data grids are covered in
part 3 of the book.

In addition to the controls, containers, and components found in the Windows
Forms namespace, there are a number of other objects provided to support the devel-
opment of Windows-based applications. Some of these are presented in chapter 12,
“A .NET assortment,” and chapter 18, “Odds and ends .NET.” Of specific impor-
tance is the concept of data binding, covered in chapter 17.

A book on creating Windows Forms programs would be remiss if it did not also
discuss the creation of reusable libraries. Chapter 5 discusses this concept by building
a photo album library that is then reused throughout the remainder of the book. In
particular, chapter 6, “Common dialogs,” makes use of this library.
WINDOWS FORMS OVERVIEW xxxi

about the cover illustration

The figure on the cover of Windows Forms Programming with C# is a “Pescador del
Cabo de buena Esperanza,” a fisherman from the Cape of Good Hope in Africa. This
fisherman is especially appropriate here, since the author, Erik Brown, worked with
the U.S. Peace Corps in Botswana, which is not too far from the Cape of Good
Hope. The illustration is taken from a Spanish compendium of regional dress cus-
toms first published in Madrid in 1799. The book’s title page states:

Coleccion general de los Trages que usan actualmente todas las Nacio-
nas del Mundo desubierto, dibujados y grabados con la mayor exacti-
tud por R.M.V.A.R. Obra muy util y en special para los que tienen la
del viajero universal

which we translate, as literally as possible, thus:

General collection of costumes currently used in the nations of the
known world, designed and printed with great exactitude by
R.M.V.A.R. This work is very useful especially for those who hold
themselves to be universal travelers.

Although nothing is known of the designers, engravers, and workers who colored this
illustration by hand, the “exactitude” of their execution is evident in this drawing.
The “Pescador del Cabo de buena Esperanza” is of course just one of many figures in
this colorful collection. Their diversity speaks vividly of the uniqueness and individu-
ality of the world’s towns and regions just 200 years ago. This was a time when the
dress codes of two towns, separated by a few dozen miles, identified people uniquely
as belonging to one or the other. The collection brings to life a sense of isolation and
distance of that period and of every other historic period except our own hyperkinetic
present.

Dress codes have changed since then and the diversity by region, so rich at the time,
has faded away. It is now often hard to tell the inhabitant of one continent from
another. Perhaps, trying to view it optimistically, we have traded a cultural and visual
richness for a more varied personal life. Or a more varied and interesting intellectual
and technical life.
xxxii

We at Manning celebrate the inventiveness, the initiative, and the fun of the com-
puter business with book covers based on the colorful tapestry of regional life of two
centuries ago brought back to life by the pictures from this collection.
WINDOWS FORMS OVERVIEW xxxiii

1
P A R T
Hello Windows Forms
It is common practice to write some sort of “Hello” program at the beginning of a
book. This book is no different, and we begin our discussion on Windows Forms
with the most basic of forms: an empty window. While this book is all about Win-
dows Forms, Microsoft’s new interactive development environment Visual Studio
.NET is an important part of creating .NET applications. To introduce both Win-
dows Forms and Visual Studio .NET, we will create the same program in two subse-
quent chapters.

Chapter 1 is titled “Getting started with Windows Forms.” This chapter intro-
duces Windows Forms programming and covers some fundamentals of the C# lan-
guage and the .NET Framework. Here we use the C# command-line compiler in order
to focus on a sample program and not get distracted by the graphical environment.
While the remainder of the book will use Visual Studio .NET for the examples,
enough detail about the command-line tools is provided in case you want to follow
along using an alternate editor.

Chapter 2 covers “Getting started with Visual Studio .NET.” Here we rebuild the
example from Chapter 1 within the Visual Studio .NET interactive development envi-
ronment. This will give us a chance to cover additional subtleties of .NET and C#,
and give you the reader a second go at understanding any code you missed in
chapter 1.

Part 2 of this book will extend the program built in chapter 2 as it continues our
investigation of the new world order for Windows application development.

C H A P T E R 1

Getting started with
Windows Forms

1.1 Programming in C# 4
1.2 Adding controls 13
1.3 Loading files 18
1.4 Resizing forms 26
1.5 Recap 33
With the introduction behind us, we can get down to business. We will start with a
basic application of the “Hello World” variety, adding some functionality to intro-
duce some key features and concepts. We will take a quick look at the following
aspects of Windows Forms programming:

• The Form class: creating a blank form.

• Program execution: how the Microsoft .NET Framework executes a program.

• Controls: how each control is a distinct class, and how controls are
added to a form.

• C# classes: different kinds of class members, and how to use them
in our program.

• Files: opening an image file in C#.

• Events: using C# events to process user actions.

As you likely know, part of the .NET experience is a new interactive development
environment called Visual Studio .NET. Within this environment, a set of command-
3

line programs does the real work of compiling and linking programs. In this chapter,
we will use the same command-line tools employed by Visual Studio .NET internally.
This will allow us to focus on C# and Windows Forms concepts, and not discuss
Visual Studio .NET until the next chapter.

If you have prior experience with Windows programming, you will see many sim-
ilarities in the names of the .NET controls. This chapter will show some of these names,
and introduce some new terms and features as well. If you are new to Windows pro-
gramming, you’ll find this chapter a good foundation for the remainder of the book.

This chapter is a bit of a wild ride through .NET, so don’t worry too much about
the details here. The concepts and topics in this chapter should become clearer as we
progress through the book.

This chapter assumes you have successfully installed the Microsoft .NET Framework
SDK on your computer.

1.1 Programming in C#

Let’s create a blank form in C# to see how a program compiles and runs in the .NET
Framework. Such a form is shown in figure 1.1. This is the most basic of Windows
applications that can be created in .NET. You may be tempted to skip this section,
but don’t: the remainder of this chapter builds on this most basic of forms, so you’ll
want to have it ready.

Crank up your favorite editor and type in the code shown in listing 1.1. If you’re not
sure which editor to use, type this code into Notepad here and throughout the chap-
ter. Save this file as “MyForm.cs” in a convenient directory. Note that “cs” is the stan-
dard extension used for C# files.

Figure 1.1

Our first Windows Forms program pro-

duces this skeleton form. We'll build on

this program throughout the rest of this

chapter.
4 CHAPTER 1 GETTING STARTED WITH WINDOWS FORMS

[assembly: System.Reflection.AssemblyVersion("1.1")]

namespace MyNamespace
{
 public class MyForm : System.Windows.Forms.Form
 {
 public MyForm()
 {
 this.Text = "Hello Form";
 }

 public static void Main()
 {
 System.Windows.Forms.Application.Run(new MyForm());
 }
 }
}

To compile this program, we will use the C# compiler, called csc, for C sharp com-
piler. You will need a command prompt with the PATH environment set to access the
.NET Framework programs and libraries. You can define these settings by hand or via
a batch program, or use the shortcut Microsoft provides to do this for you. We will
employ the shortcut, which is available via the Start menu.

To reach this shortcut, click the Start menu, then Programs, then Microsoft
Visual Studio .NET, then Visual Studio .NET Tools, then Visual Studio .NET Com-
mand Prompt. This item opens a command window and executes a batch file that sets
the appropriate environment variables. With the default installation directories, this
menu item executes the following command:
 cmd /k "C:\Program Files\Microsoft Visual Studio .NET\
 Common7\Tools\vsvars32.bat"

Open a Visual Studio .NET command prompt as previously described and compile
the program using the following command.
 > csc MyForm.cs /reference:System.dll
 /reference:System.Windows.Forms.dll

The /reference switch specifies a library containing additional functionality for
the program. In .NET, libraries as well as programs are referred to as assemblies. For
our application, we reference the System assembly (System.dll) and the Windows
Forms assembly (System.Windows.Forms.dll).1

Listing 1.1 Your first form

1 Strictly speaking, the csc compiler automatically references all major System DLLs. As a result, the
/reference switches here are not really needed. We use them here and throughout the chapter to be
explicit about the libraries required by our program.
PROGRAMMING IN C# 5

Once this command completes, you should see a MyForm.exe file in your direc-
tory. Run the program using the myform command to see the result. You should see
a window similar to figure 1.1.
 > myform2

While our program is not very useful yet, it only took us a few lines of code to create
a fully functional Windows application. Most of the work is done internally by the
.NET Framework and Windows. This includes drawing the outer portion of the win-
dow such as the title bar and frame; handling the taskbar and standard windows
interactions such as minimize, maximize, move, resize, and close; and redrawing the
window when the application is behind, in front of, or obscured by other windows.

Stand up, stretch, stifle a yawn, and go tell your neighbor that you just wrote your
first .NET Windows Forms application.

We will add bells and whistles to this application, of course. But before we do,
our fully functional program warrants some discussion. Let’s break down the parts of
our code to examine how the .NET Framework executes our program.

The first line of the program simply sets the version number for the program to
1.1, matching the section number of the book.
[assembly: System.Reflection.AssemblyVersion("1.1")]

You can verify this by right-clicking the myform.exe file, selecting the Properties
item, and then clicking the Version tab. We’ll look at version numbers more closely in
chapter 2, so we will not discuss this line any further at this point.

1.1.1 Namespaces and classes

The introduction discussed the use of namespaces in .NET to define a scope for a set
of classes and other types. In our program we use the namespace keyword to declare
a new namespace called MyNameSpace.
 namespace MyNamespace
 {
 . . .
 }

A namespace contains one or more types, such as the class MyForm in our program. A
class defines a new data abstraction, in that it defines a class name and a collection of
members for representing and operating on the class. A class is just one of the types
possible in a namespace. We will discuss additional types further along in the book,
or you can visit appendix A for a complete listing of the possible types.

Classes in C# support single inheritance, in that each class inherits from at most
one other class. As a quick description of inheritance, suppose you wanted to design

2 When you run this program, you will note that the console waits for the application to exit. This is
because the compiler creates a console application by default. We will see how to create a Windows-
based application using the /target switch in chapter 5.
6 CHAPTER 1 GETTING STARTED WITH WINDOWS FORMS

a program to track the traffic patterns in a city. You might want to differentiate
between cars, trucks, delivery vehicles, buses, and other types of vehicles. It would be
beneficial to define a core set of functions that all types of vehicles would employ,
and then define additional functions for each type of vehicle as required. With inher-
itance, a Vehicle class could define this base functionality, and subsequent classes,
called derived classes, would define additional functions for each vehicle type. For
example, you might have the following:
 namespace Traffic
 {
 // The base Vehicle class
 class Vehicle
 {
 . . .
 }

 // The Car class is derived from the Vehicle class
 class Car : Vehicle
 {
 . . .
 }

 // The Bus class is derived from the Vehicle class
 class Bus : Vehicle
 {
 . . .
 }
 }

Back to our program, we define a class called MyForm that inherits from the Form
class, which is found in the System.Windows.Forms namespace. The period nota-
tion is used to separate namespaces and classes, so that the complete, or fully quali-
fied, name for the class is System.Windows.Forms.Form. We will see how to
abbreviate this name later in the chapter.
 namespace MyNamespace
 {
 public class MyForm : System.Windows.Forms.Form
 {
 . . .
 }
 }

The Form class is the cornerstone of Windows-based applications in .NET. It repre-
sents any type of window in an application, from dialog boxes to MDI (Multiple
Document Interface) client windows. The Form class provides the ability to display,
place controls within, and interact with an application window. We will discuss this
class in detail in chapter 7, and dialog boxes and MDI applications in chapters 8 and
16, respectively. For now, simply understand that the Form class represents the appli-
cation’s main window.
PROGRAMMING IN C# 7

Classes in .NET contain one or more members that define the behavior and features
of the class. We will discuss the members of our MyForm class next. Class members may
be constants, fields, methods, properties, events, indexers, operators, constructors, and
nested type declarations. Each of these members is discussed in subsequent chapters. For
now, let’s take a quick look at the two members employed by our program.

1.1.2 Constructors and methods

Take another look at the declaration of our MyForm class. Note how two members of
this class are defined, namely the MyForm constructor and the Main method.

Both members are declared as public, as is the class MyForm. C# provides the
accessibility levels public, protected, and private that C++ programmers
should be familiar with. These are discussed in appendix A, as are the additional access
levels provided by C#, namely internal and protected internal.
 public class MyForm : System.Windows.Forms.Form
 {
 public MyForm()
 {
 this.Text = "Hello Form";
 }

 public static void Main()
 {
 System.Windows.Forms.Application.Run(new MyForm());
 }
 }

The first member is called a constructor, and works much like a constructor in C++.
This is an instance constructor since it initializes new instances of the MyForm class. An
instance constructor with no parameters, such as our constructor here, is called the
default constructor. C# also supports static constructors to initialize the class itself.
Appendix A contains more information on both kinds of constructors.

In the constructor for our MyForm class, a single statement sets the Text property
of the form to the string "Hello Form". We will discuss exactly what a property is
shortly. It is enough for now to know that this line simply places the string Hello
Form on the title bar of the application window. As in C++, the this keyword refers
to the current object.

The second member of our class is a method. A method is a member that per-
forms an operation for the class. An instance method operates on a class instance, while
a static method operates on the type itself. Methods in C# work much like their C++
counterparts.

An instance constructor for a class is invoked when an object of that class is first
created. Typically, objects of any type are initialized using the new keyword, which we
discuss next. A method must be invoked explicitly within a program. The Main
method used here is the entry point for our program and is invoked by the .NET
Framework itself, a topic we will return to in a moment.
8 CHAPTER 1 GETTING STARTED WITH WINDOWS FORMS

1.1.3 C# types

The new keyword is used to initialize any type in C#. This includes classes and struc-
tures as well as simple types such as int and enumerations. In fact, it is a compiler
error to use an object before it has been initialized. Any instance constructor provided
for a given type, in our code the Main constructor, is invoked during initialization. In
our case, we initialize the MyForm class with the following code.
 public static void Main()
 {
 System.Windows.Forms.Application.Run(new MyForm());
 }

There are two classifications of types in C#, with different initialization behavior for
each. Value types contain the actual data for the type. These include built-in types
such as int, char, and bool as well as all structures created with the struct key-
word. Value types are typically small or short-lived, making it useful to have their
value stored in place, either on the stack or within the object containing them, such
as an integer declared as a member of a class.

Reference types contain a reference to the actual data for the type. This is a bit like
a pointer in C++, except that the reference is implicit in C#. All classes in C# are ref-
erence types, as are the built-in object and string types. The compiler automati-
cally converts value types into reference types as required, using a process called boxing.
We will discuss boxing later in the book.

As an example, consider the following code:
 int x = new int();
 x = 54;
 string s = new string();
 s = "Fifty-Four";

As you might guess, this can be abbreviated as:
 int x = 54;
 string s = "Fifty-Four";

The storage allocated as a result of this code is illustrated in figure 1.2. The variable x
is a value type and contains the integer 54. The variable s is a reference type, so that
the string "Fifty-Four" exists somewhere else in memory. The variable s simply
contains a reference to this memory.

Figure 1.2 This graphic illustrates the two kinds of types in C#. The integer type, a value type,

contains the value 54, while the string type, a reference type, refers to the value “Fifty-Four.”
PROGRAMMING IN C# 9

The area of memory reserved for reference data is called the heap. Memory allocated
on the heap, such as the string in figure 1.2, is reclaimed using garbage collection. The
garbage collector, as it is called, automatically identifies blocks of memory that are no
longer accessible and reclaims it when the program has extra processing time or
requires more memory. Rather than the constant memory management required by
C++ programmers using the new and delete keywords, garbage collection manages
memory behind the scenes so you can concentrate on writing your program. Of
course, from a performance perspective, you have to pay the piper sooner or later, but
delaying such reclamation may allow an idle CPU cycle or two to be discovered and
provide better overall performance.

No need to get knee-deep in this topic. For our purposes, garbage collection
means no more pointers lying around leaking memory and resources. Of course, there
are other ways to mismanage your memory and resources, and garbage collection cre-
ates its own set of problems, but more on that as we go along.

We know from this discussion that classes are reference types, and an instance of
a class cannot be used until it is assigned to an actual object using the new keyword or
an existing object. In the case where one reference type is assigned to an existing refer-
ence type, both objects refer, or point, to the same block of data on the heap, and both
variables must be destroyed before the object can be reclaimed by the garbage collector.

Back in our application, the MyForm class is a reference type, so we create a
MyForm object using the new keyword.

TRY IT! Go ahead, break your code. Change your Main function to the following:
 public static void Main()
 {
 MyForm badForm;
 System.Windows.Forms.Application.Run(badForm);
 }

If you compile this change, you should receive an error as follows:
 Error Use of unassigned local variable ‘badForm.’

We could have implemented our Main function with a variable to represent the form.
 public static void Main()
 {
 MyForm goodForm = new MyForm();
 System.Windows.Forms.Application.Run(goodForm);
 }

However, this variable is not needed, so we wrote the Main function without it.
 public static void Main()
 {
 System.Windows.Forms.Application.Run(new MyForm());
 }

Let’s talk about the Main function next.
10 CHAPTER 1 GETTING STARTED WITH WINDOWS FORMS

1.1.4 The entry point

Every C# program starts execution in a Main function, just like it does in C, C++,
and Java (although in C# it must begin with a capital M). This function is the start-
ing point, or entry point, for our application. After the Windows operating system
creates a new process, initializes various internal data structures, and loads the execut-
able program into memory, our program is invoked by calling this entry point,
optionally providing the command-line arguments specified by the user.

The entry point in C# is similar to the main function found in C and C++, except
that in C# it must be a static member of a class. The Main function can be void or
return an int, and it can optionally receive the command-line parameters as an array
of strings. The four possible forms for this function are shown below.
 public static void Main();
 public static int Main();
 public static void Main(string[] args);
 public static int Main(string[] args);

The expression string[] specifies an array of string objects. Arrays in C# are
zero-based, so the array args shown here has string values args[0], args[1],
and so forth. Unlike C++, the first element in the array here, namely args[0], is the
first parameter for the program, and not the name of the executable.

The C# compiler uses the first instance of Main it locates as the entry point for
the program. In our case there is only one. If there are multiple Main functions, the
/main switch can be used to specify which instance should be used.
 public static void Main()
 {
 System.Windows.Forms.Application.Run(new MyForm());
 }

Our Main function is void and accepts no arguments. It contains a single statement,
which we will discuss next.

1.1.5 The Application class

The Application class is used to manage applications, threads, and Windows mes-
sages. A summary of this class for future reference appears in .NET Table 1.1. This
class is commonly used to display the initial form in an application and to wait for
user actions to occur within this form, which is exactly how we use this class here.
 public static void Main()
 {
 System.Windows.Forms.Application.Run(new MyForm());
 }

The Run method begins a message loop in the current thread to wait for operating
system messages. If a Form object is provided, as is done in our program, then this
form is displayed on the desktop and starts interacting with the user.
PROGRAMMING IN C# 11

.

.NET Table 1.1 Application class

The Application class is an object that encapsulates the static members necessary to manage
and process forms, threads, and Windows messages on behalf of a program. This class is
sealed, meaning that the class cannot be inherited. The Application class is part of the Sys-
tem.Windows.Forms namespace. You cannot create an instance of this class, as no accessible
instance constructor is provided

Public Static

Properties

CommonAppDataRegistry Gets the RegistryKey for application data
shared among all users.

CurrentCulture Gets or sets the locale (for internationalization)
for the current thread.

ProductName Gets the product name associated with the
application.

ProductVersion Gets the product version associated with the
application.

StartupPath Gets the path for the executable file that
started the application.

UserAppDataRegistry Gets the RegistryKey for application data
specific to the current user.

Public Static

Methods

AddMessageFilter Installs an IMessageFilter interface to
monitor routing of Windows messages on the
current thread. Such a monitor can be used to
intercept incoming messages to a form.

DoEvents Processes any Windows messages currently in
the message queue.

Exit Stops all running message loops and closes all
windows in the application. Note that this may
not force the application to exit.

ExitThread Stops the message loop and closes all
windows on the current thread only.

Run Starts a standard message loop on the current
thread. If a Form is given, also makes that form
visible.

Public Static

Events

ApplicationExit Occurs when the application is about to shut
down.

Idle Occurs when the application is about to enter
the idle state.

ThreadException Occurs when an uncaught ThreadException
occurs.

ThreadExit Occurs when a thread is about to shut down.
12 CHAPTER 1 GETTING STARTED WITH WINDOWS FORMS

1.1.6 Program execution

Before we leave this section, let’s review what we’ve learned about how our program
executes within the operating system. Run the MyForm.exe program again to see this
in action. When you execute this program, the Windows operating system creates
and initializes a process that:

1 Uses the Main method as the entry point for execution, which:

a Instantiates an instance of the class MyForm using the new keyword, which
b Invokes the instance constructor for MyForm, which
c Assigns the string “Hello Form” to the title bar.

2 Back in our Main method, the Application.Run method is called with the
newly created MyForm object as a parameter, and:

a Displays MyForm as the application window, and
b Waits for and processes any messages or user interactions that occur.

3 When the application window closes:

a The Application.Run method returns, and
b The Main method returns, and
c The program exits.

And that is how it is done in the world of .NET.

1.2 Adding controls

Let’s make our program a little more interesting by adding some controls. Through-
out the course of the book, we will be building a photo viewing application, so let’s
add a button for loading an image file, and a box where the image can be displayed.
When we are done, our form will look like figure 1.3.

Revise your code as shown in listing 1.2. Changes from our previous code listing are
shown in bold. Note that we have changed the version number of our program to 1.2

Figure 1.3

The main window shown here con-

tains a Load button and a picture

box control.
ADDING CONTROLS 13

to distinguish it from our original code and to match the current section. This new
version number is also displayed on the title bar. In chapter 2 we will see how to
obtain the application’s version number programmatically. For now, changing it by
hand will do just fine.

[assembly: System.Reflection.AssemblyVersion("1.2")]

namespace MyNamespace
{
 using System;
 using System.Windows.Forms;

 public class MyForm : Form
 {
 private Button btnLoad;
 private PictureBox pboxPhoto;

 public MyForm()
 {
 this.Text = "Hello Form 1.2";

 // Create and configure the Button
 btnLoad = new Button();

 btnLoad.Text = "&Load";

 btnLoad.Left = 10;

 btnLoad.Top = 10;

 // Create and configure the PictureBox
 pboxPhoto = new PictureBox();

 pboxPhoto.BorderStyle =

 System.Windows.Forms.BorderStyle.Fixed3D;

 pboxPhoto.Width = this.Width / 2;

 pboxPhoto.Height = this.Height / 2;

 pboxPhoto.Left = (this.Width - pboxPhoto.Width) / 2;

 pboxPhoto.Top = (this.Height - pboxPhoto.Height) / 2;

 // Add our new controls to the Form

 this.Controls.Add(btnLoad);

 this.Controls.Add(pboxPhoto);

 }

 public static void Main()
 {
 Application.Run(new MyForm());
 }
 }
}

Compile this program as before and run it to see our changes. We will walk through
these changes one at a time.

Listing 1.2 A Button and PictureBox control are added to the form
14 CHAPTER 1 GETTING STARTED WITH WINDOWS FORMS

1.2.1 Shortcuts and fully qualified names

The first change you may notice in our new code is the using keyword at the begin-
ning of the program.
 using System;
 using System.Windows.Forms;

Programmers are always looking for shortcuts; and older programmers, some would
say more experienced programmers, often worry that their lines may be too long for
the compiler or printer to handle. The programmers at Microsoft are no exception, so
while one team probably agreed that fully-qualified names are a good idea, another
team probably sought a way to avoid typing them. The result is the using keyword.

The using keyword actually plays two roles in C#. The first is as a directive for
specifying a shortcut, as we are about to discuss. The second is as a statement for ensur-
ing that non-memory resources are properly disposed of. We will discuss the using
keyword as a statement in chapter 6.

As a directive, using declares a namespace or alias that will be used in the cur-
rent file. Do not confuse this with include files found in C and C++. Include files
are not needed in C# since the assembly incorporates all of this information, making
the /reference switch to the compiler sufficient in this regard. This really is just
a shortcut mechanism.

In our original program in section 1.1, the Main function called the method
System.Windows.Forms.Application.Run. In our new listing the using
directive allows us to shorten this call to Application.Run. The long form is called
the fully qualified name since the entire namespace is specified. Imagine if you had to
use the fully qualified name throughout your code. Aside from tired fingers, you
would have long, cluttered lines of code. As a result, our new code is a bit easier to read:
 public static void Main()
 {
 Application.Run(new MyForm());
 }

Since Application is not a C# keyword or a globally available class, the compiler
searches the System and System.Windows.Forms namespaces specified by the
using directive in order to locate the System.Windows.Forms.Application
class.

You can also specify an alias with the using keyword to create a more convenient
representation of a namespace or class. For example,
 using WF-alias = System.Windows.Forms

With this alias defined, you can then refer to the Application class as
 WF-alias.Application.Run(new MyForm());
ADDING CONTROLS 15

Alternatively, an alias for a specific type can be created. For example, a shortcut for
the Application class can be defined with:
 using MyAppAlias = System.Windows.Forms.Application

This would permit the following line in your code:
 MyAppAlias.Run(new MyForm());

Typically, the using directive simply indicates the namespaces employed by the
program, and this is how we use this directive in our program. For example, rather
than the fully qualified names System.Windows.Forms.Button and Sys-
tem.Windows.Forms.PictureBox, we simply use the Button and PictureBox
names directly.

It is worth noting that there is also a Button class in the System.Web.UI.Web-
Controls namespace. The compiler uses the correct System.Windows.Forms.But-
ton class because of the using keyword, and because the System.Web namespace
is not referenced by our program.

When we look at Visual Studio .NET in chapter 2, you will see that Visual Studio
tends to use the fully qualified names everywhere. This is a good practice for a tool
that generates code to guarantee that any potential for ambiguity is avoided.

1.2.2 Fields and properties

Let’s go back to our use of the Button and PictureBox classes. The top of our class
now defines two member variables, or fields in C#, to represent the button and the
picture box on our form. Here, Button and PictureBox are classes in the Win-
dows Forms namespace that are used to create a button and picture box control on a
Form. We will tend to use the terms class and control interchangeably for user inter-
face objects in this book.3

 public class MyForm : Form
 {
 private Button btnLoad;
 private PictureBox pboxPhoto;

Fields, like all types in C#, must be initialized before they are used. This initialization
occurs in the constructor for the MyForm class.
 public MyForm()
 {
 // Create and configure the Button
 btnLoad = new Button();
 btnLoad.Text = "&Load";
 btnLoad.Left = 10;
 btnLoad.Top = 10;

3 Or, more formally, we will use the term control to refer to an instance of any class derived from the
Control class in the System.Windows.Forms namespace.
16 CHAPTER 1 GETTING STARTED WITH WINDOWS FORMS

 // Create and configure the PictureBox
 pboxPhoto = new PictureBox();
 pboxPhoto.BorderStyle = System.Windows.Forms.BorderStyle.Fixed3D;
 pboxPhoto.Width = this.Width / 2;
 pboxPhoto.Height = this.Height / 2;
 pboxPhoto.Left = (this.Width - pboxPhoto.Width) / 2;
 pboxPhoto.Top = (this.Height - pboxPhoto.Height) / 2;
 . . .

Note the use of the new keyword to initialize our two fields. Each control is then
assigned an appropriate appearance and location. You might think that members
such as Text, Left, BorderStyle, and so on are all public fields in the Button
and PictureBox classes, but this is not the case. Public member variables in C++, as
well as in C#, can be a dangerous thing, as these members can be manipulated
directly by programmers without restrictions. A user might accidentally (or on pur-
pose!) set such a variable to an invalid value and cause a program error. Typically, C++
programmers create class variables as protected or private members and then provide
public access methods to retrieve and assign these members. Such access methods
ensure that the internal value never contains an invalid setting.

In C#, there is a class member called properties designed especially for this pur-
pose. Properties permit controlled access to class fields and other internal data by pro-
viding read, or get, and write, or set, access to data encapsulated by the class.
Examples later in the book will show you how to create your own properties. Here we
use properties available in the Button and PictureBox classes.4

We have already seen how the Text property is used to set the string to appear
on a form’s title bar. For Button objects, this same property name sets the string that
appears on the button, in this case “&Load.” As in previous Windows programming
environments, the ampersand character ‘&’ is used to specify an access key for the con-
trol using the Alt key. So typing Alt+L in the application will simulate a click of the
Load button.

Windows Forms controls also provide a Left, Right, Top, and Bottom prop-
erty to specify the location of each respective side of the control. Here, the button
is placed 10 pixels from the top and left of the form, while the picture box is centered
on the form.

The Width and Heightproperties specify the size of the control. Our code cre-
ates a picture box approximately 1/2 the size of the form and roughly centered within
it. This size is approximate because the Width and Height properties in the Form
class actually represent the width and height of the outer form, from edge to edge.5

4 As we will see in later chapters, the properties discussed here are inherited from the Control class.
5 The ClientRectangle property represents the size of the internal display area, and could be used

here to truly center the picture box on the form.
ADDING CONTROLS 17

1.2.3 The Controls property

The final lines in the MyForm constructor add the button and picture box controls to
the form using the Controls property. The Controls property returns an instance
of the Control.ControlCollection class. The ControlCollection class is
defined within the Form class, and defines an Add method that adds a control to a
form. Note that the Controls property can be used to retrieve the controls on a
form as well.
 public MyForm()
 {
 . . .

 // Add our new controls to the Form
 this.Controls.Add(btnLoad);
 this.Controls.Add(pboxPhoto);
 }

When a control is added to a form, it is placed at the end of the z-order of the stack of
controls on the form. The term z-order is used for both the set of forms in the appli-
cation and the set of controls on a particular form, and indicates the order of win-
dows stacked on the screen or controls stacked on a form, much like stacking dishes
on a table.

The end of the z-order is bottom of the stack. You can think of this as the view
a chandelier has of a table. If the tabletop is the form, and a cup and saucer are con-
trols, in your code you would first add the cup control to the table, then add the saucer
control so that it appears underneath the cup. This can be a bit unintuitive, so make
sure you understand this point when programmatically adding controls to your forms.

The term z-order comes from the fact that the screen is two-dimensional, and is
often treated as a two-axis coordinate system in the X and Y directions. The imaginary
axis perpendicular to the screen is called the z-axis. This concept of z-order will be
important later in the chapter when we have overlapping controls.

Now that our controls are placed on the form, we can use them to load and dis-
play an image.

1.3 Loading files

The next change to our little program will permit the user to click the Load button
and display a selected file in the picture box control. The result appears in figure 1.4,
and looks very much like our previous screen, with the addition of the selected image.
18 CHAPTER 1 GETTING STARTED WITH WINDOWS FORMS

Revise your program in accordance with listing 1.3. Once again the changes are
shown in bold type, and the version number has been incremented, this time to 1.3.

[assembly: System.Reflection.AssemblyVersion("1.3")]

namespace MyNamespace
{
 using System;
 using System.Drawing;
 using System.Windows.Forms;

 public class MyForm : System.Windows.Forms.Form
 {
 Button btnLoad;
 PictureBox pboxPhoto;

 public MyForm()
 {
 this.Text = "Hello Form 1.3";

 // Create and configure the Button
 btnLoad = new Button();
 btnLoad.Text = "&Load";
 btnLoad.Left = 10;
 btnLoad.Top = 10;
 btnLoad.Click += new System.EventHandler(this.OnLoadClick);

 // Create and configure the PictureBox
 pboxPhoto = new PictureBox();
 pboxPhoto.BorderStyle = System.Windows.Forms.BorderStyle.Fixed3D;
 pboxPhoto.Width = this.Width / 3;
 pboxPhoto.Height = this.Height / 3;
 pboxPhoto.Left = (this.Width - pboxPhoto.Width) / 2;
 pboxPhoto.Top = (this.Height - pboxPhoto.Height) / 2;
 pboxPhoto.SizeMode = PictureBoxSizeMode.StretchImage;

Figure 1.4

The image loaded into the PictureBox

control here is stretched to exactly fit

the control’s display area.

Listing 1.3 The OpenFileDialog class is now used to load an image file
LOADING FILES 19

 // Add our new controls to the Form
 this.Controls.Add(btnLoad);
 this.Controls.Add(pboxPhoto);
 }

 private void OnLoadClick(object sender, System.EventArgs e)
 {
 OpenFileDialog dlg = new OpenFileDialog();

 dlg.Title = "Open Photo";

 dlg.Filter = "jpg files (*.jpg)|*.jpg|All files (*.*)|*.*" ;

 if (dlg.ShowDialog() == DialogResult.OK)

 {

 pboxPhoto.Image = new Bitmap(dlg.OpenFile());

 }

 dlg.Dispose();

 }

 public static void Main()
 {
 Application.Run(new MyForm());
 }
 }
}

Note that there is a new namespace reference:
 using System.Drawing;

This is required for the Bitmap class used to load the image file. As you’ll recall, the
using keyword allows us to shorten to fully qualified name System.Draw-
ing.Bitmap to the more manageable Bitmap. To include the definition of the
Bitmap class, the System.Drawing.dll assembly is required when the program is
compiled. The new compiler command for our program is below. Note that we use
the short form /r of the /reference switch.
> csc MyForm.cs /r:System.dll
 /r:System.Windows.Forms.dll /r:System.Drawing.dll

Run the new program. Click the Load button and you will be prompted to locate a
JPEG image file. If you do not have any such files, you can download some sample
images from the book’s website at www.manning.com/eebrown. Select an image, and
it will be loaded into the image window. Figure 1.4 shows a window with a selected
image loaded. If you think this image looks a little distorted, you are correct. We’ll
discuss this point in more detail later in the chapter.

As before, let’s take a look at our changes in some detail.

1.3.1 Events

If you think about it, Windows applications spend a large amount of time doing
nothing. In our example, once the window is initialized and controls drawn, the
20 CHAPTER 1 GETTING STARTED WITH WINDOWS FORMS

application waits for the user to click the Load button. This could happen immedi-
ately or hours later. How an application waits for such user interactions to occur is an
important aspect of the environment in which it runs. There are really only two pos-
sible solutions: either the application has to check for such actions at regular intervals,
or the application does nothing and the operating system kicks the program awake
whenever such an action occurs.

Waiting for a user action can be compared to answering the phone. Imagine if
there were no ringer and you had to pick up your phone and listen for a caller every
couple of minutes to see if someone was calling. Even ignoring the extra time a caller
might have to wait before you happened to pick up the receiver, it would be difficult
to perform any other activities because you would constantly have to interrupt your
work to check the phone. The ringer allows you to ignore the phone until it rings. You
can fall asleep on the couch while reading this book (not that you would, of course)
and rely on the phone to wake you up when someone calls (unless you turn off the
ringer, but that is a separate discussion).

Similarly, Windows would grind to a halt if applications were actively looking for
user actions all the time. Instead, applications wait quietly on the screen, and rely on
the operating system to notify them when an action requires a response. This permits
other applications to perform tasks such as checking for new email and playing your
music CD between the time you run a program and actually do something with it.
The interval between running the program and using it may only be seconds, but to
a computer every fraction of a second counts.

Internally, the Windows operating system passes messages around for this pur-
pose. When the user clicks the Load button, a message occurs that indicates a button
has been pressed. The Application.Run method arranges for the application to
wait for such messages in an efficient manner.

The .NET Framework defines such actions as events. Events are pre-defined sit-
uations that may occur. Examples include the user clicking the mouse or typing on
the keyboard, or an alarm going off for an internal timer. Events can also be triggered
by external programs, such as a web server receiving a message, or the creation of a new
file on disk. In C#, the concept of an event is built in, and classes can define events
that may occur on instances of that class, and enable such instances to specify func-
tions that receive and process these events.

While this may seem complicated, the result is simply this: when the user clicks
the mouse or types on the keyboard, your program can wake up and do something.
In our program, we want to do something when the user clicks the Load button. The
Button class defines an event called Click. Our program defines a method called
OnLoadClick to handle this event. We link these two together by registering our
method as an event handler for the Click event.
 btnLoad.Click += new System.EventHandler(this.OnLoadClick);
LOADING FILES 21

Since it is possible to have more than one handler for an event, the += notation is
used to add a new event handler without removing any existing handlers. When mul-
tiple event handlers are registered, the handlers are typically called sequentially in the
same order in which they were added. The System.EventHandler is a delegate in
C#, and specifies the format required to process the event. In this case,
EventHandler is defined internally by the .NET Framework as
 public delegate void EventHandler(object sender, EventArgs e);

A delegate is similar to a function pointer in C or C++ except that delegates are type-
safe. The term type-safe means that code is specified in a well-defined manner that can
be recognized by a compiler. In this case, it means that an incorrect use of a delegate
is a compile-time error. This is quite different than in C++, where an incorrect use of
a function pointer may not cause an error until the program is running.

By convention, and to ensure interoperability with other languages, event dele-
gates in .NET accept an object parameter and an event data parameter. The object
parameter receives the source, or sender, of the event, while the event data parameter
receives any additional information for the event. Typically, the sender parameter
receives the control that received the event. In our case, this is the actual Button
instance. The e parameter receives an EventArgs instance, which does not by default
contain any additional information.

We will discuss events and delegates in more detail later in the book, most notably
in chapters 3 and 9. For now, simply recognize that OnLoadClick is an event handler
that is invoked whenever the user clicks the Load button.

The next section looks at the implementation of the OnLoadClick method in
more detail.

1.3.2 The OpenFileDialog class

Once our OnLoadClick event handler is registered, we are ready to load a new
image into the application. The signature of the OnLoadClick method must match
the signature of the EventHandler delegate by being a void function that accepts
an object and EventArgs parameter. Note how this is a private method so that it
is not available except within the MyForm class.
 private void OnLoadClick(object sender, System.EventArgs e)
 {
 OpenFileDialog dlg = new OpenFileDialog();

 dlg.Title = "Open Photo";
 dlg.Filter = "jpg files (*.jpg)|*.jpg|All files (*.*)|*.*" ;

 if (dlg.ShowDialog() == DialogResult.OK)
 {
 pboxPhoto.Image = new Bitmap(dlg.OpenFile());
 }

 dlg.Dispose();
 }
22 CHAPTER 1 GETTING STARTED WITH WINDOWS FORMS

The System.Windows.Forms.OpenFileDialog class is used to prompt the user
to select an image to display. This class inherits from the more generic FileDialog
class, which provides a standard framework for reading and writing files. A summary
of this class is given in .NET Table 1.2.
 OpenFileDialog dlg = new OpenFileDialog();

 dlg.Title = "Open Photo";
 dlg.Filter = "jpg files (*.jpg)|*.jpg|All files (*.*)|*.*" ;

The Title property for this class sets the string displayed in the title bar of the dia-
log, while the Filter property defines the list of file types that can be seen in the
dialog. The format of the Filter property matches the one used for file dialogs in
previous Microsoft environments. The vertical bar character ‘|’ separates each part of
the string. Each pair of values in the string represents the string to display in the dia-
log and the regular expression to use when displaying files, respectfully. In our exam-
ple, the dialog box presents two options for the type of file to select. This first is “jpg
files (*.jpg)” which will match all files of the form *.jpg; while the second is “All
files (*.*)” which will match all files of the form *.*.

Once the OpenFileDialog object is created and initialized, the ShowDialog
method displays the dialog and waits for the user to select a file. This method returns
a member of the DialogResult enumeration, which identifies the button selected
by the user.
 if (dlg.ShowDialog() == DialogResult.OK)
 {
 pboxPhoto.Image = new Bitmap(dlg.OpenFile());
 }

If the user clicks the OK button, the ShowDialog method returns the value Dia-
logResult.OK. If the user clicks the Cancel button, the ShowDialog method
returns the value DialogResult.Cancel. When the OK button has been clicked,
the selected file is loaded as a Bitmap object, which is our next topic.

TRY IT! Note that no error handling is performed by our code. Try selecting a non-
image file in the dialog to see how the program crashes and burns. We will
talk about handling such errors in the next chapter.

Before we move on, note the final line of our OnLoadClick handler.
 dlg.Dispose();

While the garbage collector frees us from worrying about memory cleanup, non-
memory resources are still an issue. In this case, our OpenFileDialog object allo-
cates operating system resources to display the dialog and file system resources to
open the file via the OpenFile method. While the garbage collector may recover
these resources eventually, such resources may be limited and should always be
reclaimed manually by calling the Dispose method.
LOADING FILES 23

.

The Dispose method is the standard mechanism for cleaning up such resources. We
will discuss this method in more detail in chapter 6.

1.3.3 Bitmap images

So far we have discussed how our application responds to a click of the Load but-
ton and enables the user to select an image file. When the user clicks the OK but-
ton in the open file dialog box, the OnLoadClick method loads an image into the

.NET Table 1.2 FileDialog class

The FileDialog class is a common dialog that supports interacting with files on disk. This
class is abstract, meaning you cannot create an instance of it, and serves as the base class for
the OpenFileDialog and SaveFileDialog class. The FileDialog class is part of the Sys-
tem.Windows.Forms namespace and inherits from the CommonDialog class.

Note that a FileDialog object should call the Dispose method when finished to ensure
that nonmemory resources such as file and window handles are cleaned up properly.

Public Properties

AddExtension Gets or sets whether the dialog box automatically
adds the file extension if omitted by the user.

CheckFileExists Gets or sets whether the dialog box displays a
warning if the specified file does not exist.

FileName Gets or sets the string containing the selected file
name.

FileNames Gets the array of strings containing the set of files
selected (used when the
OpenFileDialog.Multiselect property is true).

Filter Gets or sets the file name filter string, which
determines the file type choices for a file dialog box.

InitialDirectory Gets or sets the initial directory displayed by the file
dialog box.

RestoreDirectory Gets or sets whether the dialog box restores the
current directory to its original value before closing.

ShowHelp Gets or sets whether the Help button appears on the
dialog.

Title Gets or sets the title bar string for the dialog box.

Public Methods

Reset Resets all properties for the dialog box to their
default values.

ShowDialog
(inherited from
CommonDialog)

Displays a common dialog box and returns the
DialogResult enumeration value of the button
selected by the user.

Public Events

FileOk Occurs when the Open or Save button is clicked on a
file dialog box.

HelpRequested
(inherited from
CommonDialog)

Occurs when the Help button is clicked on a
common dialog box.
24 CHAPTER 1 GETTING STARTED WITH WINDOWS FORMS

PictureBox control. It does this by creating a new Bitmap object for the selected
file and assigning it to the Image property of the PictureBox control.
 if (dlg.ShowDialog() == DialogResult.OK)
 {
 pboxPhoto.Image = new Bitmap(dlg.OpenFile());
 }

The support for image files has been steadily improving with each new development
environment from Microsoft, and the .NET Framework is no exception. While the
.NET classes do not provide all the functionality you might like (as we shall see), it
does provide a number of improvements over the previous support provided by the
MFC (Microsoft Foundation Class) library. One of them is the PictureBox control
to make image display a little easier. All we have to do is set the Image property to a
bitmap image and the framework takes care of the rest.

Our friend, the new keyword, creates the Bitmap. Once again, we see how garbage
collection makes our life easier. In C++, the memory allocated for this Bitmap would
need to be tracked and eventually freed with a call to delete. In C#, we create the
object and forget about it, relying on the garbage collector to clean it up when a new
image is loaded by the OnLoadClicked method and the existing Bitmap replaced.

The OpenFileDialog class provides a couple of ways to access the selected file.
The FileName property retrieves the path to the selected file. In our code, we opt for
the OpenFile method to open this file with read-only permission. The open file is
passed to the Bitmap constructor to load the image.

The constructed bitmap is assigned to the Image property of our pboxPhoto
variable. This property can hold any object which is based on the Image class, includ-
ing bitmaps, icons, and cursors.

How this image appears within the picture box control depends on the Pic-
tureBox.SizeMode property. In our case, we set this property so that the image is
shrunk and/or expanded to fit the boundaries of the PictureBox control.
 pboxPhoto.SizeMode = PictureBoxSizeMode.StretchImage;

TRY IT! If you’re feeling slightly adventurous, you should now be able to add a sec-
ond Button and second PictureBox to the form. Label the second but-
ton “Load2” and implement an OnLoad2Click event handler that loads
a second image into the second PictureBox control.

As an alternate modification, change the Main method to receive the array
of command-line arguments passed to the program in an args variable. Load
the first parameter in args[0] as a Bitmap object and assign it to the Pic-
tureBox control for the MyForm class. To do this, you will need to add a new
constructor to the MyForm class that receives the name of an image file.
LOADING FILES 25

1.4 Resizing forms
The final topic we touch on in this chapter is resizing forms. For readers familiar with
MFC programming in Visual C++, you will know that it can take some work to
properly resize a complicated form. The folks at Microsoft were likely aware of this
and sought to simplify this task in .NET.

Before looking at our new code listing, try resizing our existing program to see
what happens. The position of each control is fixed relative to the top-left corner of
the form, as shown in figure 1.5.

We would prefer the PictureBox control to resize automatically along with the
window, as is shown in figure 1.6. Fortunately, Windows Forms controls provide a
couple of properties to achieve this effect, namely the Anchor and Dock properties.

Figure 1.5

Version 1.3 of our appli-

cation uses the default

resize behavior, with

both controls anchored

to the top and left of the

window.

Figure 1.6

Version 1.4 of our ap-

plication anchors the

picture box control to

all sides of the win-

dow, so that it resizes

automatically whenev-

er the window is re-

sized.
26 CHAPTER 1 GETTING STARTED WITH WINDOWS FORMS

Revise your code so that it matches listing 1.4. This new code sets the Anchor prop-
erty for each control, and uses the version number 1.4. As before, the changes to our
code from section 1.3 are shown in bold.

[assembly: System.Reflection.AssemblyVersion("1.4")]

namespace MyNamespace
{
 using System;
 using System.Drawing;
 using System.Windows.Forms;

 public class MyForm : System.Windows.Forms.Form
 {
 private Button btnLoad;
 private PictureBox pboxPhoto;

 public MyForm()
 {
 // Constructor
 this.Text = "Hello Form 1.4";
 this.MinimumSize = new Size(200,200);

 // Create and configure the Button
 btnLoad = new Button();
 btnLoad.Text = "&Load";
 btnLoad.Left = 10;
 btnLoad.Top = 10;
 btnLoad.Click += new System.EventHandler(this.OnLoadClick);
 btnLoad.Anchor = AnchorStyles.Top | AnchorStyles.Left;

 // Create and configure the PictureBox
 pboxPhoto = new PictureBox();
 pboxPhoto.BorderStyle = System.Windows.Forms.BorderStyle.Fixed3D;
 pboxPhoto.Width = this.Width / 2;
 pboxPhoto.Height = this.Height / 2;
 pboxPhoto.Left = (this.Width - pboxPhoto.Width) / 2;
 pboxPhoto.Top = (this.Height - pboxPhoto.Height) / 2;
 pboxPhoto.SizeMode = PictureBoxSizeMode.StretchImage;
 pboxPhoto.Anchor = AnchorStyles.Top | AnchorStyles.Bottom
 | AnchorStyles.Left | AnchorStyles.Right;

 // Add our new controls to the Form
 this.Controls.Add(btnLoad);
 this.Controls.Add(pboxPhoto);
 }

 protected void OnLoadClick(object sender, System.EventArgs e)
 {
 OpenFileDialog dlg = new OpenFileDialog();

 dlg.Title = "Open Photo";
 dlg.Filter = "jpg files (*.jpg)|*.jpg|All files (*.*)|*.*" ;

Listing 1.4 The PictureBox resizes based on the Anchor property setting
RESIZING FORMS 27

 if (dlg.ShowDialog() == DialogResult.OK)
 {
 pboxPhoto.Image = new Bitmap(dlg.OpenFile());
 }

 dlg.Dispose();
 }

 public static void Main()
 {
 Application.Run(new MyForm());
 }
 }
}

As an aside, figure 1.6 exposes a problem with our application that will need to be
fixed. Since the image scales along with our PictureBox control, the aspect ratio
changes as well. The aspect ratio is the ratio of the height of an image to its width. A
standard 4-inch by 6-inch photograph, for example, has an aspect ratio of two-thirds
(4 divided by 6). As the form is resized the image is distorted to fit the control, which
affects the aspect ratio. We will fix this in chapter 7. In the meantime, keep in mind
that our program exhibits what can only be called a bug.

While we have only added three lines here, they lead us to some interesting dis-
cussion points.

1.4.1 Desktop layout properties

The first change in our program sets the MinimumSize property to define the mini-
mum possible size for the form. This ensures that the form never becomes so small
that the PictureBox disappears and our image cannot be seen.

The MinimumSize property is a Size structure representing the minimum
width and height of the form. As you may recall, structures are value types and store
their data directly, either on the stack or as part of the containing type. As we discussed
in section 1.1.3, the new keyword is used to create a new value type. When one value
type is assigned to another, as we do here, the contents of the original type are copied
into the target type. As a result, the fact that the newly allocated Size structure is
destroyed when the MyForm constructor is finished has no effect on the value stored
within the MyForm class.
 public MyForm()
 {
 . . .
 this.MinimumSize = new Size(200,200);
 . . .
 }
28 CHAPTER 1 GETTING STARTED WITH WINDOWS FORMS

Note that the System.Drawing namespace defines a number of structures that are
used in a similar manner, including the Size, Point, and Rectangle structures.
We will encounter these types repeatedly throughout the book.

The MinimumSize property is one of a number of properties that control how
a form behaves on the Windows Desktop. While not directly related to our discussion,
this is a good place to introduce these properties as a set. Figure 1.7 illustrates how
these properties relate to the desktop.

A brief explanation of each property shown in figure 1.7 is provided in the fol-
lowing table:

1.4.2 The Anchor property

The remaining two lines added to our program use the Anchor property to fix the
control on the form in relation to the form’s edges.
 // Create and configure the Button
 . . .
 btnLoad.Anchor = AnchorStyles.Top | AnchorStyles.Left;

 // Create and configure the PictureBox

 . . .

 pboxPhoto.Anchor = AnchorStyles.Top | AnchorStyles.Bottom
 | AnchorStyles.Left | AnchorStyles.Right;

Property Type Description

ControlBox bool Whether to include a control box (upper-left icon) on the
form.

DesktopBounds Rectangle The bounds (area) of the form on the desktop.

DesktopLocation Point The location of the upper left corner of the form on the
desktop.

FormBorderStyle FormBorderStyle This defines whether the form is a dialog box, whether it
is resizable, and what type of outer border is used.

Icon Icon The icon, or picture, used to represent the form. This
appears in the control box and on the taskbar.

MaximizedBounds Rectangle The bounds of the form when it is maximized. This
property is protected.

MaximizeBox bool Whether to include a maximize box on the form. Note
that this is only shown if the ControlBox property is
true.

MaximumSize Size The maximum size to which the form can be resized.

MinimizeBox Size Whether to include a minimize box on the form. Note that
this is only shown if the ControlBox property is true.

MinimumSize Size The minimum size to which the form can be resized.

ShowInTaskBar Bool Whether to show the form on the Windows taskbar.
RESIZING FORMS 29

All controls in the .NET Framework support the Anchor property for this purpose. The
property is set using the AnchorStyles enumeration, discussed in .NET Table 1.3..

c

d

e

f

g

h

MaximizeBoxj

MinimizeBoxI

MaximizedBoundsh

Ij

ShowInTaskbarg

MaximumSizef

DesktopBounds
DesktopLocation

e

b

MinimumSized

FormBorderStylec

ControlBox iconb

Figure 1.7 The properties for the Form class that relate to the Windows desktop define the size, appear-

ance, and position of the form on the desktop.

.NET Table 1.3 AnchorStyles enumeration

The AnchorStyles enumeration specifies the settings available for the Anchor property in the
Control class, and by inheritance all controls in the .NET Framework. The enumeration is part
of the System.Windows.Forms namespace. An Anchor property is set for a control object
using a bitwise or (with the vertical bar ‘|’ operator) of the desired values.

Enumeration values

Bottom Control is anchored to the bottom edge of its container.

Left Control is anchored to the left edge of its container.

None Control is not anchored to its container. When an
Anchor property is set to None, the control moves half
the distance that its container is resized in all directions.

Right Control is anchored to the right edge of its container.

Top Control is anchored to the top edge of its container.
30 CHAPTER 1 GETTING STARTED WITH WINDOWS FORMS

The Anchor property preserves the distance from the control to the anchored edge or
edges of its container. Here, the container for the button and picture box controls is the
Form itself. There are also other containers such as the Panel and GroupBox controls
that we will encounter in chapters 7 and 9 that can hold anchored controls as well.

You can think of an anchor as being much like a boat tethered to a floating pier
at the edge of a lake. The lake is “resized” as the water level rises and falls, but the dis-
tance of the boat from the pier remains constant based on the length of the tether.

For example, if a control is anchored 10 pixels from the left edge of its container,
it will remain 10 pixels from the left edge regardless of the size of the container. If a
control is anchored to opposite sides then the control expands or shrinks so that the
distance from its edges to the anchored edges remain constant.

In our code, the Button is anchored to the top and left of the form, which is
the default setting for the Anchor property. As a result our Load button remains in
the upper left corner of the display window as the form is resized. The PictureBox
control is anchored to all four sides so that it expands as the application window
expands and shrinks as the window shrinks.

TRY IT! Change the Anchor settings in your program to experiment with this prop-
erty. In particular, set this property for the btnLoad control to An-
chorStyles.None. You will find that the control moves half the distance
the form is resized in this case. Expand the form by 10 pixels horizontally,
and the Load button will be 5 additional pixels from the left edge.

While you’re at it, take out the MinimumSize property and see what
happens. For the more adventurous, use the desktop properties from
figure 1.7 such as ControlBox and MaximumSize to see the effect on
your program.

1.4.3 The Dock property

The use of Anchor is fine when you have a set of controls and need to define their
resize behavior. In the case where you want to use as much of the form as possible, the
Anchor property does not quite work. While you could position the control at the
edges of the form and anchor it to all sides, this is not the most elegant solution.
Instead the framework provides the Dock property for this purpose.

The Dock property is related to Anchor in that it also affects the resizing of con-
trols on a form. In our previous analogy of the boat tethered to a floating pier, the boat
itself is “docked” to the shore, in that it remains at the edge of the lake as the water
rises and falls. Similarly, the Dock property establishes a fixed location for a control
within its container by fixing it flush against a side of the form.

Like Anchor, the Dock property takes its values from an enumeration, in this
case the DockStyle enumeration. Note that one enumeration is plural (Anchor-
Styles) since a control can be anchored to multiple sides, while the other enumer-
ation is singular (DockStyle) since a control is docked to no sides, one side, or all
sides. More details on this enumeration appear in .NET Table 1.4.
RESIZING FORMS 31

We can see how the Dock property works by changing our program so that the Pic-
tureBox control fills the entire form. Also change the version number in your pro-
gram code to 1.5 (not shown here).
 pboxPhoto.Top = (this.Height - pboxPhoto.Height) / 2;
 pboxPhoto.SizeMode = PictureBoxSizeMode.StretchImage;
 pboxPhoto.Dock = DockStyle.Fill;

 // Add our new controls to the Form
 this.Controls.Add(btnLoad);
 this.Controls.Add(pboxPhoto);

Compile and run the program again. After
loading an image your form should look
something like figure 1.8. Note how the
Load button is still visible since it is added to
the form first and is therefore higher in the z-
order stack than the image.

Note that if multiple controls are set to
the same Dock value, the z-order of the con-
trols determines the order in which the con-
trols are docked. The top, or first, control in
the z-order stack is placed flush against the
docked edge. The next control is placed flush
against the first control, and so on. The excep-
tion is the DockStyle.Fill value. In this
case the controls appear on top of one
another, and the z-order determines which
control is seen.

.NET Table 1.4 DockStyle enumeration

The DockStyle enumeration specifies the settings available for the Dock property in the Con-
trol class, and by inheritance all controls in the .NET Framework. This enumeration is part of
the System.Windows.Forms namespace. If a Dock property other than None is set for a con-
trol then the Anchor setting for that control is set to the top and left edges

Enumeration

values

Bottom Control is positioned flush against the bottom edge of its
container.

Fill Control is positioned flush against all sides of its container.

Left Control is positioned flush against the left edge of its container.

None Control is not docked to its container. This is the default, and
indicates that the Anchor property is used to maintain the
control’s position within its container.

Right Control is positioned flush against the right edge of its
container.

Top Control is positioned flush against the top edge of its container.

Figure 1.8 This PictureBox control in

this window is docked to fill the entire

client area of the form.
32 CHAPTER 1 GETTING STARTED WITH WINDOWS FORMS

TRY IT! Modify the order in which the controls are added to the form (add the
PictureBox first and the Button second) to change the z-order of the
button and box. This will cause the button to be below (or behind) the im-
age so that it no longer appears. However, the button is still there, and you
can use the access key Alt+L to load an image.

While you are at it, try setting the Dock property for the Button to
DockStyle.Top. How does this affect the application window, and how
does the z-order for these controls affect their placement on the form?

Of course, you can experiment with other Dock settings as well.

We will use the Dock and Anchor properties throughout the book, so more examples
with these properties are yet to come.

1.5 Recap

Before we move on, let’s quickly review what we covered in this chapter. These chap-
ter recaps will be quick, and will introduce the subsequent chapter as well.

In this chapter we did a whirlwind tour of .NET terms and C# features. We
showed how to build and run an application containing a blank form, and added a
Load button to select an image file and a picture box control to display this file. We
discussed different members of C# classes such as constructors, methods, properties,
and events, and saw how .NET executes a program. We also looked at how to use the
OpenFileDialog class to open a file, and the Anchor and Dock properties for set-
ting the position and resize behavior of a control.

We intentionally ignored Visual Studio .NET in this chapter. Instead we edited
code by hand and used the command-line compiler to build and link our program.
In the next chapter we will examine how to build the identical program using Visual
Studio .NET, and use the opportunity to present some additional details about the
world of .NET.

The concepts presented here will be discussed in more detail as we progress
through the book. So if you missed it the first time, you will have a second chance
to figure it out.
RECAP 33

C H A P T E R 2

Getting started with
Visual Studio .NET

2.1 Programming with Visual Studio .NET 35
2.2 Adding controls 43
2.3 Loading files 54
2.4 Resizing forms 61
2.5 Recap 65
This chapter will take a look at Microsoft’s newest interactive development environ-
ment, or IDE. This, of course, is Visual Studio .NET, sometimes referred to as Visual
Studio 7.0 or VS .NET.1 Visual Studio .NET provides a number of advances over
previous versions of Microsoft’s development environments that make it worth a
look. The environment does use a lot of resources, which may make it inappropriate
for some older machines with less memory or for savvy developers that prefer a good
text editor and a set of build files.

Either method of development is possible with this book. Since Visual Studio is
intended as the development environment of choice for .NET, the rest of this book
will use Visual Studio in its examples. If you are comfortable using command-line pro-
grams and/or makefiles, you should be able to follow these examples and associated
code excerpts to write the code in your favorite editor.

1 Early versions of this environment, including the Beta2 version, were called Visual Studio.NET, with
no space. This was later changed, but you will likely see both versions of the name. The official name
includes the extra space.
34

Do not discount the use of Visual Studio, however. Even relatively modest Win-
dows applications require a number of files and classes to create the resulting program.
When working in a text editor, you the programmer must remember the required
files, the classes, their member names, and other information. Visual Studio attempts
to organize such information on your behalf and alleviates the need to track all of
these pieces. In addition, Visual Studio provides some graphical shortcuts intended
to ease the layout and programming of your applications. How much they actually
help your efforts will depend on your personal preferences. Do, however, take a look
and make a conscious decision. As an aside, it is interesting to note that almost all of
Visual Studio .NET was written in C#.

Since this book is not specifically about Visual Studio .NET, this is the only chap-
ter that focuses solely on this new environment. Additional information on the envi-
ronment will be discussed as it arises while building our application, so pay close
attention to the procedures shown here. In particular, you should know how to do the
following in Visual Studio .NET by the end of this chapter.

• Start a new Windows Forms project.
• Add and place controls on a form.
• Modify properties of a control, including the variable name for the control.
• Add a Click event handler to a Button control.

In order to concentrate on the environment, most of this chapter will recreate the
photo application already presented in chapter 1. We will call our new program
“MyPhotos” and follow the sections from the previous chapter to create a very similar
application. This application will be used throughout the rest of the book as we add
and refine the features and capabilities of the MyPhotos application.

Lest you get bored, there are some new topics thrown in here as well. In partic-
ular, we will look more closely at two topics:

• Assembly attributes such as version numbers.
• Exception handling in C#.

2.1 Programming with Visual Studio .NET

Version 1.1 of the MyForm program was a blank form. A similar application is the
default starting point in Visual Studio .NET. In this section we will create an initial
MyPhotos application using Visual Studio .NET instead of a text editor. Of course,
we are still programming in C#, just using the graphical tools provided by Visual Stu-
dio instead of the command-line tools used in chapter 1. In this section we will create
a program very similar to that shown in figure 1.1 in the first chapter, on page 4.

As in chapter 1, this discussion assumes you have installed the .NET SDK and
Visual Studio .NET on your PC. We also assume you have some knowledge of Win-
dows, such as the ability to start the Visual Studio .NET program. The initial window
of this program is shown in figure 2.1.
PROGRAMMING WITH VISUAL STUDIO .NET 35

As a way to structure our discussion, this chapter as well as subsequent chapters will
use the Action-Result table format described in the introduction to present the steps
required to create the sample code discussed in each chapter. These tables provide
numbered instructions for the task, including the actions to perform and the result of
these actions.

In this section we will create a Visual Studio project for our application, compile
and run this application from within Visual Studio, and look at the source code gen-
erated by Visual Studio in contrast to the program we wrote in section 1.1.

2.1.1 Creating a project

To begin, let’s create a Visual Studio project called “MyPhotos” for our new applica-
tion. This application will duplicate the functionality presented in section 1.1. The

b

c

d

e

f

g

h

Links

These display various information and resources
available. The link is shown.Get Started

c

Toolbox

Used to add new controls to a form
b

Recent projects
Quick access to recent projects

d

Dockable windows

One-click access (via the tabs) to
various windows in the environment

e

New Project button

Click here to create a new project
f

Solution Explorer

Displays the files and resources in your
solution. Note that this area contains
other dockable windows.

g

Dynamic Help

Instant help on topics related to
your current activities.

h

Figure 2.1 Components of the initial Visual Studio .NET window that relate to the discus-

sion in this chapter. The exact placement of some of these windows may vary.
36 CHAPTER 2 GETTING STARTED WITH VISUAL STUDIO .NET

following table enumerates the steps required. We discuss the term project and other
aspects of the application following this table.

CREATE THE MYPHOTOS PROJECT

Action Result

1 Start Visual Studio. NET.

How-to

Locate the appropriate
item in the Start menu.

The Microsoft Development Environment displays with the Start
Page shown.

Note: This window is illustrated in figure 2.1. You may want to
consider closing the Dynamic Help window (by clicking the X
in the upper right corner of this window) while using this
book. While quite useful in that it provides help related to your
current activities, this window also uses quite a bit of CPU and
memory resources.

2 Click the New Project
button.

The New Project dialog box appears.

3 Under Project Types,
select Visual C# Projects.

A list of C# Templates appears.

4 Under Templates, select
Windows Application.

5 In the Name field, enter
“MyPhotos”.

Note: The Location entry may vary depending on which ver-
sion of Windows you are using. To avoid any confusion, this
book will use the directory “C:\Windows Forms\Projects.” In
your code, use the default setting provided by the environ-
ment.
PROGRAMMING WITH VISUAL STUDIO .NET 37

Visual Studio .NET has a lot of information and a ton of features. We will cover
some features in this section, and others as we develop our application. On the right
side of the Visual Studio window, you will see the Solution Explorer window. This
window shows the contents of the current solution, namely the projects in the solu-
tion and files in these projects.

Visual Studio uses projects and solutions to manage application development.
Conceptually, a project is a collection of files that produce a .NET application, such
as a library (.dll) or executable (.exe). A solution is a collection of projects that are
grouped together for development or deployment purposes. When a solution has only
one project, the two words are somewhat equivalent.

The MyPhotos solution is stored on disk in a file called “MyPhotos.sln.” This
solution holds a single project called MyPhotos, stored in the C# project file “MyPho-
tos.csproj.” The Solution Explorer window shows the MyPhotos solution containing
the MyPhotos project. This project displays four items:

• References—the list of assemblies referenced by the project. These are provided
to the compiler using the /references switch we saw in chapter 1. You can
expand this entry to see the default list of assemblies for the project, or wait
until chapter 5 where we add an assembly to this list.

• App.ico—the icon for the application. We will discuss icons in chapter 12.

6 Click the OK button. The new MyPhotos project is created. The Solution Explorer now
contains the files in this solution, and the main window displays a
blank form.

CREATE THE MYPHOTOS PROJECT (continued)

Action Result
38 CHAPTER 2 GETTING STARTED WITH VISUAL STUDIO .NET

• AssemblyInfo.cs—a file containing the assembly information for the project. We
talk about this file in section 2.2.1.

• Form1.cs—a file containing the default Form class created for our application.
We look at the contents of this file below.

We will discuss the meaning and use of these items later in this chapter and through-
out the book.

2.1.2 Executing a program

Our MyPhotos project is in fact a fully functional application. To see this, let’s com-
pile and run the application from within Visual Studio.

Note that we have not written any code to create this application. The code has been
generated for us by Visual Studio. By default, Visual Studio displays the Windows
Forms Designer window for the default Form class created in the project, which pre-
sents a graphical display of the form. We can also display the source code for the
Form1.cs file containing this default class.

2.1.3 Viewing the source code

As in section 1.1, our application here is not all that glamorous. The source code is
quite similar to the code from chapter 1. The following table shows how to view this
code so that we can discuss it in more detail.

COMPILE AND RUN THE MYPHOTOS APPLICATION

 Action Result

1 Compile the project. This compiles the project and creates an executable file.

Note: The default keyboard shortcut is Ctrl+Shift+B.
Depending on your keyboard setting, you may see a dif-
ferent shortcut in your application. Click on the “My
Profile” option on the Start pge to see your setting.

2 Run the application. The MyPhotos application executes, displaying our not-so-
exciting blank form.

Note: This window is very similar to the original MyForm
application written in chapter 1. Here and throughout the
book, you can run applications with or without debug-
ging. The result should be the same in either case.

How-to

a. Click the Build menu.
b. Select the Build Solution

item.

Alternately

Use the keyboard shortcut
Ctrl+Shift+B.

How-to

a. Click the Debug menu.
b. Select the Start Without

Debugging item.

Alternately

Use the keyboard shortcut
Ctrl+F5.
PROGRAMMING WITH VISUAL STUDIO .NET 39

A listing of the Form1.cs code that appears in Visual Studio is shown below.
using System;
using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;
using System.Data;

namespace MyPhotos
{
 /// <summary>
 /// Summary description for Form1.
 /// </summary>
 public class Form1 : System.Windows.Forms.Form
 {
 /// <summary>
 /// Required designer variable.
 /// </summary>
 private System.ComponentModel.Container components = null;

 public Form1()
 {

View the code generated by Visual Studio .NET

 Action Result

1 Right-click the Form1.cs file
in the Solution Explorer
window.

A menu of options appears.

Note: We will also use the Rename item in this menu
later in the chapter to rename the Form1.cs file.

2 Select the View Code item. A Form1.cs tab appears in the main window containing the C#
code for your application.

b XML documentation

 Internal components variable c
40 CHAPTER 2 GETTING STARTED WITH VISUAL STUDIO .NET

 //
 // Required for Windows Form Designer support
 //
 InitializeComponent();

 //
 // TODO: Add any constructor code after InitializeComponent call
 //
 }

 /// <summary>
 /// Clean up any resources being used.
 /// </summary>
 protected override void Dispose(bool disposing)
 {
 if(disposing)
 {
 if (components != null)
 {
 components.Dispose();
 }
 }
 base.Dispose(disposing);
 }

 #region Windows Form Designer generated code
 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 this.components = new System.ComponentModel.Container();
 this.Size = new System.Drawing.Size(300,300);
 this.Text = "Form1";
 }
 #endregion

 /// <summary>
 /// The main entry point for the application.
 /// </summary>
 [STAThread]
 static void Main()
 {
 Application.Run(new Form1());
 }
 }
}

This code for MyPhotos looks a lot like our original MyForm application. The namespace
MyPhotos is used, and a class Form1 is created that is based on the System.Win-
dows.Forms.Form class. Some key differences to notice are listed on page 42. Note
that the numbers here correspond to the numbered annotations in the above code.

d Dispose
method

Region for designer
generated code e

f Declare thread as single
threaded apartment
PROGRAMMING WITH VISUAL STUDIO .NET 41

b Visual Studio inserts comments for documenting your program and its methods. The
C# language defines a standard for XML documentation of code. Such lines must
begin with three slashes and precede certain C# constructs such as classes, properties,
and namespaces. There is a standard for what this documentation should look like
that is summarized in appendix A. Check out the online documentation for complete
details. The C# compiler csc accepts a /doc switch that gathers all such documen-
tation lines and generates HTML reference pages. Visual Studio will do this for your
code using the Build Comment Web Pages… menu item located in the top-level
Tools menu.
 /// <summary>
 /// Summary description for Form1.
 /// </summary>

c The Windows Forms Designer requires this field in order to ensure that components
are properly managed on the form at run time, and specifically for components that
are not also Windows Forms controls. We will discuss this field later in chapter 13
when we talk about specific components such as the ImageList class.
 private System.ComponentModel.Container components;

d The use of garbage collection in .NET means that you have no idea when memory
will be freed from objects no longer in use. Since some objects use critical system
resources such as file handles or database connections that should be cleaned up as
quickly as possible, a Dispose method is provided to do just this. All Windows
Forms controls provide a Dispose method, and it is normally an error to use an
object after its Dispose method has been called. We will discuss this method in
greater detail in chapter 5.
 protected override void Dispose(bool disposing)
 {

e A special InitializeComponent method is created for initializing the controls for
the form. This method is processed by the Windows Forms Designer window when-
ever this design window is displayed. While Microsoft recommends that you do not
edit this method manually; if you are very careful, manual changes can be made. By
default, this region is hidden in the source code window using the C# preprocessor
#region directive. The #region directive defines a block of code that can be
expanded and collapsed in editors such Visual Studio .NET.
 #region Windows Form Designer generated code
 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 this.components = new System.ComponentModel.Container();
 this.Size = new System.Drawing.Size(300,300);
42 CHAPTER 2 GETTING STARTED WITH VISUAL STUDIO .NET

 this.Text = "Form1";
 }
 #endregion

It is worth noting here that the InitializeComponent method is called from the
Form1 constructor. In chapter 1, we initialized our Form object in the constructor as
well. Visual Studio uses a separate method for this purpose in order to encapsulate the
auto-generated code for the program.

f This line assigns the STAThread attribute to our Main function. This ensures that
the main application thread runs as a single threaded apartment so that operations
such as drag and drop and the clipboard will work correctly. Strictly speaking, we
should have done this in chapter 1 as well (we did not in order to keep the number of
discussion points down). Apartments and threading are a bit beyond our discussion
here, so for now just accept that this line is needed for the form to properly interact
with the clipboard and other parts of the Windows operating system.
 [STAThread]

Congratulations are once again in order for creating your first Windows Forms pro-
gram, this time in Visual Studio .NET. Sit back in your chair to savor your accom-
plishment, and join me in section 2.2 when you are ready to add some controls to
your program.

2.2 Adding controls

In this section we use Visual Studio .NET to add the Button and PictureBox con-
trols to our form. Before we do, let’s take a look at the AssemblyInfo.cs file in our project.

2.2.1 The AssemblyInfo file

When you create a C# Windows application project, an AssemblyInfo.cs file is cre-
ated to define various attributes for the program assembly. This includes the version
number shown in the Version tab when you display the program’s properties dialog
box from Windows Explorer. An attribute in C# is a declarative tag that affects the
settings or behavior exhibited by an assembly, type (such as a class), or type member
(such as a method or property). All attributes are based on the System.Attribute
class defined in the .NET Framework as part of the System.Reflection
namespace.

The AssemblyInfo.cs file makes use of some assembly-related attributes defined
by this namespace. These settings are defined using the standard format for attributes
targeted at the assembly file:
 [assembly: <attribute>(<setting>)]

The various attribute classes defined for this purpose include the AssemblyVer-
sionAttribute class supporting the file version number settings. In C#, the
ADDING CONTROLS 43

Attribute portion of the class name can be omitted, resulting in a version number
setting something like the following:
 [assembly: AssemblyVersion("1.0")]

A summary of the attributes used by this file are shown in the following table:

Most of these attributes accept a string that specifies the value for the attribute. One
exception is the AssemblyVersion attribute. The version number is used internally
for comparing expected and actual version numbers of other assemblies, namely pro-
grams or libraries, used by your application. The version number format is a string
specified as follows:
 Major.Minor.Build.Revision

These are all expected to be integers. The first two values are for the major and minor
version number used by most products these days. Changes in these numbers nor-
mally represent incompatible changes with previous versions; that is, version 2.1 is
not compatible with version 2.2 of the same library.

The build number is for different compiles of the same minor version of an assem-
bly. Occasionally this might introduce incompatibilities, but often version 2.1.17 will
operate the same as version 2.1.42, although perhaps with some slight problems in the
earlier build that will have been fixed in the later build. The revision number is for bug
fixes or other incidental updates, and should not normally break compatibility.

In .NET, the build and revision number can be inserted automatically by the com-
piler. This is done by inserting an asterisk (*) in place of one or both of these numbers.

The automated build number is the number of days since January 1, 2000 in local
time, and the automated revision number is the number of seconds since the previous
midnight, local time, modulo 2. These automated values ensure that a new build and
revision number is generated for each compile, that the build number always increases,
and that the revision number increases within a generated build. It should be noted
that this scheme is good for thousands of years, and that the revision number will never
be larger than a 32-bit integer. Some examples and interpretations of version number
strings are shown in the following table.

Common attributes in AssemblyInfo.cs file

Attribute Description

AssemblyTitle The title for this assembly

AssemblyDescription A short description of the assembly

AssemblyCompany The company name for the assembly

AssemblyProduct The product name for the assembly

AssemblyCopyright The copyright string for the assembly

AssemblyVersion The version string for the assembly
44 CHAPTER 2 GETTING STARTED WITH VISUAL STUDIO .NET

In our application, we will set the version number equal to the current section num-
ber. The following steps set the version number for our application to 2.2. While we
are here, we will also assign values to other settings in the AssemblyInfo.cs file, and
use the ProductVersion property of the Application class to include this ver-
sion number in the title bar automatically.

Assembly version number examples

Version

String
Major # Minor # Build # Revision #

“1” 1 0 0 0

“2.1” 2 1 0 0

“3.2.1” 3 2 1 0

“4.3.2.1” 4 3 2 1

“5.4.*” 5 4 Days since 1 Jan 2000 in
local time.

Seconds since midnight,
local time, divided by 2.

“6.5.4.*” 6 5 4 Seconds since midnight,
local time, divided by 2.

SET THE VERSION NUMBER FOR THE MYPHOTOS PROJECT

Action Results

1 Display the project’s
AssemblyInfo.cs file.

The source code for this file appears in the main window.

2 Find the AssemblyVersion
line and change the version
number to “2.2”.

 [assembly: AssemblyVersion("2.2")]

3 Set the other assembly
attributes to reasonable
values.

In my code, I used the following settings.

 [assembly: AssemblyTitle("MyPhotos")]
 [assembly: AssemblyDescription("Sample application
 for Windows Forms Programming with C#")]
 [assembly: AssemblyConfiguration("")]
 [assembly: AssemblyCompany("Manning
 Publications Co.")]
 [assembly: AssemblyProduct("MyPhotos")]
 [assembly: AssemblyCopyright("Copyright
 (C) 2001")]
 [assembly: AssemblyTrademark("")]
 [assembly: AssemblyCulture("")]

4 Display the Form1.cs source
code file.

How-to

In the Solution Explorer
window, double click the
name of the file.
ADDING CONTROLS 45

In your applications, you can set the build and revision numbers explicitly, or have
.NET generate them automatically. We will change the version number repeatedly
throughout this book as a way to indicate which section of the book corresponds to
the current application. You can change or not change the version number as you
wish. On the book’s web site, these version numbers are used to identify the file asso-
ciated with a specific section.

In your own applications, a version number identifies a specific instance of a
product that your customers or friends are using. This is useful for documentation
and support reasons, and for indicating to your customers when new features and
functionality are added to a product. Note that it is common practice to include the
version number in a dialog box, often called an About box, that is available from a
top-level Help menu in an application.

Of course, the class Form1 is not the most descriptive name, so let’s rename this
class next.

2.2.2 Renaming a form

One other change before we add some controls to our form. Visual Studio created the
class Form1 in our project. Let’s rename this file and associated class to MainForm.

5 Locate the Form1
constructor.

 public Form1
 {
 . . .

6 At the end of the
constructor, add code to
include the version number
in the title bar.

 // Set the application title bar
 Version ver
 = new Version(Application.ProductVersion);

 this.Text = String.Format("MyPhotos {0:#}.{1:#}",
 ver.Major, ver.Minor);
 }

Note: This code uses the Version class to decode the
version string. The constructor of this class accepts a
string and provides access to the individual parts of the
corresponding version number.

SET THE VERSION NUMBER FOR THE MYPHOTOS PROJECT (continued)

Action Results
46 CHAPTER 2 GETTING STARTED WITH VISUAL STUDIO .NET

With an explanation of versions and the renaming of our main form out of the way,
we can get back to the topic of placing controls on our form.

RENAME THE FORM1 CLASS AND FILE TO MAINFORM

 Action Result

1 Rename the Form1.cs file in
the Solution Explorer window
to MainForm.cs.

The file is renamed. The designer and code windows are
also renamed to reflect the new file name.

2 If not already shown, display
the MainForm.cs window
containing our source code.

How-to

Click the MainForm.cs tab in
the main window.

3 Replace all occurrences of the
string “Form1” with
“MainForm.”.

The Replace dialog box should appear as follows.

After the Replace All button is clicked, all four occurrences
of the string are replaced in the code.

4 Click the Close button. The Replace dialog disappears.

How-to

a. Right-click the Form1.cs file
in the Solution Explorer
window.

b. Select the Rename item.
c. Type the new name “Main-

Form.cs” for the file.
d. Press the Enter key.

How-to

a. Type the Ctrl+H key to dis-
play the Replace dialog.

b. Type “Form1” for the Find
what: text and “MainForm”
for the Replace with text,
as shown in the graphic.

c. Click the Replace All
button.

Note: The Ctrl+H key is a
shortcut for the Replace
menu item located in the
Find and Replace submenu
under the top-level Edit
menu.
ADDING CONTROLS 47

2.2.3 The Toolbox window

Finally, we are ready to insert the controls onto the form. In future chapters, we will
not include the excruciating details of adding controls to forms and setting their
properties with the Forms Designer, so make sure you understand the process here.

If you recall, in chapter 1 we inserted a Button and a PictureBox on our form.
We will do the same here using Visual Studio.

ADD THE CONTROLS TO OUR FORM

 Action Result

1
Click the MainForm.cs
[Design] tab.

The Windows Form Designer appears, displaying our blank
form.

2 Click the Toolbox tab on the
upper left side of the
window.

Note: Your Toolbox may
appear on the right or left,
depending on your
settings. If the Toolbox tab
is not visible, select the
Toolbox item from the View
menu.

The Toolbox window appears.

Note: The order of controls in your window may be differ-
ent than what you see here. The contents of this window
can be customized, and new controls can be added. Look
up “toolbox, customizing” in the online documentation
for more details on this latter point.

3 Click the Button item in the
Toolbox window.

The Button item is now highlighted.

4 Click the blank form. A new Button object appears on the form.
48 CHAPTER 2 GETTING STARTED WITH VISUAL STUDIO .NET

Our controls are now on the form. Each control is named based on the type of control.
The Button is called button1, while the PictureBox is called pictureBox1.
Visual Studio .NET automatically creates a name for each new control based on the class
name followed by a number. A second Button object added to the form would be called
button2, and so forth. As for the Form1 class earlier in this chapter, we would prefer
more descriptive names for our controls, so we rename these items in the following table.

In addition, we need to set the properties for our controls similar to the settings
in chapter 1. Since we have set our control’s position and size graphically, there is no
need to assign the positional properties such as Left and Height here. In chapter 1,
we also set the Text property of the button to “&Load” and the BorderStyle prop-
erty of the PictureBox control to Fixed3D.

Visual Studio provides a special Properties window where the properties and
name of a control can be viewed and modified. We can use these to update our con-
trols. We will set the Button properties first by continuing our previous steps.

5 Similarly, add a Picture-
Box object to the form.

A new PictureBox appears on the form.

Note: The order in which controls are added establishes
the tab order and the z-order for these controls. All con-
trols support the TabIndex property for this purpose,
which we discuss later in the chapter.

6 Arrange the controls so
that the Button is at the
top left and the
PictureBox roughly in the
middle.

Your form should now look something like this.

ADD THE CONTROLS TO OUR FORM (continued)

 Action Result

How-to

Move each control by
clicking it and dragging it
around the form. You can
also click and drag a
control’s corners or edges
to resize the control.
ADDING CONTROLS 49

RENAME THE CONTROLS AND DEFINE THEIR PROPERTIES

 Action Result

7 Display the properties for
the Button control.

The Properties window appears with the properties for the
button1 control displayed.

Note: On your PC, the Properties window may appear
below or to the right of the main window. You can move it
by dragging its tab, located below the window, to a new
location. I prefer this window on the right side of Visual
Studio .NET to allow a longer list of properties to be dis-
played.

We will always display properties alphabetically in the
book, rather than by category. This will make it easier to
discuss and find required properties. You can display the
entries either way in your own application.

8 Rename the control from
“button1” to “btnLoad.”

The variable associated with the button is renamed.

9 Modify the Text property
for the button to be
“&Load.”

Note: As in chapter 1, the ampersand (&) is used to indi-
cate the access key for the button.

Also notice that the TabIndex property for this con-
trol is set to 1, since it was the first control added to the
form.

How-to

a. Right-click the Button
control to display a list of
options.

b. Select the Properties item.
c. If the controls are not

shown alphabetically,
click the A-Z button of the
Properties window.

How-to

a. Locate the (Name) entry
at the top of the list.

b. Click the “button1” text
after this property.1

c. Type the new name
“btnLoad.”

How-to

a. Locate the Text entry in
the Properties window.

b. Change its value to
“&Load.”
50 CHAPTER 2 GETTING STARTED WITH VISUAL STUDIO .NET

Before we compile and run this code, let’s check out the MainForm.cs source code
generated by Visual Studio .NET to see how this code has changed in response to our
actions. Take a look at the region marked Windows Form Designer generated
code in the source file. You may need to click the plus (+) sign in front of this region
to display this block of code. This region defines the InitializeComponent
method where properties and other settings are defined. Your code should look some-
thing like this:
 #region Windows Form Designer generated code
 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>

10 Display the PictureBox
control properties.

The properties for the PictureBox control are shown.

11 Set the (Name) property to
“pbxPhoto”.

12 Set the BorderStyle
property to Fixed3D.

Note: The BorderStyle property is displayed as a drop-
down list since this property is based on a fixed set of
values, in this case those taken from the BorderStyle
enumeration.

13 Display the properties for
our MainForm object.

14 Set the Text property to
“MyPhotos”

This setting immediately appears in the title bar of the form in
the designer window.

Note: We already added code to assign a new title bar in
the constructor of our class, but it’s nice to have a default
title bar regardless.

RENAME THE CONTROLS AND DEFINE THEIR PROPERTIES

 Action Result

How-to

Right-click the control and
select Properties.

Alternately

You can select the
pictureBox1 entry from
the dropdown list at the top
of the Properties window.

How-to

Click the title bar of the
form, or select the
MainForm entry from the
dropdown list.
ADDING CONTROLS 51

 private void InitializeComponent()
 {
 this.btnLoad = new System.Windows.Forms.Button();
 this.pbxPhoto = new System.Windows.Forms.PictureBox();
 this.SuspendLayout();
 //
 // btnLoad
 //
 this.btnLoad.Location = new System.Drawing.Point(16, 16);
 this.btnLoad.Name = "btnLoad";
 this.btnLoad.TabIndex = 0;
 this.btnLoad.Text = "&Load";
 //
 // pbxPhoto
 //
 this.pbxPhoto.BorderStyle = System.Windows.Forms.BorderStyle.Fixed3D;
 this.pbxPhoto.Location = new System.Drawing.Point(40, 80); o
 this.pbxPhoto.Name = "pbxPhoto";
 this.pbxPhoto.Size = new System.Drawing.Size(216, 160); o
 this.pbxPhoto.TabIndex = 1;
 this.pbxPhoto.TabStop = false;
 //
 // MainForm
 //
 this.AutoScaleBaseSize = new System.Drawing.Size(5, 13);
 this.ClientSize = new System.Drawing.Size(292, 273);
 this.Controls.AddRange(new System.Windows.Forms.Control[] {
 this.pbxPhoto,
 this.btnLoad});
 this.Name = "MainForm";
 this.Text = "MyPhotos 2.2";
 this.ResumeLayout(false);

 }
 #endregion

A couple of points here are worth highlighting. The numbers from the previous code
excerpt match the numbers in the following list.

b As we saw in chapter 1, control variables are classes and therefore represent reference
types. In order to create an actual object for each control, the new keyword is used.
 this.btnLoad = new System.Windows.Forms.Button();
 this.pbxPhoto = new System.Windows.Forms.PictureBox();

c To ensure that the .NET Framework does not attempt to lay out the form while it is
being created, the normal layout logic is suspended to prevent layout-related activities
and events from occurring. The SuspendLayout method is available to all Win-
dows Forms controls for this purpose.
 this.SuspendLayout();

Create the
controls b

c Suspend layout logic

d Control sections

e Set standard
control
settings

Set control
location

 and size

f

Add controls
to form gh Resume

layout logic
52 CHAPTER 2 GETTING STARTED WITH VISUAL STUDIO .NET

d To make the generated code easier to read and understand for both programmers and
book authors, the settings for each control are defined in their own labeled section. The
comments here indicate which control variable is configured by the subsequent code.
 //
 // btnLoad
 //

e The properties we set in the Windows Forms Designer are defined in each control’s
section. The Name property is always set to the variable name of the control, while
the TabIndex property is also set for each control, starting with zero (0), to establish
the tab order for the controls on the form.
 this.btnLoad.Name = "btnLoad";
 this.btnLoad.TabIndex = 0;
 this.btnLoad.Text = "&Load";

f The size and location of each control is determined automatically by Visual Studio
.NET and defined here. The settings are defined using structures such as Point and
Size from the System.Drawing namespace. A structure, unlike a class, is a value
type, so the new statement creates these objects on the stack and copies their value
into the appropriate property.
 this.pbxPhoto.Location = new System.Drawing.Point(40, 80);
 . . .
 this.pbxPhoto.Size = new System.Drawing.Size(216, 160);
 . . .
 this.AutoScaleBaseSize = new System.Drawing.Size(5, 13);
 this.ClientSize = new System.Drawing.Size(292, 273);

g Once all of the controls are created and initialized, they can be added to the form.
Visual Studio adds the controls in one statement using the AddRange method avail-
able to the Form.Controls property. Note how this method accepts an array of
Control objects. All Windows Forms controls are based on the Control class, as
we shall see in chapter 4. Note the use of square brackets to declare the array type,
with the elements for the Control[] array defined in the subsequent braces.2 The
order of the controls in the array defines the initial z-order of the controls.
 this.Controls.AddRange(new System.Windows.Forms.Control[] {
 this.pbxPhoto,
 this.btnLoad});

h At the end of the InitializeComponent method, normal layout processing must
be resumed. The ResumeLayout method accepts a boolean value indicating whether
an immediate layout should occur or not. For Visual Studio, an immediate layout is
not necessary, so the method is invoked with false.
 this.ResumeLayout(false);

2 For more details on declaring arrays in C#, see the discussion in appendix A.
ADDING CONTROLS 53

When you have finished reviewing the code, compile and run the program as before.
As in chapter 1 for version 1.2 of the MyForm application, this version displays our
controls but does not allow you to do anything with them. Enabling the user to load
an image is our next topic.

2.3 Loading files

Now that the controls are on the form, we can load an image into the PictureBox
control using the OpenFileDialog class. Up until this point we really haven’t typed
any C# code for our MyPhotos application. We simply set values via Visual Studio and
let the environment do the work on our behalf. In this section we finally get our hands
dirty. The result of our labors will allow a file to be selected as shown in figure 2.2.

There are a couple of topics worth discussing here. First we will discuss how to sup-
port the dialog shown in figure 2.2. Then we will discuss how to handle the case
where the user selects an invalid file.

2.3.1 Event handlers in Visual Studio .NET

As discussed in chapter 1, an event is a predefined action that a program can respond
to, such as a user clicking a button or resizing a window. In chapter 1 we handled the
event that occurs when the user clicks on the Load button. Here we will do the same
using Visual Studio rather than a text editor.

As before, the Load button handler will allow the user to select a file and then load
a Bitmap image of the file into our PictureBox control. If you recall, this involves

Figure 2.2 The dialog used to select a file in our application. This dialog is created using

the OpenFileDialog class.
54 CHAPTER 2 GETTING STARTED WITH VISUAL STUDIO .NET

setting a Click event handler for the button and using the OpenFileDialog class
to prompt the user for an image to load.

Let’s duplicate our code from chapter 1 in Visual Studio. Our code for the event
handler will be identical to that already shown and discussed, so if you skipped ahead
and missed this discussion, go back to chapter 1

Set the version number of the application to 2.3.

IMPLEMENT A CLICK HANDLER FOR THE BTNLOAD BUTTON

Action Result

1 Display the MainForm.cs
[Design] window (the
Windows Forms Designer
window).

2 Add a Click event handler for
the Load button.

The MainForm.cs source code window is displayed with a
new btnLoad_Click method added.

 protected void btnLoad_Click(object sender,
 System.EventArgs e)
 {

 }

Note: Visual Studio uses the naming convention for
all event handlers consisting of the variable name, fol-
lowed by an underscore, followed by the event name.

3 Add our code to handle the
Click event.

 protected void btnLoad_Click(object sender,
 System.EventArgs e)
 {
 OpenFileDialog dlg = new OpenFileDialog();

 dlg.Title = "Open Photo";
 dlg.Filter = "jpg files (*.jpg)|*.jpg"
 + "|All files (*.*)|*.*";

 if (dlg.ShowDialog() == DialogResult.OK)
 {
 pbxPhoto.Image = new Bitmap(dlg.OpenFile());
 }

 dlg.Dispose();
 }

Note: Some of these lines do not fit this table. The
dlg.Filter line, in particular, should be a single
string. Here and throughout the book, we will refor-
mat the code to fit the table in a way that is equiva-
lent to the code in the online examples.

How-to

Double-click the Load button.

How-to

Cut and paste your previous
code, or enter the code shown
here by hand.
LOADING FILES 55

Before we discuss the code here, it is worth calling attention to the statement comple-
tion feature of Visual Studio .NET, both what it is and how to disable it. If you typed
in the above code by hand, then you probably noticed how Visual Studio pops up
with class member information as you type. Figure 2.3 shows what you might see
after entering part of the first line of the btnLoad_Click method. After you type
“new,” Visual Studio pops up a list of possible classes. The list changes to reflect the
characters you type, so that after typing “Ope” the list will look something like the
figure. At this point, you can press the Enter key to have Visual Studio automatically
finish your typing with the highlighted entry.

Notice in this figure how Visual Studio uses a different icon for namespaces,
structures, classes, and enumerations. In the figure, OleDB is a namespace, Open-
FileDialog is a class, and Orientation is an enumeration type. We will not dis-
cuss these types here, other than OpenFileDialog. A structure type is not shown in
this figure, but you can scroll through the list in Visual Studio to find a structure such
as Point or Size.

4 Set the SizeMode property for
the PictureBox control to
StretchImage.

When an image is displayed, the entire image will now be
stretched and distorted to fit within the box.

Note: In the Properties window, notice how nonde-
fault properties for a control are displayed in bold
type.

IMPLEMENT A CLICK HANDLER FOR THE BTNLOAD BUTTON (continued)

Action Result

How-to

a. Display the designer
window.

b. Right-click the PictureBox
control.

c. Select Properties.
d. Locate the SizeMode prop-

erty.
e. Set its value to Stretch-
Image.

Figure 2.3 An example of statement completion for the new keyword in

Visual Studio after typing the letters “Ope.”
56 CHAPTER 2 GETTING STARTED WITH VISUAL STUDIO .NET

The feature applies to variables and classes as well. As another example, when you
begin typing the next line to set the Title property of the dialog box, you may see
something like figure 2.4. Here Visual Studio displays the class properties, methods,
and events available to the dlg variable. These correspond to the members of the
OpenFileDialog class.

Once again note how Visual Studio uses different icons for different types. In the
figure, ShowDialog is a method and Title is a property. You can scroll through the
dialog to locate an event such as Disposed or FileOk in order to see its icon.

You will notice other statement completion popups as you type as well. One par-
ticularly nice feature is that signatures of methods are displayed as you type, and you
can step through the various overloaded versions of a method using the arrow keys.
In addition, as you will see in chapter 5, Visual Studio automatically picks up the
classes and structures defined in your solution and incorporates them into these popup
menus. Any documentation provided by <summary> tags within these classes is
included as well, providing an automated forum for conveying important comments
about a particular member to other programmers.

Of course, like any feature, all these popup windows require a certain amount of
CPU and system resources. If you are running Visual Studio on a slower machine, or
do not want such windows popping up, you can turn statement completion off in the
Options dialog box. Click the Options item under the top-level Tools menu to dis-
play this dialog. Click the Text Editor settings, select the C# item, followed by the
General item. This dialog is shown in figure 2.5.

As you can see in the figure, you can disable the automatic listing of members,
the display of parameter information, or both of these features. Other option settings
are available here as well, of course. Feel free to look around and use the ever-ready
Help button for any questions you may have.

Figure 2.4

An example of statement

completion for a class vari-

able after typing the letter

“T” for an OpenFileDialog

class instance. Notice the

small popup indicating that

Title is declared as a string

property in the FileDialog

class.
LOADING FILES 57

Back to our btnLoad_Click method, the code used here matches the code used for
the MyForm program in chapter 1. Take another look at the InitializeCompo-
nent method in the Windows Form Designer generated code region. You will notice
that Visual Studio has added the Click event handler for the btnLoad control.
 this.btnLoad.Click += new System.EventHandler(this.btnLoad_Click);

Compile and run the application to verify that the program can now load and display
an image. Try loading different images into the program.

If you recall, we noted in chapter 1 that this code presumes the selected file can
be turned into a Bitmap object. If you select a nonimage file, the program exits in a
most unfriendly manner. This is a fine opportunity to fix this problem, so we’ll make
it the subject of our next section.

2.3.2 Exception handling

You may well be familiar with exception handling, since a number of C++ develop-
ment environments, including earlier Microsoft environments, support this feature.
Newer languages such as Java also support exceptions. Exception handling came into
existence as a common way to deal with errors in a program. In our application, we
expect the user to select a JPEG or other image file that can be opened as a Bitmap
object. Most of the time, no error occurs. However, if a corrupted or invalid JPEG
file is selected, or if the operating system is low on memory, then this creates an
exceptional condition where it may not be possible to create our Bitmap. Since such
situations will certainly occur, a way to recognize such errors is required.

Since some C++ programmers may not be familiar with exception handling, we
will look at some alternative approaches before discussing exceptions in .NET. As one
approach, we could use static creation methods that include an error field. For exam-
ple, our code might look like the following:

Figure 2.5

The Visual Studio

Options dialog box

can be used to en-

able or disable the

statement comple-

tion feature.
58 CHAPTER 2 GETTING STARTED WITH VISUAL STUDIO .NET

 // Wrong way #1 to support error handling
 int err = 0;
 Bitmap bm = Bitmap.CreateObject(dlg.OpenFile(), err);
 if (err != 0) {
 // An error occurred
 if (err == bad_file_error) {
 // Indicate to the user that the file could not be loaded.
 }
 else if (err == memory_error) {

 // Indicate that memory is running low.

 }

 return; // on error abort the event handler
 }

 // Assign the newly created Bitmap to our PictureBox
 pbxPhoto.Image = bm;

This code would certainly work, but it requires extra variables and the programmer
must check for errors every time a bitmap is created. This might be problematic if the
programmer forgets or a new error is added which is not handled by the code. Then
our design is for naught and bad things will happen. In critical production code, the
mishandling of errors can lead to serious problems such as corrupted database infor-
mation, unexpected stock trades, or other actions that a user or a program would not
normally allow to happen. So this solution does not provide the best guarantees for
program and data stability.

A second way to handle errors is to provide a global GetLastError function.
This solution was used by Microsoft prior to the MFC environment, and is still used
in some cases within MFC. It looks something like this:
 // Wrong way #2 to support error handler
 Bitmap bm = new Bitmap(dlg.OpenFile());
 int err = GetLastError();
 if (err != 0) {

 // Handle error values much like the above code

 }

This is more elegant than the previous method, but has all the same problems. Pro-
grammers may forget to use it, and error codes change from release to release.

Exceptions provide a solution to these problems by forcing a programmer to deal
with them, and provide guarantees that the program will exit if they do not. When
an exception is not caught by a program, the program will exit. A forced exit is much
safer than continuing to run in an error state and risk compromising critical data.

More formally, an exception is an unexpected error, or exceptional condition, that
may occur in a program. Code that creates such a condition is said to throw the excep-
tion, and code that processes the condition is said to catch the exception. In .NET,
LOADING FILES 59

exceptions are implemented as classes. Almost all exceptions inherit from the Sys-
tem.Exception class.

One problem with exceptions in other languages is that they are expensive to sup-
port. Modern languages like Java and C# have done away with this problem by designing
exceptions into the language so that compilers can handle them cheaply and gracefully.

The format used to process exceptions is the well-known try-catch blocks used
in distributed computing interfaces and C++ development environments for many
years. A portion of code where exceptions may be caught is enclosed in a try block,
and the portion of code that handles an exception is enclosed in a catch block. We
will discuss this syntax in more detail in a moment. First, let’s add such a block to the
code where we create the Bitmap object. Here is our existing code:
 if (dlg.ShowDialog() == DialogResult.OK)
 {
 imgPhoto.Image = new Bitmap(dlg.OpenFile());
 }

The following table details how to catch exceptions in this code.

CATCH EXCEPTIONS IN THE BTNLOAD_CLICK METHOD

 Action Result

1 Edit the MainForm.cs source
file and locate the
btnLoad_Click method.

Note: You can search this file by hand, or use the drop-
down box in the top portion of the source code window
to select this method explicitly.

2 Insert a try block around the
Bitmap creation code.

The changes to the existing code are shown in bold.

 if (dlg.ShowDialog() == DialogResult.OK)
 {
 try
 {
 imgPhoto.Image = new Bitmap(dlg.OpenFile());
 }
 }

3 Add a catch block to catch
any exceptions that may
occur in the try block.

 if (dlg.ShowDialog() == DialogResult.OK)
 {
 try
 {
 imgPhoto.Image = new Bitmap(dlg.OpenFile());
 }
 catch (Exception ex)
 {
 // Handle exception
 }
 }

Note: Event handlers in Visual Studio .NET tend to use
an “e” parameter for the event parameter to the call. To
ensure we avoid a conflict, we will use ex as a standard
variable name for an Exception object.
60 CHAPTER 2 GETTING STARTED WITH VISUAL STUDIO .NET

In C#, the catch clause takes an exception class name, and a variable to use in refer-
ring to this class. The block is executed if one of the statements in the try block
throws this class as an exception. The catch clause can leave this class name out to
catch any exception. Here, we catch all Exception class objects, which is generally
all exceptions in .NET. For example, the OpenFileDialog.OpenFile method can
throw a file I/O exception using the IOException class. Since this class derives from
the Exception class, it will be caught by our handler. Other exceptions such as
OutOfMemoryException may also occur, and are caught by our block as well.3

This code uses a class we have not seen before: the MessageBox class. This class is
used to display a simple dialog box. We discuss this class in detail in chapter 8. For
now, just copy the code and trust me.

The Message property for the ex variable is used in our dialog to insert the mes-
sage string describing the exception provided by the Exception object. This and
other members of the Exception class are summarized in .NET Table 2.1.

We will use exceptions throughout the book to handle errors in a similar manner.
Other concepts associated with exceptions will be presented as they are required by our
sample program.

Our MyPhotos application is now in line with our MyForm application from sec-
tion 1.3, with the slight improvement of handling any exception that occurs while
opening the file. Our last task in this chapter is to enable the form to resize gracefully
using the Anchor property.

2.4 Resizing forms

Our final task in this chapter is to set the behavior for resizing using the Anchor
property for our controls, and establish a minimum size for the form so that our
PictureBox control does not disappear. This will finish our duplication of the
application created in chapter 1. The remainder of this book will use Visual Studio
.NET when discussing applications changes, so we will carry the MyPhotos applica-
tion into chapter 3 and beyond.

3 A more formal discussion of exceptions and the exception handling syntax appears in appendix A.

HANDLE EXCEPTIONS IN THE BTNLOAD_CLICK METHOD

 Action Results and Comments

4 Handle the exception by
displaying a message to the user.

Note: In this case, we return
to the caller without loading
an image.

One way to do this is as follows:

 catch (Exception ex)
 {
 // Handle exception
 MessageBox.Show(
 "Unable to load file: " + ex.Message);
 }
RESIZING FORMS 61

Figure 2.6

The application is resized

here via the Picture-

Box.Anchor property.

.NET Table 2.1 Exception class

The Exception class represents a generic exceptional condition, and serves as the base
class for all exception classes in .NET. This class is part of the System namespace, and pro-
vides information required to raise (throw) and process (catch) exceptions. Note that it is
possible for unmanaged code to throw exceptions that will not be seen as Exception
objects. These exceptions can be caught using an empty catch clause.

Public

Properties

HelpLink Gets a link to help information associated with this
exception.

InnerException Gets the inner (nested) exception associated with this
object, if any.

Message Gets the message text assigned to the exception.

Source Gets or sets a string containing the source of the
exception, such as the name of the application or object
that generated the error.

StackTrace Gets the stack trace as a string. By default, the stack is
captured just before the exception is thrown.

TargetSite Gets the MethodBase object for the method that threw
this exception.

Public

Methods

GetBaseException Returns the original Exception that caused the current
exception to be thrown. Useful when a chain of nested
exceptions is received.

SetHelpLink Sets the string returned by the HelpLink property.

ToString
(overridden from
Object)

Returns the fully qualified name of the exception, and
possibly other information such as the message text, the
name of the inner exception, and a stack trace.
62 CHAPTER 2 GETTING STARTED WITH VISUAL STUDIO .NET

2.4.1 Assign the Anchor property

In chapter 1 we set the Anchor property for our Button control to Top and Left,
and for our PictureBox control to Top, Bottom, Left, and Right. In Visual Stu-
dio .NET, the default value of Top and Left is already set for our button, so we only
need to modify the property for the pbxPhoto control. The result of this change
when running the application is shown in figure 2.6.

Set the version number of the application to 2.4.

Visual Studio recognizes that the Anchor property is an enumeration containing a set
of or’d values, so it breaks apart the value into its components.4 For the PictureBox
control, this displays the value as “Top, Bottom, Left, Right.” If you look in the
InitializeComponent method generated by Visual Studio, you will notice that
this value is set much like our code in chapter 1. Note that the Button.Anchor
property is not set in this method since it uses the default value.
 this.pbxPhoto.Anchor = (((System.Windows.Forms.AnchorStyles.Top
 | System.Windows.Forms.AnchorStyles.Bottom)
 | System.Windows.Forms.AnchorStyles.Left)
 | System.Windows.Forms.AnchorStyles.Right);

SET THE ANCHOR PROPERTY FOR THE PBXPHOTO CONTROL

 Action Result

1 Display the properties for
the PictureBox control.

2 Use the Anchor property to
anchor this control to all
four sides of the form.

How-to

a. Click the down arrow for
the Anchor item setting.

b. Click the corresponding
value to select Top, Bot-
tom, Left, and Right.

c. Click outside the drop-
down dialog to set the
selected values.

4 This occurs because the AnchorStyles enumeration has the FlagsAttribute attribute assigned.
An attribute is a C# construct that defines a behavior or configuration setting for a type, in this case
the fact that the enumeration allows a bitwise combination of its member values.
RESIZING FORMS 63

2.4.2 Assign the MinimumSize property

To match our application from chapter 1, we also need to set the MinimumSize
property to ensure that the window will never be so small that the PictureBox dis-
appears. This is done with the following steps:

Compile and run the application to verify that the program resizes similar to
figure 2.6. Once again note that the aspect ratio is not preserved by our application.
This is a known bug that we will fix later in the book.

Now that we have duplicated the MyForm program from chapter 1, you might
take a look at the source code in MainForm.cs and compare it to our final MyForm.cs
listing. Other than some of the differences we pointed out at the start of this chapter,
you will see that the code is much the same.

TRY IT! First, change the Anchor setting for the Pic-
tureBox control to use Dock instead. In the
Properties window, you will notice a dropdown for
this property similar to the one shown for the An-
chor property, as in figure 2.7. Here you select the
section of the box to dock against, namely the Top,
Left, Right, Bottom, Fill (in the middle), or
None. In figure 2.7, the DockStyle.Fill value
is selected. If the picture box covers up the Load
button, right-click the picture box and select the
“Send to Back” option to send the control to the
end of the z-order. Compile and run the program to see the new behavior.

Second, for the adventurous, try adding a second Button and Pic-
tureBox control to the application using Visual Studio .NET, similar to
the task suggested at the end of chapter 1. Name the button btnLoad2
and set the text on the label to “Loa&d2” with a Click event handler that
loads a second image and displays it in the second PictureBox named
pbxPhoto2. You can use the anchor property for these, or set the Dock
property for the first picture box to DockStyle.Top, and for the second
picture box to DockStyle.Fill.

SET THE MINIMUMSIZE PROPERTY FOR THE PBXPHOTO CONTROL

 Action Result

1 Display the properties
for the Form object.

2 Set the value of the
MinimumSize
property to “200, 200”

 The code in InitializeComponent sets this new value.

 this.MinimumSize = new System.Drawing.Size(200, 200);

Figure 2.7 The Dock

property dropdown

window.
64 CHAPTER 2 GETTING STARTED WITH VISUAL STUDIO .NET

2.5 Recap

In this chapter, we recreated the application from chapter 1 using Visual Studio
.NET. While much of the code was quite similar, we saw how Visual Studio generates
the InitializeComponent method for initializing the controls created in the
Windows Forms Designer window. We discussed the AssemblyInfo.cs file generated
by Visual Studio, and how version numbers are specified within this file. We also
looked at exception handling, and its integration into C# and use by the .NET
Framework.

This ends part 1 of the book. The MyPhotos application will serve as the basis
for much of the rest of the book. Part 2 begins a systematic discussion of Windows
Forms controls, and will begin with the MyPhotos project created in this chapter.
RECAP 65

2
P A R T
Basic Windows Forms
If you have actually read part 1 of this book, then you have a good idea where we
are going here. Chapter 2 constructed our program using Visual Studio .NET and
extended the discussion of the .NET architecture and Windows Forms programming
provided in chapter 1. Here we pick up where chapter 2 left off and provide a some-
what systematic discussion of basic Windows Forms development. The goal here is to
cover the essential concepts and classes needed in most Windows Forms applications.

Following our practice in chapter 2, the complete steps required to create each
example are provided. For the most part, the MyPhotos application is used through-
out the book. In a couple places we create alternate applications to provide variety and
because I felt the topics were better presented separately.

For all applications, the code used for each section in the book is available on the
book’s web site at www.manning.com/eebrown. Follow the instructions and links to
the version number corresponding to the desired section in order to retrieve the appro-
priate files.

We begin this part of the book with chapter 3 on “Menus,” and add various types
of menus to the MyPhotos application. This chapter also presents the foundations of
the Windows Forms class hierarchy and the handling of events in Visual Studio .NET.
By the end of this chapter our application will be able to load a photographic image
from disk and display it in various ways within the main window.

Chapter 4 covers “Status bars” containing both simple text and a set of panels. A
status bar is used to provide feedback to the user during potentially long operations,

and to summarize what is displayed in the main window. An introduction to the .NET
drawing interface is presented by way of a custom status bar panel.

Chapter 5 on “Reusable libraries” steps out of Windows Forms momentarily to
create a reusable photo album library. This chapter discusses collection classes in .NET
and the concept of interfaces. A detailed discussion of the penultimate ancestor, the
object class, is also provided.

Chapter 6 integrates our new library into the MyPhotos application during the
course of presenting “Common file dialogs.” A new menu bar is created and file dia-
logs are used to access, store, and load image and album data on disk. The idea of
painting on a Form is also introduced.

Chapter 7 takes the painting idea further in “Drawing and scrolling.” Painting on
both form and panel controls is discussed, and automated scrolling is introduced and
used to scroll an image that is larger than the display area.

Chapter 8 continues the discussion of the Form class as it relates to “Dialog
boxes.” The difference between modal and modeless dialogs is discussed, and the most
basic of modal dialogs, the message box, is presented. A custom modal and nonmodal
dialog is created, and the relationship between closing and disposing of objects is cov-
ered in detail.

Chapter 9 on “Basic controls” begins a systematic review of the standard Windows
Forms controls available in the .NET Framework. The concept of form inheritance is
discussed, and dialogs including labels, text boxes, and buttons are created. The dif-
ference between Panel and GroupBox objects is presented, and concepts such as C#
delegates and control validation are also covered.

Chapter 10 presents “List controls,” namely the ListBox and ComboBox controls.
Various aspects of these controls such as single and multiple selection, dynamic
update, and owner-drawn list items are presented while creating a new MyAlbumEd-
itor application. The new application leverages the library built in chapter 5 to support
reading and writing of photo album data.

Chapter 11 rounds out our discussion on controls with the hot topic of “More con-
trols.” Additional controls are presented and used in the MyAlbumEditor application,
including the TabControl, TabPage, DateTimePicker, and MonthCalendar
controls. Here we discuss how to move an existing set of controls into a container control,
customized data strings, and processing click events within a month calendar control.

Chapter 12 returns to the MyPhotos application to present “A .NET assortment.”
Topics presented here include keyboard and mouse events, image buttons, and form
and application icons.

The final topic in this part is “Tool bars and tips” in chapter 13. A ToolBar con-
trol is added to the application, along with various styles of ToolBarButton com-
ponents. Tool tips for controls using the ToolTip class are also presented here and
used with the dialog boxes created in chapter 9.

Part 3 of this book will expand on these chapters to cover more advanced Windows
Forms topics.
68 BASIC WINDOWS FORMS

C H A P T E R 3

Menus

3.1 The nature of menus 70
3.2 Menu bars 74
3.3 Click events 85

3.4 Popup events and shared handlers 88
3.5 Context menus 97
3.6 Recap 101
Menu bars provide a good starting point for our discussion in this part of the book.
Menus provide a convenient way to group similar or related commands in one place.
Most users are familiar with the menu bar concept and expect standard menus such as
File, Edit, and Help to appear in their applications. Even novice computer users quickly
learn that clicking a menu on the menu bar displays a dropdown list of commands.

Menus became popular on Windows applications in the late 1980s, following
their success on the Apple Macintosh. Prior to menus, users had to cope with a wide
array of interfaces offered by desktop applications. The function keys still found at the
top of computer keyboards were developed in part as a standard way to access common
functions in an application, and some programs even went so far as to provide a plastic
template that sat on top of these function keys to help users remember the available
commands.

Perhaps because of this history, many developers take the usefulness and popu-
larity of menus for granted and do not spend sufficient time laying out a consistent,
usable interface for their application. While graphical elements such as menus, tool-
bars, and other constructs make applications much more friendly, this is not an excuse
to ignore good user design and rely on customers to become “experienced” to make
effective use of the interface.
69

Well, if that little lecture doesn’t get your creative juices flowing, then nothing
will. Back in .NET-land, Visual Studio .NET provides a rather intuitive interface for
the construction of menus that does away with some of the clunkiness found in earlier
Windows development environments from Microsoft. No more dealing with menus
in one place, the application in another place, and the menu handlers in a third place.

This chapter will cover the following aspects of menu creation and handling:

• Defining different types of menus
• Creating and modifying menus and menu items

• Handling menu events

• Handling multiple menus from a single event handler

• Cloning (as in copying) menu items from one menu to another

The examples in this chapter assume you have the code for MyPhotos version 2.4
available, as developed with Visual Studio .NET in the previous chapter. You can use
this code with or without Visual Studio as a starting point for the tasks covered here.
If you did not work through chapter 2, download the project from the book’s web site
at http://www.manning.com/eebrown. Follow the links and instructions on the page
to retrieve version 2.4 of the application.

3.1 THE NATURE OF MENUS

Before we add some menus to our application, we should talk about the different
kinds of menu structures and the classes that support them in the .NET Framework.
The traditional menu bar, sometimes called the main menu or an anchored menu, is a
set of menus shown horizontally across the top of most applications. The menus in a
typical menu bar display a dropdown list
of commands when they are activated
with the mouse or by a keyboard acceler-
ator. Figure 3.1 shows an example of a
menu bar containing a File, View, and
Help menu. The View menu is exposed,
and a submenu of the Image menu item
is displayed as well.

Another type of menu is a context
menu, also called a popup menu or short-
cut menu. A context menu is a menu that
appears in a particular situation, or con-
text. Typically, a context menu contains
a set of commands or menus related to a
specific graphical element of the applica-
tion. Such menus appear throughout the
Windows environment at the right-click

Figure 3.1 A traditional menu bar provides a

set of menus across the top of an application
70 CHAPTER 3 MENUS

of the mouse. For example, right-click the Windows desktop, any program icon on
your screen, or even the Windows start menu, and a context menu will pop up with
a set of commands related to the
desktop display, the program, or
the start menu, respectively.
Newer keyboards contain an
accelerator key designed to simu-
late this behavior at the cursor’s
current location.

Context menus in .NET are
typically associated with a specific
control, the contents of which
may change to reflect the condi-
tion of the control or type of item
selected within the control. Note
that context menu items can also
contain submenus similar to those
appearing in the menu bar.
Figure 3.2 shows an example of a
context menu associated with the
main window of the application.

3.1.1 THE MENU CLASS

All menus in .NET derive from the Menu class. This class provides the core capabili-
ties required by all menus, such as access to the parent menu, if any, and the collec-
tion of submenu items for the menu. The Menu class, summarized in .NET table 3.1,
is abstract, meaning you cannot create an instance of it.

You will note in .NET table 3.1 that the Menu.MenuItems property contains a
collection of MenuItem objects. This is an odd notion for object-oriented environ-
ments, since Menu is the base class of MenuItem, yet it uses this derived class as part
of its definition. Such an arrangement is not disallowed, and is useful in situations like
this when an object should contain instances of its own type.

3.1.2 THE MENU CLASS HIERARCHY

Before we plunge into specific types and examples of menus, it is useful to step back
and consider the class hierarchy for the Menu class. A class hierarchy is the set of classes
from which a particular class is derived, and gives some indication of the purpose and
capabilities behind the specific class. The class hierarchy for the Menu class is also inter-
esting because it is all or part of the class hierarchy for most Windows Forms controls.
As you can see from figure 3.3, there are three classes beside Menu in this hierarchy.

Figure 3.2 A context menu provides a set of com-

mands or menus related to a specific portion of an

application.
THE NATURE OF MENUS 71

The Menu class derives from the Component class, which derives from the Mar-
shalByRefObject class, which derives from the Object class. All classes in C#,

Figure 3.3

The Menu class

hierarchy includes the

three classes behind all

Windows Forms controls

.NET Table 3.1 Menu class

The Menu class is the base class for all menus in the .NET Framework. This abstract class is
part of the System.Windows.Forms namespace, and inherits from the System.Compo-
nentModel.Component class.

Public Properties

Handle Gets the window handle for the menu. Used as a
back door to special operations not supported by
the framework.

IsParent Gets whether this menu contains any MenuItem
objects.

MdiListItem Gets the MenuItem, if any, that will display the
list of MDI child forms currently open in the
application.

MenuItems Gets the MenuItemCollection object that
holds the list of MenuItem objects attached to
this menu, or null if no items are attached.

Public Methods

GetContextMenu Returns the ContextMenu object that contains
this menu, or null.

GetMainMenu Returns the MainMenu object that contains this
menu, or null.

MergeMenu Merges a given Menu object into the current
menu.

Public Events

Disposed (inherited
from Component)

Occurs when the component is disposed, such
as when the Dispose method is called for the
component.
72 CHAPTER 3 MENUS

even internal types such as int and char, implicitly derive from the object class.1

In the .NET Framework, this class is equivalent to the Object class. We will discuss
this class in more detail in chapter 5.

The MarshalByRefObject class is an object that must be marshaled by refer-
ence. Marshaling is a method of passing an item from one context so that it can be
understood in another context. A typical use for marshaling is in remote procedure
calls between two different machines, where each parameter of a function call must be
converted into a common format (that is, marshaled) on the sending machine so that
it may be interpreted on the receiving machine. In the .NET world, Windows controls
are MarshalByRefObject objects since they are only valid in the process that creates
them, and can be used outside this process only by reference.2

The Component class is the base implementation of the IComponent interface.
A component is an object that can exist within a container, and allows cleanup of non-
memory resources via the Dispose method. This class supports the IDisposable
interface as well the IComponent interface. We’ll cover interfaces in chapter 5, so
don’t get caught up in the terminology here. Since graphical controls exist within a
Form window or other container control, all Windows Forms controls ultimately
derive from this class.

3.1.3 DERIVED CLASSES

The .NET Framework derives three menu classes from the abstract Menu to support
menu bars, context menus, and the menu items they contain.

• The MainMenu class represents a main menu for an application. MainMenu
objects contain a collection of MenuItem objects to display in the menu bar.

• The ContextMenu class represents a context menu associated with a specific
control. ContextMenu objects also contain a collection of MenuItem objects
to display when this menu pops up.

• The MenuItem class represents a menu item that appears within another
menu. An instance of a MenuItem can contain a collection of MenuItem
objects to appear as the submenu of this item. While an unrestricted number
of submenus are permitted, it is a good idea to keep such menu hierarchies
limited to no more than two or three levels. Too many submenu levels can be
confusing for users and are best avoided when possible.

We will discuss each class separately, beginning with the MainMenu class.

1 It is worth noting that object, as a class, is a reference type, whereas types such as int and char are
value types. When a value type is used as an object instance, the value type is converted to a reference
type via a process called boxing. This process is totally hidden from the programmer, but does have
performance implications. See appendix A for a discussion of this concept in more detail.

2 The details of marshalling is totally hidden for most Windows Forms applications, so you do not really
need to know any of this. Hopefully, you find it somewhat interesting if not useful.
THE NATURE OF MENUS 73

3.2 MENU BARS

So, let’s do it. Looking at our MyPhotos application, it would be nice to replace the
Load button with a menu option. This will allow more space in our window for the
displayed image, and permit additional commands to be added in the future related
to loading images. As an added benefit, it provides a nice example for this book,
which is, of course, our ultimate goal.

Our new application using a menu
bar is shown in figure 3.4. A Load and
Exit menu have been added to a File
menu on the main menu bar. The Load
menu item will replace our Load button
from the previous chapter. Notice how
these menu items are separated by a small
line. Such a line is called a menu separa-
tor. A View menu is also shown, which
will be discussed later in this section.

As you may expect, the menu bar
will appear in our code as a MainMenu
object. Menus such as the File menu are
represented as MenuItem objects con-
tained within the MainMenu object. The
dropdown menus underneath the File
menu are also MenuItem objects. This
includes the menu separator as well as
the Load and Exit menu items.

3.2.1 ADDING THE MAIN MENU

The steps to add the MainMenu object to our application are shown below. As already
mentioned, this book uses Visual Studio .NET for all example programs. If you are
writing the code by hand and using the C# compiler on the command-line, read
through the steps and use the code inside or following the task description as a model
for your own program. Note that this and most other tables at the beginning of a sec-
tion change the version number in the program as a way to track our progress
throughout the book and as a link to the online code at the book’s web site. If you
recall, the version number is modified in the AssemblyInfo.cs file of the project.

Before we add the menu, we need to remove the existing Load button from the form.

Figure 3.4 Notice in this File menu how

the Load item displays Ctrl+L as its key-

board shortcut.
74 CHAPTER 3 MENUS

Set the version number of the application to 3.2.

With the Load button gone, our way is now clear to move this functionality into a
menu bar. We continue the above steps and add a menu bar to our form.

REMOVE THE LOAD BUTTON

Action Result

1 Remove the Load button from the
form.

Visual Studio automatically removes all generated code
related to the button from the InitializeComponent
method of the MainForm.cs file.

Note: When a control is deleted, the declaration of
any event handlers are removed, but the actual event
handling code, in this case our btnLoad_Click
method, must be removed manually.

We will remove this code later in the chapter.

2 Display the properties for the
PictureBox control.

The property values for this control are displayed.

3 Set the value of the Dock
property to Fill.

Clicking the center button as shown in
the graphic sets the value of the Dock
property to Fill, so that the
PictureBox control takes up the entire
display window of the form.

Note: When the Dock property is set to a value
other than None, the Anchor property is automati-
cally set to its default value of Top and Left.

How-to

a. Display the MainForm.cs
[Design] window.

b. Right-click the Load button.
c. Select the Delete option.

Alternately

Simply select the button and hit
the Delete key.

How-to

a. Right-click on the control.
b. Select Properties.

Alternately

Click the control and use the
keyboard shortcut Alt-Enter.

How-to

a. Locate the Dock property.
b. Display the dropdown window

for this property.
c. Click the center button.

CREATE THE MAIN MENU BAR

4 Display the Toolbox window. A list of available controls is displayed.

How-to

a. Click the View menu in Visual
Studio.

b. Select the Toolbox option.

Alternately

Click the wrench and hammer
icon on the left side of Visual
Studio.
MENU BARS 75

Let’s take a look at the source code generated by these actions in the MainForm.cs
window. If this window is not shown, right-click the mainMenu1 object and select
View Code. You will note that the Windows Forms Designer has added the
mainMenu1 variable to the MainForm class.
 private System.Windows.Forms.MainMenu mainMenu1;

The InitializeComponent method we discussed in chapter 2 initializes this vari-
able and attaches it to the form. An object for this variable is created using the new
keyword. As we mentioned in part 1, the this keyword refers to the current class
instance, just as it does in C++.
 this.mainMenu1 = new System.Windows.Forms.MainMenu();

At the end of the method, the MainMenu object is attached to the form using the
Form.Menu property. This property sets or retrieves a MainMenu object to appear as
the main menu bar for the application, and can be used to swap in and out different
menu bars to customize how the menu looks for specific situations. We will only use
a single MainMenu object in this chapter. See .NET Table 3.2 for additional details
on the MainMenu class.
 this.Menu = this.mainMenu1;

Also notice in the code how the Anchor property setting for the PictureBox con-
trol has been replaced by the Dock property.
 this.pbxPhoto.Dock = System.Windows.Forms.DockStyle.Fill;

5 Drag a MainMenu object from the
Toolbox onto your form.

A MainMenu object called mainMenu1 is added to your
form. This object is displayed in a new area called the
component tray below the form where objects appear
that may not have a physical presence in the window.
Such objects include timers, database connections, and
main menus.

Note: An example of the component tray show-
ing the mainMenu1 object appears later in this
chapter in figure 3.9, on page 99.

CREATE THE MAIN MENU BAR (continued)
76 CHAPTER 3 MENUS

3.2.2 ADDING THE FILE MENU

With a MainMenu on our form to act as the menu bar, we can now add the menus
that should appear. Each menu is created using the MenuItem class. In this section
we will create the top-level File menu only. In the next section we will create the
dropdown menu that appears when the user clicks on this menu.

.NET Table 3.2 MainMenu class

The MainMenu class is a container class that holds a collection of MenuItem objects to appear
as a menu bar on a Windows form. This class is part of the System.Windows.Forms
namespace, and inherits from the Menu class. A main menu is assigned to a specific window
using the Menu property in the Form class. See the .NET Table 3.1 on page 72 for a list of
members inherited from Menu.

Public Properties

RightToLeft Gets or sets whether text displayed by the menu
should use a right-to-left alignment. This is useful
when displaying a language such as Hebrew or
Arabic which reads from right to left.

Public Methods

CloneMenu Returns a new MainMenu as a duplicate of the
current menu.

GetForm Returns the Form object that contains this menu, or
null if this menu is not contained by a Form.

CREATE THE FILE MENU

Action Result

1 Edit the menu bar in the
MainMenu.cs [Design] window.

An empty menu bar appears at the top of the form. The
space for the first top-level menu contains the words
“Type Here.”

2 Type in a top-level File menu as
“&File.

A File menu appears on the form.

Note: The ampersand (&) specifies the character, in
this case F, to use as the access key for this menu.
Such access keys are used with the Alt key. In our
application the File menu can be displayed by click-
ing on it or with the access key Alt-F.

How-to

Click on the mainMenu1 variable
that appears below the window.
MENU BARS 77

Your application now contains a File menu on the menu bar. In the source code, the
menuFile variable is created as a private MenuItem object within the class.
 private System.Windows.Forms.MenuItem menuFile;

The InitializeComponent method now contains additional lines to initialize this
menu and add it to our MainMenu object. The relevant lines are extracted here.
 private void InitializeComponent()
 {
 . . .
 this.menuFile = new System.Windows.Forms.MenuItem ();
 . . .
 //
 // mainMenu1
 //
 this.mainMenu1.MenuItems.AddRange(new
 System.Windows.Forms.MenuItem[] { this.menuFile });
 //
 // menuFile
 //
 this.menuFile.Index = 0;
 this.menuFile.Text = "&File";
 . . .
 }

3 Modify the (Name) property for
this menu to be “menuFile.”

The (Name) setting represents the variable name used
for the object in the MainForm.cs source code. Changing
this value automatically changes all generated instances
of the variable for this control to the new name.

Note: The string “&File” we entered for the menu
appears in the Text property.

CREATE THE FILE MENU (continued)

How-to

a. Display the Properties window
for the new File menu item.

b. Click on the (Name) entry.
c. Enter the text “menuFile.”
78 CHAPTER 3 MENUS

Note in particular how the File menu is added to our mainMenu1 object by creating
an array of MenuItem objects with menuFile as the only entry. This code also sets
an Index property, which we will discuss in the next section.

3.2.3 ADDING THE DROPDOWN MENU

So far, we have added the main menu and inserted a File menu in it. Next we will cre-
ate the dropdown menu that appears when this menu is clicked.

CREATE THE FILE DROP-DOWN MENU

 Action Result

1 Create a Load menu item
within the File menu. Use
the text “&Load.”

The Load menu appears as the first item in the drop-down list
for the File menu.

2 Display the Properties
window for the Load menu
item and set the following
property values:

The modified properties are displayed in the Properties
window.

Note: The Shortcut property defines a keyboard short-
cut, in this case Ctrl+L, that immediately invokes the
menu as if it were clicked, without actually displaying the
menu.

The access key Alt+L for this menu can be used to
select this menu from the keyboard after the File menu
has been displayed.

3 Add a menu separator after
the Load menu.

How-to

Enter a dash character ‘–’
as the next menu item.

A menu separator is added to the dropdown menu.

Note: By definition, a menu separator in .NET is a Menu-
Item with its Text property set to a single dash.

We will leave the (Name) of the separator as the
default value.

How-to

a. Make sure the designer
window is displayed.

b. Click on the File menu.
c. Type in “&Load” below

the File menu where it
says Type Here

Settings

Property Value

(Name) menuLoad

Shortcut CtrlL

Text &Load
MENU BARS 79

As you might expect, the code generated for the MainForm.cs file uses MenuItem
objects to add this dropdown list to the File menu, with the objects initialized in the
InitializeComponent method. The relevant code from the source file is shown here.

 private System.Windows.Forms.MenuItem menuLoad;
 private System.Windows.Forms.MenuItem menuItem1;
 private System.Windows.Forms.MenuItem menuExit;
 . . .
 private void InitializeComponent()
 {
 . . .
 this.menuLoad = new System.Windows.Forms.MenuItem();
 this.menuItem1 = new System.Windows.Forms.MenuItem();
 this.menuExit = new System.Windows.Forms.MenuItem();
 . . .
 //
 // menuFile
 //
 this.menuFile.Index = 0;
 this.menuFile.MenuItems.AddRange(new System.Windows.Forms.MenuItem[]{
 this.menuLoad,
 this.menuItem1,
 this.menuExit});
 this.menuFile.Text = "&File";
 //
 // menuLoad
 //
 this.menuLoad.Index = 0;
 this.menuLoad.Shortcut = System.Windows.Forms.Shortcut.CtrlL;
 this.menuLoad.Text = "&Load";
 //
 // menuItem1
 //

4 Finally, add the Exit menu
item.

The File menu is now complete.

Note: Of course, the Windows keyboard shortcut Alt-F4
can always be used to close the application. There is no
need to add this keystroke to our menu as it is imposed
by the operating system.

CREATE THE FILE DROP-DOWN MENU (continued)

 Action Result

Settings

Property Value

(Name) menuExit

Text E&xit

b Create File
drop-down
menu

Define c
keyboard
shortcut
80 CHAPTER 3 MENUS

 this.menuItem1.Index = 1;
 this.menuItem1.Text = "-";
 //
 // menuExit
 //
 this.menuExit.Index = 2;
 this.menuExit.Text = "E&xit";
 . . .
 }

Some aspects of this code are worth highlighting:

b As we saw for our main menu, the items to appear under the File menu are added by
constructing an array of the desired MenuItem objects and assigning them to the
menuFile.MenuItems property. Note that this array does not establish the order in
which these items will appear. The display order is established by the menu index
assigned to each object.

c The Ctrl+L shortcut for the Load menu is defined through the use of the Sys-
tem.Windows.Forms.Shortcut enumeration.

d This line creates our separator menuItem1 by setting its Text property to a dash (-).

e The Index property defines the zero-based position of the menu item within its par-
ent menu. This position establishes the order in which menu items are displayed. In
our code, the dropdown list for the File menu should display the Load menu, then a
separator, and then the Exit menu. This is done by setting the Index property for
these objects to 0, 1, and 2, respectively.

Our code uses a few of the properties provided by the MenuItem class. Other proper-
ties will be used as we progress through this and subsequent chapters. An overview of
the MenuItem class appears in .NET Table 3.3.

If you wish to see the application so far, compile and run the code to view the
File menu. You will notice that the menu bar contains only a single item, which is per-
haps a bit boring. We do not want a boring application, so we will double the number
of menus in our next section.

d
Create menu
separator

e Set menu index
MENU BARS 81

.

.NET Table 3.3 MenuItem class

The MenuItem class represents a menu within a MainMenu or ContextMenu object, or a sub-
menu of another MenuItem object. MenuItem objects are displayed to the user, while Main-
Menu and ContextMenu objects simply establish a container in which MenuItem objects can
appear. The MenuItem class is part of the System.Windows.Forms namespace, and inherits
from the Menu class. See .NET Table 3.1 on page 72 for a list of members inherited from this
base class.

Public Properties

Checked Gets or sets whether a check mark appears next to the
text of the menu item.

Enabled Gets or sets whether the menu item is enabled. A
disabled menu is displayed in a gray color, cannot be
selected, and does not display any child menu items.

Index Gets or sets the position of the menu item within its
parent menu.

MergeOrder Gets or sets the value of the relative position for the
menu when it is merged with another.

OwnerDraw Gets or sets whether Windows draws the menu
(false) or the application will draw the item (true).
Used to create custom menus.

Parent Gets the Menu object that is the parent of this menu.

RadioCheck If Checked is true, gets or sets whether to display a
radio button next to the menu instead of a checkmark.

Shortcut Gets or sets the shortcut key for this menu item.

ShowShortcut Gets or sets whether to display the Shortcut setting
when displaying the menu.

Text Gets or sets the text to display for the menu. The
character following an ampersand (&) is used as an
access key.

Visible Gets or sets whether to display the menu item.

Public Methods

CloneMenu Creates a copy of the MenuItem.

MergeMenu Merges this menu with another MenuItem.

PerformClick Generates a Click event for this item.

PerformSelect Generates a Select event for this item.

Public Events

Click Occurs when the user clicks the menu or accesses it
via an accelerator or shortcut key.

DrawItem Occurs when the OwnerDraw property is true and a
request is made to draw the menu item.

MeasureItem Occurs when the size of the menu item is required
before drawing it.

Popup Occurs before the menu item displays its list of child
menus.

Select Occurs when the menu is highlighted using the mouse
or keyboard.
82 CHAPTER 3 MENUS

3.2.4 ADDING A VIEW MENU

We have seen how to add simple menu items and menu separators, so here we will do
something different. Let’s add a menu with a submenu to see how the displayed image
should appear in the window. This will give us an opportunity to cover checked menus
as well. Figure 3.5 shows the View menu we will create as it appears in Visual Studio.

The View menu and its single menu item Image are created similar to the manner in
which the File menu was previously created.

Figure 3.5

Menus in Windows Forms Designer are

similar to their appearance in an applica-

tion, with the addition of a “Type Here”

wherever a new menu item can be added.

CREATE THE VIEW MENU

Action Result

1 Add a top-level View menu
to the right of our existing
File menu.

A new MenuItem object called menuView is created in the
MainForm.cs source code

 private System.Windows.Forms.MenuItem menuView;

This object is initialized in the InitializeComponent method
as well.

 private void InitializeComponent()
 {
 this.menuView
 = new System.Windows.Forms.MenuItem ();
 . . .
 menuView.Index = 1;
 menuView.Text = "&View";
 . . .
 }

Settings

Property Value

(Name) menuView

Text &View
MENU BARS 83

So far this is similar to our File menu. We continue by creating the submenu to
appear when the user clicks the Image menu.

The code generated in MainForm.cs for the View menu is very similar to the code we
looked at previously, so we will not discuss it in more detail. Realize that all of our vis-
ible menus are MenuItem objects regardless of what level they appear on. The View
menu, the Image menu item, and the Stretch to Fit submenu item are all objects of
type MenuItem.

2 Underneath the View
menu, add an Image menu
item.

A new MenuItem called menuImage is created and initialized in
the source code.

CREATE THE VIEW MENU (continued)

Settings

Property Value

(Name) menuImage

Text &Image

CREATE THE IMAGE SUBMENU

Action Result

3 Add the “Stretch to Fit”
submenu item and assign
its properties.

The new menu appears in Visual Studio .NET as in Figure 3.5.
A new MenuItem is created in the MainForm.cs source file as
well.

 private System.Windows.Forms.MenuItem
 menuStretch;
 . . .

4 Add the “Actual Size”
submenu item.

These changes are reflected in the MainForm.cs source code.
In particular, note how the collection of menus in the
menuImage submenu is initialized to contain our two new
values:

 this.menuImage.MenuItems.AddRange(new
 System.Windows.Forms.MenuItem[] {
 this.menuStretch,
 this.menuActual});

How-to

Enter this menu to the right
of the Image item (not
underneath it).

Settings

Property Value

(Name) menuStretch

Text S&tretch to Fit

Settings

Property Value

(Name) menuActual

Text &Actual Size
84 CHAPTER 3 MENUS

TRY IT! Compile and run the application to see the menus in action. Notice how
the shortcut for the Load menu is displayed within the menu. Try setting
the ShowShortcut property for this menu to false in order to prevent
this shortcut from appearing on the menu. Note that the keyboard shortcut
still works, the user is just not told about it in the menu bar.

Sit back for a moment and think about what we have done here. If you have used
Visual C++ with MFC, you should realize that the secret macros and magic interface
files required by this environment are gone. In their place are well-designed objects
that can quickly and easily be used to create arbitrarily complex menu structures.

If you have been following the examples with Visual Studio .NET, also realize
that you have not written any code thus far. This will change when we add event han-
dlers for our menus in the next section.

3.3 CLICK EVENTS

Of course, a menu is not very useful if you can’t make it do something. In this section
we’ll define some event handlers for our menus and examine how event handlers
work in more detail than we covered in chapter 2. This section builds on the MyPho-
tos version 3.2 project constructed in section 3.2, or available on the book’s web site.

Events for Windows Forms controls can be added from the Windows Forms
Designer window, or in the Properties window. We will discuss each method separately.

3.3.1 ADDING HANDLERS VIA THE DESIGNER WINDOW

As you might guess, Visual Studio adds a Click event handler whenever you double-
click a menu control in the Windows Forms Designer. We already saw this behavior
for buttons in chapter 2. Let’s use this feature to add a handler to the Load menu here.

Set the version number of the application to 3.3.

ADD CLICK HANDLER FOR THE LOAD MENU

Action Result

1 Display the MainForm.cs
[Design] window.

2 Add a Click handler for
the Load menu

Note: This double-click
method only works for the
Click event. We will see
how to add events more
generally in the next section.

A new event handler for the Load menu is added and the
cursor is placed in the MainForm.cs code window within the
newly added handler.

 protected void menuLoad_Click(object sender,
 System.EventArgs e)
 {
 }

The new handler is also registered as a Click handler for the
Load menu in the InitializeComponent method.

 menuLoad.Click += new System.EventHandler
 (this.menuLoad_Click);

How-to

a. Click on the File menu.
b. Double-click on the Load

menu.
CLICK EVENTS 85

Since this code matches the handler we discussed in chapter 2 for the Load button,
we will not discuss it again.

Compile the application to verify that the Load menu now works as expected.
You should be able to load a new image using the menu bar via the mouse, using the
access keys Alt+F and then Alt+L, or using the keyboard shortcut Ctrl+L.

3.3.2 ADDING HANDLERS VIA THE PROPERTIES WINDOW

Double-clicking our controls in Visual Studio is fine when we wish to add a Click
event handler for a menu item. What about other types of events? The .NET classes
provide a rich set of events for everything from keyboard presses and mouse clicks to
redrawing a control. To support these and other events, Visual Studio provides a more
generic way to add an event handler than the double-click we have used thus far.

This is done using the Properties window. We have seen how this window pro-
vides the list of properties associated with a specific control. It also provides the list
of events for each control and allows new event handlers to be added. Figure 3.6 shows
the relevant elements of the Properties window. Note the small toolbar buttons
between the object dropdown and the list of object members. The Properties button
is the default and displays a list of properties for the current object. If you click the
Events button, this window displays a list of events. The events for the menuExit
object are shown in the figure.

3 Copy the code from the
now defunct btnLoad_
Click into our new
method and delete the old
method.

Note: Unless you removed
it, the code for
btnLoad_Click should
still be present in your
code. After copying this
code, remove the method.

This code is identical to the code used with our Load button in
chapter 2; it is just invoked via a menu rather than a button.

 protected void menuLoad_Click
 (object sender, System.EventArgs e)
 {
 OpenFileDialog dlg = new OpenFileDialog();

 dlg.Title = "Load Photo";
 dlg.Filter = "jpg files (*.jpg)"
 + "|*.jpg|All files (*.*)|*.*";

 if (dlg.ShowDialog() == DialogResult.OK)
 {
 try
 {
 pbxPhoto.Image = new
 Bitmap(dlg.OpenFile());
 }
 catch (Exception ex)
 {
 MessageBox.Show(
 "Unable to load file: "
 + ex.Message);
 }
 }

 dlg.Dispose();
 }

ADD CLICK HANDLER FOR THE LOAD MENU (continued)
86 CHAPTER 3 MENUS

As you can see in the figure, our menuExit object supports five different events.
These correspond to the events for the MenuItem class shown in .NET Table 3.3 on
page 82. To the right of these events, the registered event handlers are displayed, with
a menuExit_Click method shown as the handler for the Click event. To add a
specific type of event, you simply need to double-click the entry in this window. We
will illustrate this by defining a Click event handler for the Exit menu.

b

Display by Category:

The available settings are
displayed by category.

b

cDisplay Alphabetically:

The available settings are
displayed alphabetically.

c

g

e

Events button:

Click to display the available
events for this object.

e

f

Object Drop-Down:

The object whose
settings are displayed.

f

d

Properties Button:

Click to display the available
properties for this object.

d

Description Pane:

Shows an explanation of
the currently selected item.

g

Figure 3.6

The Properties window

displays both the proper-

ties and events for the con-

trols on the form.

ADD CLICK HANDLER FOR THE EXIT MENU

Action Result

1 Display the Properties
window for the Exit menu.

The available properties for the menuExit object are shown.

2 Click the Events button in
the Properties toolbar.

The events for the menuExit object are displayed.

3 Double-click on the Click
item listed in the window.

A menuExit_Click handler is added to the menuExit
object. The new method is registered and defined in the
InitializeComponent method, and the cursor is located
within this new method.

 protected void menuExit_Click
 (object sender, System.EventArgs e)
 {

4 Call the Form.Close
method within this handler.

 this.Close();
 }

Note: Note how the code for this event handler is split
across steps 3 and 4 of this table. We will do this
throughout the book as a convenient way to discuss dif-
ferent sections of code for a single member of a class.
CLICK EVENTS 87

The Form.Close method is used to exit the application. This method closes the associ-
ated form, or the entire application if the form was the startup form for the application.

As you may have noticed in chapter 1, the Application class provides an Exit
method that we could use instead here. This call forces all message loops started by
Application.Run methods to exit, and closes any forms associated with them as well.

In our existing code, either method would close the application. As we will see in chapter
9, however, the Close method ensures that all nonmemory resources associated with a form
are disposed, and invokes the Form.Closing event to permit additional processing as
required. As a result, use of the Close method is normally preferred in an Exit menu rather
than the Application.Exit method.

TRY IT! Once again, compile and run the code to verify that the Load and Exit
menus now work. If you feel like experimenting, modify the Enabled and
Visible properties for the Exit menu to see how they change the behavior
of this menu.

Our handling of the File menu is now complete. Next we will handle the items in the
View menu.

3.4 POPUP EVENTS AND SHARED HANDLERS

The File menu is fairly straightforward as menus go. There is a Load item, a separa-
tor, and an Exit item. Each menu item raises a Click event when pressed, and the
associated event handler performs the appropriate operations. Our View menu will
handle things a little differently. This menu contains a single Image menu, which in
turn points to a submenu with two entries. When a MenuItem object contains a
nonempty collection in its MenuItems property, the Click event for that menu is
not raised. This makes sense, as the submenu automatically pops up when the parent
menu is clicked, making a Click event a bit extraneous.

This is the case for the File and View menus on the menu bar. These menus never
raise a Click event. The same applies to the Image menu, since it is the parent of the
MenuItem objects menuStretch and menuActual. Rather than Click events,
menus such as the Image menu raise a Popup event just before their submenu is dis-
played. This permits an event handler to modify the contents or appearance of the sub-
menu as dictated by the application. An example of this type of handler can be found
in the Windows operating system. Display the My Computer window and look at the
File menu. The contents of the File menu changes depending on what type of file is
currently selected.

In .NET, Popup events can be associated with any MenuItem or ContextMenu
object that contains a collection of MenuItem objects in their MenuItems property.

In this section we will use a Popup event associated with the Image menu to con-
trol how our two submenu items appear when displayed. Before we do this, we will
need a Click event handler for our submenu items.
88 CHAPTER 3 MENUS

3.4.1 DEFINING A SHARED HANDLER

The submenu for the Image menu item pops up whenever the Image menu is clicked.
Our submenu items are selected by the user to control how the image should appear
in the window. To implement this behavior, we will alter the SizeMode property of
our PictureBox control depending on which menu was selected. The SizeMode
values for these menus are as follows

One way to implement this behavior would be to handle the Click event for each
MenuItem in the preceding table, and modify the SizeMode setting appropriately in
each handler. A fine idea, but not our approach. Instead, this is a great opportunity to
see the power of event handlers in .NET, not to mention lay the groundwork for
some features we will explore later in this chapter and in other chapters.

For our implementation, we will use a single event handler for both MenuItem
objects. This handler will also be employed when we discuss context menus later in
the chapter, and will ensure consistency between our menu bar and context menu as
we add more features in future chapters. To facilitate this amazing behavior, we will
define a new structure to hold the SizeMode value depending on the Index setting
of the menu.

Set the version number of the application to 3.4.

The SizeMode settings for the Image submenu items

MenuItem SizeMode Setting Description

Stretch to Fit StretchImage As we have already seen, this value causes the image to
be stretched or shrunk to exactly fit the display area.

Actual Size Normal This displays the actual image data in the display area with
the upper left corner of the image in the upper left corner
of the display area.

DEFINE ARRAY FOR SIZEMODE SETTINGS

Action Result

1 Locate the MainForm
constructor in the
MainForm.cs window.
POPUP EVENTS AND SHARED HANDLERS 89

With these variables available, a Click handler for both the menuStretch and
menuActual menu items can now be implemented. One possible implementation
for this handler is shown below:
 // An example (not our approach) of a shared event handler
 protected void menuImage_ChildClick (object sender, System.EventArgs e)
 {
 if (sender == (object)menuStretch)
 {
 // Code for Stretch to Window click
 }
 else
 {
 // Code for Actual Size click
 }
 }

This implementation uses the sender parameter provided to the handler to identify
which menu was selected. This is an excellent idea and would work just fine. Because
all classes ultimately derive from object, you can compare the sender parameter to
your window control variables in order to identify which control raised the event.
This is a common tactic used to handle a set of menus with a shared implementation.

In order to provide even more flexibility, we will favor an implementation that
is not based on a comparison such as that shown here. This will allow us to modify
our menus without the need to modify the code for this handler.

If you recall, the order of the menus within the parent menu menuImage is set
using the Index property. The value of this property can be used as an index into the
modeMenuArray variable to locate the proper SizeMode value.

2 Add a private array of
PictureBoxSizeMode
values called modeMenu-
Array just before the
constructor.

 /// <summary>
 /// Mode settings for the View->Image submenu.
 /// The order here must correspond to the order
 /// of menus in the submenu.
 /// </summary>
 private PictureBoxSizeMode[] modeMenuArray =
 {
 PictureBoxSizeMode.StretchImage,
 PictureBoxSizeMode.Normal
 };

Note: To enter the comment preceding the array defini-
tion, type in three slashes (///)in Visual Studio and it
will automatically expand to a <summary> comment
block.

3 Add a private integer
_selectedImageMode after
the array.

 private int _selectedImageMode = 0;

Note: This variable will hold the currently selected dis-
play mode for the image.

DEFINE ARRAY FOR SIZEMODE SETTINGS (continued)
90 CHAPTER 3 MENUS

Since our handler is not specific to any one item, we will call the handler
menuImage_ChildClick. Let’s create the code required before we discuss this further.
This code continues the previous steps that created the variables used by this handler.

.

ADD SHARED CLICK HANDLER FOR IMAGE SUBMENU

Action Result

4 In the MainForm.cs
[Design] window, add a
Click event handler for the
Stretch to Fit menu called
menuImage_ChildClick.

The new method is registered with the menuStretch object
in the InitializeComponent method of the MainForm.cs
source file:

 menuStretch.Click +=
 new System.EventHandler (
 this.menuImage_ChildClick);
The MainForm.cs code window is shown with the cursor at
the beginning of this new method.

 protected void menuImage_ChildClick
 (object sender, System.EventArgs e)
 {
 }

5 Add this method as the
Click handler for the
Actual Size menu as well.

Note: This down arrow is
shown in the graphic for
the prior step. Clicking this
arrow displays a list of pos-
sible event handlers from
your code.

The selected handler is registered with the Actual Size menu in
the InidializeComponent method of the MainForm.cs
source file.

 menuActual.Click +=
 new System.EventHandler (
 this.menuImage_ChildClick);

How-to

a. Display the Properties
window for the Stretch to
Fit menu.

b. Click the Events button to
show the list of events.

c. Click the space to the
right of the Click item.

d. Enter the handler
“menuImage_ChildClick”
by hand.

e. Press the Enter key.

How-to

a. Display the events for the
Actual Size menu.

b. Click to the right of the
Click item.

c. Click the down arrow.
d. Select the menuImage_
ChildClick event han-
dler from the list.
POPUP EVENTS AND SHARED HANDLERS 91

We now have one event handler that receives the Click event for two different
menus. Note how the handler is registered for each menu in the same way as our pre-
vious Click handlers.

Continuing with our previous steps, we can now implement this handler.

The code for the menuImage_ChildClick handler introduces a few new concepts.
We duplicate it here so we can discuss it in more detail.
 protected void menuImage_ChildClick (object sender, System.EventArgs e)
 {
 if (sender is MenuItem)
 {
 MenuItem mi = (MenuItem)sender;

 _selectedImageMode = mi.Index;
 pbxPhoto.SizeMode = modeMenuArray[mi.Index];

 pbxPhoto.Invalidate();
 }
 }

Let’s look at the new concepts introduced here:

b In C++, there is no built-in mechanism for knowing if a variable is a certain type,
making it difficult to safely downcast a variable from a base class (such as object) to
a derived class (such as MenuItem). In C#, the is keyword provides a way to check
that an object (such as the sender parameter) is in fact a specific type (in this case, a
MenuItem instance).

IMPLEMENT THE MENUIMAGE_CHILDCLICK EVENT HANDLER.

Action Result

6 First, make sure sender is
a MenuItem object.

 protected void menuImage_ChildClick
 (object sender, System.EventArgs e)
 {
 if (sender is MenuItem)
 {

Note: Readers familiar with C# will recognize that this
implementation requires two casts, one to perform the
is statement, another to cast the sender parameter to
a MenuItem object. This can be avoided using the as
keyword, which we will discuss later in the book.

7 Create a local MenuItem
instance from sender.

 MenuItem mi = (MenuItem)sender;

8 Set the SizeMode
property to the appropriate
array value based on the
selected menu.

 _selectedImageMode = mi.Index;
 pbxPhoto.SizeMode = modeMenuArray[mi.Index];

9 Invalidate the PictureBox
control to redisplay the
image.

 pbxPhoto.Invalidate();
 }
 }

b Verify sender is MenuItem object

c Downcast sender to MenuItem instance

d Assign new
display settings

e Invalidate
PictureBox
control
92 CHAPTER 3 MENUS

c The key to this code is the ability to treat sender as a MenuItem object. The
Index property is not available in the object class, so we need to convert our vari-
able of type object into a variable of type MenuItem. Since the conversion is “down”
the class hierarchy, such a conversion is called a downcast. In C++ such operations are
dangerous since object might be something other than the target class type. In C#,
downcasting is much safer. In fact, an illegal cast of an object throws an exception of
type InvalidCastException. We verify that sender is a MenuItem object to
ensure that an exception will not be thrown here.

d The Index parameter is used to set the currently selected mode as well as an index
into the modeMenuArray variable for determining the new value for the SizeMode
property.

e Windows Forms controls support the Invalidate method. This method invali-
dates the contents of the control so that the system will redraw, or paint, any changes
onto the screen. In this case, we want the control to redraw the image with our new
SizeMode setting.

Look carefully at what we have done here. This code is based solely on the index of
the menu within its parent. We can add new menu items to our View menu or even
use an alternate menu with a similar list of items. As long as we keep our modeMenu-
Array up to date, this method will reset the SizeMode property appropriately.

TRY IT! Compile your code and verify that the PictureBox.SizeMode proper-
ty is altered when you select a different submenu item. The Picture-
Box.SizeMode property contains more than just the two settings we use
here. Add a menu item to the Image menu called menuCenter with text
Center Image to handle the CenterImage value for this property. You
will need to add a new MenuItem to the menuImage menu and modify the
modeMenuArray definition to include this new value.

We now have a Click handler that will modify the way an image is displayed based
on the user’s selection. Unfortunately, our interface does not indicate the current dis-
play mode in the Image submenu. We will address this problem in the next section by
adding a check mark to the current value.

3.4.2 HANDLING POPUP EVENTS

Users appreciate feedback on the current settings for an application. Our current
interface does not yet do this. The user has to understand the possible displays modes
in order to know what is currently selected and to choose a different setting. A nicer
interface would somehow highlight the current selection in the menuImage sub-
menu. This would immediately indicate what mode is currently displayed, and help
our user make a more informed selection.

If you look at the MenuItem class, there is a Checked property that, when true,
will display a check mark next to the menu. This property could be set whenever the
POPUP EVENTS AND SHARED HANDLERS 93

selection is modified, and our user would see the appropriate feedback. Of course, as
our program changes, there might be other commands or user interactions that alter
the display mode of the image. A better approach would ensure that the display modes
are checked or unchecked as they are displayed to the user. This approach is more
robust in the face of future changes, creating an application that users, documenters,
and testers will appreciate for years to come.

The Popup event is designed for just this purpose. This event occurs just before
a submenu is displayed, so that its appearance or contents can be modified and then
immediately displayed to the user. In Visual Studio, a Popup event handler is added
from the Properties window much like we added a Click event in the previous section.

Our new handler downcasts the sender object to a MenuItem instance similar to the
menuImage_ChildClick handler we already discussed. The handler is repeated
below so we can note a few points in the code.
 protected void menuImage_Popup (object sender, System.EventArgs e)
 {
 if (sender is Menu)
 {
 bool bImageLoaded = (pbxPhoto.Image != null);

 Menu parentMenu = (Menu)sender;
 foreach (MenuItem mi in parentMenu.MenuItems)
 {

IMPLEMENT A POPUP HANDLER FOR IMAGE MENU

Action Result

1 Add a Popup event handler for
the Image menu.

A Popup event handler is added for the menuImage
object. The beginning of this code is shown here:

 protected void menuImage_Popup
 (object sender, System.EventArgs e)
 {

2 Verify that the sender is a
MenuItem object.

 if (sender is MenuItem) {
 {

3 Determine if an image has been
loaded into the application.

 bool bImageLoaded
 = (imgPhoto.Image != null);

4 Set the Enabled and Checked
properties for each submenu
item.

 foreach (MenuItem mi in
 ((MenuItem)sender).MenuItems)
 {
 mi.Enabled = bImageLoaded;
 mi.Checked
 = (this._selectedImageMode == mi.Index);
 }
 }
 }

How-to

a. Display the events for the
Image menu in the Properties
window.

b. Double-click the Popup entry

b
Determine if an
image is loaded

 c Iterate over each
submenu item
94 CHAPTER 3 MENUS

 mi.Enabled = bImageLoaded;
 mi.Checked = (this._selectedImageMode == mi.Index);
 }
 }
 }

Note that the parentMenu variable here could be defined as a MenuItem object.
The Menu type is a base class and allows our handler to accommodate other Menu
types in the future. In addition, a couple of C# keywords we have not seen before are
worth a special mention.

b Unlike C and C++, C# has a built-in boolean type called bool. As a result, boolean
expressions such as the one here evaluate to true or false, rather than 0 or 1 as in
C. In this case, the bImageLoaded variable will be set to true only after an image
has been assigned to the Image property of the pbxPhoto object.

c In addition to the for loop used in C and other languages, C# also defines a
foreach loop. A foreach loop iterates over the objects in an array or other con-
tainer object, with the advantage that you don’t have to worry about the starting or
ending index, or whether the container is empty. The language ensures that each
entry in the given container is passed to the loop code. In this case, the loop executes
for each MenuItem contained in the given menuImage menu. Within the loop, each
MenuItem is enabled only if an image has been loaded, and a check mark is set using
the Checked property based on whether the index of the menu item matches the
selected image mode.

You may also notice that there is nothing in this handler to indicate that these menu
items are part of a specific menu structure. This will be useful in our upcoming dis-
cussion on context menus.

Compile and run the application to verify that the menus work correctly, and the
display mode of the image changes depending on the menu selection. Figure 3.7 shows
the application with an image displayed in Actual Size mode.

Unfortunately, this figure reveals another problem with our PictureBox con-
trol. In the figure, the image is larger than the display area, but there is no way to see
the rest of the image without resizing the window. While this is possible when the
image is small enough, a high-resolution image may contain more pixels than our
screen. Ideally, the application should display scroll bars here. Since the PictureBox
control does not support scroll bars, this is not possible.

You may be wondering about a book that teaches you how to build an application
that doesn’t quite work, and you should. Be patient until chapter 7, where we will get
rid of our not-quite-right PictureBox control in order to fix this problem.
POPUP EVENTS AND SHARED HANDLERS 95

TRY IT! Okay, I admit this has nothing to do with our application. Still, if you want
to have fun with a Popup event, add a new menu menuCounter at the
bottom of the View menu called “Counter” and insert a single menu called
“Popup” in its submenu. Define a Popup event for the menuCounter
menu (which Visual Studio will call menuCounter_Popup). In this han-
dler, dynamically create a new MenuItem object and add it to the end of
the menuCounter submenu. Set the Text property to your new menu to
“Count #,” where # is the number of pop-ups that have occurred on your
new menu. To do this, add a static integer popupCount to the MainForm
class to track the number of pop-ups. The lines to create the new menu in
your Popup handler will look something like the following.

 MenuItem mi = new MenuItem();
 mi.Text = "Count " + popupCount.ToString();
 menuCounter.MenuItems.Add(mi);

This example illustrates how easy it is to create controls on the fly with the
.NET Framework, and how a parent menu can change the contents of its
submenu using the Popup event handler. This might be used, for example,
to display a list of files most recently opened by an application.

If all this makes no sense to you, download the code for this TRY IT!
from the book’s web site. Have a look at the menuCounter_Popup han-
dler to see the code required.

This concludes our discussion of the main menu in our application. Some of you
may be disappointed that we did not look at owner-drawn menus, such as menus that
display an icon or other image in addition to or instead of a text string. If this applies

Figure 3.7

Our Actual Size display mode only shows a

portion of the image. The window must be

resized to view more.
96 CHAPTER 3 MENUS

to you, skip ahead and go read chapter 4. There we discuss owner-drawn status bar
panels, which use a similar mechanism to that required for owner-drawn menus. In
the meantime, the rest of us will move on to context menus.

3.5 CONTEXT MENUS

While the creation of context menus requires a little extra effort by a programmer,
they also improve the usability of an application greatly and should be seriously con-
sidered for any application. The ability of a user to right-click a control and instantly
see a list of commands is a powerful mechanism that experienced users especially
appreciate. Context menus are typically associated with a specific graphical control,
but can also be brought up programmatically. As a result, context menus provide
quick access to commands immediately relevant to what the user is currently trying
to accomplish or understand.

Most controls in the System.Windows.Forms namespace have a Context-
Menu property that specifies a ContextMenu object to associate with the control. Like
the Menu property on Form objects, this setting can be changed dynamically to allow
different context menus to display depending on the state of the control.

In this section we will add a context menu to our PictureBox control that will
match the contents of the View menu. The contents and behavior of our context menu
will be inherited from the View menu items. As you will see, our careful handling of
these menus earlier in the chapter will make processing events for our context menu
a snap. Figure 3.8 shows this context menu both before and after an image has been
loaded by the user.

Figure 3.8 In both the main View menu and the context menu, the display options are dis-

abled before an image is loaded.
CONTEXT MENUS 97

3.5.1 CREATING A CONTEXT MENU

We will begin by simply adding a new context menu to our application and associat-
ing it with the pbxPhoto control. The next section will discuss how to populate this
menu with our existing menu items.

Set the version number of the application to 3.5.

When you are finished, your Visual Studio .NET window should look something like
figure 3.9. Visual Studio generates all the necessary source code for these changes,
excerpts of which appear in the steps shown in the previous table.

ADD A CONTEXT MENU

Action Result

1 Add a ContextMenu object
to the form in the
MainForm.cs [Design]
window.

The new object appears below the form next to the existing
MainMenu object.

Note: The Visual Studio window for this step is a bit too
big for this space, but is shown in figure 3.9.

2 Rename the new context
menu to ctxtMenuView.

The new name is displayed both below the form and in the
Properties window.

All instances of the ContextMenu object in the source code
MainForm.cs are renamed as well.

 private System.Windows.Forms.ContextMenu
 ctxtMenuView;

3 Associate this new context
menu with our
PictureBox control.

The down arrow for the ContextMenu property displays the
list of available ContextMenu objects available in the form. In
our case, only the ctxtMenuView is shown.

In the InitializeComponent method of our MainForm
class, the selected context menu is assigned to the property.

 private void InitializeComponent()
 {
 . . .
 pbxPhoto.ContextMenu = this.ctxtMenuView;

How-to

a. Open the Toolbox win-
dow.

b. Drag a ContextMenu
object onto the form.

How-to

Use the Properties window
to modify the (Name)
setting for the object.

How-to

a. Display the properties for
the pbxPhoto object.

b. Locate the Context-
Menu property.

c. Click to the right of this
entry.

d. Click the down arrow.
e. Select the ctxtMenu-
View item from the list.
98 CHAPTER 3 MENUS

The .NET ContextMenu class is essentially a container for the MenuItem objects that
appear within the menu. An overview of this class is shown in .NET Table 3.4.

Figure 3.9 The component tray below the designer window is used for objects that do not

have a representation on the form itself.

.NET Table 3.4 ContextMenu class

The ContextMenu class is a popup menu that appears at the current cursor location when a
user right-clicks an associated object. This class is part of the System.Windows.Forms
namespace, and inherits from the Menu class. Context menus are typically associated with a
graphical control, and are displayed automatically at a right-click of the mouse within the con-
trol. The Control class contains a ContextMenu property inherited by most controls that
establishes a context menu to automatically display for the control. See the Menu class
description in .NET Table 3.1 on page 72 for a list of inherited members.

Public Properties

RightToLeft Indicates whether text in the control should be
displayed right to left.

SourceControl Gets the last Control object that displayed this
context menu.

Public Methods Show Displays the menu at a specified position within a
given control.

Public Events Popup Occurs before a context menu displays its list of
child menus.
CONTEXT MENUS 99

3.5.2 ADDING MENU ITEMS

We are now ready to add menu items to our context menu. Within Visual Studio,
you can click the ctxtMenuView object in the designer window to display a “Type
Here” message on your form much like it did for the MainMenu object. You can enter
the items to include on this menu and create submenus and handlers as we discussed
earlier in the chapter.

We could use this feature to manually enter the contents of the main View menu
into our context menu. The behavior and events would have to be set manually for
each menu, and the menu would require updating every time the View menu changes.
While this could be done, it would be ideal if we could simply copy the contents of
the existing View menu into our new context menu, and inherit the behavior and
event handlers already established.

Fortunately, the MenuItem class provides a CloneMenu method to create a
duplicate copy of a menu item. This permits us to very quickly create our context
menu with the identical behavior as the existing View menu in the menu bar.

In the implementation of DefineContextMenu, note how a foreach loop is used
to iterate over the items in the View menu. Each item is added to the ctxtMenu-
View context menu using the MenuItems property of the class. The identical menu
index is used for the new menu so that the order of menus in the context menu will
match the order used in the View menu. This feature is important, since the
foreach loop does not provide any guarantees on the order in which MenuItem
objects are presented to the loop.

CLONE THE VIEW MENU ITEMS INTO THE CONTEXT MENU

Action Result

1 Create a private
DefineContextMenu
method at the end of the
MainForm.cs source file.

 private void DefineContextMenu()
 {

2 For each MenuItem in the
View menu, clone the
menu and add it to our
context menu.

 // Copy the View menu into ctxtMenuView
 foreach (MenuItem mi in menuView.MenuItems)
 {
 ctxtMenuView.MenuItems.Add
 (mi.Index, mi.CloneMenu());
 }
 }

3 Call the new
DefineContextMenu
method from the end of
the MainForm constructor.

 public MainForm()
 {
 . . .
 DefineContextMenu();
 }

Note: Unlike C++, C# does not require forward declara-
tions of functions. The method may be used at the begin-
ning of the file even though it is not defined until the end
of the file.
100 CHAPTER 3 MENUS

Compile and run this application to see our new context menu in action. The
CloneMenu method provides a deep copy, in that it duplicates not only the Image
menu item, but its child menu items and all event handlers associated with each menu.
Because of our careful construction of the Popup and Click event handlers earlier in
the chapter, these handlers work without any changes.

It is important to realize that the MenuItem objects within our context menu are
not the same as those under the View menu. In particular, if you manually modify an
item (such as the menuStretch menu), it will have no effect on the context menu.
This may seem a bit strange to programmers used to managing memory in their appli-
cation, since there are no pointers or other mechanisms required to track these new
MenuItem objects. The references to these objects from the context menu are tracked
internally as part of the garbage collection system, leaving us to concentrate on our
next subject instead of worrying about memory management.

3.6 RECAP

That’s it for menus in .NET. In this chapter we showed how both menu bars and
context menus can be created, modified, and handled within the .NET Framework
by adding these controls to our MyPhotos application. We looked at submenus, and
showed how a single event handler can be used by multiple menu objects.

The shared event handlers we created supported both our menu bar as well as our
context menu. The contents of our context menu were cloned, or copied, based on the
contents of the top-level View menu so that the behavior and processing of both con-
structs were identical.

We also examined some C# keywords such as the is, in, and foreach key-
words, as well as the bool type. We looked at the Properties window in Visual Studio
.NET in more detail, and used this window to add various events to our program.

Future chapters will rely on our knowledge of menus and the C# and Visual Stu-
dio items we have learned here. The next chapter will take us to the bottom of the
application window, where the status bar normally resides.

More .NET One resource for menus specifically and .NET in general is the GotDotNet
web site at www.gotdotnet.com. This site is currently managed by Mi-
crosoft, and bills itself as the “.NET Framework Community Website.”

General information about the .NET Framework can also be found on
the Microsoft Developer Network at msdn.microsoft.com. These and oth-
er Internet sites with information on .NET are listed in appendix D.
RECAP 101

C H A P T E R 4

Status bars
4.1 The Control class 103
4.2 The StatusBar class 105
4.3 Status bar panels 110
4.4 Owner-drawn panels 118
4.5 Recap 125
Most applications stuff a lot of information and features into a single window. Most
users do not use all of these features, but there is often a core subset that all users
would appreciate having at their fingertips. A status bar is a good place for this type
data, as it can provide quick feedback related to the current task or cursor position.
My word processor, for example, indicates the current page number, total number of
pages, column and line position of the cursor, whether the Insert key has been pressed
(which I seem to hit constantly while aiming for the Page Down key), and other
information I may want to know at a glance. This helps me keep track of how this
book is shaping up, when the Insert key has been pressed, and where these words you
are reading will appear on the page.

Status bars can also contain graphical information such as the status of the
printer, whether the application is connected to the Internet, and pretty much any-
thing else you can draw or animate.

In this chapter, we will look at status bars in Windows Forms by adding the sta-
tus bar shown in figure 4.1. As you can see, this status bar contains three areas, called
102

panels. You can place any number of panels on a status bar, or you can use a status
bar with no panels and simply display text.

4.1 THE CONTROL CLASS

Before we venture into the StatusBar class, it is worth looking at the classes behind
this and all other Windows Forms controls. In chapter 3 we saw how the Menu class
derived from the Object, MarshalByRefObject, and Component classes. The
hierarchy for the StatusBar class is shown in figure 4.2.

Figure 4.1

Our status bar will include the optional siz-

ing grip graphic at the lower right of the

control. A user can click this graphic to re-

size the form.

Figure 4.2 The StatusBar class hierarchy includes the base class for all Windows

Forms controls: the Control class.
THE CONTROL CLASS 103

.NET Table 4.1 Control class

The Control class for Windows Forms is a component with a visual representation on the
desktop. This class is part of the System.Windows.Forms namespace, and inherits from the
System.ComponentModel.Component class. This class encapsulates the standard function-
ality used by all Windows Forms controls.

Public

Properties

AllowDrop Gets or sets whether to allow drag and drop operations in this
control. Drag and drop operations are discussed in chapter 18.

Anchor Gets or sets the anchor setting for the control. The Dock
property gets or sets the dock setting for the control.

BackColor Gets or sets the background color of the control.

ContextMenu Gets or sets the context menu for the control.

Controls Gets or sets the collection of controls contained by this
control.

ClientRectangle Gets the client area of the control. The DisplayRectangle
property gets the display area.

Cursor Gets or sets the Cursor to display when the mouse is over
the control.

Enabled Gets or sets whether the control is enabled.

Location Gets or sets the location of the control. The edges are
available via the Top, Bottom, Left, and Right properties.

Parent Gets or sets the parent of this control.

TabIndex Gets or sets the tab index of the control.

TabStop Gets or sets whether the user can use the Tab key to give the
focus to the control.

Text Gets or sets the text associated with this control.

Visible Gets or sets whether control is visible. This also affects any
controls contained by this control.

Public

Methods

BringToFront Brings the control to the front of the z-order. A similar
SendToBack method also exists.

GetNextControl Returns the next or previous control in the tab order.

Invalidate Invalidates all or part of the control and forces a paint
message to be sent to it.

PointToClient Converts a screen location to client coordinates.

Public

Events

Click Occurs when the control is clicked.

KeyPress Occurs when a key is pressed while the control has focus.

MouseUp Occurs when a mouse button is released within the control.

Paint Occurs when all or part of the control should be repainted.
104 CHAPTER 4 STATUS BARS

The Control class extends the Component class we saw in chapter 3. All controls
are components, and therefore support the IComponent and IDisposable inter-
faces. Controls can act as containers for other controls, although not all controls actu-
ally do so. The premier example of such a container is the Form class, which we have
been using for our application window all along. The class hierarchy for the Form
class is discussed in chapter 7.

All controls are also disposable. When you are finished with a control, you should
call the Dispose method inherited from the Component class to clean up any non-
memory resources used by the control.

The Control class forms the basis for all windows controls in .NET, and pro-
vides many of the properties, methods, and events we have already seen such as the
Left, Top, Width, and Height properties, the Invalidate method, and the
Click event. An overview of the Control class is provided in .NET Table 4.1. Note
that only a portion of the many members of this class are shown in the table. Consult
the online documentation for the complete list of members.

The StatusBar class is just one of many controls derived from the Control
class. We will look at the StatusBar class in more detail in a moment, and other con-
trol classes throughout the rest of the book.

4.2 THE STATUSBAR CLASS

Now that we have seen the class hierarchy, let’s turn our attention to the StatusBar
class itself. Typically, an application has only one status bar, although its contents may
change as the application is used in different ways. Two types of information are nor-
mally displayed on a status bar.

• Simple text—the status bar can display a text string as feedback on the meaning
of menu commands and toolbars. This is often referred to as flyby text since it
displays as the cursor moves over, or flies by, the associated control. A simple
string can also display status information on what the application is currently
doing. For example, we will use the status bar to display a message while the
application is loading a selected image. On a slower machine or for a large image,
this will tell our user that the application is busy and currently unavailable.

• State or attribute information—another type of data often provided is relevant
information about the application or an object displayed by the application.
This information is usually divided into separate areas called status bar panels
(or status bar indicators or panes). Such information can include both text and
graphical data. In this chapter, we will use a status bar panel to display the
image size in pixels of the displayed image.

This section will implement the first type of information to display the status bar
shown in figure 4.3. As before, this chapter builds on the application constructed in
the previous chapter.
THE STATUSBAR CLASS 105

4.2.1 ADDING A STATUS BAR

As you might expect, a status bar can be added to our application in Visual Studio by
dragging one from the Toolbox window onto the form.

Set the version number of the application to 4.2.

Figure 4.3

The status bar shown here uses the Text

property of the StatusBar class to display a

string to the user.

ADD A STATUS BAR

 Action Result

1 Place a status bar at the base
of the MyPhotos application.

The new status bar appears in the designer window. For lack
of a better choice, we’ll use the default name statusBar1.

2 Set the Text property for the
StatusBar control to
“Ready.”

How-to

a. Display the MainForm.cs
[Design] window.

b. Drag a StatusBar object
from the Toolbox window
onto the form.
106 CHAPTER 4 STATUS BARS

Before we interact with our new status bar, let’s take a look at the code so far. An
excerpt of the code in our MainForm.cs source file is shown below.
 . . .
 private System.Windows.Forms.StatusBar statusBar1;
 . . .
 private void InitializeComponent()
 {
 . . .
 this.statusBar1 = new System.Windows.Forms.StatusBar();
 . . .
 //
 // statusBar1
 //
 this.statusBar1.Location = new System.Drawing.Point(0, 233);
 this.statusBar1.Name = "statusBar1";
 this.statusBar1.Size = new System.Drawing.Size(292, 20);
 this.statusBar1.TabIndex = 2;
 this.statusBar1.Text = "Ready";
 . . .
 pbxPhoto.Dock = System.Windows.Forms.DockStyle.Fill;
 . . .
 this.Controls.AddRange(new System.Windows.Forms.Control[] {
 this.statusBar1,
 this.pbxPhoto});

 }

This looks very similar to code we have seen before. As usual, though, there are some
points worth highlighting.

b This line is a little strange. You do not normally tab into a status bar, so why set a tab
index? Visual Studio does this to ensure that each control has a unique index, but it
does not mean that you can tab to the status bar control. By default, the StatusBar
sets the TabStop property (inherited from the Control class) to false. So the sta-
tus bar is not a tab stop (by default), even though Visual Studio sets a TabIndex for it.

c If you recall, the order in which controls are added establishes the z-order stack (which
controls are in front or behind the others). This is important here since the pbxPhoto
control takes up the entire window (with Dock set to Fill). By adding the status bar
first, this insures this control is on top, docked first, and therefore visible. In the Forms
Designer window, you can right-click a control to select the Bring to Front or Send to
Back item and modify the z-order.1 You might try this to verify that the status bar is
hidden if you run the application with pbxPhoto at the top of the z-order.

b Set the tab order
for status bar

Add the status
bar before the
picture boxc

1 You can also change the order in which controls are added by rearranging their order in the Initial-
izeComponent method. While Microsoft recommends against this, it does work.
THE STATUSBAR CLASS 107

d Set the Dock property I know, there is no number 3 in the code. I’m just trying to see
if you’re paying attention. The default setting for the Dock property in the Control
class is DockStyles.None. The StatusBar class overrides this setting to use Dock-
Styles.Bottom by default. This ensures the status bar appears docked at the bottom
of the form. Since this is the default, Visual Studio does not set this value in the code,
so there is no number 3.

A summary of the StatusBar class is shown in .NET Table 4.2. One feature notice-
ably missing from the StatusBar class is flyby text. In the MFC classes, menu and
toolbar objects can set help messages that appear in the status bar as the cursor passes
over the corresponding control. This feature may well be included in a future release
of the .NET Framework.

.NET Table 4.2 StatusBar class

The StatusBar class is a control used to show a status bar on a form. This class can display
either a textual string or a collection of panels in the form of StatusBarPanel objects. Whether
the text or panels appear is determined by the value of the ShowPanels property. The Sta-
tusBar class is part of the System.Windows.Forms namespace, and inherits from the Con-
trol class. See .NET Table 4.1 on page 104 for a list of members inherited from the Control
class, and .NET Table 4.3 on page 116 for more information on the StatusBarPanel class.

Public Properties

Dock
(inherited from
Control)

Gets or sets the dock setting for the control. The
default value for status bars is DockStyles.Bottom.

Panels Gets the StatusBarPanelCollection class
containing the set of StatusBarPanel objects
managed by this status bar.

ShowPanels Gets or sets whether the panels (if true) or text (if
false) should be displayed on the status bar.
Defaults to false.

SizingGrip Gets or sets whether a sizing grip should be
displayed in the corner of the status bar. This grip can
be used to resize the form. Defaults to true.

TabStop
(inherited from
Control)

Gets or sets whether the control is a tab stop on the
form. The default value for status bars is false.

Text
(inherited from
Control)

Gets or sets the text for the status bar. This is
displayed on the status bar only if ShowPanels is set
to false.

Public Events

DrawItem Occurs when an owner-drawn status bar panel must
be redrawn.

PanelClick Occurs when a panel on the status bar is clicked.
108 CHAPTER 4 STATUS BARS

4.2.2 ASSIGNING STATUS BAR TEXT

In our application, we will add some helpful text when an image is loaded and dis-
played. This will let the user know when a file is loading, and when it is complete.

Whether or not the user sees the "Loading…" message depends on the speed of his
or her machine and the size of the image. After an image is successfully loaded, the
"Loaded…" message displays as per figure 4.5 at the beginning of this section.

Since the assignment of the status bar text occurs within a try block, it is impor-
tant to consider the implications of an exception occurring. If an exception is thrown
while preparing the file for display in the PictureBox control, then the “Loading…”
line will still be present on the status bar. To make sure this doesn’t happen, we assign
the status bar text to a more appropriate value in our exception handler.

Of course, other text messages could be added to our application as well. We will
see additional examples as we progress through the book.

TRY IT! You can implement flyby, or temporary, help text for menu items using
the Select event in the MenuItem class. This event occurs when the cur-
sor is placed over the menu. Handle this event for the Load menu to display
the text “Loads a photo to display in the window” on the status bar when-
ever the cursor hovers over this menu item.

The Form class provides the MenuStart and MenuComplete events
to capture when the menu associated with a form has and then loses focus.

SET THE STATUS BAR TEXT

Action Result

1 Locate the menuLoad_
Click method in the
MainForm.cs code window.

 protected void menuLoad_Click
 (object sender, System.EventArgs e)
 {
 OpenFileDialog dlg = new OpenFileDialog();
 . . .

2 Define a status bar
message before and after
an image is loaded.

The changes to the try-catch block in this method are shown
in bold.

 try
 {
 statusBar1.Text
 = "Loading " + dlg.FileName;
 pbxPhoto.Image
 = new Bitmap(dlg.OpenFile());
 statusBar1.Text
 = "Loaded " + dlg.FileName;
 }
 catch (Exception ex)
 {
 statusBar1.Text
 = "Unable to load " + dlg.FileName;
 MessageBox.Show(
 "Unable to load file: "
 + ex.Message);
 }
THE STATUSBAR CLASS 109

You can use these events to enable and disable the display of help text in
the status bar. The easiest way to do this here is to set the Text property
of the status bar to empty whenever the menu loses focus. Either handle the
event in the MainForm class or override the protected OnMenuComplete
method in your Form class.

In a form with status bar panels, the MenuStart and MenuComplete
events can be used to toggle between displaying the panels and displaying
flyby text on the corresponding status bar. The panels are hidden in the
handler for the MenuStart event, and redisplayed in the handler for the
MenuComplete event.

4.3 STATUS BAR PANELS

Now that we have seen how to add a status bar and display simple text, we can talk
about status bar panels. Panels provide a nice way to encapsulate a specific nugget of
information in a single location. As we will see, panels can present both text and
graphical information to your users.

When designing an application, do not
crowd so many panels into your status bar
that it becomes cluttered and unusable.
Make sure the information you provide is
desired and useful to your users. An example
of an extraneous panel might be the book
and pencil graphic that animates whenever
you type into Microsoft Word. A pretty lit-
tle graphic, but who needs to be told when
they are typing? Keep your panel informa-
tion to a minimum, and your users will
thank you.

For our application, let’s add three
panels to provide some information on the
displayed image. These panels are shown
in figure 4.4. The first panel will display the filename of the image; the second the
image’s dimensions in pixels; and the third will be an owner-drawn panel display-
ing the percentage of the image currently shown. The following table summarizes
these panels. We will use the sbpnl prefix to identify these variables as Status-
BarPanel objects.

Figure 4.4 Status bar panels can be dis-

played with no border, a sunken border, or

a raised border (not shown).
110 CHAPTER 4 STATUS BARS

In this section we will add the new panels to our status bar, and define some text for
the first two panels. The final panel is an owner-drawn panel, and is the subject of
section 4.4.

4.3.1 Adding panels to a status bar

Let’s begin by adding our three panels to the status bar. In Visual Studio, panels are
not added via the Toolbox, but rather through the Panels item in the Property win-
dow. If you are not using Visual Studio, you can create StatusBarPanel objects
like you would any other object for your form.

Set the version number of the application to 4.3.

StatusBarPanel objects for our application

Panel Name Contents Notes

sbpnlFileName The file name of the image
currently displayed.

Later in the book, we will change this panel to
display a user-supplied caption. For now, the
file name of the image will suffice.

sbpnlImageSize The dimensions of the
image in pixels.

We will write the text for this panel as “width x
height,” as shown in figure 4.4.

sbpnlImagePercent The percentage of the
image currently shown.

The percent of image that is shown only
changes in the Actual Size display mode. We
will show a graphical bar taking up the
equivalent percent of the panel.

ADD STATUS BAR PANELS

 Action Result

1 In the designer window,
display the Properties
window for the
statusBar1 control.
STATUS BAR PANELS 111

2 Display the StatusBarPanel
Collection Editor dialog for
the status bar.

Note: The Panels prop-
erty holds the collection of
panels for the status bar.

The StatusBarPanel Collection Editor dialog appears, where
panels for the status bar can be added and removed.

3 Add a new panel for the
control.

Settings

The first panel (number 0) is added to the dialog. Panels are
shown in the Members column on the left, and properties are
shown on the right.

The dialog after all three panels have been added is shown
below in Step 5.

4 Add the second panel. The second panel is added as panel number 1 in the dialog.

Note: The arrow buttons in the center of the Editor dialog
are used to alter the order in which panels will appear.
We will use this feature in chapter 6 when we add an
additional panel to our status bar.

ADD STATUS BAR PANELS (continued)

 Action Result

How-to

a. Click the Panels entry in
the Properties window.

b. Click the small … button
that appears.

How-to

a. In the Editor window,
click the Add button.

b. Set the panel’s properties
as shown below.

Property Value

(Name) sbpnlFileName

AutoSize Spring

BorderStyle None

ToolTipText Image File
Name

Settings

Property Value

(Name) sbpnlImageSize

AutoSize Contents

ToolTipText Image Size
112 CHAPTER 4 STATUS BARS

As is our custom, let’s look at an excerpt of the code generated by these actions.
 private System.Windows.Forms.StatusBarPanel sbpnlImagePercent;
 private System.Windows.Forms.StatusBarPanel sbpnlImageSize;
 private System.Windows.Forms.StatusBarPanel sbpnlFileName;
 . . .

 private void InitializeComponent()
 {
 . . .
 this.sbpnlFileName = new System.Windows.Forms.StatusBarPanel();
 this.sbpnlImageSize = new System.Windows.Forms.StatusBarPanel();
 this.sbpnlImagePercent = new System.Windows.Forms.StatusBarPanel();
 ((System.ComponentModel.ISupportInitialize)
 (this.sbpnlFileName)).BeginInit();
 ((System.ComponentModel.ISupportInitialize) =
 (this.sbpnlImageSize)).BeginInit();
 ((System.ComponentModel.ISupportInitialize)
 (this.sbpnlImagePercent)).BeginInit();
 . . .
 //
 // sbpnlFileName
 //
 this.sbpnlFileName.AutoSize =
 System.Windows.Forms.StatusBarPanelAutoSize.Spring;
 this.sbpnlFileName.BorderStyle =
 System.Windows.Forms.StatusBarPanelBorderStyle.None;
 this.sbpnlFileName.Text = "statusBarPanel1";
 this.sbpnlFileName.ToolTipText = "Image File Name";

5 Add the third panel (panel 2).

ADD STATUS BAR PANELS (continued)

 Action Result

Settings

Property Value

(Name) sbpnlImage-
Percent

Style OwnerDraw

ToolTipText Percent of
Image Shown

Width 75

b Begin panel
initialization

d Set tool tip text

Set panel
properties c
STATUS BAR PANELS 113

 //
 // sbpnlImageSize
 //
 this.sbpnlImageSize.AutoSize =
 System.Windows.Forms.StatusBarPanelAutoSize.Contents;
 this.sbpnlImageSize.Text = "statusBarPanel2";
 this.sbpnlImageSize.ToolTipText = "Image Size";
 this.sbpnlImageSize.Width = 97;
 //
 // sbpnlImagePercent
 //
 this.sbpnlImagePercent.Style =
 System.Windows.Forms.StatusBarPanelStyle.OwnerDraw
 this.sbpnlImagePercent.Text = "statusBarPanel3";
 this.sbpnlImagePercent.ToolTipText = "Percent of Image Shown";
 this.sbpnlImagePercent.Width = 75;
 . . .
 this.statusBar1.Panels.AddRange(new
 System.Windows.Forms.StatusBarPanel[] {
 this.sbpnlFileName,
 this.sbpnlImageSize,
 this.sbpnlImagePercent});
 . . .
 ((System.ComponentModel.ISupportInitialize)
 (this.sbpnlFileName)).EndInit();
 ((System.ComponentModel.ISupportInitialize)
 (this.sbpnlImageSize)).EndInit();
 ((System.ComponentModel.ISupportInitialize)
 (this.sbpnlImagePercent)).EndInit();
 . . .
 }

Some of the properties here are a little different than we have seen before. The Status-
BarPanel is not a control, but rather a Component object similar to our menu object.

b The StatusBarPanel object must be fully initialized before it can be used within
the StatusBar control. The ISupportInitialize interface specifies that this
object uses a simple transacted notification for batch initialization. When creating such
an object, use of the BeginInit and EndInit methods supported by this interface
should be used to ensure proper initialization.

c Since panels exist within a status bar control, properties exist to indicate how to draw
the panel within the containing control. See .NET Table 4.3 for a summary of all
properties in the StatusBarPanel class. Some properties used here are briefly
explained in the following list.

• AutoSize indicates whether the panel is automatically sized within the status
bar, and if so how. This property uses the StatusBarPanelAutoSize enu-
meration, with the following values:

Set panel
properties c

Set panel
properties c

Update StatusBar
object e
114 CHAPTER 4 STATUS BARS

• BorderStyle indicates the type of border to use for the panel, taken from the
StatusBarPanelBorderStyle enumeration:

• Style indicates how the panel should be drawn, taken from the StatusBar-
PanelStyle enumeration:

As you can see from the code, two of our panels display text in the status bar, and one
of them is an owner-drawn panel. Each of the AutoSize values are used.

d Panels provide a built-in tool tip mechanism in the ToolTipText property. These
appear when the cursor hovers over the corresponding panel. We will look at the
ToolTips class in chapter 13 as a way to support tool tips for classes derived from the
Control object.

e Finally, note the changes to our statusBar1 variable. The set of panels is added to
the Panels property using the AddRange method.
 this.statusBar1.Panels.AddRange(new
 System.Windows.Forms.StatusBarPanel[] {
 this.sbpnlFileName,
 this.sbpnlImageSize,
 this.sbpnlImagePercent});

StatusBarPanelAutoSize Value Description

Contents The width of the panel expands or contracts to fit
the actual contents of the panel.

None The width of the panel is fixed based on the Width
property setting. This is the default.

Spring The width of the panel expands or contracts to share
the available space with other panels that have the
Spring size setting.

StatusBarPanelBorderStyle Value Description

None The panel is displayed with no border.

Raised The panel is displayed with a raised border.

Sunken The panel is displayed with a sunken border. This is
the default.

StatusBarPanelStyle Value Description

OwnerDraw The panel is drawn by the owner, using the DrawItem
event in the StatusBar class.

Text The panel is drawn by the system using the Text
property of the panel.
STATUS BAR PANELS 115

4.3.2 ASSIGNING PANEL TEXT

With our panels defined, we simply set the Text property value for each panel to
have the text displayed by the application. This only works for panels with their
Style property set to Text, of course. We will look at our owner-drawn panel in
section 4.4. Since our panels only have meaning after an image is loaded, we assign
their values as part of the Click event handler for the Load button, as indicated by
the following steps.

.NET Table 4.3 StatusBarPanel class

The StatusBarPanel class is a component that appears as a panel within a StatusBar con-
trol. This class is part of the System.Windows.Forms namespace, and inherits from the Sys-
tem.ComponentModel.Component class. A panel must be associated with a StatusBar
instance with its ShowPanels property set to true in order to appear on a form.

Public Properties

Alignment Gets or sets the HorizontalAlignment for the
panel’s text.

AutoSize Gets or sets how the panel is sized within the
status bar.

BorderStyle Gets or sets the type of border to display for the
panel, if any.

MinWidth Gets or sets the minimum width for the panel.

Parent Gets the StatusBar object that contains this
panel.

Style Gets or sets the style used to draw the panel.

Text Gets or sets the text for the panel.

ToolTipText Gets or sets the tool tip for the panel.

Width Gets the current width or sets the default width
for the panel.

Public Methods

BeginInit Begins initialization of the panel when used
within a form or other component.

EndInit Ends initialization of the panel when used within
a form or other component.

SET THE TEXT TO APPEAR IN THE PANELS

 Action Result

1 In the menuLoad_Click
method, set the ShowPanels
property to false while the
image is loading.

 private void menuLoad_Click
 (object sender, System.EventArgs e)
 {
 . . .
 try
 {
 statusBar1.ShowPanels = false;
116 CHAPTER 4 STATUS BARS

Look again at the new try block.
 try
 {

 statusBar1.ShowPanels = false;

 statusBar1.Text = "Loading " + dlg.FileName;

 pbxPhoto.Image = new Bitmap(dlg.OpenFile());

 statusBar1.Text = "Loaded " + dlg.FileName;
 this.sbpnlFileName.Text = dlg.FileName;
 this.sbpnlImageSize.Text
 = String.Format("{0:#} x {1:#}",
 pbxPhoto.Image.Width, pbxPhoto.Image.Height);
 statusBar1.ShowPanels = true;
 }

Two items are worth noting in this code:

b The ShowPanels property is set to false while an image is loading so that the Sta-
tusBar.Text property setting will appear, and set to true after the image is loaded
and the panels are set.

c The Format method used here is a static method provided by the String class for
constructing a string. We could spend a chapter covering this and other features avail-
able in C# strings generally and the .NET System.String class specifically, but
instead will assume you can look this one up in the documentation. In the code shown
here, the "{0:#} x {1:#}" string indicates that two parameters are required, both
of them integers.

Build and run the application to see these panels in action. Resize the window to see
how the panels react. You will notice that the first panel resizes automatically along
with the window, while the second two panels maintain their initial size. This is con-
sistent with the AutoSize settings we used for these objects.

2 Initialize the sbpnlFileName
and sbpnlImageSize panels
after the image is success-
fully loaded.

 statusBar1.Text = "Loading " + dlg.FileName;

 pbxPhoto.Image = new Bitmap(dlg.OpenFile());

 statusBar1.Text = "Loaded " + dlg.FileName;
 this.sbpnlFileName.Text = dlg.FileName;
 this.sbpnlImageSize.Text
 = String.Format("{0:#} x {1:#}",
 pbxPhoto.Image.Width,
 pbxPhoto.Image.Height);

3 Set the ShowPanels property
to true so the panel text will
appear.

 statusBar1.ShowPanels = true;
 }
 . . .
 }

SET THE TEXT TO APPEAR IN THE PANELS (continued)

 Action Result

b
Disable the
panels

c Create image
size string
STATUS BAR PANELS 117

4.4 OWNER-DRAWN PANELS

So what about this owner-drawn panel? Text panels do not need to worry about
drawing their text onto the panel, as the .NET Framework handles this internally.
There are some cases where text just will not do, and these situations requiring man-
ual drawing of the panel.

Drawing of panels and other objects in .NET are handled through use of the Sys-
tem.Drawing namespace, sometimes referred to as GDI+ since it is based on an
update to the graphical drawing interface provided by Microsoft. Components such as
menus, status bars, and tabs that contain drawable components support a DrawItem
event that occurs when an item in the component should be drawn. Controls derived
from the Control class provide a Paint event for this purpose. Both types of drawing
make use of the Graphics class discussed in this section in order to draw the item.

This section will examine how owner-drawn status bar panels are supported, and
draw the sbpnlImagePercent panel for our application. A similar discussion would
apply to owner-drawn menu items or other objects supporting the DrawItem event.
The result of our changes is shown in figure 4.5.

As you can see in the figure, when the image is displayed in Actual Size mode, the
third panel will show a numeric and visual representation of how much of the image
is displayed. Before we draw this panel, let’s take a closer look at the DrawItem event.

4.4.1 THE DRAWITEM EVENT

The DrawItem event is used by a number of classes to draw an item contained
within some sort of larger collection. For instance, the MenuItem, ListBox, and
ComboBox classes all include a DrawItem event for custom drawing of their con-
tents. These classes use the DrawItemEventArgs class to provide the data associ-
ated with the event. The StatusBar class uses a derived version of this class, but the
bulk of the drawing information is in the base class. An overview of this base class is
provided in .NET Table 4.4.

Figure 4.5

The third status bar panel here indicates that 30

percent of the image is visible in the window.
118 CHAPTER 4 STATUS BARS

For the StatusBar class, the StatusBarDrawItemEventArgs class derives from
the DrawItemEventArgs class and is received by StatusBar.DrawItem event
handlers. The Panel property provided by this class is useful both for identifying the
panel and when the text assigned to the panel is needed.

When a DrawItem event handler is invoked, the default property values are what
you might expect. The Bounds property is set to the display rectangle of the panel to
draw. This rectangle is with respect to the rectangle for the containing status bar, so
the upper left corner of a panel’s bounds is not (0,0). The Font and ForeColor prop-
erties are set to the font information for the StatusBar object; the Graphics prop-
erty to an appropriate drawing object, the Index to the zero-based index number of
the panel, and State is typically set to DrawItemState.None. The DrawItem
event is called once for each panel drawn.

.NET Table 4.4 DrawItemEventArgs class

The DrawItemEventArgs class is an event object used when handling DrawItem events in a
number of classes. This class is part of the System.Windows.Forms namespace, and inher-
its from the System.EventArgs class. Practically, this class is used to manually draw list box
items, menu items, status bar panels and other objects.

The StatusBarDrawItemEventArgs class extends this class for use with StatusBar
objects. This class includes a public Panel property to indicate which panel requires drawing.

Public Properties

Bounds Gets the Rectangle of the area to be drawn
with respect to the entire graphical area for the
object.

Font Gets a suggested Font to use for any text.
Typically, this is the parent’s Font property.

ForeColor Gets a suggested Color to use for foreground
elements, such as text. Typically, this is
SystemColors.WindowText, or
SystemColors.HighlightText if the object
is selected.

Graphics Gets the Graphics object to use for painting
the item.

Index Gets the index of the item to be painted. The
exact meaning of this property depends on the
object.

State Gets additional state information on the object,
using the DrawItemState enumeration.
Examples include whether the item is
selected, enabled, has the focus, or is checked
(for menus).

Public Methods

DrawBackground Draws the Bounds rectangle with the default
background color.

DrawFocusRectangle Draws a focus rectangle in the Bounds area.
OWNER-DRAWN PANELS 119

.NET Table 4.5 System.Drawing namespace

The System.Drawing namespace provides access to basic graphics functionality provided by
the graphical device interface (GDI+). The classes in this namespace are used when drawing
to any display device such as a screen or printer, and to represent drawing primitives such as
rectangles and points.

Classes

Brush An abstract class representing an object used to fill the interior
of a graphical shape. For example, the
Graphics.FillRectangle method uses a brush to fill a
rectangular area on a drawing surface. Classes derived from
this class include the SolidBrush and TextureBrush classes.

Brushes A sealed class that provides Brush objects for all standard
colors. For example, the Brushes.Red property can be used to
fill shapes with a solid red color.

Font Represents a font that defines how text is drawn. This includes
the font style and size as well as the font face.

Graphics Represents a GDI+ drawing surface. Members are provided to
draw shapes, lines, images, and other objects onto the drawing
surface.

Image An abstract class for image objects such as Bitmap.

Pen Represents an object used to draw lines and curves. A pen can
draw a line in any color and specify various styles such as line
widths, dash styles, and ending shapes (such as arrows). For
example, the Graphics.DrawRectangle method uses a pen
to draw the outline of a rectangular area on a drawing surface.

Region Represents the interior of a graphics shape composed of
rectangles and paths.

SystemColors A sealed class that provides Color objects for the colors
configured in the local Windows operating system. For
example, the SystemColors.Control property returns the
color configured for filling the surface of controls. Similar
classes also exist for Brush, Pen, and Icon objects based on
the local system configuration.

Color Stores a color value. A number of static colors are defined,
such as Color.Red, or a custom color can be created from an
alpha component value and a set of RGB values.

Structures

Point A two-dimensional point as an integral x and y coordinate.

PointF A two-dimensional point as a floating point x and y coordinate.

Rectangle Stores the location and size of a rectangular region within a
two-dimensional area. All coordinates are integral values.

Size Represents the size of a rectangular region as an integral width
and height.

SizeF Represents the size of a rectangular region as a floating point
width and height.
120 CHAPTER 4 STATUS BARS

A number of classes are available in the System.Drawing namespace for drawing
status bar panels, menu items, and other objects. An overview of this namespace is
provided in .NET Table 4.5. Rather than provide detailed coverage of this namespace
in any one chapter of the book, we will visit members of this namespace as required
by our application. In particular, we will use this namespace again in chapter 7 when
drawing on Form and Panel controls, and also in chapter 10 when discussing
owner-drawn list boxes.

4.4.2 DRAWING A PANEL

So let’s draw the panel in our application. If you recall, we want this panel to show
what percentage of the image is shown in the PictureBox control. To do this, we
need to handle the DrawItem event. We will build this code step by step. The com-
plete code for the handler is shown following the table.

Set the version number of the application to 4.4.

ADD DRAWITEM HANDLER

 Action Result

1 Handle the DrawItem event
for the StatusBar control in
the MainForm.cs [Design]
window.

An event handler for the DrawItem event is added to the
control.

protected void statusBar1_DrawItem
 (object sender,
 StatusBarDrawItemEventArgs sbdevent)
{

2 In this handler, check that the
panel to draw is the
sbpnlImagePercent panel.

Note: This if statement is
not strictly necessary. Still,
since the event relates to the
entire status bar and not just
this panel, this provides
some robustness against
future changes.

 if (sbdevent.Panel == sbpnlImagePercent)
 {
 // Calculate the percent of the image shown
 // Calculate the rectangle to fill
 // Draw the rectangle in the panel
 // Draw the text on top of the rectangle
 }
}

Note: The four comments here are the four steps that
must be performed to draw the panel. Each step is
performed in the subsequent four steps of this table.

How-to

In the Properties window for
the status bar, double-click
the DrawItem entry.
OWNER-DRAWN PANELS 121

The complete code for this handler is shown as follows:
 protected void statusBar1_DrawItem (object sender,
 StatusBarDrawItemEventArgs sbdevent)
 {
 if (sbdevent.Panel == sbpnlImagePercent)

3 Calculate what percentage of
the image appears in the
window.

 // Calculate the percent of the image shown
 int percent = 100;
 if (pbxPhoto.SizeMode
 != PictureBoxSizeMode.StretchImage)
 {
 Rectangle dr = pbxPhoto.ClientRectangle;
 int imgWidth = pbxPhoto.Image.Width;
 int imgHeight = pbxPhoto.Image.Height;
 percent = 100 * Math.Min(dr.Width, imgWidth)
 * Math.Min(dr.Height, imgHeight)
 / (imgWidth * imgHeight);
 }

4 Calculate the rectangular
region to fill.

 // Calculate the rectangle to fill
 Rectangle fillRect = sbdevent.Bounds;
 fillRect.Width = sbdevent.Bounds.Width
 * percent / 100;

5 Draw this rectangle in the
panel.

 // Draw the rectangle in the panel
 sbdevent.Graphics.FillRectangle(
 Brushes.SlateGray, fillRect);

Note: We could also have used the ForeColor prop-
erty of the event as the color here. This code illus-
trates using the Brushes class, which provides access
to a Brush object for all standard colors available in the
framework.

6 Draw the percentage value in
the panel.

 // Draw the text on top of the rectangle
 sbdevent.Graphics.DrawString(
 percent.ToString() + "%",
 sbdevent.Font,
 Brushes.White,
 sbdevent.Bounds);

Note: White is a good color choice if used with the
default desktop colors. It may not be a good choice if
custom desktop colors are used.

ADD DRAWITEM HANDLER (continued)

 Action Result

How-to

a. If the SizeMode setting for
the image is StretchIm-
age, use 100% of the
panel.

b. Otherwise, divide the
smaller of the display area
and the image size by the
total image area.

c. For simplicity, use integer
percent values.

How-to

Use the event’s Bounds
property and adjust its Width
based on the calculated
percent.

How-to

a. Use the Graphics object
for the event.

b. Paint the rectangle with the
FillRectangle method,
using a SlateGray brush.

How-to

Use the DrawString
method for the Graphics
object.
122 CHAPTER 4 STATUS BARS

 {
 // Calculate the percent of the image shown
 int percent = 100;
 if (pbxPhoto.SizeMode != PictureBoxSizeMode.StretchImage)
 {
 Rectangle dr = pbxPhoto.ClientRectangle;
 int imgWidth = pbxPhoto.Image.Width;
 int imgHeight = pbxPhoto.Image.Height;
 percent = 100 * Math.Min(dr.Width, imgWidth)
 * Math.Min(dr.Height, imgHeight) / (imgWidth * imgHeight);
 }

 // Calculate the rectangle to fill
 Rectangle percentRect = sbdevent.Bounds;
 percentRect.Width = sbdevent.Bounds.Width * percent / 100;

 // Draw the rectangle in the panel
 sbdevent.Graphics.FillRectangle(Brushes.SlateGray, percentRect);

 // Draw the text on top of the rectangle
 sbdevent.Graphics.DrawString(percent.ToString() + "%",
 sbdevent.Font, Brushes.White, sbdevent.Bounds);
 }
 }

The Graphics class used in this handler provides a rich set of drawing capabilities,
from circles, ellipses, and rectangles to polygons, pie shapes, and bezier curves. Here
we use the FillRectangle method, which requires a Brush object to use when
“painting” the rectangle. In chapter 7, we will make additional use of this class. See
.NET Table 4.6 for an overview of some of the more interesting members of this class.

It should be noted that the statusBar1_DrawItem handler is invoked each
time a panel must be redrawn. As a result, care should be taken in handlers such as
this to avoid expensive calculations or other operations that might adversely affect the
performance of the application. For example, if we had generated a custom Brush
object while filling the rectangle here, such an operation would be performed each
time the handler is invoked, potentially using an excessive amount of memory over the
life of the application. Of course, our choice of the SlateGray color might not be
the best choice either, as it might interfere with colors the user has selected for their
desktop. A better option here might be to determine a color programmatically based
on the user’s desktop settings, and generate a single Brush object the first time the
event handler is invoked that is reused for the life of the application.

You can compile and run this code so far if you like, but we do need to make one
more change. When the PictureBox.SizeMode property is StretchImage, the
complete image (100%) is always shown. When SizeMode is set to Normal, the
amount of image shown varies as the size of the client area changes. As a result, when
the user changes this setting, we need to make sure that our panel is redrawn by inval-
idating the contents of the status bar.
OWNER-DRAWN PANELS 123

.NET Table 4.6 Graphics class

The Graphics class is a drawing object that encapsulates a drawing surface , or more specif-
ically a graphical device interface (GDI+) drawing surface. This class is part of the Sys-
tem.Drawing namespace, and inherits from the System.MarshalByRefObject class.
Drawing the outline of a shape typically requires a Pen object, while drawing a filled-in shape
typically requires a Brush object.

This class contains a large number of members, but the list here should provide some
idea of the supported functionality.

Public Static

Properties

FromHdc Returns a Graphics instance from a given handle
to a device context.

FromHwnd Returns a Graphics instance from a given
window handle.

Public Properties

Clip Gets or sets as a Region object the portion of the
graphics area available for visible drawing.

DpiX Gets the horizontal resolution supported by the
object.

DpiY Gets the vertical resolution supported by the
object.

PageUnit Gets or sets the GraphicsUnit value specifying
the unit of measure for page coordinates.

SmoothingMode Gets or sets the SmoothingMode value indicating
how shapes are rendered with this object.

TextRenderingHint Gets or sets the TextRenderingHint value
indicating how text is rendered with this object.

Public Methods

Clear Fills the entire drawing surface with a specified
color.

DrawCurve Draws a curve specified as an array of points using
a given Pen.

DrawEllipse Draws the outline of an ellipse (which might be a
circle) bounded by a given rectangle using a given
Pen.

DrawLine Draws a line using a given Pen.

DrawRectangle Draws the outline of a rectangle using a given Pen.

FillClosedCurve Fills the interior of a closed curve specified as an
array of points using a given Brush.

FillEllipse Fills the interior of an ellipse (which might be a
circle) bounded by a given rectangle using a given
Brush.

FillRectangle Fills the interior of a rectangle using a given
Brush.

MeasureString Returns the size a given string would occupy using
a given Font.
124 CHAPTER 4 STATUS BARS

If you recall, our menus invoke the menuImage_ChildClick method to alter the
display mode by assigning a new SizeMode value.

Now the status bar will be redrawn whenever the SizeMode property is altered.
Note that this change highlights another advantage of our decision in chapter 3 to
handle the Click of an Image submenu item with a shared handler. If we decided to
add additional display modes in the future, this code will ensure that the status bar is
redrawn correctly each time it changes.

Compile and run your application to verify that the code works as expected. Dis-
play an image in both Stretch to Fit and Actual Size mode to see how the owner-drawn
status bar panel behaves when the application is resized.

4.5 RECAP

This chapter introduced the StatusBar class and showed how both text and panel
information are displayed in this control. We looked at how to switch between the
display of text and panels in a status bar, and discussed how various properties can be
used to alter the appearance and behavior of status bar panels.

We also presented the base class of all Windows Forms controls by looking at the
Control class in some detail. A discussion of owner-drawn panels and the use of the
DrawItem and Paint events led to a discussion of the System.Drawing namespace
in general, and the Graphics class in particular.

The next chapter takes us out of the Windows Forms namespace briefly in order
to discuss reusable libraries.

INVALIDATE STATUS BAR

 Action Result

7 Modify the menuImage_Child-
Click method to force a redraw
of the status bar.

protected void menuImage_ChildClick(object sender,
 System.EventArgs e)
{
 if (sender is MenuItem)
 {
 MenuItem mi = (MenuItem)sender;

 nSelectedImageMode = mi.Index;
 pbxPhoto.SizeMode
 = this.modeMenuArray[mi.Index];
 pbxPhoto.Invalidate();
 statusBar1.Invalidate();
 }
}

RECAP 125

C H A P T E R 5

Reusable libraries

5.1 C# classes and interfaces 127
5.2 Class libraries 133
5.3 Interfaces revisited 145
5.4 Robustness issues 151
5.5 Recap 160
This chapter is our chance to lean back in our respective chairs, take stock of where
we’ve been, and plan for the future. Before we jump back into the Windows Forms
classes in chapter 6, we will build some infrastructure and introduce some important
programming concepts. Some of you may be familiar or comfortable with these con-
cepts; others may not. The discussion will attempt to provide enough material to
review what is needed without getting too bogged down in the minute details.

Looking at our MyPhotos application, it would be great if this application turned
out to be somewhat useful. As such, it is worth laying the proper groundwork for the
road ahead. So far, we have built an application with the following features:

• A title bar where the name and version number of the program are displayed.
• A menu bar where the user can access commands such as loading an image.
• A main window that displays a single photo at a time (stretched and distorted,

but displayed nonetheless).
• A status bar where information about the displayed photo appears.

So now what? In this book, there are a number of features that still need to be cov-
ered. Tool bars, dialog boxes, splitters, and printing, to name a few. In order to do
126

this we will need more than a single photograph in our application. If we can display
one, why not more than one. Let’s display multiple photos. We will call this, of
course, a photo album.

To keep this chapter somewhat manageable, we will not muck with our main
application window here. We will focus instead on creating a photo album abstraction,
and wait until chapter 6 to integrate it into our application. Specifically, we will per-
form the following tasks in this chapter:

• Create a PhotoAlbum class to represent a collection of photograph files.
• Create a Photograph class to represent a single photograph.
• Compile the PhotoAlbum and Photograph classes into an external library.

Before we write any code for these classes, a short design discussion is in order.

5.1 C# CLASSES AND INTERFACES

Within our application, we need to represent the album in a way that facilitates the
required actions, such as “add an image,” “move to the next photo,” and so forth. You
may immediately think of some sort of array, and this will be our approach. This sec-
tion will present a short design discussion as a way to introduce some terminology we
require and lay the groundwork for writing our code.

Each photo is an image file located somewhere on disk. While a simple list of files
could be stored in an array of strings, we should not be too hasty here. Requirements
change, as do applications. We may want to add additional features to our photo
album later, so it makes sense to encapsulate our album in a class to make this possible.
Classes in C# are very similar to classes in the C++ and Java languages. We will create
a PhotoAlbum class to represent a single photo album, and provide a set of methods
that external users of the class, such as our MyPhotos application, can use to retrieve
and modify the contents of the album.

What will our album contain? We already mentioned the idea of array file names.
Since we would like to provide quick access to the images, we could also consider an
array of Bitmap objects. Not a bad idea, except that a bitmap can be pretty large. A
full color image such as a photograph uses 24 bits, or three bytes per pixel: one each
for a red, blue, and green color. Do the math and you’ll find that a 640×480 pixel
image takes up around 900K in memory, or almost 1 MB. A system with 32 MB of
RAM will run out of memory fairly quickly, and even 128 or 256 MB systems will
feel the pinch. Of course, virtual memory will allow us to use more than the available
physical memory, but the performance will not make our users happy. Instead of bit-
maps, we will stick with the file names of our images, and create Bitmap objects as
required. To accommodate both types of information, and to extend this definition
in the future, we will create a Photograph class to encapsulate the concept of a single
photograph. Our album will contain zero or more photographs.

One more feature here: once we build our PhotoAlbum and Photograph
classes, they could be useful in other programs that wish to use our concept of a photo
C# CLASSES AND INTERFACES 127

album. For example, a genealogy program for creating family trees might want to link
to a photo album of a specific person or family. So we will place our new classes in a
library that other programs can reuse. In Windows parlance, such a library is called a
Dynamic Link Library, or DLL.

5.1.1 INTERFACES

As you might expect, the .NET Framework provides a number of classes that can
help us here. These classes implement common data structures such as arrays, stacks,
queues, and hash tables. Before the ever-appropriate table summarizing such classes,
this is a good place to introduce the idea of an interface.

An interface is an abstraction of an abstraction, and should be familiar to pro-
grammers of COM or its UNIX ancestor, the distributed computing environment
(DCE). While a class encapsulates a data structure and its operations, an interface
encapsulates a type of data structure and its operations. This is very similar to an
abstract class, except that an interface does not provide any implementations for its
members, it just defines the properties, methods, and events that a class should imple-
ment in order to support the interface. In practice, an interface is a good way to encap-
sulate a common idea for use by a number of possibly unrelated classes, while an
abstract class is a good way to encapsulate a common idea for use by a number of
related classes.

For example, the .NET ICloneable interface defines a type of class that can be
cloned, or copied, from an existing class instance to a new one.1 This concept applies
to the Array, Brush, Font, String, and a number of other classes throughout the
.NET Framework. Languages such as C++ provide multiple inheritance for this type of
support. In C++, ICloneable could be an abstract class and inherited where needed.
In C# and Java, only single inheritance is supported, so this is not possible. Instead,
both languages provide interfaces as a way to encapsulate common functionality that
can be used by a wide range of classes.

For example, the Brush class supports the ICloneable interface. We used this
abstract class in chapter 4 to create an owner-drawn status bar panel. Brush objects
can be cloned to create a new copy of an existing Brush. You can create an instance
of a Brush, since it is a class, but you cannot create an instance of an ICloneable
except as a by-product of an existing class that happens to support this interface.

The .NET Framework provides interfaces for everything from enumerating
members of a set to transferring data between applications. Some interfaces related to
our current discussion on albums are listed in the following table.

1 Generally speaking, cloning in .NET always produces a deep copy of an object, as we saw for the menu
classes in chapter 3.
128 CHAPTER 5 REUSABLE LIBRARIES

5.1.2 DATA COLLECTION CLASSES

Looking over the interfaces in the table, the IList interface seems particularly
appropriate for the task at hand. This allows elements to be added and removed from
the collection, and supports array-style indexing. Some of the data collection classes
in the .NET Framework are shown in the following table. Note, in particular, those
classes in the table that support the IList interface.

Interfaces related to data collections

Interface Description Sample Members

IEnumerable

Interface that supports the creation of
an enumerator class for iterating over
the elements in a collection.

Usage

Supporting this interface allows the C#
foreach statement to be used with
instances of a class or structure.

GetEnumerator method, which returns a
class that supports the IEnumerator
interface.

IEnumerator

Interface for stepping through the
elements in a collection.

Current property, to retrieve the current
element from the collection.

MoveNext method, which advances to
the next element in the collection.

Reset method, which sets the
enumerator just before the first element.

ICollection

An IEnumerable interface that
provides sizing and synchronization
capabilities. This interface is the basis
for all collections in the .NET
Framework.

Count property, to retrieve the number
of elements in the collection.

SyncRoot property, to retrieve an object
for synchronizing multi-threaded access
to the collection.

CopyTo method, which copies the
elements in the collection into an Array
object.

IList

An ICollection interface that
provides indexing of its elements.

Usage

Supporting this interface allows a class
or structure to be treated as an array.
This permits objects to be used as
targets of data bound controls, as
discussed in chapter 17.

Item property, to support array-style
indexing of elements using [brackets],
much like a [] override in C++.

Add method, which adds a new element
to the collection.

Contains method, which determines if
the collection contains a specific object.

Remove method, to remove the element
from the collection at a given index value.
C# CLASSES AND INTERFACES 129

Since we do not have a database here, the DataView class is not appropriate. If all we
wanted was a collection of file names, the StringCollection class would work,
but then our PhotoAlbum would not be very extensible. This leaves us with a simple
array or the ArrayList or CollectionBase classes. A simple fixed-size array is
not appropriate since we would like our album to grow dynamically. So we are left to
choose between the ArrayList and CollectionBase classes.

Either class would work here, and both classes can be quite useful. An overview
of the ArrayList class is shown in .NET Table 5.1. Deriving our PhotoAlbum class
from ArrayList would look like this:
 // Deriving PhotoAlbum from ArrayList (not our approach)
 public class PhotoAlbum : System.Collections.ArrayList
 {
 // Inherits all properties and methods from ArrayList
 }

An advantage of this approach is that we would not need to implement many of the
methods, since they would be directly inherited from ArrayList. A disadvantage is
that all methods would accept any object, and not just our Photograph objects. If
you look at the documentation, you will see that the methods in ArrayList operate
on object instances. For example, the PhotoAlbum.Add method would have the
following signature:

Some .NET classes related to data collections

Class Description Interfaces supported

Array The base class for all array objects.
This class is abstract.

ICloneable, IList, ICollec-
tion, IEnumerable

ArrayList A dynamically-sized array. ICloneable, IList,
ICollection, IEnumerable

CollectionBase An abstract class for creating a
strongly typed collection.

IList, ICollection, IEnumera-
ble

DataView A customized view of a database
table.

IList, ICollection,
IEnumerable, and others

Hashtable A collection of values stored based on
a hash code of the value, called a key.

ICloneable, ICollection,
IEnumerable, IDictionary, and
others

Queue A FIFO queue; a first in, first out
collection of objects.

ICloneable, ICollection,
IEnumerable

SortedList A sorted collection of keys and values
accessible by both key and index.

ICloneable, ICollection,
IEnumerable, IDictionary

StringCollection A collection of string objects. IList, ICollection,
IEnumerable

Stack A LIFO queue; a last in, first out
collection of objects.

ICloneable, ICollection,
IEnumerable
130 CHAPTER 5 REUSABLE LIBRARIES

 // PhotoAlbum.Add when derived from ArrayList
 public int Add(object value);

So while this would be a very easy implementation, the methods in our PhotoAlbum
class would not be type-safe, and therefore not so robust.

Let’s instead take a look at the CollectionBase class. An overview of this class is
shown in .NET Table 5.2. This class is an abstract class, and requires derived classes
to implement the additional methods required to support the appropriate interfaces.
This requires a little more work on our part, but creates a nicer interface that works
with Photograph objects directly.

Before we create our implementation, note that an alternative implementation
would incorporate a private ArrayList object in a class derived directly from Sys-
tem.Object. This alternative would look something like the following:
 // PhotoAlbum implementation with private ArrayList (not our approach)
 class PhotoAlbum
 {
 // internal (not inherited) ArrayList

.NET Table 5.1 ArrayList class

The ArrayList class is a collection of indexed objects where the number of objects can
change dynamically. This class is part of the System.Collections namespace, and is very
similar to the Array class for fixed-length collections of objects. The ArrayList class sup-
ports the ICloneable, IEnumerable, ICollection, and IList interfaces.

Public

Properties

Capacity Gets or sets the maximum number of objects the list can contain.

Count Gets or sets the actual number of objects in the array.

Public

Methods

Add Adds an object to the end of the array.

AddRange Adds the elements from an ICollection interface to the end of
the array.

Clear Removes all objects from the array.

Contains Determines if an object is in the array. Comparison is done using
the Object.Equals method.

CopyTo Copies the ArrayList, or a portion of it, into a one-dimensional
Array object.

IndexOf Returns the zero-based index of the first occurrence of the given
object in the array, or –1 if the object is not found. Comparison is
done using the Object.Equals method.

Remove Removes an object from the array.

RemoveAt Removes the object at a given index from the array.

Sort Sorts the array, using an IComparable interface to compare
objects.

TrimToSize Sets the capacity of the array to the actual number of objects in it.
C# CLASSES AND INTERFACES 131

 private ArrayList _photoArray;

 // Constructor and other wrappers

 // Custom Add wrapper
 public int Add(Photograph photo)
 {
 return _photoArray.Add(photo);
 }
 }

This would work just fine and be similar to our actual implementation derived from
CollectionBase. Our implementation is more appropriate than this alternative,
since the CollectionBase class is designed for just this purpose, and does in fact
provide access to an ArrayList member through a protected property.

.NET Table 5.2 CollectionBase class

The CollectionBase class is an abstract class for creating strongly typed collections. A
class is strongly typed if it only allows a specific type or types in its methods, rather than a
generic type such as an object. Strongly typed classes allow the compiler to ensure that the
proper objects are passed to methods in the class, and can prevent errors that would other-
wise occur only at runtime.

The CollectionBase class is part of the System.Collections namespace. It supports
the IEnumerable, ICollection, and IList interfaces. A complete list of the public mem-
bers defined by this class is as follows. Derived classes must implement the additional meth-
ods to support the required interfaces.

Public

Properties
Count Gets or sets the actual number of objects in the array.

Public

Methods

Clear Removes all objects from the array.

GetEnumerator Returns an enumerator that can iterate through the
elements in the collection using the IEnumerator
interface.

RemoveAt Removes the object at a given index from the array.

Protected

Properties

InnerList Gets an ArrayList instance representing the collection
instance. This can be used when implementing derived
classes to modify the collection.

List Gets an IList instance representing the collection
instance. This can be used when implementing derived
classes to modify the collection.

Protected

Methods

OnClear Performs additional custom processing before clearing the
contents of the collection. This can be used by derived
classes to perform any required actions before the
collection is cleared.

OnInsert Performs additional custom processing before inserting an
element into a collection. A number of other protected
methods are provided, with a similar purpose.
132 CHAPTER 5 REUSABLE LIBRARIES

5.2 CLASS LIBRARIES

Finally, we are ready to specify our album class. We have decided to base this on Col-
lectionBase, and use our own Photograph object for the elements. As we dis-
cussed in the previous section, the CollectionBase class provides a limited set of
methods, so it will be up to us to implement the appropriate class members to sup-
port the required interfaces.

As a result, our PhotoAlbum class will look something like the following. Since
this is a photo album and we expect to display photos from it, we will also add some
methods to manage the current position within the album.
 public class PhotoAlbum : CollectionBase
 {
 // Default constructor

 // The IEnumerable interface is provided by CollectionBase
 // This allows the use of foreach with an album

 // ICollection members

 // IList members

 // Position operations
 // - Get/Set current position (as index).
 // - Get photograph at current position.
 // - Move to the next photograph.
 // - Move to the previous photograph.
 }

Some syntactic points here:

b As already mentioned, classes in C# support inheritance from a single class only, in
this case from the CollectionBase class, although multiple interfaces can be speci-
fied. This is the same as Java, and a break from C++. Also unlike the C++ language,
C# classes do not support private or protected inheritance.

c If you haven’t realized it by now, also note that there are no header files in C#. Like
Java, the entire class is specified in a single file. For C++ programmers, also note that
a semicolon (;) is not required after the class definition.

The Photograph class will hold the original file name for the image, and the Bit-
map object when necessary. Its definition will look something like this:
 public class Photograph
 {
 // Create a new instance from a file name.

 // Properties:
 // - get the file name for the Photograph
 // - get the Bitmap for the Photograph

 // Methods:
 // - see if two Photographs are equal
 }

b Inherit from
CollectionBase class

c End of PhotoAlbum class

d Inherit from System.Object
CLASS LIBRARIES 133

One additional point here:

d It is worth noting that all classes in C# implicitly inherit from the object class even
when it is not specified. This ensures that all classes have a common ancestor. So even
though it is not shown, our Photograph class inherits from the base Sys-
tem.Object class implicitly, which is equivalent to the C# object class.

Now that we understand the framework for our classes, let’s perform the actual
implementation. This section will create the class library in Visual Studio, discuss cre-
ating such a library using the command line tools, and provide the initial implemen-
tation of our PhotoAlbum and Photograph classes.

5.2.1 CREATING THE CLASS LIBRARY

Enough preparation: time to create our library. If you are not using Visual Studio
.NET here, create your library as a separate directory and place the files discussed
here in it. We’ll give you some hints for building this from the command line later in
the chapter.

In this section we will create a new project as part of our MyPhotos solution. This
project will build the new MyPhotoAlbum library. We will create a top-level
namespace called Manning for this project, and reference the new library from our
MyPhotos project.

Set the version number of the application to 5.2.

CREATE A REUSABLE LIBRARY IN VISUAL STUDIO .NET

 Action Result

1 Add a new project to the
MyPhotos solution.

How-to

a. Click the File menu in
Visual Studio .NET.

b. Click on the Add Project
menu.

c. Select the New Project…
item.
134 CHAPTER 5 REUSABLE LIBRARIES

That’s all it takes. The solution MyPhotos now contains two projects: a MyPhotoAl-
bum project to create a DLL library, and a MyPhotos project to create a Windows
Forms application. You will note that the new project has its own AssemblyInfo.cs file
to support an independent version number for the library.

2 Configure the new project
as a class library named
“MyPhotoAlbum.”

3 Click the OK button to
create the new project.

In the Solution Explorer window, the new project appears with
a default initial class named Class1. The main window displays
the Class1.cs source file.

Note: The MyPhotos project is in bold to indicate that it
is the default project, or the startup project in Visual Stu-
dio .NET terms.

CREATE A REUSABLE LIBRARY IN VISUAL STUDIO .NET (continued)

 Action Result

How-to

a. Select Visual C# Projects
as the Project Type.

b. Select Class Library as
the Template.

c. Enter “MyPhotoAlbum”
for the name of the
project.
CLASS LIBRARIES 135

We do not want a class called Class1, so let’s rename it to PhotoAlbum. We will
also adjust the version number of our new project to reflect the current section number.

Visual Studio automatically uses the project name as the namespace for all files in the
project. Here, the PhotoAlbum class is in the MyPhotoAlbum namespace, so that
our class called PhotoAlbum will not interfere with anyone else who may have a class
called PhotoAlbum. By convention, namespaces should specify the company name,
followed by the project name. Since our library might be used outside of this book
(hey, you never know!), we should follow this convention as well. We will use the
publisher’s name Manning as our top-level namespace.

RENAME THE CLASS1.CS CLASS FILE

 Action Result

4 Set the MyPhotoAlbum
version number to 5.2.

When you compile the MyPhotoAlbum library, the new version
number is included, and will be visible when displaying the
properties for the generated library assembly.

Note: Your main window now displays two Assembly-
Info.cs tabs for the corresponding files in each project.
Make sure you keep track of which is which. The dis-
played file is always selected in the Solution Explorer win-
dow, which identifies the project that contains the file. To
display the Solution Explorer window while editing a file,
use the keyboard shortcut Ctrl+Alt+L.

5 Rename the Class1.cs file
name to PhotoAlbum.cs.

The Class1.cs tab in the main window is renamed as well.

6 Rename the Class1 class
name to PhotoAlbum.

The PhotoAlbum.cs file should look like this:

 using System;

 namespace MyPhotoAlbum
 {
 /// <summary>
 /// Summary description for PhotoAlbum.
 /// </summary>
 public class PhotoAlbum
 {
 public PhotoAlbum()
 {
 //
 // TODO: Add Constructor Logic here
 //
 }
 }
 }

How-to

a. Double-click the Assem-
blyVersion.cs file.

b. Modify the Assembly-
Version line to contain
the desired version
number.

How-to

a. Right-click on the
Class1.cs file.

b. Select Rename.
c. Enter “PhotoAlbum.cs”

for the file name.

How-to

a. Double-click the PhotoAl-
bum.cs file.

b. Change the three
instances of “Class1” to
“PhotoAlbum” in the
code.
136 CHAPTER 5 REUSABLE LIBRARIES

Our library is now ready; all we need to do is add code. One last task before we do
this is to make certain we can use our library from within the MyPhotos application
project. For this to work, the MyPhotos project must include a reference to the
MyPhotoAlbum class. This corresponds to the /reference switch on the C# com-
piler (csc.exe) that we saw in chapter 1, and is a bit like linking a library into your
program in C++. Since there are no header files in C#, a reference is all we need to
start using classes from the library in our project.

MODIFY THE CLASS NAMESPACE

 Action Result

7 Modify the entire
MyPhotoAlbum namespace to
exist within the Manning
namespace

How-to

Enter the bolded text into the
PhotoAlbum.cs file. When you
type the final brace, Visual
Studio will automatically
reformat the lines as shown.

Note: We have not made a sim-
ilar change in the MyPhotos
application since in this project
the namespace is not likely to
be used outside of the applica-
tion itself.

The PhotoAlbum.cs file should now look as follows:

 using System;

 namespace Manning
 {
 namespace MyPhotoAlbum
 {
 /// <summary>
 /// Summary description for PhotoAlbum.
 /// </summary>
 public class PhotoAlbum
 {
 public PhotoAlbum()
 {
 //
 // TODO: Add Constructor Logic here
 //
 }
 }
 }
 }

REFERENCE MYPHOTOALBUM FROM THE MYPHOTOS PROJECT

 Action Result

8 Display the Add Reference
dialog box for the MyPhotos
project.

Alternately

Right-click on the
References entry under the
MyPhotos project in the
Solution Explorer window,
and select Add Reference.

How-to

a. Click the MyPhotos
project in the Solution
Explorer window.

b. Click on the Project menu.
c. Select the Add Reference

item.
CLASS LIBRARIES 137

It is important to realize that our new reference refers to the assembly produced by
the MyPhotoAlbum project, and not the project itself. Visual Studio automatically
uses the correct path when compiling the MyPhotos project to pick up the most
recent MyPhotoAlbum library from the corresponding project.

If you are not using Visual Studio .NET to build your program, you will need
to establish the correct library location manually. The command-line tools discussed
in chapter 1 are used for this purpose. The next section provides a short discussion on
this topic.

5.2.2 USING THE COMMAND-LINE TOOLS

As we saw in chapter 1, you can build Windows Forms applications without using
Visual Studio .NET. The interactive environment makes a number of tasks easier, but
also uses memory and other system resources. On a computer with limited resources,
this can present some problems. If you have a favorite editor and are comfortable
working with makefiles, you can create the examples in this book without using
Visual Studio .NET.

To create a class library such as MyPhotoAlbum.dll, create a MyPhotoAlbum
directory for the library and place the required source files in it. In this case you would
create a PhotoAlbum.cs file to hold the PhotoAlbum class source code, and create other
files as required. You can create an AssemblyInfo.cs file as well, or simply include the
version number and other assembly information at the top of your file as we did in chap-
ter 1. The C# compiler (csc.exe) discussed in chapter 1 is used to produce both execut-
ables and libraries. The /target switch specifies the type of output file to produce.

9 Reference the
MyPhotoAlbum project.

The MyPhotoAlbum assembly appears in Solution Explorer
under the References entry for the MyPhotos project.

REFERENCE MYPHOTOALBUM FROM THE MYPHOTOS PROJECT (continued)

 Action Result

How-to

a. Click the Projects tab.
b. Click the MyPhotoAlbum

project.
c. Click the Select button.
d. Click OK to add the

selected project.
138 CHAPTER 5 REUSABLE LIBRARIES

The /out switch can be used to specify the output file name. Both /out and /target
must appear before any source file names.

For example, the following line will create a library assembly called MyPhotoAl-
bum.dll using a single source file PhotoAlbum.cs.
> csc /target:library /out:MyPhotoAlbum.dll PhotoAlbum.cs
 /r:System.dll

To use this library with your MyPhotos application, you will need to include a /r ref-
erence when compiling the application. For example, if your library was in a directory
called C:\MyProjects\MyPhotoAlbum, then you would use the following switch
when compiling the MyPhotos application:
 /r:C:\MyProjects\MyPhotoAlbum

5.2.3 CREATING THE PHOTOALBUM CLASS

No matter how you compile your library, we are now ready to implement the Pho-
toAlbum class. These next two sections take us through the initial implementation of
this and the Photograph class. If you find typing all this code a bit tedious (or are a
really bad typist!), don’t be afraid to download the final code from the book’s web site
and simply read the accompanying text. For the rest of us, let’s forge ahead.

C# compiler output options (/target switch)

Switch Output Comments

/target:exe Creates a console
application (.exe).

This is the default.

/target:library Creates a library file (.dll). The library generated is an assembly that can be
referenced by other .NET applications.

/target:module Creates a library module
(.dll).

This option does not produce an assembly manifest
for the file. Such a file cannot be loaded by the .NET
runtime until it is incorporated in an assembly
manifest using the /addmodule switch. This
permits collections of files to become a single
assembly.

/target:winexe Creates a Windows
application (.exe).

When a Windows application is run in a console
window, the console does not wait for the
application to exit. This is different than a console
application, where the console does in fact wait.

IMPLEMENT PHOTOALBUM CLASS

 Action Result

1 Display the PhotoAlbum.cs
file in the main window.

2 Add some class
documentation.

 /// <summary>
 /// The PhotoAlbum class represents a
 /// collection of Photographs.
 /// </summary>
CLASS LIBRARIES 139

You may notice here that the MyPhotoAlbum project does not compile. Try to do so
and the compiler returns an error something like the following:

This is because CollectionBase is part of the System.Collections namespace.
It turns out this namespace is part of the system library, so there is no need for another
reference in our project. We could fix the error by declaring the class as follows:
 public PhotoAlbum : System.Collections.CollectionBase
 {
 . . .

Since we may use other objects or names from the System.Collections
namespace, we will instead simply indicate that our class will use this namespace at
the top of the file.

Now the project should compile with no errors. Before we implement any members
for this class, let’s also take a look at the Photograph class.

3 Define CollectionBase
as the base class.

 public class PhotoAlbum : CollectionBase
 {

4 Create an empty default
constructor.

 public PhotoAlbum()
 {
 // Nothing to do
 }

Note: It’s a good idea to add a short comment in situa-
tions like this to inform the poor guy or gal who eventu-
ally supports your code that you created an empty
constructor on purpose.

IMPLEMENT PHOTOALBUM CLASS (continued)

 Action Result

Error The type or namespace name 'CollectionBase' could not be

found (are you missing a using directive or an assembly ref-
erence?)

USE SYSTEM.COLLECTIONS NAMESPACE

 Action Result

5 Add a using directive to
the PhotoAlbum.cs file for
the System.Collections
namespace.

You should now have two using directives present:

 using System;
 using System.Collections;
140 CHAPTER 5 REUSABLE LIBRARIES

5.2.4 CREATING THE PHOTOGRAPH CLASS

The Photograph class represents a photograph stored in a file. Earlier, we laid out
this class as follows.
 public class Photograph
 {
 // Create a new instance from a file name.

 // Properties:
 // - get the file name for the Photograph
 // - get the Bitmap for the Photograph

 // Methods:
 // - see if two Photographs are equal
 }

While we could implement this class within the PhotoAlbum.cs file, it makes more
sense to separate these two classes into two separate files. In this section we create this
new class file and add some initial properties for the class. The following steps create
our Photograph.cs source file.

ADD A PHOTOGRAPH CLASS FILE

 Action Result

1 Open the dialog to add a
new class for the
MyPhotoAlbum project.

Alternately

Right-click on the
MyPhotoAlbum project and
select Add Class… from
the Add submenu.

The Add New Item dialog opens with the Class template
selected.

2 Create the new
“Photograph.cs” file.

How-to

Enter the appropriate name
and click the Open button.

A Photograph.cs file is added to the MyPhotoAlbum project,
and the default code displays in the main window.

How-to

a. In Solution Explorer, click
the MyPhotoAlbum
project.

b. Open the Project menu.
c. Select Add Class….
CLASS LIBRARIES 141

Once again, let’s modify the namespace to be Manning.MyPhotoAlbum.

We now have a fully functional class as part of our library. Of course, it doesn’t do
anything yet. Let’s start by tracking the file name and bitmap for the photograph.

3 Add some class
documentation.

 . . .
 /// <summary>
 /// The Photograph class represents a single
 /// photo and its properties.
 /// </summary>
 public class Photograph
 . . .

ADD A PHOTOGRAPH CLASS FILE (continued)

 Action Result

MODIFY THE NAMESPACE

 Action Result

4 Modify the namespace to be
Manning.MyPhotoAlbum.

 . . .
 namespace Manning
 {
 namespace MyPhotoAlbum
 {
 . . .
 }
 }

DEFINE THE FILE AND BITMAP PROPERTIES

 Action Result

5 Create private member
variables to track the file
name and any Bitmap
object.

 public class Photograph
 {
 private string _fileName;
 private Bitmap _bitmap;

Note: Here and elsewhere in the book, we indicate that a
variable is private and not available outside of the con-
taining class by prefixing it with an underscore.

6 Create a constructor to
initialize these members
from a given file name.

 public Photograph(string fileName)
 {
 _fileName = fileName;
 _bitmap = null;
 }

Note: We allow a Photograph to be created with an
invalid file name.

7 Create a FileName
property to return the
current file name.

 public string FileName
 {
 get { return _fileName; }
 }
142 CHAPTER 5 REUSABLE LIBRARIES

This is the first time we’ve created our own properties, so it is worth a short discus-
sion. A property in C# is created much like a method. You define an access level, a
type, and a name for the property. By convention, property and method names begin
with a capital letter. The lack of parentheses after the name informs the compiler that
this is a property and not a method.

Inside the braces, the access methods for the property are defined. The access meth-
ods provide read access, via the get keyword, or write access, via the set keyword.
The get access method must return the defined type, while the set access method
uses the reserved word value to access the value provided on the right side of the
equals sign ‘=’. For example, if we wanted users of our Photograph class to set the
FileName property, we could code this as follows:
 public string FileName
 {
 get { return _fileName; }
 set { _fileName = value; } // example only, not in our code
 }

Of course, in an actual implementation it might be good to verify that the value
provided to the set call is a real file and does indeed represent a photograph. For our
purposes, the Photograph class is tied to a specific file name, so we do not provide a
set implementation here. In this case the FileName property is said to be read-only,
since the value can be read but not written.

Practically, properties permit safe access to a class without the need to expose
internal variables or other features. To duplicate the get and set functionality for a
file name member in C++, programmers typically provide methods such as SetFile-
Name and GetFileName for this purpose. Properties formalize this concept for C#
so that all programs use a standard mechanism for this style access.

Since properties are invoked similar to methods, additional calculations can be
performed as part of their definition. In the code for the Image property, for example,
the Bitmap is created as required before returning it to the user.
 public Bitmap Image
 {
 get

8 Create an Image property
to return the corresponding
Bitmap object.

Note: We intentionally
ignore any error here. We
will fix this later in the
chapter.

 public Bitmap Image
 {
 get
 {
 if (_bitmap == null)
 {
 _bitmap = new Bitmap(_fileName);
 }
 return _bitmap;
 }
 }

DEFINE THE FILE AND BITMAP PROPERTIES (continued)

 Action Result
CLASS LIBRARIES 143

 {
 if (_bitmap == null)
 {
 _bitmap = new Bitmap(_fileName);
 }
 return _bitmap;
 }
 }

Astute readers will note here that the given file may or may not exist and may or may
not be an actual image file. We will handle any exception that occurs as a result of
such an error in a moment.

We now have enough to link our classes into the main application. One problem
remains: the MyPhotoAlbum project will once again not compile. Now the error is
something like this:

This is because Bitmap is part of the System.Drawing namespace, which is refer-
enced by our MyPhotos project, but not the MyPhotoAlbum project. Unlike Sys-
tem.Collections, this namespace is provided in a separate library, namely the
System.Drawing.dll library. We need to reference this DLL and then use it in our class.

Error The type or namespace name 'Bitmap' could not be found (are
you missing a using directive or an assembly reference?)

ADD SYSTEM.DRAWING REFERENCE

 Action Result

9 Display the Add Reference
dialog for the
MyPhotoAlbum project.

10 Add System.Drawing.dll as
a reference.

The System.Drawing assembly appears in the References list
for the MyPhotoAlbum project.

11 Add a using directive for
the System.Drawing
namespace at the top of
the file.

The Photograph.cs file now contains two using directives:

 using System;
 using System.Drawing;

How-to

a. Click the .NET tab.
b. Locate and click the Sys-

tem.Drawing.dll item
from the list.

c. Click the Select button.
d. Click the OK button.
144 CHAPTER 5 REUSABLE LIBRARIES

Now the project should compile with no errors in Visual Studio .NET. If you are not
using Visual Studio, multiple files can be included in the library by simply providing
the list of files to the compiler. An example of how this might look is shown here.
> csc /target:library /out:MyPhotoAlbum.dll PhotoAlbum.cs
 Photograph.cs /r:System.dll /r:System.Drawing.dll

Before we deal with the possible exception that can occur in the Photo-
graph.Image property, let’s return to our PhotoAlbum class to make some initial
use of the Photograph class.

5.3 INTERFACES REVISITED

Back in our PhotoAlbum class, we are ready to implement the interfaces required. As
you’ll recall, an interface defines the set of required members, but does not provide any
implementation. Supporting an interface requires that we define the class as support-
ing the interface, and include the required members for that interface within the class.

For the PhotoAlbum class, the CollectionBase class defines itself as supporting
the IEnumerable, ICollection, and IList interfaces. An implementation for the
single method GetEnumerator required by the IEnumerable interface is provided
by CollectionBase. As a result, we are left to implement the ICollection and
IList interfaces. A list of ICollection members is provided in the following table:

The IList interface has a slightly longer list of members. Some of them are already
provided by the CollectionBase class, but the bulk of them will be implemented
using the protected CollectionBase.List property.

PhotoAlbum members required for the ICollection interface

Name Implementation Notes

Properties

Count This property is provided by CollectionBase.

IsSyncronized For simplicity, we will not provide a synchronized interface for
the PhotoAlbum class. As a result, this property will always
return false.

SyncRoot

Methods CopyTo

PhotoAlbum members required for the IList interface

Name Implementation Notes

Properties

IsFixedSize This method will always return false.

IsReadOnly This method will always return false.

Item This property enables array-style indexing for our class.
INTERFACES REVISITED 145

We will examine the implementation of these interfaces separately.

5.3.1 SUPPORTING THE ICOLLECTION INTERFACE

The implementation of the ICollection members will use the protected List
property from our base class, so let’s get to it. We will make these and our IList
members virtual to allow any subclass to override them as needed.

Set the version number for the application to 5.3.

5.3.2 SUPPORTING THE ILIST INTERFACE

Our implementation for IList will be very similar in spirit to our implementation for
ICollection. A key difference between the signatures of the IList members and

Methods

Add

Clear This method is provided by CollectionBase.

Contains

IndexOf

Insert

Remove

RemoveAt This method is provided by CollectionBase.

PhotoAlbum members required for the IList interface (continued)

Name Implementation Notes

SUPPORT THE ICOLLECTION INTERFACE

 Action Result

1 Display the PhotoAlbum.cs file.

2 Implement the IsSynchronized
property.

 public virtual bool IsSynchronized
 {
 get { return false; }
 }

3 Implement the SyncRoot property. public virtual object SyncRoot
 {
 get { return List.SyncRoot; }
 }

4 Implement the CopyTo method. public virtual void CopyTo
 (Photograph[] array, int index)
 {
 List.CopyTo(array, index);
 }

Note: We require the array parameter to be an
array of Photograph objects. The ICollection
interface defines the CopyTo method as
CopyTo(Array array, int index). Since a
Photograph[] is also an Array, our declaration
is an acceptable implementation even though it is
more restrictive than the method defined by the
interface.
146 CHAPTER 5 REUSABLE LIBRARIES

our implementation is that we will use the Photograph class explicitly rather than the
more generic object. Since a Photograph is still an object instance, a construct
that requires an IList instance will still be able to use our PhotoAlbum object.

This may seem a bit boring and tedious, but it needs to be done for a complete
implementation. Note that C# does not support C++ style templates at this time,
which would have been handy for implementing this and other interfaces.

These methods simply use the equivalent version in the protected List property,
except that our implementation will only accept Photograph objects. The Item
property is worth noting since it defines zero-based array-style indexing for our class,
such as myAlbum[1] to specify the second Photograph in an album. The syntax

SUPPORT THE ILIST INTERFACE

 Action Result

1 Display the PhotoAlbum.cs file.

2 Implement the IsFixedSize
property.

 public virtual bool IsFixedSize
 {
 get { return false; }
 }

3 Implement the IsReadOnly
property.

 public virtual bool IsReadOnly
 {
 get { return false; }
 }

4 Implement the Item property.

Note: The Item property is the
C# indexer, so we simply imple-
ment indexing to support this
property.

 public virtual Photograph this[int index]
 {
 get { return (Photograph)(List[index]); }
 set { List[index] = value; }
 }

5 Implement the Add method. public virtual int Add(Photograph photo)
 {
 return List.Add(photo);
 }

6 Implement the Contains
method.

 public virtual bool Contains(Photograph photo)
 {
 return List.Contains(photo);
 }

7 Implement the IndexOf
method.

 public virtual int IndexOf(Photograph photo)
 {
 return List.IndexOf(photo);
 }

8 Implement the Insert method. public virtual void Insert
 (int index, Photograph photo)
 {
 List.Insert(index, photo);
 }

9 Implement the Remove method. public virtual void Remove(Photograph photo)
 {
 List.Remove(photo);
 }
INTERFACES REVISITED 147

defines an indexer for the class. Indexers define array-style access to a class, using a
syntax employing access methods similar to the declaration of properties. An indexer
is defined using the this keyword to refer to the class itself, with the index variable
defining the index value within the definition. In this manner the indexer defines
retrieval and assignment access to the array of Photograph objects in the collection.
Any collection class can be treated as an indexed array through the use of a similar
indexer definition.
 public virtual Photograph this[int index]
 {
 get { return (Photograph)(List[index]); }
 set (List[index] = value; }
 }

5.3.3 IMPLEMENTING ALBUM POSITION OPERATIONS

This is a good place to insert the position operations for tracking the current location
within an album. This position will be used by our application to display the current
photo from the album as well as other tasks.

From a design perspective, we will use the word “Current” as a prefix for these
operations. This is the name of a property used by the IEnumerator interface, and
is consistent with the meaning we intend here. We will add the following members
to our class:2

2 Some might argue for using the GetEnumerator method to track the position, or for creating a mech-
anism similar to database cursors to allow an application to track multiple locations within the album at
the same time. The former is problematic if the application inserts or removes photos while the enumer-
ator is active. The latter is a good idea, but a bit beyond what we intend to cover in this chapter.

PhotoAlbum position members

Member Description

CurrentPosition property Gets or sets the index of the current position within the album. By
definition, the first position is always zero (0), and the last position is
one less than the number of Photographs in the album.

CurrentPhoto property Gets the Photograph object at the current position. This will use the
CurrentPosition property as an index into the collection to ensure
that we will always retrieve a valid photo.

CurrentNext method Moves the current position to the next photograph. Returns a
boolean indicating if there was a next photo (true) or if the end of
the album has been reached (false).

CurrentPrevious method Moves the current position to the previous photograph. Returns a
boolean indicating if there was a previous photo (true) or if the
beginning of the album has been reached (false).
148 CHAPTER 5 REUSABLE LIBRARIES

Let’s add these members to our implementation. Internally, this will also require a
private integer to track the current position. This private member is not part of our
exported implementation, so it was not shown in the previous table.

IMPLEMENT ALBUM POSITION OPERATIONS

 Action Result

1 In the PhotoAlbum.cs file,
add a private integer
_currentPos.

 /// <summary>
 /// Tracks the current index position
 /// when displaying the album.
 /// </summary>
 private int _currentPos = 0;

2 Add the CurrentPosition
property to get or set this
position.

How-to

For the get access
method, simply return the
current value.

For the set access
method, make sure the
given value is in range.

 public int CurrentPosition
 {
 get { return _currentPos; }

 set
 {
 if (value <= 0)
 {
 _currentPos = 0;
 }
 else if (value >= this.Count)
 {
 _currentPos = this.Count - 1;
 }
 else
 {
 _currentPos = value;
 }
 }
 }

3 Ensure that this value is
reset when the album is
cleared.

How-to

Override the OnClear
method.

Note: This protected
method is provided by the
CollectionBase class to
permit collection-specific
code to be executed
before the Clear method
is invoked.

 protected override void OnClear()
 {
 _currentPos = 0;
 base.OnClear();
 }

Note: The base keyword used here is provided by C# as
a convenient way to reference the base class of the cur-
rent object.

4 Implement the
CurrentPhoto property.

 public Photograph CurrentPhoto
 {
 get
 {
 if (this.Count == 0)
 return null;

 return this[CurrentPosition];
 }
 }
INTERFACES REVISITED 149

We can now add photographs to and remove photographs from our album, and track
the current position for display purposes. Since we expect the CurrentPosition
property to return a valid index, we should also update this setting whenever a Pho-
tograph is removed from the album.

As you can see, this code ensures that the current position is updated whenever an
object is removed from the collection. This includes both the Remove and RemoveAt
methods. By resetting the property, we ensure that the _currentPos variable is reset
as appropriate for the new bounds of the album.

With the interfaces for our PhotoAlbum class fully implemented, let’s head back
to the Photograph class to deal with various issues related to the robustness of our
new library.

5 Implement the
CurrentNext method.

How-to

Use the CurrentPosition
property to set and get the
current index.

 public bool CurrentNext()
 {
 if (CurrentPosition+1 < this.Count)
 {
 CurrentPosition ++;
 return true;
 }

 return false;
 }

6 Implement the
CurrentPrev method.

 public bool CurrentPrev()
 {
 if (CurrentPosition > 0)
 {
 CurrentPosition --;
 return true;
 }

 return false;
 }

IMPLEMENT ALBUM POSITION OPERATIONS (continued)

 Action Result

ENSURE ALBUM POSITION REMAINS VALID

 Action Result

7 In the PhotoAlbum.cs file,
override the
OnRemoveComplete
method.

Note: This protected
method is called after an
object is removed from
the contained collection.

 protected override void OnRemoveComplete
 (int index, object val)
 {
 CurrentPosition = _currentPos;
 base.OnRemoveComplete(index, val);
 }
150 CHAPTER 5 REUSABLE LIBRARIES

5.4 ROBUSTNESS ISSUES

While our classes are basically ready, there are some additional issues that will affect
the robustness of our application in future chapters. This section will address a num-
ber of these issues in order to make our library a bit more sturdy. These topics apply
more generally to any class library, so are probably worth considering while develop-
ing your own libraries as well.

This section will look at the following areas:
• Handling the potential exception when a bitmap is created.
• Ensuring that photographs are compared as expected.
• Cleaning up system resources used by our classes.
• Associating a file name with an album.

We will examine each issue separately.

5.4.1 HANDLING AN INVALID BITMAP

We discussed the concept of exceptions in chapter 2. Here, there is a potential excep-
tion when we create our Bitmap object for the Image property. Look back at our
definition of this property.
 public Bitmap Image
 {
 get
 {
 if (_bitmap == null)
 {
 _bitmap = new Bitmap(_fileName);
 }
 return _bitmap;
 }
 }

If the file is an invalid bitmap, or cannot be loaded for some reason, this presents a
real problem. On the one hand, this is an error, so perhaps we should return null or
allow the exception to be thrown. On the other hand, the caller is expecting to dis-
play a Bitmap, and checking for null or an exception every time seems a bit cum-
bersome, not to mention the issue of what the caller should then display in lieu of a
Bitmap object.

As an alternative approach, we will instead create a special bitmap to return when-
ever the file cannot be loaded. This provides a Bitmap that the caller can display in
any situation, but still indicates that something is wrong. We will create a private static
member of our Photograph class to hold this special image, and provide a new prop-
erty to indicate if a valid image for the current Photograph exists.

Let’s see how this looks.
ROBUSTNESS ISSUES 151

Set the version number of the MyPhotoAlbum library to 5.4.

There is quite a bit of new code here (at least, by our standards in this chapter), so
let’s take a look at some of the more important pieces. First, look at the Invalid-
PhotoImage property.

HANDLE THE BITMAP EXCEPTION

 Action Result

1 In the Photograph.cs file,
create a private static
member to hold a Bitmap
object.

 private static Bitmap _invalidImageBitmap
 = null;

2 Add a public property to
retrieve this bitmap.

How-to

Create a 100×100 pixel
image that contains a red X
to indicate it is invalid.

 public static Bitmap InvalidPhotoImage
 {
 get
 {
 if (_invalidImageBitmap == null)
 {
 // Create the "bad photo" bitmap
 Bitmap bm = new Bitmap(100, 100);
 Graphics g = Graphics.FromImage(bm);
 g.Clear(Color.WhiteSmoke);

 // Draw a red X
 Pen p = new Pen(Color.Red, 5);
 g.DrawLine(p, 0, 0, 100, 100);
 g.DrawLine(p, 100, 0, 0, 100);

 _invalidImageBitmap = bm;
 }

 return _invalidImageBitmap;
 }
 }

3 Use this new property as
the bitmap to return if the
image file cannot be
loaded.

 public Bitmap Image
 {
 get
 {
 if (_bitmap == null)
 {
 try
 {
 _bitmap = new Bitmap(_fileName);
 }
 catch
 {
 _bitmap = InvalidPhotoImage;
 }
 }
 return _bitmap;
 }
 }

4 Also add a new property
IsImageValid to identify
if a valid image file is
present.

 public bool IsImageValid
 {
 get
 {
 return (_bitmap != InvalidPhotoImage);
 }
 }
152 CHAPTER 5 REUSABLE LIBRARIES

 public static Bitmap InvalidImageBitmap
 {
 get
 {
 if (_invalidImageBitmap == null)
 {
 // Create the "bad photo" bitmap
 Bitmap bm = new Bitmap(100, 100);

 Graphics g = Graphics.FromImage(bm);
 g.Clear(Color.WhiteSmoke);

 Pen p = new Pen(Color.Red, 5);
 g.DrawLine(p, 0, 0, 100, 100);
 g.DrawLine(p, 100, 0, 0, 100);

 _invalidImageBitmap = bm;
 }

 return _invalidImageBitmap;
 }
 }

The get implementation shown here creates and initializes the _invalidImage-
Bitmap object the first time the property is invoked.

b First, a new Bitmap of size 100×100 pixels is constructed.

c Next, a Graphics object is generated to treat the Bitmap as a drawing surface using
the static Graphics.FromImage method.

d Finally, a new red Pen is constructed with a width of five pixels and two lines are
drawn corner to corner on the bitmap image to create a big red X. The Pen class is
part of the System.Drawing namespace discussed in chapter 4. We could have used
the Pen object returned by the Red property of the Pens class. This pen has a width
of one pixel, so we opted to create our own pen instead.

Since the _invalidImageBitmap member variable is static, this code is executed
the first time the property is called, and the image is then re-used as needed for all
PhotoAlbum objects in the application. In the Photograph.Image property, an
exception raised while creating the bitmap is caught and the _bitmap field is set to
our invalid image.
 try
 {
 _bitmap = new Bitmap(_fileName);
 }
 catch
 {
 _bitmap = InvalidImageBitmap;
 }

Notice how an exception class is not specified in the catch clause. This ensures that
all exceptions will be caught regardless of their origin.

b Create the new bitmap

c Construct Graphics object

d Draw a red X
ROBUSTNESS ISSUES 153

Finally, a new IsImageValid property compares the photo’s bitmap to the
static invalid image variable to see if they are equal. If they are, then the original photo
is not a valid photograph.
 public bool IsImageValid
 {
 get
 {
 return (_bitmap != InvalidPhotoImage);
 }
 }

Interestingly enough, if neither the _bitmap nor the _invalidImageBitmap vari-
ables has been initialized, then this comparison will generate both Bitmap objects in
order to compare them.

This handles any possible exception our code might encounter when creating a
bitmap from a given file name. One other subtle but very important change we need
to make is how Photograph objects are compared. We will take this up next.

5.4.2 OVERRIDING METHODS IN THE OBJECT CLASS

As we have repeatedly indicated, all classes in C# implicitly inherit from the object
class, which is the same as System.Object class. In this section we look at the
Object class in some detail, and override some of the methods inherited from this
class in our Photograph class.

You may wonder why there is both an object and an Object, and the answer is
both simple and confusing. The object class is part of the C# language definition, and
all types, be they built-in or specific to your program, ultimately inherit from object.

Separate from the language definition is the .NET Framework, containing classes
and namespaces used to generate programs and services of every kind. Within the
.NET Framework is the System.Object class. In Microsoft’s C# compiler, the
System.Object class is equivalent to the C# object class. So object and Object
are different but functionally equivalent. In this book, we have used and will continue
to use both classes interchangeably, with a preference toward the language-specific
object. An overview of the Object class is shown in .NET Table 5.3.

Note that a similar discussion applies to the classes string and System.String
as well.

Look closely at the Equals method in the table. In our Photograph class, we
would like two Photographs to be equal if they represent the same file. So far, how-
ever, this will not be the case. Since Photograph is a reference type, two objects will
be equal only if they refer to the same physical storage on the heap. It doesn’t matter
if both objects internally represent the same image file. If they are different references,
they are not equal. This behavior should come as no surprise to the seasoned Java cod-
ers among us, but might seem a little strange to programmers accustomed to C++ or
Visual Basic behavior.
154 CHAPTER 5 REUSABLE LIBRARIES

In order to ensure that Photographs compare as expected, we must override the
Equals method. Our override will return true if the two photos refer to the same file.

Some features of this code are worth noting in more detail:
1 In C#, the override keyword is required to override a virtual method. Using the

virtual keyword here would cause a compile error, since the method name is
already declared in the base class. The override keyword indicates that the
Equals method here serves the same purpose as the inherited member and replaces
this base member. To define a new meaning for an inherited member and hide the
original definition, the new modifier is used instead of the override keyword.

.NET Table 5.3 Object class

The Object class is the base class for all objects in C#, including the built-in types such as
int and bool, and is part of the System namespace. The System.Object class is equivalent
to the C# language object class in the .NET Framework.

Public Static

Methods

Equals Determines if two objects are equal.

ReferenceEquals Determines if two objects both refer to the same
object instance.

Public Methods

Equals Determines whether a given object is the same as
this object. Performs bitwise equality for value
types, and object equality for reference types.

GetHashCode Returns an integer suitable for use as a hash code
for the object. Objects which are equal (based on
the Equals method) return the same value, so you
should override this method if you override Equals.

GetType Returns the Type object representing the C#
language metadata associated with the object.

ToString Returns a string that represents the current
object. By default, the name of the object’s type is
returned, so classes should normally override this
method to return a more useful value.

OVERRIDE EQUALS METHOD

 Action Result

1 In the Photograph.cs file,
provide an override of the
Equals method that
compares file names.

 public override bool Equals(object obj)
 {
 if (obj is Photograph)
 {
 Photograph p = (Photograph)obj;

 return (_fileName.ToLower().
 Equals(p.FileName.ToLower()));
 }

 return false;
 }
ROBUSTNESS ISSUES 155

 public override bool Equals(object obj)
 {

2 Since we must handle any object here, we only perform our comparison if the
given object is a Photograph. We use the is keyword for this purpose, even
though this results in the performance of two cast operations—one for the is
keyword, and one for the actual cast.

 if (obj is Photograph)
 {
 Photograph p = (Photograph)obj;

3 The String.Equals method performs a case-sensitive comparison of strings.
That is, “book” and “book” are equal, but “book” and “Book” are not. To ignore
capitalization in our file name strings, we use the ToLower method to make sure
the compared strings are all lower case.

 return (_fileName.ToLower().Equals(p.FileName.ToLower()));
 }

4 Note how false will always be returned if the given object is not a Photograph.
 return false;
 }

It is also worth noting here that the String class overrides the Equals method to
perform a value-based case-sensitive comparison of its contents, even though it is a
reference type. This ensures that two String objects are identical as long as they
contain the same set of characters in the same order.

We should also override the GetHashCode and ToString methods in our Pho-
tograph class. The default GetHashCode implementation for the Object class
returns different hash values for different references, while the default ToString
implementation returns the name of the type, in this case the string "Photograph".
Neither of these implementations really works for our purposes.

This is especially true for the GetHashCode method. This method should return
an identical value for identical, or equal, objects. The default implementation for ref-
erence types works fine when two physically different objects are never equal. In our
case, since two different photographs can now be equal, this means that two Photo-
graph objects that refer to the same file name might return different hash values.3 This
would make it rather difficult to look up Photograph objects in a hash table. As a

3 This discussion assumes you understand hashing and hash tables. Briefly, a standard hash table uses a
key, or hash code, as an index into a table. Unlike an array, this key does not have to be unique for each
object, since each entry in the table refers to a linked list of objects that hash to the same key. A hash
table enjoys the benefits of a linked list in that items can be quickly inserted and removed, and the ben-
efits of an array since items can be quickly located. Of course, it all depends on a table appropriate for
the number of expected items, and a good hash code algorithm that produces an equal distribution of
values for the stored data across the entire table.
156 CHAPTER 5 REUSABLE LIBRARIES

rule, you should always (yes, always!) override GetHashCode if you are overriding
the Equals method. In our case, the comparison in Equals is based on the file
name string, so we can use the String.GetHashCode method in a similar fashion.

Finally, we may as well override the ToString method here as well. The default
implementation will return the string "Photograph" every time, which is not very
illuminating. A better implementation for our purposes would return the file name
associated with the photograph, which is what we will do here.

Compile the code to verify that you and I have not made any errors. These overrides
of the base Object methods will come in useful in future chapters. Since they are
found in every object, Windows Forms controls make use of these methods whenever
an object must be compared with another object or a corresponding string displayed
in a window. In particular, we will see in chapter 10 how list controls utilize the
ToString method by default when displaying an object in a list. As a result, provid-
ing a reasonable ToString implementation for your classes is always a good idea.

The changes in this section ensure that the base object methods are properly
implemented for our Photograph class. Another change we should make is to ensure
that any system resources used by our classes are cleaned up as required.

5.4.3 DISPOSING OF RESOURCES

Our PhotoAlbum and Photograph classes are now fairly well-defined. We can cre-
ate photographs from image files, add and remove photos to albums, and iterate
through the contents of an album. A topic we haven’t touched on is the issue of clean-
ing up a photo or album when we are finished.

You might be wondering why we even care. Isn’t this the purpose of garbage col-
lection? When we are finished with an album, the garbage collector will clean it up
eventually, so we do not need to worry about it.

OVERRIDE THE GETHASHCODE METHOD

 Action Result

2 Override the GetHashCode method.

How-to

Use the String.GetHashCode
method on the contained file name.

 public override int GetHashCode()
 {
 return this.FileName.GetHashCode();
 }

OVERRIDE THE TOSTRING METHOD

 Action Result

3 Override the ToString method to
return the contained file name.

 public override string ToString()
 {
 return this.FileName;
 }
ROBUSTNESS ISSUES 157

This is true to a point. The problem is that we have no idea when the garbage
collector will run. It could be immediately, it could be hours later, or it could even be
in conjunction with the program exiting. This is fine for the memory used by our
objects, but might present a problem for the system resources in use. For example, the
creation of a Bitmap object requires that a file be opened and loaded into memory.
This requires file and other system resources. Since such resources can be limited, it
is a good idea to release them when you are finished.

The preferred method for doing this is through a Dispose method as part of the
IDisposable interface. This interface is summarized in .NET Table 5.4. Since the
Component class supports the IDisposable interface and is the basis for most
classes in the System.Windows.Forms namespace, most objects in the Windows
Forms namespace provide a Dispose method for just this purpose.

Let’s support this interface in our classes. In many cases, it is an error to reference a
disposed object. In our case, we would like to be able to clear and reuse a PhotoAl-
bum instance, so we will leave the album object in a usable state after the Dispose
method has been called.

.NET Table 5.4 IDisposable interface

The IDisposable interface indicates that an object can be disposed of. Typically, instances
of objects that support this interface should always call the Dispose method to free any non-
memory resources before the last reference to the object is discarded. This interface is part
of the System namespace.

Public Methods Dispose Releases any resources used by the object.

SUPPORT THE IDISPOSABLE INTERFACE

 Action Result

1 In the Photograph.cs source file,
indicate that this class will support
the IDisposable interface.

 public class Photograph : IDisposable
 {
 . . .

2 Implement the Dispose method.

How-to

Dispose of the contained bitmap
only if it exists and is not our static
InvalidPhotoImage bitmap.

 public void Dispose()
 {
 if (_bitmap != null
 && _bitmap != InvalidPhotoImage)
 {
 _bitmap.Dispose();
 }

 _bitmap = null;
 }
 . . .
 }

3 Similarly, support the IDisposable
interface in the PhotoAlbum.cs file.

 public class PhotoAlbum :
 CollectionBase, IDisposable
 {
 . . .
158 CHAPTER 5 REUSABLE LIBRARIES

Our objects can now dispose of their contents properly. Be aware that it may not
always be a good idea to dispose of contained objects as we do for the PhotoAlbum
class here. There are times when an object in a list may be in use elsewhere in the pro-
gram, and it is best to let the caller or the garbage collector decide when and how to
dispose of any contents. For example, if a single Photograph object could be stored
in two PhotoAlbum objects at the same time, then our PhotoAlbum.Dispose
method would not be appropriate. We will enforce the rule that a single Photo-
graph can only be a member of a single album, so the implementation presented
here will work just fine.

We have one more change to make before going on to chapter 6.

5.4.4 ASSOCIATING A FILE NAME WITH AN ALBUM

One final addition that hasn’t fit anywhere else in this chapter is the ability to assign a
file name to an album. This will come in handy when we save and open albums in
chapter 6. We will do this by providing a FileName property in the class, as detailed
by the following table.

4 Implement the Dispose method for
the PhotoAlbum class.

Note: We dispose of each Photo-
graph in the album as well here.”

 private bool _disposing = false;
 public void Dispose()
 {
 if (!_disposing)
 {
 _disposing = true;
 foreach (Photograph photo in this)
 {
 photo.Dispose();
 }
 Clear();
 }
 }

5 Ensure that the album is properly
disposed of when its contents are
cleared.

How-to

Update the OnClear method to
dispose of the contents.

 protected override void OnClear()
 {
 _currentPos = 0;
 this.Dispose();
 base.OnClear();
 }

SUPPORT THE IDISPOSABLE INTERFACE (continued)

 Action Result

ADD A FILE NAME PROPERTY FOR AN ALBUM

 Action Result

1 In the PhotoAlbum.cs file,
create a private field to
store the file name.

 private string _fileName = null;
ROBUSTNESS ISSUES 159

Note that we permit a nonexistent file name to be assigned in this property. This
allows an album name to be assigned before any data is actually saved into the file.

This completes the implementation of the PhotoAlbum and Photograph
classes, at least for now. As usual, we finish this chapter with a quick summary of our
accomplishments.

5.5 RECAP

In this chapter we created an external library that applications everywhere can use
when a photo album is required. We implemented a Photograph class to encapsu-
late a photographic image, and a PhotoAlbum class to encapsulate a collection of
Photograph objects. Along the way we examined interfaces, .NET collection
classes, custom bitmap creation, internals of the Object class, and the IDispos-
able interface.

The MyPhotoAlbum.dll library is ready for use in our MyPhotos application.
Integrating this library into our application is the topic of our next chapter. This will
allow us to support multiple images in our application, and set the stage for future
changes to come.

More .NET For questions on C#, Windows Forms, and other aspects of .NET, Mi-
crosoft provides a number of Internet newsgroups on a variety of topics.
These are available at Microsoft’s News Server at news.microsoft.com.
Among the newsgroups provided are microsoft.public.dotnet.frame-
work.windowsforms for questions about Windows Forms application de-
velopment, and microsoft.public.dotnet.languages.csharp for questions
about the C# programming language.

2 Create a public property to
retrieve or define this
value.

 public string FileName
 {
 get { return _fileName; }
 set { _fileName = value; }
 }

3 Reset this value when the
album is cleared.

 protected override void OnClear()
 {
 _currentPos= 0;
 _fileName = null;
 this.Dispose();
 base.OnClear();
 }

ADD A FILE NAME PROPERTY FOR AN ALBUM (continued)

 Action Result
160 CHAPTER 5 REUSABLE LIBRARIES

C H A P T E R 6

Common file dialogs

6.1 Design issues 162
6.2 Multiple file selection 166
6.3 Paint events 169
6.4 Context menus revisited 173

6.5 Files and paths 175
6.6 Save file dialogs 181
6.7 Open file dialogs 189
6.8 Recap 193
In the previous chapter we created the Photograph and PhotoAlbum classes as a
way to encapsulate a photographic image and a collection of photographs. In this
chapter we make use of these classes in our application to display a photo album to
the user. We will stick with our model of one photo at a time, but allow a user to
move forward and backward within the album. This will permit us to focus on inte-
grating the library without too many changes to the user interface.

In future chapters, we will expand our class library with additional functionality
such as storing the date a photograph was taken, or the name of a photographer. Add-
ing such features to a photo album will take some work by the user, which we would
not want to throw away when the program exits. As a result, before any of these addi-
tional features really make sense, we need to store our photo album on the disk so it
can be used again (and again and again).

How will we store our album on disk? In a file, of course, to match the chapter
title. Specifically, this chapter will show how to perform the following tasks:

• Use the PhotoAlbum and Photograph classes to display, navigate, and man-
age a set of photographs in the MyPhotos application.

• Allow multiple images to be loaded at once using the OpenFileDialog class.
161

• Save the current album using the SaveFileDialog class.
• Open a previously saved album using the OpenFileDialog class.

Figure 6.1 shows how our application will look by the end of this chapter, with the
new File menu displayed. Note that we have also added an Edit menu and a new sta-
tus bar panel showing the current position within the album. In the figure, the third
of a total of four photographs in the album is shown.

6.1 DESIGN ISSUES

The changes planned for this chapter require that we rewrite our menu bar. Before we
plunge ahead, let’s do some brief design work to lay out this new main menu. It is
always a good idea to sketch your graphical elements up front. You can even do this
on paper. The point is to have in mind the graphical interface you wish to implement
before you start writing code. While it is always possible to move menus and other
objects around, it can also waste a lot of time. This is especially true if the application
has to be approved by a manager, the customer, or anyone else. Doing a quick sketch
on paper creates a basis for discussion and allows initial thoughts and ideas to be aired
before a more formal design document or any code is written.

6.1.1 CHANGING THE MENU BAR

While we are not doing a formal design here, let’s at least write down the new menu
structure we will implement. As shown in the following table, in addition to the File
menu changes, we will also add an Edit menu to our application.

Figure 6.1

In this chapter we implement a

more traditional File menu structure

for our application.
162 CHAPTER 6 COMMON FILE DIALOGS

It is tempting to use our own terminology and establish our own conventions here.
For example, why not use an “Album” main menu instead of the File menu, or have
Ctrl+N as the shortcut for View-Next rather than File-New. The short answer: don’t
do it. Computer users appreciate familiarity and resist change (so do most consumers
and small children, but I digress). The File menu is standard in most Windows appli-
cations, and Ctrl+N is used for creating a new object (be it a document in Microsoft
Word, or an image in Adobe PhotoDeluxe). Unless you are intending your applica-
tion to be somewhat contrary, use existing standards where possible.

So even though Ctrl+N and Ctrl+P would make nice shortcuts for Next and Pre-
vious, we will stick with Ctrl+N for New and save Ctrl+P for when we add printing
in part 3 of the book. We have already looked at menus in chapter 3, so this section
will remove the existing Load menu and add our new menu structure.

Set the version number of the MyPhotos application to 6.1.

The new menu structure for the MyPhotos application

Menu Bar Menu Item Shortcut Description

File

File Ctrl+N Create a new photo album (the existing album is saved if
necessary).

Open Ctrl+O Open an existing photo album file.

Save Ctrl+S Save the current album.

Save As Save the current album in a new file.

Exit Exit the application. It should offer to save the current album
if any changes have been made.

Edit
Add Ctrl+A Add one or more photos to the album.

Remove Ctrl+R Remove the displayed photo from the album.

View

Image We will leave this menu as already implemented. This
contains a submenu indicating how the image should be
displayed.

Next Ctrl+Shift+N Display the next image in the album, if any.

Previous Ctrl+Shift+P Display the previous image in the album, if any.

REMOVE THE LOAD MENU

 Action Results

1 In the MainForm.cs [Designer]
window, remove the Load menu
from the File menu.

Alternately

Click the menu item and press the
Delete key.

The menu and its properties are removed from the
program.

Note: The menuLoad_Click method remains in
the source file. We will make use of this code
when we handle the Add menu later in this chapter.

How-to

a. Right-click the menu item.
b. Select Delete.
DESIGN ISSUES 163

The creation of our menu requires the procedures we saw in chapter 3. The following
table creates and positions the new menu items required in our application. The sub-
sequent sections will look at the required event handlers for these menu items.

CREATE OUR NEW MENU

 Action Result

2 Create the new File menu structure, as shown in the
following table.

Note: Recall that a menu separator is added by creat-
ing a MenuItem with the Text property set to a single
dash ‘-‘.

The new settings appear in the
window and are reflected in the
MainForm.cs file.

3 Define a new Edit menu between the existing File and
View menus.

Note: If you are not using Visual Studio, create the new
menu manually, and set the Index property for each of
the File, Edit, and View menus to 0, 1, and 2 respectively.

Note: This space intention-
ally left blank.

Settings

MenuItem Property Value

New (Name) menuNew

Shortcut CtrlN

Text &New

Open (Name) menuOpen

Shortcut CtrlO

Text &Open…

separator

Save (Name) menuSave

Shortcut CtrlS

Text &Save

Save As (Name) menuSaveAs

Text Save &As...

separator

Exit as before

How to

a. Click the “Type Here” entry on the menu bar, to the
right of the existing View menu.

b. Enter the name “&Edit” in this space and press
Enter.

c. Using the mouse, click on the new Edit menu and
drag it left to appear between the File and View
menus.

 Settings

Property Value

(Name) menuEdit

Text &Edit
164 CHAPTER 6 COMMON FILE DIALOGS

The source code generated here does not use anything we have not already seen and dis-
cussed in chapter 3, so we will move right along and start processing our new menus.

6.1.2 ADDING CLASS VARIABLES

Before we can implement any event handlers for our menus, and in particular before
we can open and save album files, we must have a PhotoAlbum at our disposal in the
MainForm class. In chapter 5 we added a reference to the MyPhotoAlbum library in
the MyPhotos project, so this library is already available to our application.

Here we will add some protected variables to hold the displayed album and
whether the user has made any changes to this album.

4 Add the dropdown menu for the Edit menu.

5 Create the View menu structure:

CREATE OUR NEW MENU (continued)

 Action Result

Settings

MenuItem Property Value

Add (Name) menuAdd

Shortcut CtrlA

Text &Add

Remove (Name) menuRemove

Shortcut CtrlR

Text &Remove

Settings

MenuItem Property Value

Image as before

separator

Next (Name) menuNext

Shortcut CtrlShiftN

Text &Next

Previous (Name) menuPrevious

Shortcut CtrlShiftP

Text &Previous

CREATE SOME CLASS VARIABLES

 Action Result

1 At the top of the
MainForm.cs file, indicate
that we are using the
MyPhotoAlbum
namespace.

 using Manning.MyPhotoAlbum;

Note: Since we already reference the library (remember,
no header files required), we could write the fully quali-
fied name every time we reference an object from the
library. Typing Manning.MyPhotoAlbum.PhotoAlbum
repeatedly is not my idea of fun, so adding a using direc-
tive here makes sense.
DESIGN ISSUES 165

These variables are required to implement all of our new menu items in this chapter.
With these in place, it is time to do just that.

6.2 MULTIPLE FILE SELECTION

Now that we have an album in our MainForm class, albeit an empty one, we can add
photos to it. In previous chapters, we allowed the user to read in a single photo, first
using a button and later with a menu item. In our new structure, this has been
replaced by the ability to add multiple photos to the album or remove the current
photo from the album. Since this code builds on our original Load handler, it is a
good place to begin.

As you would expect, we will provide Click handlers for both the Add and
Remove items. The Add menu should allow one or more photos to be selected and
added to the album, while the Remove menu should delete the currently displayed
photo from the album. The Add menu will use the Multiselect property of the
OpenFileDialog class, and is where our catchy section title comes from.

6.2.1 ADDING IMAGES TO AN ALBUM

In chapter 3, the Click handler for the Load menu permitted a single file to be
selected using the OpenFileDialog class. This made sense when only a single
image was managed by the application. In this chapter, the idea of an album permits
multiple images to be present at the same time. As a result, our user should also be
able to load multiple images at once. This is again done using the OpenFileDialog
class, so the code for this handler will be similar to the Click event handler for the
Load menu from chapter 3. The Multiselect property is provided by the Open-
FileDialog class to indicate whether multiple files can be selected in the dialog.
This and other members specific to this class are summarized in .NET Table 6.1.

2 Within the MainForm class,
add a protected album
variable _album.

 protected PhotoAlbum _album;

3 Add a protected boolean
called _bAlbumChanged to
track when an album is
modified.

 protected bool _bAlbumChanged = false;

Note: This will be useful when deciding whether to save
an existing album before loading a new one or closing the
application. If no changes have occurred, then we will
know to not save the album.

4 Create an empty album at
the end of the MainForm
constructor.

 public MainForm()
 {
 . . .
 _album = new PhotoAlbum();
 }

CREATE SOME CLASS VARIABLES (continued)

 Action Result
166 CHAPTER 6 COMMON FILE DIALOGS

The steps to implement a Click event handler for the Add menu are shown in the
following table.

Set the version number of the MyPhotos application to 6.2.

.NET Table 6.1 OpenFileDialog class

The OpenFileDialog class represents a common file dialog box for loading one or more
files from disk, and is part of the System.Windows.Forms namespace. This class inherits
from the FileDialog class, and is the standard class for opening existing files. See .NET
Table 1.2 on page 24 for a list of members inherited from the FileDialog class.

Public Properties

Multiselect Gets or sets whether the user can select
multiple files in the dialog. The FileNames
property inherited from the FileDialog class
should be used to retrieve the selected files.

ShowReadOnly Gets or sets whether the dialog should contain
a read-only check box. Defaults to false.

ReadOnlyChecked Gets or sets whether the read only checkbox is
checked. Defaults to false.

Public Methods OpenFile Returns a Stream with read-only access for the
file specified by the FileName property.

IMPLEMENT ADD HANDLER

Action Result

1 Open the Windows Forms
Designer window for the
MainForm.cs file.

As we have seen before, a graphic of the current layout for
this form is displayed.

2 Add a Click event handler for
the Add item under the Edit
menu.

How-to

Double-click on the menu
item.

A new menuAdd_Click method is added to and displayed in
the MainForm.cs source file.

The line to add the handler is created by Visual Studio in the
InitializeComponent method automatically:

 menuAdd.Click += new
 EventHandler (this.menuAdd_Click);

3 Remove the
menuLoad_Click handler and
copy its code into the
menuAdd_Click handler.

Note: This code opens a single file and arranges to dis-
play it in the window. Here, we just want to add the file
to the album, so some changes are required. The code
in the subsequent steps is based on the Load handler,
although there are some differences. In particular, we
do not handle any exceptions that might occur. This is
done intentionally so that we can discuss the handling
of such exceptions in chapter 7.
MULTIPLE FILE SELECTION 167

In the code, note how the Multiselect property is used to permit multiple file
selections. This property is one of the few OpenFileDialog members not inherited
from the FileDialog class.

4 Initialize an OpenFileDialog
instance to allow multiple
selections of various image
file types.

How-to

Use the Multiselect
property to allow multiple files
to be selected.

Note: The Filter setting
here includes most of the
common formats users are
likely to see. All of these for-
mats are supported by the
Bitmap class.

 protected void menuAdd_Click
 (object sender, System.EventArgs e)
 {
 OpenFileDialog dlg = new OpenFileDialog();

 dlg.Title = "Add Photos";
 dlg.Multiselect = true;
 dlg.Filter
 = "Image Files (JPEG, GIF, BMP, etc.)|"
 + "*.jpg;*.jpeg;*.gif;*.bmp;"
 + "*.tif;*.tiff;*.png|"
 + "JPEG files (*.jpg;*.jpeg)|*.jpg;*.jpeg|"
 + "GIF files (*.gif)|*.gif|"
 + "BMP files (*.bmp)|*.bmp|"
 + "TIFF files (*.tif;*.tiff)|*.tif;*.tiff|"
 + "PNG files (*.png)|*.png|"
 + "All files (*.*)|*.*";
 dlg.InitialDirectory
 = Environment.CurrentDirectory;

5 Invoke the dialog and process
an OK response.

 if (dlg.ShowDialog() == DialogResult.OK)
 {

6 Extract the array of files
selected by the user.

 string[] files = dlg.FileNames;

7 Turn off the status bar panels
while the images are loading.

 statusBar1.ShowPanels = false;
 statusBar1.Text
 = String.Format("Loading {0} Files",
 files.Length);

8 Iterate through the array of
selected files.

 int index = 0;
 foreach (string s in files)
 {

9 Add each image to the album
if it is not already present.

How-to

Use the IndexOf method to
see if the photo is already in
the album.

 Photograph photo = new Photograph(s);

 // Add the file (if not already present)
 index = _album.IndexOf(photo);
 if (index < 0)
 {
 index = _album.Add(photo);
 _bAlbumChanged = true;
 }
 }

Note: The IndexOf method relies on the Equals override
we implemented in chapter 5.

10 Dispose of the nonmemory
resources used by the dialog.

 dlg.Dispose();

11 Invalidate the main window to
display the new settings.

 this.Invalidate();
 }
 }

IMPLEMENT ADD HANDLER (continued)

Action Result
168 CHAPTER 6 COMMON FILE DIALOGS

The code also sets the InitialDirectory property to the current directory using
the Environment class. This ensures that the initial directory in the dialog is always the
current directory for our application. While this may not seem so relevant right now, it
will become important when we implement Click handlers for our Save and Save As
menus. We will look at the Environment class in more detail later in the chapter.

The menuAdd_Click method is similar to our original Load menu handler, but
also very different. In particular, this method leaves unresolved the issue of what to dis-
play in the form, and the exception handling has been removed. We will handle these
issues subsequently. For now, let’s move on to the Remove menu handler.

6.2.2 REMOVING IMAGES FROM AN ALBUM

The event handler for the Remove menu uses the CurrentPosition property to
locate the current photo and delete it from the album.

The menuRemove_Click handler uses the RemoveAt method from our PhotoAl-
bum class to remove the current photo. The issue of adjusting the current position in
case we remove the last photo from the album is left to the PhotoAlbum class to han-
dle. If you recall, the RemoveAt method we implemented in chapter 5 ensures that
the current index remains valid after it is called through an override of the OnRe-
moveComplete method, so the current position is properly updated here.

Once again we have ignored the display issues. This is because our menu handlers
will no longer interact with the Form window directly. Instead we will override the
protected OnPaint method for this purpose, which is our next topic.

6.3 PAINT EVENTS

Now that we can load multiple images into our album, we need a way to make them
appear in the window. In previous chapters, we have simply assigned the selected
photo to the Image property of our PictureBox control and relied on the .NET
Framework to deal with the rest. The framework will still do most of the work, but
now we need to identify which image from our album should be drawn.

IMPLEMENT REMOVE HANDLER

Action Result

1 Add a Click handler for
the Remove menu.

 protected void menuRemove_Click
 (object sender, System.EventArgs e)
 {

2 Implement this handler to
remove the current photo
from the album.

 if (_album.Count > 0)
 {
 _album.RemoveAt(_album.CurrentPosition);
 _bAlbumChanged = true;
 }

 this.Invalidate();
 }
PAINT EVENTS 169

As in previous Microsoft development environments, such drawing is called
painting in .NET. You may have noticed in chapter 3 that the Control class provides
a Paint event for custom painting of a control. The event name is one piece of the
support provided for each event in the .NET Framework. While we have seen these
pieces in our previous use of events, this is a good place to list them more formally.
The following support is required in order to define and support an event.

• A class that defines the event data. This is either the System.EventArgs class
or a class derived from System.EventArgs. The event data for the Paint
event is defined by the PaintEventArgs class. We will discuss the contents
of the PaintEventArgs class in chapter 7.

• A delegate for the event. This delegate is used by Visual Studio .NET to add the
event handler in the InitializeComponent method. By convention, the
name of this delegate is the event name followed by the string “EventHandler.”
The Paint event is supported by the PaintEventHandler delegate. The
creation of delegates is discussed in chapter 9.

• A class that raises the event. This class must define the event and provide a
method to raise the event. By convention the method to raise the event is the
string “On” followed by the event name. The protected OnPaint method
raises the Paint event.

For painting of controls, the Control class defines the Paint event. Within the def-
inition of this class, the event is defined using the event keyword in C#.
 public event PaintEventHandler Paint;

6.3.1 DRAWING THE CURRENT PHOTOGRAPH

Returning to our code, we need a way to draw the appropriate photograph in our
album. We could handle the Paint event directly in our Form or PictureBox
control for this purpose. Instead, since the MainForm class derives from the Form
class, we can override the method that raises the event directly. This technique is pre-
ferred where possible to avoid the extra overhead of creating and invoking an event
handler. In this case, we will override the protected OnPaint method to handle the
Paint event.
170 CHAPTER 6 COMMON FILE DIALOGS

Set the version number of the MyPhotos application to 6.4.

6.3.2 DISPLAYING THE CURRENT POSITION

Before we see our changes in action, it would be nice to have some indication of our
current position within the album and the total album size in the window. We can do
this by adding a new StatusBarPanel to hold this information, as detailed by the
following steps.

OVERRIDE THE ONPAINT METHOD

 Action Result

1 In the MainForm.cs file override the
OnPaint method.

 protected override void OnPaint(
 PaintEventArgs e)
 {

2 Only paint an image if the album is
not empty.

Note: The three comments here
are implemented in the subsequent
steps. In all cases, the status bar is
invalidated.

 if (_album.Count > 0)
 {
 // Paint the current image
 // Update the status bar
 }
 else
 {
 // Indicate the album is empty
 }

 statusBar1.Invalidate();

3 Call OnPaint in the base class. base.OnPaint(e);
 }

Note: This call is required to ensure that any
Paint event handlers registered with the Form
are called. As mentioned in chapter 5, the base
keyword refers to the base class of the current
object.

4 Paint the current image by setting
the Image property of the pbxPhoto
control.

 // Paint the current image
 Photograph photo = _album.CurrentPhoto;
 pbxPhoto.Image = photo.Image;

5 Update the status bar to hold the
appropriate information about the
image.

Note: The code here is similar to
what we used in our
menuLoad_Click event handler in
chapter 4.

 // Update the status bar.
 sbpnlFileName.Text = photo.FileName;
 sbpnlImageSize.Text = String.Format
 ("{0:#} x {1:#}",
 photo.Image.Width,
 photo.Image.Height
);
 statusBar1.ShowPanels = true;

6 When no images are present, clear
the screen and display an
appropriate status bar message.

 // Indicate the album is empty
 pbxPhoto.Image = null;

 statusBar1.Text = "No Photos in Album";
 statusBar1.ShowPanels = false;
PAINT EVENTS 171

The preceding tables have made a number of changes to the OnPaint method. The
following code pulls together all of the pieces presented in the preceding tables. We
will not discuss these changes in additional detail.
 protected override void OnPaint(PaintEventArgs e)
 {
 if (_album.Count > 0)
 {
 // Paint the current image
 Photograph photo = _album.CurrentPhoto;
 pbxPhoto.Image = photo.Image;

 // Update the status bar.
 sbpnlFileName.Text = photo.FileName;
 sbpnlFileIndex.Text = String.Format("{0}/{1}",
 _album.CurrentPosition+1, _album.Count);
 sbpnlImageSize.Text = String.Format("{0} x {1}",
 photo.Image.Width, photo.Image.Height);

ADD A NEW STATUS BAR PANEL

 Action Result

1 In the MainForm.cs Design window,
display the StatusBarPanel Collection
Editor for the statusBar1 control.

The StatusBarPanel Collection Editor dialog
appears as was shown in chapter 4.

2 Add a new StatusBarPanel in this
dialog just before the existing
sbpnlImagePercent panel.

The new panel is added to the Panels collection.
The source code in the InitializeComponent
method is updated to define the new panel and
add it to the status bar.

3 In the OnPaint method, set the text for
this panel to contain the image index
and album size.

 sbpnlFileIndex.Text = String.Format
 ("{0:#}/{1:#}",
 _album.CurrentPosition+1,
 _album.Count);

How-to

a. Display the properties for this control.
b. Click on the Panels property item.
c. Click the … button.

How-to

a. Click the Add button.
b. Click the up arrow in the center of

the dialog to move the panel just
beforethe image percent panel.

c. Assign the proper settings as shown.
d. Click OK to add the panel.

Settings

Property Value

(Name) sbpnlFileIndex

AutoSize Contents

ToolTipText Image Index
172 CHAPTER 6 COMMON FILE DIALOGS

 statusBar1.ShowPanels = true;
 }
 else
 {
 // Indicate the album is empty
 pbxPhoto.Image = null;

 statusBar1.Text = "No Photos in Album";
 statusBar1.ShowPanels = false;
 }

 statusBar1.Invalidate();
 base.OnPaint(e);
 }

Our code is coming along. We can add new photos to the album, and remove the
photo currently displayed.

TRY IT! Compile the code and verify that you can add and remove images to the
album. Make sure you can add multiple images at once by selecting a range
of images with the Shift key. This can be done by clicking the first file,
holding down the Shift key, and then clicking the last file. You can also se-
lect multiple single images with the Ctrl key by clicking the first, holding
down the Ctrl key, clicking the second, and so on.

Also see what happens when a nonimage file is specified. You should see
our invalid image with the red X that we created in chapter 5. This indicates
to the user that something is wrong, but maintains the image paradigm
used by our application.

The current code does not allow us to move to the next and previous images in the
album, so only the first photo in the album is ever displayed. Navigating within the
album using the Next and Previous menus is our next topic.

6.4 CONTEXT MENUS REVISITED

In this section we implement the Next and Previous menu items for our application.
These menus are part of the View menu on the main menu bar. If you recall, this
menu was cloned and assigned to the context menu for use with the PictureBox
control. Our careful implementation in chapter 3 ensured that the contents of the
context menu always match the contents of the View menu. In fact, your application
should include these menus now, as can be seen in figure 6.2.
CONTEXT MENUS REVISITED 173

The handlers for Next and Previous use concepts we have previously discussed, so let’s
get to it.

6.4.1 DISPLAYING THE NEXT PHOTOGRAPH

The Next handler uses the CurrentNext method from our PhotoAlbum class, and
is implemented using the following steps.

Set the version number of the MyPhotos application to 6.4.

You will note that we invalidate any image currently displayed only if a next photo-
graph is available. It might be a good idea to beep or display a message when no next
photo is available to inform the user they are at the end of the album. We will discuss
how to do this in the next chapter.

6.4.2 DISPLAYING THE PREVIOUS PHOTOGRAPH

The Click event for the Previous menu is implemented in a similar manner.

Figure 6.2

A context menu displays keyboard

shortcuts just like the main menu. As a

special treat, an image not yet seen in

this book is shown here.

IMPLEMENT HANDLER FOR THE NEXT MENU

 Action Result

1 Add a Click handler for
the Next menu item.

 protected void menuNext_Click
 (object sender, System.EventArgs e)
 {

2 Implement this handler
using the CurrentNext
method.

 if (_album.CurrentNext())
 {
 this.Invalidate();
 }
 }
174 CHAPTER 6 COMMON FILE DIALOGS

Compile and run the application to verify that your code produces the screen shown
in figure 6.2 earlier in this section.

TRY IT! It would be useful to have First and Last menu items here. These would dis-
play the first or last photo in the album, respectively. Add these two menus
to the View menu and provide a Click event handler for each menu.

6.5 FILES AND PATHS

Before we implement our save methods, a brief talk on the name of an album is in
order. While we may store the album in a file such as “C:\Program Files\MyPho-
tos\sample.abm,” such a name is a bit cumbersome for use in dialogs and on the title
bar. The base file name, in this case “sample,” is more appropriate for this purpose.
Another issue is where exactly should album files be stored?

This section resolves these issues by defining a default directory where albums are
stored and establishing a title bar based on the current album name. These features will
then be used to implement a Click event handler for our New menu.

6.5.1 CREATING A DEFAULT ALBUM DIRECTORY

While an album file can be placed in any directory, it is nice to provide a common
place for such files. This location will be used by default for both opening and saving
albums. Common directories for this and other standard information are available
from the Environment class, as summarized in .NET Table 6.2.

For our default directory, the GetFolderPath method provides convenient
access to the special folders in the system, such as the user’s My Documents directory.
There are a number of special folders available, with a few of them listed in .NET
Table 6.3. We are interested in the location of the My Documents directory, which
corresponds to the Personal enumeration value.

IMPLEMENT PREVIOUS HANDLER

Action Result

1 Add a Click handler for
the Previous menu item.

 protected void menuPrevious_Click
 (object sender, System.EventArgs e)
 {

2 Implement this handler
using the CurrentPrev
method.

 if (_album.CurrentPrev())
 {
 this.Invalidate();
 }
 }
FILES AND PATHS 175

We will use this value to define a static DefaultDir property in our PhotoAlbum
class. We will allow a programmer to modify this value, but this provides a starting
point for album storage. To distinguish photo albums from other documents, we will
create an Albums directory within the My Documents folder.

.NET Table 6.2 Environment class

The Environment class represents the current user’s environment, providing the means to
retrieve and specify environmental information. This class is sealed and the members defined
by this class are static. The Environment class is part of the System namespace.

Public Static

Properties

CurrentDirectory Gets or sets the fully qualified path of the current
directory for this process.

ExitCode Gets or sets the exit code for the process.

MachineName Gets the NetBIOS name of this local computer.

OSVersion Gets an OperatingSystem instance under
which this process is currently running.

TickCount Gets the number of milliseconds elapsed since
the system started.

UserName Gets the user name that started the current
thread for this process.

WorkingSet Gets the amount of physical memory mapped to
this process context.

Public Static

Methods

Exit Terminates this process and returns the
specified exit code to the underlying operating
system.

GetCommandLineArgs Returns an array of string objects containing
the command line arguments for the current
process.

GetEnvironmentVariable Returns the value of a specified environment
variable as a string.

GetEnvironmentVariables Returns the set of all environment variables as
an IDictionary instance.

GetFolderPath Returns the path of a special folder as identified
by the Environment.SpecialFolder
enumeration.

GetLogicalDrives Returns an array of string objects containing
the names of the logical drives on the computer
under which this process is running.
176 CHAPTER 6 COMMON FILE DIALOGS

Let’s see how this looks by creating the required code.

Set the version number of the MyPhotoAlbum library to 6.5.

.NET Table 6.3 SpecialFolder enumeration

The SpecialFolder enumeration specifies various types of predefined folders in the .NET
Framework. This enumeration is used by the GetFolderPath method in the Environment
class. This enumeration is defined within the Environment class as part of the System
namespace.

Enumeration

Values

ApplicationData The common directory where application data for the
current roaming, or network, user is typically stored.

Cookies The directory where Internet cookies are typically stored.

Favorites The directory where the user’s favorite items are typically
stored.

Personal The directory where the user’s documents are typically
stored.

SendTo The directory that contains the Send To menu items.

StartMenu The directory that contains the Start menu items.

CREATE A DEFAULT ALBUM DIRECTORY

 Action Result

1 In the PhotoAlbum.cs file, indicate
we are using the system.IO
namespace.

using System.IO;

2 Define static members for the
default directory and whether this
directory has been initialized.

 static private string _defaultDir = null;
 static private bool _initializeDir = true;

3 Define a static InitDefaultDir
method to initialize the default
directory setting.

Note: The ampersand ‘@’ in C#
specifies an “as-is” string, where
escape sequences normally
denoted by the backslash charac-
ter are ignored.

 static private void InitDefaultDir()
 {
 if (_defaultDir == null)
 {
 _defaultDir = Environment.GetFolderPath(
 Environment.SpecialFolder.Personal);
 _defaultDir += @"\Albums";
 }

 Directory.CreateDirectory(_defaultDir);
 }
FILES AND PATHS 177

The InitDefaultDir method does much of the work for this property. If an explicit
value for the default directory has not been set, then this method assigns a value based
on the user’s personal directory for documents, with an Albums subdirectory added.
 static private void InitDefaultDir()
 {
 if (_defaultDir == null)
 {
 _defaultDir == Environment.GetFolderPath(
 Environment.SpecialFolder.Personal);
 _defaultDir += @"\Albums";
 }

Since this directory, or any directory provided by the user, may or may not exist at the
start of the program, we create the directories as part of our initialization.
 Directory.CreateDirectory(_defaultDir);
 }

For programmers familiar with earlier development environments from Microsoft,
the lack of directory-related classes and dialogs has been a noticeably missing feature.
Microsoft has provided a Directory class .NET containing a number of static
methods for dealing with directories. This class resides in the System.IO namespace
and should simplify the handling of directories in applications. We will not look at
this class in detail here. The CreateDirectories method used in our code ensures
that each of a string of directories in a given path exist. Note that if the
_defaultDir setting is not a well-formed directory string, then the CreateDi-
rectories method will throw an exception.

4 Implement a DefaultDir
property to retrieve or assign the
default directory setting.

How-to

Use the _initializeDir field to
ensure that the directory setting is
only initialized once.

 static public string DefaultDir
 {
 get
 {
 if (_initializeDir)
 {
 InitDefaultDir();
 _initializeDir = false;
 }
 return _defaultDir;
 }
 set
 {
 _defaultDir = value;
 _initializeDir = true;
 }
 }

CREATE A DEFAULT ALBUM DIRECTORY (continued)

 Action Result
178 CHAPTER 6 COMMON FILE DIALOGS

6.5.2 SETTING THE TITLE BAR

So far we have only set the title bar in our MainForm constructor. Realistically, we
will likely want to set this from a number of places in our application, especially if we
want to include information about the current album as part of the title bar.

Let’s create a SetTitleBar method to assign the title bar based on the current
album name, if any. This method requires a means of extracting the base name from
the current album file. This functionality is provided by the Path class, as described
in .NET Table 6.4. The rather cumbersome GetFileNameWithoutExtension
method obtains the base file name without the extension.

The code for the SetTitleBar method is described in the following table:

Set the version number of the MyPhotos application to 6.5.

We will make use of this new method in our implementation of a Click handler for
the New menu.

SET THE APPLICATION TITLE BAR

 Action Result

1 In the MainForm.cs code
window, indicate that
we are using the
System.IO namespace.

using System.IO;

2 Add a new
SetTitleBar method to
the MainForm class.

 private void SetTitleBar()
 {
 Version ver = new Version(
 Application.ProductVersion);

3 Define a default title bar
when no album file is
set.

 if (_album.FileName == null)
 {
 this.Text = String.Format("MyPhotos {0:#}.{1:#}",
 ver.Major, ver.Minor);
 }

4 When an album file is
set, include the base file
name in the title bar.

 else
 {
 string baseFile = Path.
 GetFileNameWithoutExtension(
 _album.FileName);
 this.Text = String.Format(
 "{0} - MyPhotos {1:#}.{2:#}",
 baseFile, ver.Major, ver.Minor);
 }
 }
FILES AND PATHS 179

6.5.3 HANDLING THE NEW MENU

With the ability to manage an album file and directory in place, this is as good a place
as any to implement a Click handler for our New menu. We will use our new SetTi-
tleBar method to initialize the title bar for the application. This method is used here
as well as later in this chapter to initialize the title bar when the current album changes.

.NET Table 6.4 Path class

The Path class represents an object stored on disk, whether a file or directory object. This
class is sealed, and is part of the System.IO namespace. The Path class contains static
methods for creating and managing disk objects.

Public Static

Readonly

Fields

DirectorySeparatorChar A platform-specific directory separator
character. This is the backslash character
‘\’ on Windows systems.

InvalidPathChars A platform-specific array of characters.
Each character is not permitted in a file
system path.

PathSeparator A platform-specific path separator
character. The semicolon ‘;’ character
on Windows systems.

Public Static

Methods

ChangeExtension Changes or removes the file extension
for a file.

GetDirectoryName Returns the directory path of a file.

GetExtension Returns the extension of a file.

GetFileName Returns the file and extension parts of a
file.

GetFileNameWithoutExtension Returns the file name without its
extension.

GetFullPath Returns the fully qualified path for a given
path.

GetPathRoot Returns the root of a given path.

GetTempFileName Returns a unique temporary file name
and creates an empty file with that name
on disk.

HasExtension Determines whether a path includes a
file extension.
180 CHAPTER 6 COMMON FILE DIALOGS

We have made a few changes to our MainForm constructor here. To make sure we are
all on the same page (so to speak), your constructor in Visual Studio should now look
something like the following:
 public MainForm()
 {
 //
 // Required for Windows Form Designer support
 //
 InitializeComponent();

 // Additional Form initialization
 DefineContextMenu();
 menuNew_Click(this, EventArgs.Empty);
 }

With this infrastructure in place, we can turn our attention to the methods required
in the PhotoAlbum class.

6.6 SAVE FILE DIALOGS

So far we have used the MyPhotoAlbum library to support the creation and manipu-
lation of an album in memory. At this point, we would like to preserve this album by
storing it on disk. In this section we will handle the Save menu item to do just this. In

CREATE A CLICK EVENT HANDLER FOR THE NEW MENU

 Action Result

1 In the MainForm.cs [Design] window,
add a Click event handler for the
New menu.

 private void menuNew_Click
 (object sender, System.EventArgs e)
 {

2 In this handler, dispose of the existing
album and create a new one.

Note: This really is poor design,
since we throw away any changes to
the existing album. We will fix this in
chapter 8 when we discuss the Mes-
sageBox class.

 if (_album != null)
 _album.Dispose();
 _album = new PhotoAlbum();

3 Initialize the application title bar. // Set the application title bar
 SetTitleBar();

4 Invalidate the current window. this.Invalidate();
 }

5 Add a call to this method in the
MainForm constructor.

 menuNew_Click(this, EventArgs.Empty);

Note: The static EventArgs.Empty property
provides an empty EventArgs instance for
use when calling event handlers from your
code.

6 Remove the code to set the title bar
from the MainForm constructor.

The initial title bar is now set as part of the
menuNew_Click method.
SAVE FILE DIALOGS 181

the next section we will implement an Open menu handler to allow such an album to
be reloaded and used at a later time.

We have already seen how the OpenFileDialog class is used to locate image
files. As you might expect, .NET provides a SaveFileDialog class to store infor-
mation to a file. A summary of this class is shown in .NET Table 6.5.

To save an album to disk, we need to implement two types of methods. The first is a
Click event handler for both the Save and Save As menus. These handlers will use
the SaveFileDialog class to allow a file to be selected. Second is a PhotoAl-
bum.Save method to write the album information into the selected file. Separating
the user interface portion, in this case the file selection, from the data manipulation
portion, here the actual file writes, is a common design technique that allows us to
change either aspect of the task without overly affecting the other. As we shall see in
future chapters, changes to how the data is stored by the PhotoAlbum.Save
method will not affect the menu handlers implemented here.

6.6.1 WRITING ALBUM DATA

The Click handlers for our Save and Save As menus will rely on a Save method in
the PhotoAlbum class to actually save the data, so let’s implement this first. This
method will accept the name of a file in which to store the data. We rely on the user
interface in MainForm to provide a file name approved by the user, so if the file
already exists we will simply overwrite it.

.NET Table 6.5 SaveFileDialog class

The SaveFileDialog class represents a common file dialog box for saving a file to disk, and
is part of the System.Windows.Forms namespace. This class inherits from the FileDialog
class. See the FileDialog class description in .NET Table 1.2 on page 24 for a list of inher-
ited members.

Public Properties

CreatePrompt Gets or sets whether the dialog should prompt
the user for permission to create a specified file
that does not exist. The default is false (do not
prompt).

OverwritePrompt Gets or sets whether the dialog should prompt
the user for permission to overwrite a specified
file that already exists. The default is true
(always prompt).

Public Methods OpenFile Returns a Stream object with read/write
permission of the file selected by the user.
182 CHAPTER 6 COMMON FILE DIALOGS

Set the version number of the MyPhotoAlbum library to 6.6.

The format to use when creating such a file is always a question. One possibility
would be to write an XML file to hold this album information. This is a good idea,
but beyond the scope of this chapter, so we will stick with a simple text format. Since
the file format will likely change, especially in this book, we will allow for possible
future changes.

With these issues in mind, we will store each photograph in the album on a sep-
arate line, with a version number at the beginning of the file. This section will use 66
as the version number, since we are in section 6.6 of the book. The resulting file looks
like this:
 66
 <path to photograph 0>
 <path to photograph 1>
 <path to photograph 2>
 . . .

Our version number is likely to change in future chapters, so we will provide a con-
stant to hold the current version.

The Save method will store the version number followed by the file name of each
Photograph written as a simple string.

ADD PHOTOALBUM.SAVE METHOD

 Action Result

1 Display the PhotoAlbum.cs file.

2 At the end of the file, add the
new Save method.

 public void Save(string fileName)
 {
 }

Note: This method is void since an error is not
expected. If something goes wrong, an Exception
will be thrown.

ADD A CURRENT VERSION CONSTANT

 Action Result

3 Add a static constant integer called
_CurrentVersion to hold the version
number.

 private const int _CurrentVersion = 66;
SAVE FILE DIALOGS 183

This code uses some classes we have not seen before, so let’s break our main Save
method down piece by piece. Our first line opens or creates the given file name as a
FileStream object. This class provides file I/O using simple byte arrays, and sup-
ports the well-known standard in, standard out, and standard error streams familiar
to C and C++ programmers. Files can be open in various modes (via the FileMode
enumeration), with various access levels (via the FileAccess enumeration). Differ-
ent sharing options can be specified as well (not shown here) via the FileShare
enumeration.
 public void Save(string fileName)
 {
 FileStream fs = new FileStream(fileName,
 FileMode.Create,
 FileAccess.ReadWrite);

Next, we create a StreamWriter instance using the new FileStream object. Since
we are using strings and not byte arrays, we need a class that provides simple string
operations. The StreamWriter class does just this, and includes a constructor that
accepts a FileStream instance.
 StreamWriter sw = new StreamWriter(fs);

IMPLEMENT PHOTOALBUM.SAVE METHOD

 Action Result

4 Implement the Save method to
store the album in the given file
using the agreed-upon format.

 public void Save(string fileName)
 {
 FileStream fs = new FileStream(fileName,
 FileMode.Create,
 FileAccess.ReadWrite);

 StreamWriter sw = new StreamWriter(fs);

 try
 {
 sw.WriteLine(_CurrentVersion.ToString());

 // Store each file on a separate line.
 foreach (Photograph photo in this)
 {
 sw.WriteLine(photo.FileName);
 }
 }
 finally
 {
 sw.Close();
 fs.Close();
 }
 }

5 Implement an alternate Save
method that uses the default file
name.

 public void Save()
 {
 // Assumes FileName is not null
 Save(this.FileName);
 }
184 CHAPTER 6 COMMON FILE DIALOGS

The new StreamWriter instance is used to write our data into the file. We encapsulate
the code to write the actual data in a try block to catch any exception that might occur.
 try
 {

First we write the version number as a string on the first line of the file. This line is a
bit more magical than it looks. We are using a constant integer as an object here.
While permitted, it requires the conversion of the value type _CurrentVersion
into a reference type that can be treated as an object instance on the heap. This
conversion is called boxing, since the value is “boxed” into a reference type on the
heap. More information on boxing is provided in appendix A.
 sw.WriteLine(_CurrentVersion.ToString());

The Photograph objects in the album are written using a foreach loop to iterate
through the array. This code relies on the fact that our album contains Photograph
objects and implements the IEnumerable interface. The WriteLine method from
the StreamWriter class (actually, this method is inherited from the base Text-
Writer class) writes a given string onto a single line of the file and adds the appro-
priate line termination characters.
 // Store each file on a separate line.
 foreach (Photograph photo in this)
 {
 sw.WriteLine(photo.FileName);
 }

You may think the magic of garbage collection obviates the need to explicitly clean up
system resources such as files. As we have seen, this just isn’t so. Normally the Dis-
pose method is used to clean up nonmemory resources. For file objects such as
FileStream and StreamWriter, the more traditional Close method is used. By
definition, Close is equivalent to Dispose in the .NET Framework. Classes that
provide a Close method are automatically disposed of when the Close method is
called. We will discuss this notion in more detail in chapter 8.

Since the files must be closed even when an exception occurs, we encapsulate
these lines in a finally block. As you may know, while a finally block does not
catch any exceptions, any code in the block is executed regardless of whether an excep-
tion occurs or not.
 finally
 {
 sw.Close();
 fs.Close();
 }
 }

Note that closing the objects in the reverse order of which they were opened is criti-
cal. Once the FileWriter is closed, the StreamWriter is not able to write any
SAVE FILE DIALOGS 185

remaining data into the file. Calling the Close methods in the proper order ensures
all data is properly written to the file and avoids this potential error.

More .NET In this book we take a rather straightforward approach to reading and writ-
ing files, and will stick with a simple text file to represent our album
throughout the book. There are some summaries of using the System.IO
namespace in the .NET documentation if you are interested in more de-
tails. Search for the “Working with I/O” section in the .NET Framework
Developer’s Guide.

We could also have stored our file in XML using classes from the Sys-
tem.XML namespace. The use of XML, for eXtensible Markup Language,
is a great way to organize data, and is particularly useful when interacting
with database systems or interfacing with remote computer systems. We
opted for a simple text file in our application since many readers may not
be familiar with XML. You can read up on XML in general at
www.xml.org, or look up the XmlReader class and other members of the
System.XML namespace in the .NET documentation.

Our new Save method can now be used in our MyPhotos application to save an
album via our Save and Save As menus.

6.6.2 SAVING AN ALBUM AS A NEW FILE

Let’s implement a handler for the Save As menu first. This handler should prompt the
user to select a file where the album should be stored (using the SaveFileDialog
class) and then use this file name to save the actual data. There are some questions to
answer here about how photo albums should be saved. These questions apply more gen-
erally to any file, so are presented generically to apply to any file and not just our albums.

SaveFileDialog: questions to answer

• Where are photo albums stored?
Even though you may allow the user to select any location on disk, it is a good
idea to encourage a standard location for the files in your application. In our
case, this location is specified by the static DefaultDir property in the Pho-
toAlbum class.

• What is the file extension?
The selection of extension is a bit subjective. On Windows platforms, the fol-
lowing conventions normally apply:
• Use three-letter extensions. The one exception is .html files for HTML files, but

even here the .htm extension is preferred.
• Keep the first letter. Typically, the first letter of the type of file should be the

first letter of your extension. In our case, the extension for album file should
begin with the letter ‘a’.
186 CHAPTER 6 COMMON FILE DIALOGS

• Avoid numbers. At a minimum, start the extension with a letter. Use a number
only if it is a critical aspect the type file you are creating.

• Avoid well-known extensions. You will avoid confusion by using a somewhat
unique combination of letters. You would not want to use extensions such as
.txt (already used for Text files) or .jpg (for JPEG files). To see the list of file
types currently registered on your computer, open Windows Explorer and
select the Folder Options… item under the Tools menu. Click on the File
Types tab to see the extensions currently in use.

• Use an acronym. It helps if your extension has some meaning to your users. If
it makes sense, use an acronym of the full name. For example, the .gif extension
is used for Graphics Interchange Format files.

• Leave out the vowels. Another common tactic is to leave out any vowels in the
name. Examples of this include the .txt (Text) and .jpg (JPEG) extensions.

Based on these conventions, we could use alb or abm here, which both derive
from Album without the vowel “u’). We will use the extension .abm.

• What is the right title bar text?
Don’t forget to set a custom title bar that makes sense for your dialog. The
default title bar is “Save,” which is not very descriptive. We will use “Save
Album” for our title.

• How should existing or nonexistent files be handled?
By default, the user will be prompted if they select a file that already exists (the
OverwritePrompt property) and will not be told if the file is new (the Cre-
atePrompt property). Often the default behavior is fine, but it is worth mak-
ing a conscious decision for your application. We will (consciously!) use the
defaults in our code.

Now that we understand the right behavior to provide, we can implement the Save As
menu handler.
SAVE FILE DIALOGS 187

Set the version number of the MyPhotos application to 6.6.

You will note that our code for the menuSaveAs_Click handler is reminiscent of our
previous use of the OpenFileDialog class. The album is saved only if the user clicks
the OK button. The yet-to-be-implemented Save menu handler actually saves the file.

Also note the use of the RestoreDirectory property. We set this to true so
that the current directory setting for the application is restored after the dialog exits.
By default, this property is set to false, and the current directory for the application
is modified to match the final directory in the dialog. You may recall that we set the
InitialDirectory setting for our menuAdd_Click handler to the current direc-
tory via the CurrentDirectory property of the Environment class. Since we have
different menus interacting with the file system in different ways, we ensure that the
initial directory seen for each menu makes some amount of sense.

6.6.3 SAVING AN EXISTING ALBUM

We come at last to the Save menu handler. Here we need to select an album file name
if one does not already exist, and save the actual data associated with the album.

IMPLEMENT HANDLER FOR SAVE AS MENU

 Action Result

1 Add a Click handler to the
Save As menu.

 protected void menuSaveAs_Click
 (object sender, System.EventArgs e)
 {

2 Create a SaveFileDialog
instance and initialize the
properties as discussed.

Note: In the Filter property
setting, we permit all files to
be shown, even though only
the abm extension is a recog-
nized album file. This is not
necessary, but a nice conve-
nience to allow the user to see
all files in a directory.

 SaveFileDialog dlg = new SaveFileDialog();

 dlg.Title = "Save Album";
 dlg.DefaultExt = "abm";
 dlg.Filter = "Album files (*.abm)|*.abm|"
 + "All files|*.*";
 dlg.InitialDirectory = PhotoAlbum.DefaultDir;
 dlg.RestoreDirectory = true;

3 Once a user selects a file,
record the album name and
save the current album using
this name.

 if (dlg.ShowDialog() == DialogResult.OK)
 {
 // Record the new album name
 _album.FileName = dlg.FileName;

 // Use Save handler to store the album
 menuSave_Click(sender, e);

 // Update title bar to include new name
 SetTitleBar();
 }

4 Dispose of nonmemory
resources used by the dialog.

 dlg.Dispose();
 }
188 CHAPTER 6 COMMON FILE DIALOGS

Note the neat trick we play between the Save and Save As Click handlers. When you
save an album with no name, the Save handler calls the Save As handler to select a
name, which then calls the Save handler to perform the actual save. The second time
in the menuSave_Click method, a name will exist and the data will be saved.

Of course, whenever you interact with the file system, you should be concerned
about possible exceptions. I intentionally ignored this issue here to whet your appetite
for the next chapter. There, we will formally introduce the MessageBox class as a way
to display simple dialogs to the user, most notably when an exception occurs.

Compile your code to verify that you can create an album and save it to disk.
Open a saved album file in Notepad or some other text editor to see what it looks like.
You should see something similar to the following:
66
C:\My Images\Samples\castle.jpg
C:\My Images\Samples\goose.jpg
C:\My Images\Samples\castle3.jpg
C:\My Images\Samples\gardens.jpg

Of course, saving the file is not very useful if you cannot also open a previously saved
file. We will talk about this next.

6.7 OPEN FILE DIALOGS

So far, we have provided our application with the ability to load multiple photo-
graphs to create a photo album, step between these photographs using the Next and
Previous menus, and save the album onto disk. Our final task is to open a previously
saved album and display the first photo in our window. As you probably realize, we
need to implement the user interface portion by handling the Open menu in our
MainForm class, and the data portion by implementing an Open method for our
PhotoAlbum class.

IMPLEMENT A CLICK HANDLER FOR THE SAVE MENU

 Action Result

1 Add a Click handler for the Save
menu.

 protected void menuSave_Click
 (object sender, System.EventArgs e)
 {

2 If an album name does not exist,
use the Save As menu handler to
prompt the user for an album
name.

 if (_album.FileName == null)
 {
 // Need to select an album file
 menuSaveAs_Click(sender, e);
 }

3 If an album name exists, then
simply save the file.

 else
 {
 // Save the album in the current file
 _album.Save();

4 Mark that the now-saved album
has no changes.

 _bAlbumChanged = false;
 }
 }
OPEN FILE DIALOGS 189

As before, we will begin with our PhotoAlbum class.

6.7.1 READING ALBUM DATA

The Open method will accept a file name and read the photo album stored in this
file. It relies on the user interface layer in the caller to provide an actual file, and will
throw an exception if an error occurs.

Set the version number of the MyPhotoAlbum library to 6.8.

IMPLEMENT AN OPEN METHOD IN THE PHOTOALBUM CLASS

 Action Result

1 In the PhotoAlbum.cs file, add an
Open method to the class.

 public void Open(string fileName)
 {

2 Open the given file with read
access.

 FileStream fs = new FileStream(fileName,
 FileMode.Open,
 FileAccess.Read);

 StreamReader sr = new StreamReader(fs);

3 Read the version string from the
file and convert it to an integer.

How-to

Use the Int32.Parse method.
This will throw an exception if the
string is not actually an integer.

 int version;

 try
 {
 version = Int32.Parse(sr.ReadLine());
 }
 catch
 {
 version = 0;
 }

4 Clear the existing album and
assign the new file name to the
corresponding property.

 try
 {
 this.Clear();
 this.FileName = fileName;

5 Read in the list of photos.

Note: The C# switch statement
used here allows for additional
version numbers in the future.

 switch (version)
 {
 case 66:
 {
 // Read in the list of image files
 string name;
 do
 {
 name = sr.ReadLine();

 if (name != null)
 {
 // Add the name as a photograph
 Photograph p = new Photo-
graph(name);
 this.Add(p);
 }
 } while (name != null);
 break;
 }
190 CHAPTER 6 COMMON FILE DIALOGS

Note how our code reads the version number as a string and converts it to an integer
using the Int32 class. The Parse method here throws an exception if a noninteger
is provided. Since we really do not want the caller to see such an exception, we turn
any exception thrown into a version number of zero to cause an unrecognized album
exception to be thrown.

This code is our first use of the C# switch keyword. A switch block uses a
case label just like C++ to identify a value to process, although C# switch blocks
do not allow a fall through to the next case block unless the previous case has no
code associated with it. Here, all our album files should be the current version 66 so
only a single case label is required. We do not use the constant _CurrentVersion
here since this value may change in the future.

If an invalid album file is provided, then the default block is executed. We
throw an exception to indicate that an unexpected error occurred. Rather than creat-
ing a custom exception object here, we opt for the IOException class instead with
an appropriate message string.

In case our default clause executes, or if any other unexpected problems occur,
we enclose the entire code to read from the file in a try block.

6.7.2 OPENING AN ALBUM FILE

The PhotoAlbum.Open method can now be used in a Click handler for the Open
menu of our application. We have been using the OpenFileDialog class to open
image files. Here we will use it to open album files. As we did for our Save menus, we
will preserve the current directory setting to ensure that the Add menu handler opens
its file dialog at the most recent location.

6 If the version number is not
recognized, throw an exception.

How-to

Use the C# throw keyword and
create an IOException object.

 default:
 // Unknown version or bad file.
 throw (new IOException
 ("Unrecognized album file format"));
 }

7 Close the file objects regardless
of whether an exception occurs.

Note: This disposes of any non-
memory resources for our files.
Make sure you close the files in
the proper order.

 }
 finally
 {
 sr.Close();
 fs.Close();
 }
 }

IMPLEMENT AN OPEN METHOD IN THE PHOTOALBUM CLASS (continued)

 Action Result
OPEN FILE DIALOGS 191

Set the version number of the MyPhotos application to 6.7.

Note that our implementation has an unfortunate feature of discarding a new album
that has never been saved, and of saving an existing one even when the user does not
wish to do so. This might not be the desired behavior, but is okay for this chapter.
You may notice that we also do not handle any exceptions that might be raised by the
PhotoAlbum.Open method, such as when the selected file does not actually repre-
sent a PhotoAlbum object. These problems are both addressed in chapter 8.

TRY IT! If you would like to experiment here, create a version of the album file (use
version number 67) that stores the current position in the album. This val-
ue should be saved in the album file in the line after the version number
before any image files are listed.

IMPLEMENT A CLICK HANDLER FOR THE OPEN MENU

 Action Result

1 Add a click handler for the
Open menu item in the
MainForm class.

 protected void menuOpen_Click
 (object sender, System.EventArgs e)
 {

2 Save any existing album
before loading the new
one.

Note: This code is not the
best design. Not only does
it discard a newly created
album, it forces a save of
the current one. We will fix
this behavior in chapter 8.

 // Save the existing album, if necessary
 if (_bAlbumChanged && _album.FileName != null)
 {
 menuSave_Click(sender, e);
 }

3 Create an
OpenFileDialog class to
select an album file.

 // Allow user to select a new album
 OpenFileDialog dlg = new OpenFileDialog();

 dlg.Title = "Open Album";
 dlg.Filter = "Album files (*.abm)|*.abm|"
 + "All files (*.*)|*.*";
 dlg.InitialDirectory = PhotoAlbum.DefaultDir;
 dlg.RestoreDirectory = true;

4 Use the PhotoAlbum.Open
method to read the album.

 if (dlg.ShowDialog() == DialogResult.OK)
 {
 // Open the new album
 _album.Open(dlg.FileName);

5 Set the new album name
and invalidate the window
to draw the initial photo.

 _album.FileName = dlg.FileName;

 _bAlbumChanged = false;
 this.Invalidate();
 }

6 Dispose of nonmemory
resources used by the
dialog.

 dlg.Dispose();
 }
192 CHAPTER 6 COMMON FILE DIALOGS

This is a little trickier that it sounds, as you will need to handle both the
old and new formats correctly. When you are finished, your application
should not only write the new file version but also be able to open both the
old and new file types.

6.8 RECAP

This is a good place to close out our discussion on file dialogs. In this chapter, we
rewrote the menu bar and began using the MyPhotoAlbum project developed in
chapter 5. We saw how to open multiple files simultaneously, and supported the abil-
ity to save and open album files from our application.

We seem to have a knack for introducing little bugs into our application. So far
our image is distorted and stretched out of proportion, we are unable to scroll when
the actual image is displayed, and in this chapter we threw out a newly created album
while loading a new one. The next two chapters will clear up these problems while
introducing the idea of drawing and scrolling on a form in chapter 7, followed by a
discussion of interactive dialog boxes in chapter 8.

More .NET The FileDialog class, as well as the OpenFileDialog and Save-
FileDialog classes, are referred to as common dialogs. Common dialogs
are dialog boxes provided by the .NET Framework that implement a stan-
dard interface for common functionality required by applications. The
FileDialog class inherits from the CommonDialog class directly.

Two other common dialogs provided by .NET are the ColorDialog
and FontDialog classes. The ColorDialog class permits a user to select
a color and corresponding Color structure, while the FontDialog class
permits a user to select a font name, family, size, and corresponding Font
class instance. The use of these dialogs is similar to what is shown for the
FileDialog objects in this chapter, although the actual windows are
quite different.

Also of note are the PageSetupDialog and PaintDialog classes.
These common dialogs are used when printing from Windows Forms ap-
plications, and are discussed in chapter 18.

Finally, we should also note that common dialogs, including the Open-
FileDialog and SaveFileDialog classes used in this chapter can be
configured directly in the Windows Forms Designer window. They are
available in the Toolbox window, and can be dragged onto the form and
configured in the Properties window much like any other component. We
elected not to do this here since the dialogs would then exist for the life of
the form, which is not really necessary for our purposes.
RECAP 193

C H A P T E R 7

Drawing and scrolling

7.1 Form class hierarchy 195
7.2 Image drawing 198
7.3 Automated scrolling 212
7.4 Panels 215
7.5 Recap 222
As you may have noticed, the main window for our application is built using the
Form class. We have poked and prodded the edges of this class without really looking
inside this complex but very important .NET object. In this and the next chapter we
will investigate the Form class in more detail.

Earlier development environments from Microsoft distinguished among the dif-
ferent types of windows an application may display. In MFC, for example, there is one
hierarchy (CFrameWnd) for framed windows such as MDI windows and control bars,
another (CDialog) for dialog boxes, and yet another (CView) for the various docu-
ment view classes.

The .NET Framework has taken a very different approach. In .NET, the Con-
trol class is the basis for all controls, including the various types of window objects.
The Form class, as we shall see, encompasses all types of windows be they MDI frames,
MDI child windows, floating tool bars, or dialog boxes.

The next two chapters will take a closer look at the Form class to understand how
to interact with this object in our applications. In this chapter we will:

• Explore the Form class hierarchy.
• Draw the current photograph directly on our form.
194

• Automate scrolling when the image is larger than the form.
• Examine the Panel class, and draw our image in a Panel object instead of

directly onto the form.

As we have done in previous chapters, we begin by looking at the class hierarchy for
the Form object in more detail.

7.1 FORM CLASS HIERARCHY

If you have actually read this book from the beginning, you will recall that we looked
at the Menu class hierarchy in chapter 3 and the StatusBar hierarchy in chapter 4.
Chapter 3 introduced some of the low-level classes used by Windows Forms, and
chapter 4 extended this hierarchy to include the Control class.

The Form class is based on additional extensions to enable scrolling and contain-
ment. The complete hierarchy is shown in figure 7.1.

As you can see in the figure, the ScrollableControl and ContainerControl
classes extend the Control class discussed in chapter 4 to support functionality
required by the Form class. The ScrollableControl class adds auto-scrolling
capabilities, while the ContainerControl adds focus management on the con-
tained set of controls, even when the container itself does not have the focus.

Figure 7.1 The Form class hierarchy extends the Control class discussed in

chapter 4 with the functionality required for various kinds of application windows.
FORM CLASS HIERARCHY 195

7.1.1 THE SCROLLABLECONTROL CLASS

You might think that all classes with scrolling support inherit from the Scrolla-
bleControl object. In fact, this class is only for objects which support automated
scrolling for a contained set of Control objects. Controls such as ListBox, Text-
Box, and other controls that provide scrolling of their drawing area do so indepen-
dently of this object using the ScrollBar class, which is unrelated to the
ScrollableControl class.

The TextBox and ListBox classes are discussed in chapters 9 and 10, respec-
tively. The point here is that the ScrollableControl class is specifically designed
for the scrolling support required by container objects such as forms and panels. A
summary of this class is provided in the .NET Table 7.1.

We will see the members of this class in action later in the chapter when we enable
scrolling within our application.

7.1.2 THE FORM CLASS

We will skip over the ContainerControl class from figure 7.1 and jump straight to
the Form class. The ContainerControl class simply adds functionality for focus
management on the contained controls. For example, an ActiveControl property

.NET Table 7.1 ScrollableControl class

The ScrollableControl class represents a control that supports automated scrolling. This
class is part of the System.Windows.Forms namespace and inherits from the System.Win-
dows.Forms.Control class. This class is not typically used directly. Instead, derived classes
such as Form and Panel are used. See .NET Table 4.1 on page 104 for a list of members
inherited from the Control class.

Public

Properties

AutoScroll Gets or sets whether the user can scroll the container
to any contents placed outside of its visible boundaries.

AutoScrollMargin Gets or sets the extra margin to add to the container’s
contents for scrolling purposes. This ensures that the
scrollable area goes slightly beyond the edge of any
contained controls.

AutoScrollMinSize Gets or sets the Size object representing the minimum
height and width of the scrollbars in pixels.

AutoScrollPosition Gets or sets the Point within the virtual display area to
appear in the upper left corner of the visible portion of
the control.

DockPadding Gets or sets the extra padding for the inside border of
this control when it is docked.

Public

Methods

SetAutoScrollMargin Sets the AutoScrollMargin property.

Protected

Properties

HScroll Gets or sets whether the horizontal scroll bar is visible.

VScroll Gets or sets whether the vertical scroll bar is visible.
196 CHAPTER 7 DRAWING AND SCROLLING

sets or gets the Control object that has the focus; while the ActivateControl
method sets the focus to a specific control. The functionality is useful, but not as
glamorous as scroll bars or forms, so we skip it.

.NET Table 7.2 Form class

The Form class represents any window that can be displayed by an application, including
standard windows as well as modal or modeless dialog boxes and multiple document inter-
face (MDI) windows. This class is part of the System.Windows.Forms namespace and inher-
its from the ContainerControl class. The contents of a form can be drawn directly by a
program, consist of a collection of controls, or some combination of the two. These contents
can also be larger than the visible area, with scrolling supported by the ScrollableControl
class (see .NET Table 7.1).

Public Static

Properties

ActiveForm Gets the Form currently active in the application,
or null if no Form is active.

Public Properties

AcceptButton Gets or sets the button to invoke when the Enter
key is pressed.

ControlBox Gets or sets whether a control box appears at
the left of the title bar.

DialogResult Gets or sets the dialog result to return when the
form is a modal dialog box.

Icon Gets or sets the icon for the form.

IsMdiChild Gets whether this form is an MDI child form.
MDI forms are discussed in chapter 16.

MaximizeBox Gets or sets whether a Maximize button appears
in the title bar of the form.

MaximumSize Gets or sets the maximum size for a form.

Menu Gets or sets the MainMenu object for this form.

Modal Gets whether this form is displayed modally.

ShowInTaskBar Gets or sets whether the form is displayed in the
Windows task bar.

StartPosition Gets or sets the initial position of the form when
it is displayed.

WindowState Gets or sets how the form is displayed on the
desktop (normal, maximized, or minimized).

Public Methods

Activate Activates the form and gives it focus.

Close Closes the form.

ShowDialog Displays this form as a modal dialog box.

Public Events

Closing Occurs when the form is about to close.

Deactivate Occurs when the form has lost the focus.

Load Occurs before a form is initially displayed.
FORM CLASS HIERARCHY 197

On to our friend the Form class. This class can be used for just about any application
window, including borderless, floating, and dialog box windows. The Control class
we discussed in chapter 4 provides a number of useful members for dealing with
forms. For example, the Width and Height properties determine the size of the
form, the DisplayRectangle property holds the drawable area of the form, and
the Cursor property gets or sets the current cursor to display. A number of common
events such as Click, KeyDown, MouseUp, and Paint are also inherited from this
class. Scrolling, of course, is provided by the ScrollableControl class. An over-
view of the members specific to the Form class is shown in .NET Table 7.2.

Once you have perused the Form overview and memorized its contents, go on to
the next section where we will make some practical use of some of these members.

7.2 IMAGE DRAWING

Well, we are ready to utilize the Form class members, but where to begin? We will
avoid dialog boxes and other new windows for the time being, and stick with the sin-
gle form in our application. A good first topic we can cover here is drawing on a form.

As we have seen, drawing in .NET is performed using the System.Drawing
namespace. We used classes from this namespace in chapter 4 when we created an
owner-drawn status bar panel. Here, we continue to use the Graphics class for draw-
ing, but will make use of some alternate members. Before we can do this, we need a
place to draw. To generate such a place, we will remove the PictureBox object from
our application.

7.2.1 DELETING THE PICTUREBOX CONTROL

Beside the need for a place to draw, the PictureBox control just isn’t working out
here. Like the Load button before it, it is just the wrong control for the task at hand.
In chapter 2 we saw how this control stretched and distorted our image, and in chap-
ter 3 we saw that scrolling was not supported when the displayed image exceeded the
size of the control. So, it was nice while it lasted, but off it goes.1

Let’s get this task out of the way so we can draw with a somewhat freer hand.

1 It is, in fact, possible to extend the PictureBox control to provide this support. You can override the
Paint event to draw an image with the proper aspect ratio much like we do in this chapter, and scroll
bars can be added using the ScrollBar class. We do not take this approach here since we want to dis-
cuss forms and panels, so the PictureBox control is no longer needed. Chapter 15 displays a properly
proportioned image within a PictureBox control, and chapter 18 provides a short discussion on how
to create a custom control incorporating this functionality.
198 CHAPTER 7 DRAWING AND SCROLLING

Set the version number of the MyPhotos application to 7.2.

With this task completed, our way is clear to implement the functionality previously
provided by the PictureBox control in our MainForm control directly.

7.2.2 HANDLING THE IMAGE MENU

One of the unfortunate but necessary side effects of nuking the PictureBox control
is that our processing of the Image menu no longer makes sense. We built this with
the PictureBoxSizeMode enumeration values in mind. Since we are no longer
using this control, we need to change how our menu works.

As an alternative solution, we will create our own enumerator for this purpose to
use in place of the PictureBoxSizeMode enumeration. We could provide a long
discussion of the individual changes required here, but this is chapter 7 so we’ll just
plunge ahead.

In this section we’ll create the new enumeration and begin the process of mod-
ifying our menu handlers. The subsequent sections will address issues specific to the
child menu items of the Image menu, and complete our implementation of the
menu handlers.

DELETE THE PICTUREBOX CONTROL

 Action Result

1 Display the MainForm.cs
[Design] window.

2 Delete the PictureBox
control.

How-to

Select the Delete item
from the control’s context
menu, or simply click on
the control and press the
Delete key.

The control no longer appears on the form.

In the MainForm.cs file, the definition for the control (the
pbxPhoto variable) and all references to it in the
InitializeComponent method are removed.

Note: nonautomated references to this variable must be
removed by hand. This will be done during the course of
this section.

REPLACE THE MODEMENUARRAY MEMBER

 Action Result

1 In the MainForm.cs file,
delete the modeMenuArray
and _selectedImageMode
fields.
IMAGE DRAWING 199

Let’s look at the menu handlers here to see how our new DisplayMode enumeration
is used. The Popup event handler is called whenever the Image submenu is about to
display, while the Click handler is called whenever an Image submenu is selected.
 protected void menuImage_Popup (object sender, System.EventArgs e)
 {
 if (sender is MenuItem)
 {
 bool bImageLoaded = (_album.Count > 0);
 MenuItem miParent = (MenuItem)sender;

2 Create a private
DisplayMode enumerator
in the MainForm class.

 /// <summary>
 /// Mode settings for the View->Image
 /// submenu. The order and values here
 /// must correspond to the index of
 /// menus in the Image submenu.
 /// </summary>
 private enum DisplayMode
 {
 StretchToFit = 0,
 ActualSize = 1
 }

3 Create a private instance of
this enumerator called
_selectedMode.

 private DisplayMode _selectedMode
 = DisplayMode.StretchToFit;

4 Replace the use of the old
_selectedImageMode
with the appropriate use of
_selectedMode in the
statusBar1_DrawItem
method.

 private void statusBar1_DrawItem
 (object sender, System.Windows.Forms.
 StatusBarDrawItemEventArgs sbdevent)
 {
 if (sbdevent.Panel == sbpnlImagePercent)
 {
 // Calculate percent of image shown
 int percent = 100;
 if (_selectedMode == DisplayMode.ActualSize)
 {
 Photograph photo
 = _album.CurrentPhoto;

 Rectangle dr = this.ClientRectangle;
 int imgWidth = photo.Image.Width;
 int imgHeight = photo.Image.Height;
 percent = 100
 * Math.Min(dr.Width, imgWidth)
 * Math.Min(dr.Height, imgHeight)
 / (imgWidth * imgHeight);
 }
 . . .
 }
 }

5 Replace all other instances
of the old
_selectedImageMode
with the new
_selectedMode.

The instances of this variable in menuImage_Popup,
menuImage_ChildClick, and OnPaint are replaced.

Note: Some tweaking of this code is required to make it
work properly. The changes are shown in the subsequent
text and will evolve throughout this section.

REPLACE THE MODEMENUARRAY MEMBER (continued)

 Action Result
200 CHAPTER 7 DRAWING AND SCROLLING

 foreach (MenuItem mi in miParent.MenuItems)
 {
 mi.Enabled = bImageLoaded;
 mi.Checked = (this._selectedMode == (DisplayMode)mi.Index);
 }
 }
 }

 protected void menuImage_ChildClick (object sender, System.EventArgs e)
 {
 if (sender is MenuItem)
 {
 MenuItem mi = (MenuItem)sender;

 _selectedMode = (DisplayMode) mi.Index;

 switch (_selectedMode) c
 {
 default:

 case DisplayMode.StretchToFit:

 // Stretch image to fit the display area.

 this.Invalidate();
 break;

 case DisplayMode.ActualSize:
 // Display image at actual size.
 this.Invalidate();
 break;

 }

 statusBar1.Invalidate();
 }

This code raises some interesting points about the use of enumerated types.

b This line simply casts an integer value to an enumerated type. With the extensive
error and type checking built into C#, you might think it would be an error to cast an
integer to an enumeration value that does not exist. In fact, a standard C# enumera-
tion by definition can hold any integer value, so any integer value can be cast to any
enumeration type.

c This line uses a switch statement to perform the appropriate action based on the
current display mode setting. Notice how the StretchToFit case is used as the
default setting.

d Since our image will now be drawn directly on the form, we need to call the
Form.Invalidate method to force the application to redraw the window using the
new setting.

Of course, the menuImage_ChildClick method is not finished yet. We will fill this
method in as we enable the corresponding display modes.

Cast integer to
enumerated type b

Cast integer to
enumerated typeb

Handle enumeration

d
Invalidate
current
window
IMAGE DRAWING 201

Before we do, one other feature is missing. Our wonderful context menu dis-
appeared along with the PictureBox control. The menu is still around, of course,
and is still initialized by the DefineContextMenu method to contain a copy of the
View menu. The menu is just not hooked up to any controls at the moment, so it
never appears.

We can fix this by attaching this menu to our Form class. Continuing our pre-
vious steps:

Our context menu is now associated with the top-level form, and will appear when-
ever the user right-clicks anywhere in the window.

Your program may or may not compile here, depending on what you did to the
OnPaint method when the _selectedImageMode field was removed. We’ll cover
this as part of the next section.

7.2.3 IMPLEMENTING THE STRETCH TO FIT OPTION

The modification of our Image menu handlers fully eradicates the PictureBox con-
trol from our application. While the PictureBox control created some problems, it
also drew the current photograph for us. Now we will need to do this by hand, the
result of which is shown in figure 7.2. You will note in this figure that the application
is lacking the border previously shown around the image by the PictureBox con-
trol. This will be addressed later in the chapter.

ASSOCIATE THE CONTEXT MENU WITH THE FORM

 Action Result

7 Display the properties for
the MainForm object in the
MainForm.cs [Design]
window.

8 Set the ContextMenu
property to the
ctxtMenuView menu.

How-to

Click the down arrow next
to the ContextMenu
property to display the
available menus.

The property is set in the InitializeComponent method of
the MainForm.cs source file.

 this.ContextMenu = ctxtMenuView;
202 CHAPTER 7 DRAWING AND SCROLLING

The System.Drawing namespace ex-
pands the drawing capabilities found in
previous Microsoft environments. Chap-
ter 4 presented some information on this
namespace and provided an overview of
the Graphics class, one of the corner-
stones of the .NET drawing interfaces.

In order to draw the current image
from our album, we need to modify the
OnPaint method to handle the manual
drawing of the image. We will implement
the Stretch to Fit menu option first as it is
the most straightforward. As you’ll recall,
this option stretches and perhaps distorts
the image to fit the entire display area of
the application. This can be done with the
following steps. A discussion of the result-
ing OnPaint method follows this table.

Figure 7.2 When an image is drawn directly

on the form, the border and other properties

provided by the PictureBox control are no

longer available.

IMPLEMENT THE STRETCH TO FIT MENU OPTION

 Action Result

1 Find the OnPaint method
in the MainForm.cs file.

 protected override void
 OnPaint(PaintEventArgs e)
 {
 if (_album.Count > 0)
 {

2 When painting the current
image, obtain the Graphics
object from the
PaintEventArgs parameter.

 // Paint the current image
 Photograph photo = _album.CurrentPhoto;
 Graphics g = e.Graphics;

3 To draw the current photo,
use a switch statement to
determine the current
drawing mode.

How-to

For the StretchToFit
option, use the
Graphics.DrawImage
method to fill the entire
window with the image.

 switch (_selectedMode)
 {
 default:
 case DisplayMode.StretchToFit:
 // Fill entire window with the image
 g.DrawImage(photo.Image,
 this.DisplayRectangle);
 break;

 case DisplayMode.ActualSize:
 break;
 }
 . . .
 }

4 When the current album is
empty, draw the default
color in the window.

 else
 {
 // Indicate the album is empty
 e.Graphics.Clear(SystemColors.Control);
 . . .
 }
IMAGE DRAWING 203

These changes modify OnPaint to draw the image in the window for the
StretchToFit display option, or to clear the window when an empty album is dis-
played. The resulting OnPaint method is shown here, with the changes just made
shown in bold.
 protected override void OnPaint(PaintEventArgs e)
 {
 if (_album.Count > 0)
 {
 // Paint the current image
 Photograph photo = _album.CurrentPhoto;
 Graphics g = e.Graphics;

 switch (_selectedMode)
 {
 case DisplayMode.StretchToFit:

 // Fill the entire window with the image

 g.DrawImage(photo.Image, this.DisplayRectangle);

 break;

 case DisplayMode.ActualSize:
 break;
 }

 // Update the status bar.
 sbpnlFileName.Text = photo.FileName;
 sbpnlFileIndex.Text = String.Format("{0:#}/{1:#}",
 _album.CurrentIndex+1, _album.Count);
 sbpnlImageSize.Text = String.Format("{0:#} x {1:#}",
 photo.Image.Width, photo.Image.Height);
 statusBar1.ShowPanels = true;
 }
 else
 {
 // Indicate the album is empty
 e.Graphics.Clear(SystemColors.Control);
 statusBar1.Text = "No Photos in Album";
 statusBar1.ShowPanels = false;
 }

 statusBar1.Invalidate();
 base.OnPaint(e);
 }

Your application should now compile and run. Load an image, and it should look
similar to figure 7.2 shown at the start of this section. The following points are worth
noting in our implementation of the OnPaint method.

b The OnPaint method takes a single PaintEventArgs parameter. We did not dis-
cuss this parameter in chapter 6, but a brief mention is warranted here, and an over-
view is provided in .NET Table 7.3. This class is similar in purpose to the
DrawItemEventArgs class presented in chapter 4. The two classes are similar,
except that the Paint event and PaintEventArgs class are used for controls, while

b Override the
OnPaint method

Draw image in
client window c

d Clear the window
204 CHAPTER 7 DRAWING AND SCROLLING

the DrawItem event and DrawItemEventArgs class are used for drawing compo-
nents or other objects within a control.

c The Graphics.DrawImage method is used to draw the current photograph in the
window. The image is drawn into the area represented by the Form.DisplayRect-
angle property rather than the ClipRectangle area provided by the Paint-
EventArgs parameter. This is because ClipRectangle only represents the area
that requires updating, which may not be the entire window. In our case, we need to
redraw the entire image to account for changes in the display mode or the size of the
drawable area.

d When an empty album is present, we draw over any image data that may still be
present in the window. The Graphics.Clear method performs this task by paint-
ing a single color onto the form. The SystemColors class provides access to the
user-definable desktop colors, with the Control property representing the default
background color for 3-D controls.

Our application has now taken a step backward. The Stretch to Fit option by defini-
tion distorts the image displayed, so the behavior we have here is the same as we saw
before. In addition, we have lost our nice border around the image, and resizing the
form no longer works.

The border is simply cosmetic and will be addressed in due course toward the end
of this chapter. This distortion problem we will address immediately. The resize issue
can wait until after the next section.

7.2.4 IMPLEMENTING A SCALE TO FIT OPTION

The Stretch to Fit option we have used so far is really a poor choice for displaying an
image. Users really do not want their images distorted when displayed on the screen.
This option makes a nice example to use in our book, but otherwise is not all that
useful. Even so, we will keep the option available as a contrast to the more appropri-
ate solution we are about to implement.

Ideally, an image is scaled so that it fits inside the available window space. We will
call this option Scale to Fit, and make it the default for our application. An important
aspect of this option is the calculation to determine the proper rectangle in which to

.NET Table 7.3 PaintEventArgs class

The PaintEventArgs class defines the event data required by the Paint event. This class
inherits from the System.EventArgs class, and is part of the System.Windows.Forms
namespace.

Public Properties

ClipRectangle Gets the Rectangle representing the area of
the object that needs to be painted. This
property is read-only.

Graphics Gets the Graphics to use when painting the
object.
IMAGE DRAWING 205

draw the image. This rectangle should be centered in the available area with the same
aspect ratio of the original image. Figure 7.3 illustrates the scaling of an image from
its original size to fit within the display area of the application. Note that the image
is not distorted since the aspect ratio of the image is preserved from its original size.

If you look closely here, you will realize that the image is centered between the
base of the menu and the bottom of the window, as opposed to the top of the status
bar. This is because the client area includes the status bar, even though our image does
not cover it up. This is a minor problem that many users will not notice. Of course,
since we have noticed, it will have to be fixed. First we need to create the code neces-
sary to match the figure, and later we will worry about making it better.

The operation of scaling a photograph to fit an available area could be a common
operation in a photo album application. Because of this, let’s create a method for this
algorithm in our MyPhotoAlbum library so that it can be used by other applications,
and perhaps later in the book. We will add this method to the Photograph class
with the following signature:
 public Rectangle ScaleToFit(Rectangle targetArea)

The following steps detail the implementation of this method. Once the method is
available, we will look at adding our new option to the menu, and updating our han-
dlers using this new method.

Figure 7.3 Scaling an image from its original size to fit the display area is similar to zooming

in or out of a graphic. The image looks the same; it just gets smaller or larger.
206 CHAPTER 7 DRAWING AND SCROLLING

Set the version number of the MyPhotoAlbum library to 7.2.

Since this algorithm is a bit off-topic from Windows Forms development, we will not
discuss it in much detail. This gives us a mechanism for scaling our image to the
proper display size, and accounts for both horizontal and vertical images. The
method returns a Rectangle object containing both a location and a size for the
new image. That is, this method does not just provide the final size for our displayed
image; it also provides the location where it should appear within the target rectangle.

With this in hand, let’s turn back to our MyPhotos application. To implement
our Scale to Fit menu, we need to add the menu item itself, the menu-handling logic,
and the appropriate drawing code. We will begin with the menu option.

IMPLEMENT A SCALETOFIT METHOD IN THE PHOTOGRAPH CLASS

 Action Result

1 In the Photograph.cs file, add the
ScaleToFit method.

 public Rectangle ScaleToFit
 (Rectangle targetArea)
 {

2 Define a Rectangle to hold the
calculated result.

 Rectangle result
 = new Rectangle(targetArea.Location,
 targetArea.Size);

3 Determine whether the photograph
will fit best horizontally or vertically.

 // Determine best fit: width or height
 if (result.Height * Image.Width
 > result.Width * Image.Height)
 {

4 If horizontally, determine the
resulting height and center the
rectangle in the available space.

 // Final width should match target,
 // determine and center height
 result.Height = result.Width
 * Image.Height / Image.Width;
 result.Y += (targetArea.Height
 - result.Height) / 2;
 }

5 If vertically, determine the resulting
width and center the rectangle in
the available space.

 else
 {
 // Final height should match target,
 // determine and center width
 result.Width = result.Height
 * Image.Width / Image.Height;
 result.X += (targetArea.Width
 - result.Width) / 2;
 }

6 Return the calculated result. return result;
 }
IMAGE DRAWING 207

The code generated by these steps is similar to the menu code generated in chapter 3
and elsewhere. In particular, note that the Index property settings for these menus
are adjusted in the InitializeComponent method to reflect the insertion of the
new item at the first location.
 menuScale.Index = 0;
 menuStretch.Index = 1;
 menuActual.Index = 2;

Since the DisplayMode enumeration must match our menu, we need to update the
values appropriately.

We also need to check each place in the code where this enumerator is used. If you do
a search, you will discover the _selectedMode field in menuImage_Popup,
menuImage_ChildClick, and OnPaint. The popup event is not affected by this
change, but the click handler requires a change to its switch block.

ADD SCALETOFIT MENU ITEM

 Action Result

7 In the MainForm.cs [Design] window,
add a Scale To Fit menu to the top of
the View menu..

8 Add the menuImage_ChildClick
method as the Click event handler for
the menuScale menu item.

The handler is registered with the Click event
associated with the menu.

Settings

Property Value

(Name) menuScale

Text &Scale to Fit

UPDATE DISPLAYMODE ENUMERATION

 Action Result

9 Locate the DisplayMode definition in
the MainForm.cs source file.

 private enum DisplayMode
 {

10 Add a ScaleToFit value and adjust
the settings to match the Image
submenu.

 ScaleToFit = 0,
 StretchToFit = 1,
 ActualSize = 2
 }

11 Set the default value for the
_selectedMode field to the new
setting.

 private DisplayMode _selectedMode
 = DisplayMode.ScaleToFit;
208 CHAPTER 7 DRAWING AND SCROLLING

The final change required to properly scale our image is in the OnPaint method.
Here we simply draw the image into the Rectangle determined by our Photo-
graph.ScaleToFit method.

There you have it. The Scale to Fit display mode is very similar to the Stretch to Fit
display mode. Both fit the image into the display area, and both draw the image into
a rectangle. The difference is the rectangle into which they draw. Compile your appli-
cation to verify that the image scales properly. It may be a bit hard to determine if this
is working properly since a window resize does not cause the image to be redrawn.
Let’s address this problem next.

UPDATE MENUIMAGE_CHILDCLICK EVENT HANDLER

 Action Result

12 Locate the
menuImage_ChildClick method in
the MainForm.cs source file.

 protected void menuImage_ChildClick
 (object sender, System.EventArgs e)
 {
 . . .

13 Add the new display mode to the
switch statement, and make it the
default.

 switch (_selectedMode)
 {
 default:
 case DisplayMode.ScaleToFit:
 // Scale image to fit display area
 this.Invalidate();
 break;

 case DisplayMode.StretchToFit:
 . . .
 }
 . . .
 }

UPDATE ONPAINT METHOD

 Action Result

14 Locate the OnPaint
method in the
MainForm.cs source file.

 protected override void OnPaint(PaintEventArgs e)
 {
 . . .

15 Add the new display mode
to the switch statement,
and make it the default.

 switch (_selectedMode)
 {
 default:
 case DisplayMode.ScaleToFit:
 // Preserve aspect ratio of image
 g.DrawImage(photo.Image,
 photo.ScaleToFit(DisplayRectangle));
 break;

 case DisplayMode.StretchToFit:
 . . .
 }
 . . .
 }
IMAGE DRAWING 209

7.2.5 REPAINTING WHEN THE FORM IS RESIZED

Now that we are drawing directly on the form, we need to redraw our image when-
ever the form is resized. The PictureBox control used in prior chapters handled this
issue automatically for us.

There is in fact a Resize event associated with controls. This event occurs when
a control, including a Form object, is resized. Handling this event would allow us to
invalidate the window whenever the display mode is ScaleToFit or
StretchToFit. Since our MainForm class is derived from Form, we could even go
directly to the protected OnResize method that raises this event. This would force
our OnPaint method to be called and the window would update appropriately. A fine
idea, but there is another way.

.NET Table 7.4 ControlStyles enumeration

The ControlStyles enumeration specifies a set of values related to the interaction of a con-
trol with the Windows desktop. These styles define how low-level Windows messages are
processed by the control when a user interacts with it in various ways. This enumeration is
part of the System.Windows.Forms namespace.

The values in this enumeration can be combined using the bitwise “or” operator. The pro-
tected GetStyle and SetStyle methods in the Control class can be used to modify these
settings for a control.

Enumeration

Values

DoubleBuffer Whether to perform drawing in a buffer and
output the result to the screen after it
completes. This prevents flicker caused by
redrawing the control.

FixedHeight Whether the control has a fixed height.

FixedWidth Whether the control has a fixed width.

ResizeRedraw Whether the control is completely redrawn
when it is resized.

Selectable Whether the control can get the focus.

StandardClick Whether OnClick is called when the control is
single-clicked. Note that the control may still call
OnClick directly.

StandardDoubleClick Whether OnDoubleClick is called when the
control is double clicked. Note that the control
may still call OnDoubleClick directly.

UserMouse Whether the control does its own mouse
processing. If so, then mouse messages are not
passed to the control.a

UserPaint Whether the control paints itself. If so, then paint
messages are not passed to the control.

a. Actually, the messages here are not passed to the underlying NativeWindow object, but you can
think of it as the control itself. For UserMouse, this affects the WM_MOUSEDOWN, WM_MOUSEMOVE, and
WM_MOUSEUP messages. For UserPaint, this affects the WM_PAINT and WM_ERASEBKGND messages.
210 CHAPTER 7 DRAWING AND SCROLLING

The .NET Framework defines a ControlStyles enumeration, summarized in
.NET Table 7.4, for customizing the behavior of a control. The values defined by this
enumeration indicate how the control appears or responds in various situations
related to desktop interaction with a user, and are useful for customizing the behavior
of a Form or other custom control class.

The Control class provides a SetStyle method to set these styles, and a Get-
Style method to retrieve the current setting for these styles. These methods are pro-
tected, so you must inherit from an existing control in order to modify these styles.

For our purposes, you may have noticed the ResizeRedraw style, which we can
use to force our application to redraw itself every time the user resizes the window.

We will make one other change here before testing our program. When the program
begins, the ResizeRedraw style is not set to true. Only after the user makes a
selection will this style be set appropriately. A simple solution would be to set the
ResizeRedraw style in the constructor for our form. This works, but does not
account for any future changes to the menuImage_ChildClick method. Since such
changes will occur in the next section, a more robust solution is to simulate an Image
menu selection directly from the constructor.

Simulating a call to an event handler during control initialization is a good way
to ensure that future changes to the handler are dealt with during initialization. It also
allows you to make such changes in only one place. We did this in the previous chapter
for the New menu. Let’s do this here by continuing the previous steps.

FORCE THE FORM TO REDRAW WHEN RESIZED

 Action Result

1 Locate the
menuImage_ChildClick
method in the
MainForm.cs source file.

 protected void menuImage_ChildClick
 (object sender, System.EventArgs e)
 {
 . . .

2 Modify the logic when the
display mode is
ScaleToFit or
StretchToFit to force a
redraw whenever the form
resizes.

 switch (_selectedMode)
 {
 default:
 case DisplayMode.ScaleToFit:
 case DisplayMode.StretchToFit:
 SetStyle(ControlStyles.ResizeRedraw,
 true);
 Invalidate();
 break;
 . . .
 }
 . . .
 }

Note: Since the logic is the same for these two modes,
we have merged these two case labels into a single
block. C# allows a case label to fall through to the next
label only if it has no code associated with it.
IMAGE DRAWING 211

Now you can compile and run the application to see the amazing ResizeRedraw
style in action. This code uses the static EventArgs.Empty property we saw in
chapter 6 to provide a valid, albeit empty, event argument to the handler.

TRY IT! If you are tired of reading, modify your code to use the Resize event in-
stead of the ResizeRedraw control style. This change reduces the pro-
cessing required when an Image submenu item is selected, at the expense of
additional processing whenever the window is resized. Do this by overrid-
ing the OnResize method for the form, and use the _selectedMode
field to invalidate the window as required.

Another change you can make is to modify the form to do double buff-
ering. This removes the flicker that currently occurs when resizing the im-
age. To do this, use the following code in the menuImage_ChildClick
method:

SetStyle(ControlStyles.UserPaint, true);
SetStyle(ControlStyles.DoubleBuffer, true);
SetStyle(ControlStyles.AllPaintingInWmPaint, true);

This completes the drawing of an image within the window. While we have lost our
border, we are now able to draw the image in our window using either the Stretch to
Fit or Scale to Fit display options. Our next task is to handle the Actual Size menu to
draw the full-sized image in the window. This requires the use of scroll bars and will
lead us into a discussion of the Panel class.

7.3 AUTOMATED SCROLLING

The implementation of the Actual Size menu option allows us to look at the Scrol-
lableControl class in more detail. As we have seen, the actual image is often larger
than the form’s client area. In chapter 3, the PictureBox control did not support

SIMULATE AN IMAGE MENU CLICK IN MAINFORM CONSTRUCTOR

 Action Result

3 Locate the MainForm
constructor in the
MainForm.cs source
window.

 public MainForm()
 {
 . . .

4 Add a call to
menuImage_ChildClick
in this constructor.

 menuImage_ChildClick(menuScale,
 EventArgs.Empty);
 }

Note: This call must occur after the InitializeCompo-
nent method has been called to ensure that the menu
objects have been initialized.

How-to

a. Use the menuScale
menu as the sender
parameter.

b. Use EventArgs.Empty
for the event parameter.
212 CHAPTER 7 DRAWING AND SCROLLING

scrolling and we could only view the rest of the image by resizing the form. Here, we
will use scroll bars via the ScrollableContainer class members to provide a more
appropriate solution.

The result of our labors is shown in figure 7.4. As you can see, part of the image
is shown, and scroll bars at the right and bottom of the image can be used to scroll to
the remainder of the image. These scroll bars will appear and disappear automatically
as needed. You may wonder where our status bar has gone. This is an unfortunate side
effect drawing directly on our form, and is the reason a section 7.4 exists in this chap-
ter. More on this later.

7.3.1 PROPERTIES FOR SCROLLING

We already have the Actual Size menu available, but we need to add the appropriate
processing when this menu is clicked and in the OnPaint method. Before we write any
code, let’s consider which properties we need from the ScrollableControl class.

ScrollableControl properties for scrolling our image

7.3.2 IMPLEMENTING AUTOMATED SCROLLING

Now that we have reviewed some of the properties used for automated scrolling, we
can tackle the code required for the ActualSize display mode. We will start with
the menu click, and handle the painting of the image in a moment.

Figure 7.4

The scroll bars for the form appear auto-

matically when the display area is larger

than the client area.

Property Purpose

AutoScroll Whether scrolling is enabled. We will set this to true for the Actual Size
mode, and false for other display modes.

AutoScrollMinSize The minimum size for the scrollable window. This is the display size, and not
the actual client size seen by the user. We will set this to the size of the
current image to ensure that the scroll bars are sized appropriately for this
image.

AutoScrollPosition The window position, in pixels, at the upper left corner of the window. This
property is adjusted automatically as the window scrolls.
AUTOMATED SCROLLING 213

When the user clicks the ActualSize display mode, we need to adjust not just
the Actual Size display mode, but also our Scale to Fit and Stretch to Fit menus to
ensure that scrolling is disabled when these modes are set. The following steps detail
the changes required.

Set the version number of the MyPhotos application to 7.3.

Note here that we did not set AutoScrollMinSize to the size of the current image.
Since different images may have different sizes, we will need to adjust this setting
whenever the current image changes. One way to do this would be to modify this set-
ting in all the places where the current image changes. This would include the Next,
Previous, and Remove menu handlers, and possibly other locations in the future as
well. That’s a lot to keep track off. Instead, we will set this property when the image is
painted so that it is updated by default whenever the image changes.

For the Paint operation itself, another version of the Graphics.DrawImage
method is used to account for drawing the image into a space larger than the client
area. The DrawImage method has a number of overloads to handle various types of
drawing. See the documentation for the complete list.

MODIFY MENUIMAGE_CHILDCLICK FOR ACTUALSIZE DISPLAY MODE

 Action Result

1 Locate the menuImage_ChildClick
method in the MainForm.cs source
window.

 protected void menuImage_ChildClick
 (object sender, System.EventArgs e)
 {
 . . .

2 Turn scrolling off for the ScaleToFit
and StretchToFit display modes.

 switch (_selectedMode)
 {
 default:
 case DisplayMode.ScaleToFit:
 case DisplayMode.StretchToFit:
 // Display entire image in window
 AutoScroll = false;
 SetStyle(ControlStyles.ResizeRedraw,
 true);
 . . .

3 Turn scrolling on for the ActualSize
display mode.

 case DisplayMode.ActualSize:
 // Display image at actual size
 AutoScroll = true;
 SetStyle(ControlStyles.ResizeRedraw,
 false);
 Invalidate();
 break;
 }
 . . .
 }

How-to

a. Set AutoScroll to true.
b. Turn off the ResizeRedraw style

for the form.
214 CHAPTER 7 DRAWING AND SCROLLING

That’s it! Your application will now handle all three display modes. Note how the
AutoScrollPosition property is used for the location to appear in the upper left
corner of the client area. As the window scrolls, this value is updated automatically so
we can use it future Paint operations.

Crank it up and display your favorite set of images stretched to fit, scaled to fit,
and at the actual size. Make sure you try some images of alternate sizes to ensure that
the scroll bars adjust appropriately as you move through the album. Also note how the
scroll bars disappear when the window is expanded to be larger than the image.

Too bad about our status bar. It really should not be part of the scrolled area here.
The problem is that we are drawing and scrolling the form itself, and both the image
and the status bar are part of the form. As a result, as goes the image, so goes the status
bar. To fix this, we need to isolate the image portion of the form and have our image
appear only in this area. The PictureBox control isolated the image without the abil-
ity to scroll. The Panel class will provide both isolation and scrolling.

7.4 PANELS
If you have prior experience with MFC, then you must know how frustrating the
MFC group box control can be. A fine control, I would submit, except when you have
to adjust its position, or worse, add controls inside of it. The problem, for those not
familiar with this construct, is that it is just a box, with no relationship to the inside
of the box. If you move the box, you have to adjust the contents separately, and vice
versa. Very frustrating.

In the .NET Framework, controls can act as containers for other controls. When
you move the container, the controls inside move with it. Two such containers in the
System.Windows.Forms namespace are the GroupBox and Panel classes. When
you move a .NET container, the contents move with it. The position of the inner con-
trols are defined in relationship to the container, and the Anchor and Dock properties
are used to set their resize behavior within the container just like within a form.

MODIFY ONPAINT METHOD FOR ACTUALSIZE DISPLAY MODE

 Action Result

4 Locate the OnPaint method
in the MainForm.cs source
window.

 protected override void OnPaint(PaintEventArgs e)
 {
 . . .

5 When the display mode is
ActualSize, draw the
image into the display area.

 case DisplayMode.ActualSize:
 // Draw appropriate portion of image
 g.DrawImage(photo.Image,
 AutoScrollPosition.X,
 AutoScrollPosition.Y,
 photo.Image.Width,
 photo.Image.Height);

6 Also set the
AutoScrollMinSize
property as appropriate.

 AutoScrollMinSize = photo.Image.Size;
 break;
 . . .
 }
PANELS 215

Our focus in this section will be the Panel class. This class can contain and posi-
tion controls just like the Form class, and supports automated scrolling since it inherits
from the ScrollableControl class.2 We will not position controls within a panel
in this chapter, but we will use this class to fix some of the problems we have seen when
drawing directly on the form. We will draw our photo directly in a Panel, and solve
the following problems we noticed when drawing directly on the form:

• Our image was off-center vertically for the Scale to Fit display option. The
DisplayRectangle property included the vertical space occupied by the
scroll bar, which threw our calculations off. Here, we will use the panel’s Dis-
playRectangle property, so that the image will be centered exactly inside
the panel.

• The 3-D border we used for the PictureBox control was gone. We could have
attempted to draw a border inside the form using the Control-

Paint.DrawBorder3D method, but a Panel provides a much easier solution.
The Panel class provides a BorderStyle property much like the correspond-
ing PictureBox property, so the .NET framework will draw the border for us.

• The status bar was part of the scrollable area. Since the Form object managed
the scrolling, the StatusBar control on the form was caught up in the scroll-
ing logic. In this section, the scrolling will be managed by the Panel class
independent of the form and status bar. As a result, our status bar will return to
and remain at its natural position at the base of the form.

Before we get into the required changes, figure 7.5 shows how our three display
modes will appear by the end of this section. As you can see, the application looks
much more polished here than when we drew directly on the form. Note especially
the excellent centering, the fine border, and the well-behaved scroll bars.

2 For the curious, the GroupBox control inherits from the Control class and does not support scrolling.

Figure 7.5 This shows an image drawn inside a panel with the Scale to Fit, Stretch to Fit, and

Actual Size display modes.
216 CHAPTER 7 DRAWING AND SCROLLING

As you will see, the code to draw the image inside a panel is very similar to drawing the
image directly on the form. We will need to add a new panel, update some of our menu
handlers and the drawing of the status bar, and finally draw the image into the panel.

7.4.1 ADDING A PANEL

Adding a Panel object in Visual Studio is much like adding any other control. You
open the Toolbox and drag a Panel onto the form. In the source code, the panel is
added using the Control property of the parent form. We will look at both of these,
beginning with the use of Visual Studio.

Set the version number of the MyPhotos application to 7.4.

Take a look at the MainForm.cs source file to see how the panel is created. As you can
see, this code looks very similar to the code for other controls from prior chapters. A
private instance is created in the MainForm class, initialized in the Initialize-
Component method, and added to the form using the Form.Controls property.
 private System.Windows.Forms.Panel pnlPhoto;
 . . .
 private void InitializeComponent()
 {
 . . .
 this.pnlPhoto = new System.Windows.Forms.Panel ();
 . . .
 //
 // pnlPhoto
 //
 this.pnlPhoto.BorderStyle = System.Windows.Forms.BorderStyle.Fixed3D;
 this.pnlPhoto.Dock = System.Windows.Forms.DockStyle.Fill;
 this.pnlPhoto.Name = "pnlPhoto";
 this.pnlPhoto.Size = new System.Drawing.Size(292, 233);
 this.pnlPhoto.TabIndex = 3;
 . . .
 this.Controls.AddRange(new System.Windows.Forms.Control[] {
 this.pnlPhoto,
 this.statusBar1});

ADD A PANEL TO THE FORM

 Action Result

1 In the MainForm.cs [Design] window, drag a
Panel control from the Toolbox onto the form.

A Panel control is added to the window.

2 Set the panel’s properties as shown.

Settings

Property Value

(Name) pnlPhoto

BorderStyle Fixed3D

Dock Fill
PANELS 217

The Panel class depends largely on its base classes for exported functionality, with
the BorderStyle property just about the only new member added by the class. An
overview of the Panel class appears in .NET Table 7.5.

7.4.2 UPDATING THE MENU HANDLERS

With our panel on the form, we need to update the code for drawing our image to
use the new panel rather than interacting with the form itself. We will begin with the
menu handlers for the Image submenu.

The menuImage_Popup method simply sets the Enabled and Checked menu
properties as required for the current display mode. This behavior does not change, so
no modifications are required. The menuImage_ChildClick method sets scrolling
properties for the form. Since our scrolling will be managed from the Panel object now,
we need to use the corresponding Panel members rather than those in the Form itself.

.NET Table 7.5 Panel class

The Panel class represents a scrollable control that acts as a container for other controls. This
class is often used to define a region of controls within a Form. This class is part of the Sys-
tem.Windows.Forms namespace and inherits from the ScrollableControl class. See .NET
Table 7.1 on page 196 for a list of members inherited from the ScrollableControl class.

Public

Properties

BorderStyle Gets or sets the type of border to display around the
control.

DisplayRectangle
(inherited from
Control)

Gets the display area for the control. When scrolling is
enabled, this property represents the entire scrollable area
for the panel. The ClientRectangle property represents
the visible portion of the control.

Enabled
(inherited from
Control)

Gets or sets whether the panel is enabled. Controls within
the panel are disabled whenever the panel itself is disabled.

Visible (inherited
from Control)

Gets or sets whether the panel is visible. Controls within
the panel are invisible if the panel itself is invisible.

UPDATE THE MENUIMAGE_CHILDCLICK METHOD TO USE THE NEW PANEL

 Action Result

1 Locate the
menuImage_ChildClick method in
the MainForm.cs source window.

 protected void menuImage_ChildClick
 (object sender, System.EventArgs e)
 {
 . . .

2 Modify the code for the
ScaleToFit and StretchToFit
display mode to set drawing-related
properties on the Panel rather than
the parent Form.

 case DisplayMode.ScaleToFit:
 case DisplayMode.StretchToFit:
 SetStyle(ControlStyles.ResizeRedraw,
 true);
 pnlPhoto.AutoScroll = false;
 pnlPhoto.Invalidate();
 break;
218 CHAPTER 7 DRAWING AND SCROLLING

That’s it for our menu handlers. The SetStyle method is a protected member and
cannot be modified for our Panel class, so we just force the redraw to happen at the
Form level as we did before. This will redraw the entire form and not just our panel,
but it gets the job done. In this case, the drawing required outside of our panel is not
overly complex, so this extra drawing should not be a problem.

On a more complex form, it would make sense to handle the Resize event for
the pnlPhoto object instead of setting a form-level style as we do here. Handling the
Resize event would allow us to only redraw the panel itself, and not the other parts
of the Form.

The AutoScroll property is a public member of the ScrollableControl
class, so we can set its value for the pnlPhoto object directly.

As you can see, because the Panel and Form classes are based on a similar class
hierarchy, design changes like this are very easy to make in .NET. Let’s move on to
our owner-drawn status bar.

7.4.3 DRAWING THE STATUS BAR PANEL

Our status bar is drawn in the statusBar1_DrawItem method. This method must
calculate the percentage of the image shown in the window. Since the image will now
be displayed inside the Panel object, we must modify this routine to use the Panel
client area rather than the MainForm one.

3 Modify the code for the
ActualSize display mode in a
similar manner.

 case DisplayMode.ActualSize:
 SetStyle(ControlStyles.ResizeRedraw,
 false);
 pnlPhoto.AutoScroll = true;
 pnlPhoto.Invalidate();
 break;
 . . .
 }

UPDATE THE MENUIMAGE_CHILDCLICK METHOD TO USE THE NEW PANEL

 Action Result

UPDATE THE STATUSBAR1_DRAWITEM METHOD TO USE THE PANEL

 Action Result

1 Locate the
statusBar1_DrawItem
method in the
MainForm.cs file.

 protected void statusBar1_DrawItem
 (object sender,
 StatusBarDrawItemEventArgs sbdevent)
 {
 . . .
PANELS 219

Once again this change simply uses our private Panel field rather than the this
keyword. Our last change is to draw the image inside the panel rather than on the
form itself.

7.4.4 DRAWING THE IMAGE

When drawing the image on the form, we were able to override the protected
OnPaint method that raises the Paint event. For the Panel object, we do not have
access to protected members, so we must use the public Paint event to update the
panel. Internally in the Windows Forms library, of course, the Panel control will use
its own version of the OnPaint method to invoke our event handler.

Note that the Paint event handler receives a PaintEventArgs instance containing
the event data. As we saw earlier in the chapter, this class contains the Graphics
object for drawing inside the panel. Our code uses this object in the same way as
when the image was drawn in the form. Continuing our previous steps:

2 Modify the calculation of
the percent variable to
use the panel rather than
the form.

 // Calculate percent of image shown
 int percent = 100;
 if (_selectedMode == DisplayMode.ActualSize)
 {
 Photograph photo = _album.CurrentPhoto;

 Rectangle dr = pnlPhoto.ClientRectangle;
 int imgWidth = photo.Image.Width;
 int imgHeight = photo.Image.Height;
 percent = 100
 * Math.Min(dr.Width, imgWidth)
 * Math.Min(dr.Height, imgHeight)
 / (imgWidth * imgHeight);
 }
 . . .
 }

UPDATE THE STATUSBAR1_DRAWITEM METHOD TO USE THE PANEL (continued)

 Action Result

ADD A PAINT HANDLER FOR THE PNLPHOTO OBJECT

 Action Result

1 Add a Paint event handler for the
panel.

How-to

Double-click the Panel control.

Note: The Paint event is the default
event for the panel control in Visual
Studio. Other events can be added
via the Properties window.

Visual Studio generates the appropriate code in the
source file.

 protected void pnlPhoto_Paint
 (object sender,
 System.Windows.Forms.PaintEventArgs e)
 {
 }
220 CHAPTER 7 DRAWING AND SCROLLING

TRANSFER THE DRAWING CODE INTO THE NEW PAINT HANDLER

 Action Result

2 In the pnlPhoto_Paint method,
use the given Graphics to draw
the image when the album is not
empty.

 protected void pnlPhoto_Paint
 (object sender,
 System.Windows.Forms.PaintEventArgs e)
 {
 if (_album.Count > 0)
 {
 // Paint the current photo
 Photograph photo = _album.CurrentPhoto;
 Graphics g = e.Graphics;

3 Copy the switch statement for
drawing the image from the
existing OnPaint method.

 switch (_selectedMode)
 {
 . . .
 }
 }
 else
 {
 // No image to paint
 }
 }

4 Update this switch block to use
the pnlPhoto object as
appropriate.

 switch (_selectedMode)
 {
 default:
 case DisplayMode.ScaleToFit:
 // Preserve aspect ratio of image
 g.DrawImage(photo.Image,
 photo.ScaleToFit(
 pnlPhoto.DisplayRectangle));
 break;

 case DisplayMode.StretchToFit:
 // Fill entire panel with image
 g.DrawImage(photo.Image,
 pnlPhoto.DisplayRectangle);
 break;

 case DisplayMode.ActualSize:
 // Draw portion of image
 g.DrawImage(photo.Image,
 pnlPhoto.AutoScrollPosition.X,
 pnlPhoto.AutoScrollPosition.Y,
 photo.Image.Width,
 photo.Image.Height);
 pnlPhoto.AutoScrollMinSize
 = photo.Image.Size;
 break;
 }

5 If the album is empty, draw the
standard system control color
onto the panel.

 else
 {
 // No image to paint
 e.Graphics.Clear(SystemColors.Control);
 }
 }
PANELS 221

It may look like a lot of code, but the number of changes is actually quite small, as
indicated by the few number of bolded lines. The program is all set now. Verify that
your code compiles and runs properly. Change display modes, use different-sized
images, and resize the form to observe the effect.

TRY IT! If you are feeling brave, try adding a Fit to Width menu item to the Image
submenu. This should preserve the aspect ratio of the image by scaling the
image to match the width of the panel window. You will need to add a
FitToWidth enumeration value to the DisplayMode enumeration.
Calculate the height using code similar to the Photo-

graph.ScaleToFit method where the width is preserved. The tricky
part is setting the pnlPhoto.AutoScrollMinSize property appropri-
ately and drawing the image into this same rectangle.

7.5 RECAP

This chapter has looked at some drawing and scrolling aspects of the Form class. In
particular, we removed the PictureBox control from our application and learned

6 Remove the corresponding
drawing code from the existing
OnPaint method.

The OnPaint method now looks as follows:

 protected override void OnPaint
 (PaintEventArgs e)
 {
 if (_album.Count > 0)
 {
 // Paint the current image
 Photograph photo = _album.CurrentPhoto;

 // Update the status bar.
 pnlFileName.Text = photo.Caption;
 pnlFileIndex.Text
 = String.Format("{0:#}/{1:#}",
 _album.CurrentIndex+1,
 _album.Count);
 pnlImageSize.Text
 = String.Format("{0:#} x {1:#}",
 photo.Image.Width,
 photo.Image.Height);
 statusBar1.ShowPanels = true;
 }
 else
 {
 // Indicate the album is empty
 statusBar1.Text = "No Photos in Album";
 statusBar1.ShowPanels = false;
 }

7 At the end of this method,
invalidate the panel to ensure it is
redrawn.

 // Ensure contained controls are redrawn
 pnlPhoto.Invalidate();
 statusBar1.Invalidate();
 base.OnPaint(e);
 }

TRANSFER THE DRAWING CODE INTO THE NEW PAINT HANDLER (continued)

 Action Result
222 CHAPTER 7 DRAWING AND SCROLLING

how to draw our image directly onto the form. We used the protected OnPaint
method and made use of the automated scroll bars inherited by the Form class to scroll
our image. This did not work exactly as we wanted, so we modified our code to use the
Panel class instead as a way to draw the image independent of the rest of the form.

The next chapter will continue our investigation of the Form class by looking at
dialog boxes.
RECAP 223

C H A P T E R 8

Dialog boxes

8.1 Message boxes 225
8.2 The Form.Close method 233
8.3 Modal dialog boxes 237
8.4 Modeless dialogs 252
8.5 Recap 262
So far we have only used a single window in our MyPhotos application. We have
changed its appearance in each chapter, adding controls such as a menu bar, status
bar, and panel, but all controls, events, painting, and other activities have occurred
within our one Form window. In this chapter we branch out.

The previous chapter introduced the Form class and demonstrated drawing and
scrolling in both it and the Panel class. Both of these classes can be used to support
intricate drawing interfaces from those seen in basic drawing applications such as
Microsoft Paint to a full-fledged Internet browser window.

Another common use for Form classes is the creation of dialog boxes. The Form
class, as well as the Panel class, allows other controls to be positioned and managed
inside its boundaries. In this chapter we look at how dialog boxes are created for both
simple message boxes and more complex custom dialogs. This will consist of the fol-
lowing topics.

• Create simple message dialogs with the MessageBox class.
• Discuss the use of Close and Dispose for Form objects.
• Use the OnClosing method to intercept when a form or dialog box closes.
224

• Explain the difference between modal and modeless dialogs.
• Create dialog boxes using the Form class.

Before we get into generating custom dialog boxes, we will first look at how simple
messages are displayed using the MessageBox class.

8.1 MESSAGE BOXES

Developers, especially object-oriented developers, are always looking for shortcuts.
Classes such as OpenFileDialog and SaveFileDialog not only provide a stan-
dard way to prompt a user for files, they also save programmers a lot of time and
effort by encapsulating the required window display and interaction code. Another
common task programmers face is the need to display a simple message to the user.
Our photo album application, for example, should really display an error message
when an album cannot be saved successfully, or it could pose a question by asking the
user if they would like to save the album to an alternate file location.

The .NET Framework provides a MessageBox class for this purpose. This class
is very similar to the MFC function of the same name. This section will show how this
class is used to handle simple interactions with a user. While this class is not actually
a Form object, it is the most basic type of modal dialog box.

All dialog boxes are either modal or modeless. A modal dialog box requires the
user to respond before the associated program will continue. Modeless or nonmodal dia-
log boxes allow the application to continue while the dialog box is displayed.

All MessageBox windows are modal, while Form windows are modal if invoked
via the Form.ShowDialog method and modeless if invoked via the Form.Show
method.

Figure 8.1 These examples show the four types of icons available to

MessageBox dialogs.
MESSAGE BOXES 225

Figure 8.1 shows some sample message boxes with various settings. Note the different
button configurations, and how the Question Icon dialog has defined No as the
default button. An overview of the MessageBox class is provided in .NET Table 8.1.

.NET Table 8.1 MessageBox class

The MessageBox class represents a modal dialog box that displays a message or question to
the user and waits for their response. This class is part of the System.Windows.Forms
namespace. A MessageBox cannot be instantiated as an object with the new keyword;
instead the static Show method is used to display the dialog.

By default, a message box displays with no icon and a single OK button. The Show method
is overloaded to allow these and other settings to be customized. There are four enumera-
tions used for this purpose: MessageBoxButtons, MessageBoxIcon, MessageBoxDefault-
Button, and MessageBoxOptions. In the following table, the enumeration values for some
of these four types are included, since these types are only used with the MessageBox.Show
method.

Public Static

Methods

Show Displays a message box and returns the
DialogResult enumeration value corresponding to
the button selected by the user.

MessageBoxButtons

Enumeration Values

OK The message box should contain an OK button only.

OKCancel The message box should contain an OK and Cancel
button.

YesNo The message box should contain a Yes and No
button.

YesNoCancel The message box should contain a Yes, No, and
Cancel button.

MessageBoxIcon

Enumeration Values

Error The message box should contain an error symbol, a
white X in a red circle. Use this for unexpected
problems that prevent an operation from continuing.

Information The message box should contain an information
symbol, a lower case letter ‘i’ in a circle. Use this for
general messages about the application such as a
status or notification.

Question The message box should contain a question mark
symbol. Use this for Yes/No questions where a
choice by the user is required.

Warning The message box should contain a warning symbol,
an exclamation point in a yellow triangle. Use this for
problems that may interfere with the ability of an
operation to continue.

MessageBoxDefault-

Button Enumeration

Values

Button1 The first button in the message box is the default.

Button2 The second button is the default.

Button3 The third button is the default.
226 CHAPTER 8 DIALOG BOXES

8.1.1 THE MESSAGEBOX.SHOW METHOD

A MessageBox instance cannot be instantiated. Instead, the Show method is used to
create the message dialog and return the result. There are a number of overloads avail-
able for this method, from a version that takes a single message string to one that
accepts a parameter for everything from the title bar text to which button should be
the default. Various forms of this method are shown in the following signatures. The
comment preceding each signature refers to the characters in bold.
 // The return value indicates which button was clicked by the user
 public static DialogResult Show(string text);

 // Displays the dialog in front of the specified window object
 public static DialogResult Show(IWin32Window owner, string text);

 // Accepts a message string and title bar caption
 public static DialogResult Show(string text, string caption);

 // Displays the dialog with the specified buttons
 public static DialogResult Show(IWin32Window owner,
 string text,
 string caption,
 MessageBoxButtons buttons);

 // The penultimate Show method: an icon, default button, and options
 public static DialogResult Show(IWin32Window owner,
 string text,
 string caption,
 MessageBoxButtons buttons,
 MessageBoxIcon icon,
 MessageBoxDefaultButton defaultButton,
 MessageBoxOptions options);

Turning back to our MyPhotos application, the addition of a message box would be
beneficial in some of the situations we have already encountered. These include:

• When an error occurs while trying to open an existing album.
• When an error occurs while trying to save the current album.
• When the current album has changed and is about to be discarded.

We will add a MessageBox to our program for each of these instances.

8.1.2 CREATING AN OK DIALOG

When we are unable to open a selected album, there is not much to do other than
inform the user that something is wrong. We will use an error dialog since a failure
here is not normally expected. The resulting dialog is shown in figure 8.2.

Figure 8.2

This message box is displayed when

the album contains an unrecognized

version number.
MESSAGE BOXES 227

Let’s add the code to create this dialog whenever an unexpected problem occurs while
opening the file

Set the version number of the MyPhotos application to 8.1.

In this code, we cheated a little by catching any and all Exception objects in the
catch block. It is normally safer to catch specific exceptions that may occur so you
can provide feedback or take actions based on the specific error. In this code, an
IOException will occur if an unexpected error occurs during a file I/O operation. If
you recall, the PhotoAlbum.Open method throws an IOException explicitly if the
version number in the file is not recognized.

It is also worth noting that we ignore the result returned by the Show method,
since there is only a single OK button in the dialog.

HANDLE EXCEPTION IN MENUOPEN_CLICK METHOD

 Action Result

1 Locate the
menuOpen_Click method
in the MainForm.cs source
file.

 private void menuOpen_Click
 (object sender, System.EventArgs e)
 {
 . . .

2 Enclose the code to open
the album in a try block.

 if (dlg.ShowDialog() == DialogResult.OK)
 {
 try
 {
 // Open the new album.
 _album.Open(dlg.FileName);

 _album.FileName = dlg.FileName;
 _bAlbumChanged = false;
 this.Invalidate();
 }

3 Catch any Exception that
occurs.

 catch (Exception ex)

4 Display the dialog in the
catch block.

 {
 MessageBox.Show(this,
 "Unable to open file " + dlg.FileName
 + "\n (" + ex.Message + ")",
 "Open Album Error",
 MessageBoxButtons.OK,
 MessageBoxIcon.Error);
 }
 }
 . . .
 }

Note: The text string is constructed using the + (plus
sign) notation for strings. Also note that a new line is
inserted in the dialog with the \n character.
228 CHAPTER 8 DIALOG BOXES

8.1.3 CREATING A YESNO DIALOG

As an alternate example, what happens when an error occurs while saving an album?
We could simply display an OK dialog as we did while opening an album. This
would just duplicate the previous code, so we will do something different. Instead, we
will allow the user to save the album under an alternate file name. This permits the
user to save the album to an alternate location that is less likely to fail, or retry the
save to the same location. The new message box is shown in figure 8.3.

The steps required to generate this message dialog are shown in the following table:

Figure 8.3

This message box is

displayed when an

exception occurs in the

menuSave_Click method.

HANDLE EXCEPTION IN MENUSAVE_CLICK METHOD

 Action Result

1 Locate the menuSave_Click
method in the MainForm.cs file.

 private void menuSave_Click
 (object sender, System.EventArgs e)
 {
 . . .

2 Enclose the code to save the
album in a try block.

 else
 {
 try
 {
 // Save album in current file
 _album.Save();
 _bAlbumChanged = false;
 }

3 Catch any exception that occurs. catch (Exception ex)
 {

4 Within the catch block, display
the dialog and record the
selected button.

 string msg = "Unable to save file {0}"
 + " - {1}\nWould you like to save"
 + " the album in an alternate file?";
 DialogResult result
 = MessageBox.Show(this,
 String.Format(msg,
 _album.FileName, ex.Message),
 "Save Album Error",
 MessageBoxButtons.YesNo,
 MessageBoxIcon.Error,
 MessageBoxDefaultButton.Button2);

5 If the user wishes to save under
an alternate name, prompt the
user for the new file name.

How-to

Use the Save As menu handler.

 if (result == DialogResult.Yes)
 {
 menuSaveAs_Click(sender, e);
 }
 }
 . . .
 }
MESSAGE BOXES 229

Unlike our message for the Open handler, this code makes use of the result returned
by the Show method. This result is a DialogResult enumeration that indicates the
button pressed. The values in this enumeration are shown in .NET Table 8.2, and
correspond to the kinds of buttons typically found in Windows dialogs.

You can compile and run this code if you would like to see the message boxes we cre-
ated. You can generate an open error easily enough by selecting a file that is not, in
fact, an album file. A save error can be generated by attempting to save to a read-only
CD, or by filling up a floppy disk and then saving a file to it.

Our last example will generate a message box for closing an existing album.

8.1.4 Creating A YesNoCancel dialog

Our final example is the case where an album has changed but is about to be discarded.
This can occur when the application is about to exit, when loading a new album with
the Open menu item, and when creating a new album with the New menu item.

To handle these situations in a consistent
way, we will create a protected method to
gracefully close the current album for all three
cases using the dialog in figure 8.4. We will
call this method CloseCurrentAlbum and
have it return a boolean value indicating
whether the album was closed or the user
clicked the Cancel button.

.NET Table 8.2 DialogResult enumeration

The DialogResult enumeration represents a value returned by a dialog box. This class is
part of the System.Windows.Forms namespace, and is used with all dialog boxes in Win-
dows Forms. In particular, a DialogResult is returned by the MessageBox.Show method as
well as the ShowDialog method in both the Form class and common dialogs derived from
the CommonDialog class. This enumeration is also used by the Button class to indicate the
result to automatically return from a modal dialog when the button is clicked.

Enumeration

Values

Abort The dialog return value is Abort. Typically, this means the user
clicked an Abort button.

Cancel The dialog returns Cancel, typically from a Cancel button.

Ignore The dialog returns Ignore, typically from an Ignore button.

No The dialog returns No, typically from a No button.

None The dialog returns nothing, indicating that the dialog box is still
running.

OK The dialog returns OK, typically from an OK button.

Retry The dialog returns Retry, typically from a Retry button.

Yes The dialog returns Yes, typically from a Yes button.

Figure 8.4 This dialog is displayed when

an album is about to be discarded.
230 CHAPTER 8 DIALOG BOXES

The three buttons in our dialog will correspond to the following behavior in our
CloseCurrentAlbum method:

• Yes will save the album, then close the album and return true.
• No will not save the album, then close the album and return true.
• Cancel will not save or close the album and return false to indicate that the

calling operation should be canceled.

To close the album, CloseCurrentAlbum will clear the album and related settings.
The following steps create this method:

We will use this new method in three different places to ensure that the user has the
option of saving any changes he or she might make to the album.

ADD A CLOSECURRENTALBUM METHOD

 Action Result

1 Add the
CloseCurrentAlbum
method to the
MainForm.cs source code
window.

 protected bool CloseCurrentAlbum()
 {

2 Offer to save the album if it
has been modified.

 if (_bAlbumChanged)
 {
 // Offer to save the current album

3 Define an appropriate
message to display.

Note: We vary the mes-
sage text depending on
whether the current album
has a name or not.

 string msg;
 if (_album.FileName == null)
 msg = "Do you want to save the "
 + "current album?";
 else
 msg = String.Format("Do you want to "
 + "save your changes to \n{0}?",
 _album.FileName);

4 Display the message box
and record the result.

 DialogResult result
 = MessageBox.Show(this, msg,
 "Save Current Album?",
 MessageBoxButtons.YesNoCancel,
 MessageBoxIcon.Question);

5 Perform the action
requested by the user.

 if (result == DialogResult.Yes)
 menuSave_Click(this,EventArgs.Empty);
 else if (result == DialogResult.Cancel)
 {
 // Do not close the album
 return false;
 }
 }

6 Close the album and return
true.

Note: This action is only
performed if the Yes or No
button was selected.

 // Close the album and return true
 if (_album != null)
 _album.Dispose();
 _album = new PhotoAlbum();
 SetTitleBar();
 _bAlbumChanged = false;
 return true;
 }
MESSAGE BOXES 231

• In menuNew_Click to save the existing album before a new album is created.
• In menuOpen_Click to save the album before a new album is selected.
• In menuExit_Click to save the album before the application exits.

We will modify the handlers for the New and Open menus here. The Exit menu pre-
sents some additional issues, which we will take up in the next section. The following
table continues our previous steps.

These changes make our application much more user-friendly by interacting with the
user when they are about to discard a modified album.

TRY IT! Before moving on, create a MessageBox dialog in the menuRe-
move_Click method, where the current photograph is removed without
any confirmation by the user. Add a question box here to verify that the
user does indeed want to remove the current photo.

Another place where a message box could be used is at the beginning and
end of the album. Modify the Next and Previous menus to display an in-
formation dialog whenever the user tries to move before the beginning of
the album or past the end.1

For the Exit menu, life is not so easy. We will pick up this topic in the next section.

UPDATE THE HANDLERS FOR THE NEW AND OPEN MENUS

 Action Result

7 Modify the menuNew_Click
method to use the
CloseCurrentAlbum method.

 protected void menuNew_Click
 (object sender, System.EventArgs e)
 {
 if (this.CloseCurrentAlbum() == true)
 {
 // Make sure the window is redrawn
 this.Invalidate();
 }
 }

8 Modify the menuOpen_Click
method to use the
CloseCurrentAlbum method.

Note: The new code here
replaces the previous code in
this method to save the current
album. The remainder of this
method stays the same.

 protected void menuOpen_Click
 (object sender, System.EventArgs e)
 {
 // Save the existing album, if necessary
 if (this.CloseCurrentAlbum() == false)
 {
 // Cancel this operation
 return;
 }

 OpenFileDialog dlg = new OpenFileDialog();
 . . .
 }

1 The interface designers among us will argue that the Previous and Next commands should be disabled
at the beginning and end of the album, respectively. Why allow the user to invoke a menu item that
does not work? I would not disagree, and if you prefer this approach, please go right ahead.
232 CHAPTER 8 DIALOG BOXES

8.2 THE FORM.CLOSE METHOD

In this section we pick up the thread of our previous discussion on the CloseCur-
rentAlbum method by discussing the Close and Dispose methods. You may think
this is a little off-topic from dialog boxes, but in fact it is quite relevant. One of the
key issues for C# programming in .NET is when to call the Dispose method to
clean up window handlers and other nonmemory resources. This section will discuss
this topic as it relates to dialog boxes, and introduce the Closing event as a way to
intercept a user’s request to close a form.

8.2.1 The relationship between Close and Dispose

Before we return to the topic of calling CloseCurrentAlbum when our application
exits, let’s look at the relationship between Close and Dispose in .NET. It’s actu-
ally quite simple: they are the same. For all classes in the .NET Framework, a call to
Close is equivalent to calling the Dispose method, and a call to Dispose is equiv-
alent to calling the Close method. The term “close” traditionally applies to objects
like files and windows, and .NET has preserved this terminology. When you are fin-
ished with a form or a file, it seems silly to require a call to both Close and Dis-
pose, so it makes sense to merge these two concepts together. The .NET design team
could have chosen to use a common name for all classes, but programmers naturally
expect to close objects such as forms and files, and closing objects like arrays or draw-
ing objects seems a bit odd. Instead, the designers chose to use both methods and
define them to be equivalent.

For Form objects, the behavior of the form itself varies depending on whether the
object is displayed as a modal or modeless window. For a modeless window, displayed
with the Form.Show method, the nonmemory resources are automatically cleaned up
when the form is closed. This makes life much easier for us programmers, since we do
not have to remember anything in this case. You cannot use a modeless Form after it
is closed since all of its resources are gone. The Hide method should be used if you
simply want to remove a Form from the desktop and display it later via the Show
method. We will see this in chapter 13 when we use a tool bar button to hide the mod-
eless dialog created in section 8.4 of this chapter.

For modal windows, displayed with the Form.ShowDialog method, there is a
problem in that the dialog is typically accessed after the window disappears. As a result,
a modal dialog must call Dispose explicitly to release its nonmemory resources. Typ-
ically, a modal dialog is created and destroyed in the same block of code. For example:

 {
 MyModalDialog dlg = new MyModalDialog();

 // Initialize any dlg settings

 if (dlg.ShowDialog() == DialogResult.OK)
 {
 // Use dlg settings to do something
THE FORM.CLOSE METHOD 233

 }

 dlg.Dispose()
 }

In this code, if the resources for the dlg variable disappeared after the ShowDialog
method returned, you could not access any of its settings. For this reason, .NET only
calls the Hide method after a user responds to a modal dialog, so that the dialog set-
tings may still be accessed. This can be a little confusing since we still say the user
closes the dialog, even though the dialog’s Close method is not actually called.

Fortunately, modal dialog boxes tend to have deterministic scope, meaning that
you can predict when the dialog will be created and destroyed. The application waits
until the user responds to a modal dialog, so it’s clear where the Dispose method
must be called. We have already seen this method used with OpenFileDialog and
SaveFileDialog objects in chapter 6, both of which are modal dialogs.

The C# language provides a using statement to call Dispose on our behalf in
deterministic situations such as this. We have seen how the using directive defines
an alias or shortcut for an object or members of a namespace. The using statement
defines the scope in which a given object should exist. The syntax is as follows:
 using (object)
 {
 // Do something with object

 }

At the end of the block of code associated with the statement, the identified object is
automatically disposed. For example, the previous code for the My ModalDialog
object can be written as follows to cause Dispose to be called automatically at the
end of the block:
 {
 using (MyModalDialog dlg = new MyModalDialog)
 {
 // Initialize any dlg settings

 if (dlg.ShowDialog() == DialogResult.OK)
 {

 // Use dlg settings to do something

 }
 }
 }

As another example, here is how our menuSaveAs_Click handler looks with this
statement. The changes from our current implementation are shown in bold.
 private void menuSaveAs_Click(object sender, System.EventArgs e)
 {
 using (SaveFileDialog dlg = new SaveFileDialog())
 {
234 CHAPTER 8 DIALOG BOXES

 dlg.Title = "Save Album";
 dlg.DefaultExt = "abm";
 dlg.Filter = "abm files (*.abm)|*.abm";
 dlg.InitialDirectory = PhotoAlbum.DefaultDir;
 dlg.RestoreDirectory = true;

 if (dlg.ShowDialog() == DialogResult.OK)
 {
 // Record the new album name
 _album.FileName = dlg.FileName;

 // Use Save handler to store the album
 menuSave_Click(sender, e);

 //Update title bar to include new name
 SetTitleBar();
 }
 }
 }

In general, any object that supports the IDisposable interface can be used with the
using statement in this manner. In particular, you will recall that we supported this
interface in our PhotoAlbum and Photograph classes in chapter 5, so we could use
this statement with our album and photo objects.

For the remainder of the book, we will generally employ the using statement in
our examples to dispose of nonmemory resources rather than calling the Dispose
method explicitly.

8.2.2 INTERCEPTING THE FORM.CLOSE METHOD

Let’s get back to our application and the CloseCurrentAlbum method. Since our
application is a modeless dialog, Close will be called when the application exits. In
fact, we call the Close method explicitly in the Click handler for our Exit menu.

We could certainly use the CloseCurrentAlbum method in our Click event
handler. While this would work for the Exit menu, it does not work for the case where
the application exits via the Alt+F4 keyboard shortcut or the Close option on the sys-
tem menu.2

To handle both situations, the Form class provides a Closing event that occurs
whenever the form is about to close. The protected OnClosing method is invoked
whenever the Close method is called, and it in turn raises the Closing event by
invoking any registered event handlers. The signature for this method is as follows:
 protected virtual void OnClosing(CancelEventArgs ce);

2 The system menu, as you may know, is the menu of operating system commands that appears when
you click the control box icon in the upper left corner of a window. You can also right-click an appli-
cation’s title bar or its entry in the task bar to display this menu.
THE FORM.CLOSE METHOD 235

As you can see, this method receives a CancelEventArgs object. This class defines
a Cancel property to help determine whether the application will actually exit. If
this property is set to true by an override of the OnClosing method or a Closing
event handler, then the close operation is cancelled and the application will continue
to run. The Cancel property has a default value of false, so that the close opera-
tion is not cancelled and the application will exit.

We will override the OnClosing method in our MainForm class to make sure
the CloseCurrentAlbum method is called regardless of how the application exits.

Set the version number of the MyPhotos application to 8.2.

Compile and run the application to see this method in action. Add a few photos and
try to exit the application using the Exit menu, the Alt+F4 key, and the Close option
from the system menu. In all cases, you should be queried by the CloseCurrent-
Album method with the question dialog for saving the current album. If you select
the Cancel button the application will not, in fact, exit.

OVERRIDE THE ONCLOSING METHOD

 Action Result

1 Override the OnClosing
method in the
MainForm.cs source
window.

 protected override void OnClosing
 (CancelEventArgs ce)
 {

2 Within this method, call the
CloseCurrentAlbum
method to see if the
current album should be
saved.

 if (this.CloseCurrentAlbum() == false)

3 If the user clicked the
Cancel button, then cancel
the close operation.

 ce.Cancel = true;

Note: This cancels the Close operation so that the appli-
cation does not exit.

4 Otherwise, allow the
application to close.

 else
 ce.Cancel = false;

Note: Since false is the default value, these lines are
not strictly required. They are here simply to illustrate the
setting when the application is permitted to exit.

5 Remember to call
OnClosing in the base
class.

 base.OnClosing(ce);
 }

Note: This call ensures that logic internal to the Form
class is performed, and ensures that any Closing event
handlers for the form are called before the application
exits. Of course, any registered handler can prevent the
application from exiting by setting ce.Cancel to true.
236 CHAPTER 8 DIALOG BOXES

Before we go on, we should point out that our OnClosing override can be writ-
ten more succinctly by taking advantage of the boolean value returned by our close
album method.
 protected override void OnClosing(CancelEventArgs ce)
 {
 ce.Cancel = (!this.CloseCurrentAlbum());

 base.OnClosing(ce);
 }

Now that we know all about closing a dialog box, let’s see how to create one of our own.

8.3 MODAL DIALOG BOXES

In earlier chapters, we added controls such as a Button, PictureBox, and Sta-
tusBar to our main form, and displayed and managed these objects within the Form
class on behalf of our application. In this section we will see how a dialog box can be
created and displayed to further our understanding of the Form object.

As a way to introduce this concept, we will add the ability to assign a caption to
an image. This caption will be a text string supplied by the user. The dialog box shown
in figure 8.5 will allow the user to modify this value. The base file name of the image
will be used as the default caption.

In order to support this dialog, we will need to modify three aspects of our application:

1 Data layer. Our Photograph class must support a caption on an image, and
our PhotoAlbum class must store and retrieve these captions when saving and
opening files.

2 Presentation layer. We need a class to display our form as a dialog box. We will
call this class CaptionDlg. This class must provide the interface and a means
for returning a new caption value set by the user.

3 Application layer. Our MainForm class must provide access to the new inter-
face, and the link between the interface layer in our CaptionDlg class and the
data layer in our MyPhotoAlbum library.

We will address each of these layers separately in order to create our new dialog.

Figure 8.5

Our dialog box will contain three text

labels, a text box, and two buttons.
MODAL DIALOG BOXES 237

8.3.1 ADDING CAPTIONS TO PHOTOS

Let’s begin with the data layer. In this section we will support captions on photo-
graphs, and in the next section store and retrieve captions in our photo album files. In
the Photograph class, we need to track the caption value, and allow external classes to
set and get this value. These changes are detailed by the following steps.

Set the version number of the MyPhotoAlbum library to 8.3.

We now have the ability to set captions for individual photographs. This will not do
us much good unless our album class preserves these captions in the album file. For
this we need to modify the Open and Save methods.

ADD A CAPTION TO THE PHOTOGRAPH CLASS

 Action Result

1 In the Photograph.cs file,
add a private _caption
field to hold the caption for
the object.

 private string _fileName;
 private Bitmap _bitmap;
 private string _caption;

2 Initialize the caption to the
base name of the file in the
constructor.

using System.IO;
. . .
 public Photograph(string fileName)
 {
 _fileName = fileName;
 _bitmap = null;
 _caption = Path.
 GetFileNameWithoutExtension(_fileName);
 }

3 Add a Caption property. public string Caption
 {

4 Implement the get
accessor to return the
current caption.

 get { return _caption; }

5 Implement the set
accessor to revert to the
default on null, and
otherwise use the given
value.

 set
 {
 if (value == null || value.Length == 0)
 {
 _caption = Path.
 GetFileNameWithoutExtension(_fileName);
 }
 else
 {
 _caption = value;
 }
 }
 }

Note: The value keyword is used as a string object
here since the containing property is of type string.

How-to

a. Add a using System.IO
statement at the top of
the file.

b. Use the Path class to
retrieve the base file
name.
238 CHAPTER 8 DIALOG BOXES

Before we do, note that we can make immediate practical use of our caption in
the MainForm class. The sbpnlFileName status bar panel has previously displayed
the entire path to the file, which may not fit when the window is small. The photo’s
caption seems like a much better choice here.

Set the version number of the MyPhotos application to 8.3.

8.3.2 Preserving caption values

Our new caption values must be saved whenever an album is saved to disk, and
loaded when an album is opened. To do this, we need to create a new version of our
album file, while still preserving the ability to read in our existing files. Fortunately,
we established a version number for these files in chapter 6, so the changes required
are not too extensive. First, let’s look at the changes to our Save method.

Note that the rest of our Save method works as before. In particular, the current ver-
sion number is written as the first line of the file. Since we updated the constant for
this number, the value written to our new album files is updated as well.

Next we need to modify our Open method to read the new file format. We will also
preserve backward compatibility with our older version. This can be done by handling

DISPLAY THE CAPTION VALUE IN THE STATUS BAR

 Action Result

6 Locate the OnPaint
method in the
MainForm.cs source code.

 protected override void OnPaint
 (PaintEventArgs e)
 {
 . . .

7 Modify the
sbpnlFileName status bar
panel to display the
caption.

 if (_album.Count > 0)
 {
 . . .
 // Update the status bar.
 sbpnlFileName.Text = photo.Caption;
 . . .
 }
 . . .
 }

UPDATE THE SAVE METHOD TO STORE CAPTIONS

 Action Result

1 In the PhotoAlbum.cs file,
modify the version
constant to be 83.

 private const int _CurrentVersion = 83;

2 Modify our foreach loop in
the Save method to store
both the file name and
caption, each on a separate
line.

 public void Save(string fileName)
 {
 . . .
 // Store the data for each photograph
 foreach (Photograph photo in this)
 {
 sw.WriteLine(photo.FileName);
 sw.WriteLine(photo.Caption);
 }
 }
MODAL DIALOG BOXES 239

our previous version number 66 in addition to our new one. We continue the previous
table with the following steps.

Our data layer is complete. We can add individual captions to photographs, and these
captions are preserved as the album is saved and opened. Next we turn our attention
to the new Form required.

8.3.3 CREATING THE CAPTIONDLG FORM

With our data layer ready, we can turn to the presentation layer. This requires the dia-
log previously shown in figure 8.5. In this section we create a new Form class to hold
the dialog, and look at what settings should be set to turn the default form into a
standard dialog box. In the next section we will add some properties to this class so
that our MainForm class can interact with the dialog.

In previous Windows development environments, an explicit class such as
CDialog created a dialog box directly. It would certainly be possible to create a
FormDialog class in .NET derived from the Form class for this purpose, and per-
haps Microsoft will do so in the future. Until this happens, you will have to create
your own dialog class or modify each dialog form separately to have dialog box
behavior. The following table summarizes the properties required to turn the default
Form into a somewhat standard dialog box.

UPDATE THE OPEN METHOD TO READ CAPTIONS

 Action Result

3 Modify the switch block in
the Open method to
recognize both the old and
current version.

 public void Open(string fileName)
 {
 . . .
 switch (version)
 {
 case 66:
 case 83:
 {
 string name;

4 Modify the do..while
loop to read the caption
when a newer version of
the file is opened.

 do
 {
 name = sr.ReadLine();

 if (name != null)
 {
 Photograph p = new Photograph(name);

 if (version == 83)
 {
 // Also read the caption string
 p.Caption = sr.ReadLine();
 }

 this.Add(p);
 }
 } while (name!= null);
 break;
 . . .
 }
240 CHAPTER 8 DIALOG BOXES

Of course, you may need to modify other properties as well, but these settings estab-
lish the appropriate features for a standard dialog box. We can use this table to create
a dialog in our application.

Turning the default Form into a dialog box

Property Default
Value for

Dialog Box
Comments

AcceptButton (none) OK button
instance

For a modal dialog, set to the OK or other
Button the user will click when finished.

CancelButton (none) Cancel button
instance

For a modal dialog, set to the Cancel or
other Button the user will click to abort
dialog.

FormBorderStyle Sizable FixedDialog This creates a fixed-sized window with a
thick dialog-style border, and no control box
on the title bar. Assuming the ControlBox
setting is true, the system menu is still
available by right-clicking on the title bar.
This value is based on the
FormBorderStyle enumeration.

HelpButton False True or False Set to true if you would like the question
mark box to appear on the title bar. The
HelpRequested event fires when this box
is clicked. Note that the question box only
appears if the MaximizeBox and
MinimumBox properties are both false.

MaximizeBox True False Removes the Maximize button from the
title bar.

MinimizeBox True False Removes the Minimize button from the title
bar.

ShowInTaskBar True False Does not display the dialog on the
Windows task bar.

StartPosition WindowsDefault-
Location

CenterParent Establishes the initial position for the form.
Typically, a dialog box is centered over the
parent window.

Size 300, 300 (varies) For a fixed size dialog, set the window to an
appropriate size.
MODAL DIALOG BOXES 241

If you compare these settings to the previous table, you will see that we have not set
the AcceptButton and CancelButton properties yet. This is because the required
buttons are not yet on our form. We will look at some of the code generated in the
CaptionDlg.cs file in a moment. Before we do, let’s continue our changes to add the
required controls to our form.

CREATE THE CAPTIONDLG CLASS

 Action Result

1 Add a new form called “CaptionDlg”
to the MyPhotos project.

The new file is added to the MyPhotos project and
a CaptionDlg.cs [Design] window displays your
new form.

2 Modify the form’s properties to
make this create a somewhat
standard dialog.

The form in the designer window should now look
something like this.

How-to

a. Right-click the MyPhotos project
in Solution Explorer.

b. Expand the Add menu.
c. Select Add Windows Form…

under the Add menu to display
the Add New Item dialog.

d. Enter “CaptionDlg” as the name
of the form.

e. Click the Open button.

Settings

Property Value

FormBorderStyle FixedDialog

MaximizeBox False

MinimizeBox False

ShowInTaskBar False

Size 350, 160

StartPosition CenterParent

Text Edit Caption
242 CHAPTER 8 DIALOG BOXES

ADD CONTROLS TO THE CAPTIONDLG FORM

 Action Result

3 Before adding any controls, lock
the toolbox open.

How-to

Open the Toolbox window and click
the push-pin graphic at the top
right of this window.

Note: The order of controls in your toolbox may dif-
fer from those shown here. You can sort this list
alphabetically by right-clicking on the Windows
Forms title and selecting the Sort Items Alphabeti-
cally option.

4 Add an OK button to the base of
the form.

How-to

Drag a Button control from the
toolbox onto the form, and assign
its properties as indicated.

Note: We discuss the meaning of
the DialogResult property later
in the chapter.

5 Add a Cancel button to the form,
and position the two buttons as
shown in the graphic.

Note: There is a bit of black magic involved in posi-
tioning controls. The Format menu in Visual Studio
.NET provides commands for positioning and align-
ing controls. These appear on the Layout toolbar,
and you can experiment with these while creating
this form.

Settings

Property Value

(Name) btnOK

DialogResult OK

Text &OK

Settings

Property Value

(Name) btnCancel

DialogResult Cancel

Text &Cancel
MODAL DIALOG BOXES 243

6 Create the Image and Caption
labels on the form.

How-to

Drag two Label controls onto the
form, and resize and position them
as in the graphic.

Note: For the Visual C++ programmers among us,
the Label class is similar to the CStatic class
found in the MFC library.

7 Create a lblImage label on the
form.

Note: We could also use a read-
only TextBox control here. Labels
and text boxes are discussed in
detail in chapter 9.

8 Create a text box to hold the image
caption.

How-to

Drag a TextBox control onto the
form.

Note: Again for Visual C++ programmers, the
TextBox class is similar to the CEdit class found
in the MFC library.

ADD CONTROLS TO THE CAPTIONDLG FORM (continued)

 Action Result

Settings

Label Property Value

Image Text Image:

TextAlign MiddleRight

Caption Text Caption:

TextAlign MiddleRight

Settings

Property Value

(Name) lblImage

BorderStyle Fixed3D

Text image file name

TextAlign MiddleLeft

Settings

Property Value

(Name) txtCaption

Text image caption
244 CHAPTER 8 DIALOG BOXES

Well, that took a while. Placing controls on a form is not a difficult task, but it can
take some time. This is another reason sketching out your interface up front is a good
idea before you spend too much time in the designer window.

As you might expect, the code generated in the CaptionDlg.cs source file is quite
similar to what we have seen for our MainForm class in previous chapters. As a quick
recap, here is a summary of the code you will find in this file.

• The CaptionDlg class is derived from the Form class.

 public class CaptionDlg : System.Windows.Forms.Form
 {

• Each control is created as a private member of the class. The organization used
by Visual Studio can be a bit confusing, so I have used the power of cut and
paste to rearrange these code excerpts to be a bit more logical. If you recall, the
components member is required by Visual Studio to manage certain controls
on the form.

 private System.Windows.Forms.Button btnOK;
 private System.Windows.Forms.Button btnCancel;
 private System.Windows.Forms.Label label1;
 private System.Windows.Forms.Label label2;
 private System.Windows.Forms.Label lblImage;
 private System.Windows.Forms.TextBox txtCaption;
 /// <summary>
 /// Required designer variable.
 /// </summary>
 private System.ComponentModel.Container components = null;

• The controls are initialized in the InitializeComponent method, which is
called from the CaptionDlg constructor.

 #region Windows Form Designer generated code
 /// <summary>

9 Set the tab order for the controls
on the form.

ADD CONTROLS TO THE CAPTIONDLG FORM (continued)

 Action Result

How-to

a. Click the top-level View menu.
b. Select the Tab Order item.
c. Click the controls in the desired

order, starting with number 0,
as shown in the graphic.

d. Press the Esc key to save the
new tab order.
MODAL DIALOG BOXES 245

 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {

• Inside the InitializeComponent method, the controls are first created using
the new keyword.

 this.btnOK = new System.Windows.Forms.Button ();
 this.btnCancel = new System.Windows.Forms.Button ();
 this.label1 = new System.Windows.Forms.Label ();
 this.label2 = new System.Windows.Forms.Label ();
 this.lblImage = new System.Windows.Forms.Label ();
 this.txtCaption = new System.Windows.Forms.TextBox ();

• Next the nondefault properties are set for each control. This section is quite
long, so the following code is only an excerpt of this portion of the file:

 this.SuspendLayout();
 //
 // btnOK
 //
 this.btnOK.DialogResult = System.Windows.Forms.DialogResult.OK;
 this.btnOK.Location = new System.Drawing.Point(82, 88);
 this.btnOK.Name = "btnOK";
 this.btnOK.TabIndex = 0;
 this.btnOK.Text = "&OK";
 //
 // btnCancel
 //
 this.btnCancel.DialogResult
 = System.Windows.Forms.DialogResult.Cancel;
 this.btnCancel.Location = new System.Drawing.Point(187, 88);
 this.btnCancel.Name = "btnCancel";
 this.btnCancel.TabIndex = 1;
 this.btnCancel.Text = "&Cancel";
 //
 // label1
 //
 this.label1.Location = new System.Drawing.Point(32, 8);
 this.label1.Name = "label1";
 this.label1.Size = new System.Drawing.Size(48, 23);
 this.label1.TabIndex = 2;
 . . .

• Finally, the Form itself is initialized, and the controls are added to the form using
the Form.Controls property.

 //
 // CaptionDlg
 //
246 CHAPTER 8 DIALOG BOXES

 this.AutoScaleBaseSize = new System.Drawing.Size(5, 13);
 this.ClientSize = new System.Drawing.Size(344, 125);
 this.ControlBox = false;
 this.Controls.AddRange(new System.Windows.Forms.Control[] {
 this.txtCaption,
 this.lblImage,
 this.label2,
 this.label1,
 this.btnCancel,
 this.btnOK});
 this.FormBorderStyle
 = System.Windows.Forms.FormBorderStyle.FixedDialog;
 this.MaximizeBox = false;
 this.MinimizeBox = false;
 this.Name = "CaptionDlg";
 this.ShowInTaskbar = false;
 this.StartPosition
 = System.Windows.Forms.FormStartPosition.CenterParent;
 this.Text = "CaptionDlg";
 this.ResumeLayout(false);
 }
 #endregion

Our dialog box is now ready from a display perspective. There is still the matter of
making sure our main form can make use of it to edit a caption for an image. For
this, we will need to add some properties to our CaptionDlg class.

8.3.4 ADDING PROPERTIES TO THE CAPTIONDLG FORM

So far we have modified our data layer to understand photograph captions, and cre-
ated a dialog to use for editing this caption. To integrate this dialog with the rest of
our application, we need to ensure that the MainForm class can set the text to appear
in the Label and TextBox controls of a CaptionDlg instance before the dialog is
displayed, and retrieve the modified TextBox value after the dialog is finished. We
must also ensure that the result of the dialog, whether the user pressed OK or Cancel,
can be detected by the caller.

If we were programming in C++, we might create SetImage, SetCaption, and
GetCaption methods to allow the lblImage and txtCaption values to be mod-
ified. In C#, the property construct provides a slightly more elegant solution.

ADD IMAGELABEL AND CAPTION PROPERTIES TO OUR DIALOG

 Action Result

1 Add an ImageLabel property
to the CaptionDlg.cs source
window.

 public string ImageLabel
 {
MODAL DIALOG BOXES 247

These properties will allow the values in the dialog to be set and retrieved as appropriate.
Our last task is to return the appropriate value based on which button the user selects.

We have already seen how the DialogResult enumeration encapsulates the
possible values returned by the MessageBox.Show method. For Form objects, the
ShowDialog method returns this enumeration for a similar purpose. Here, we would
like this method to return DialogResult.OK if the user clicks the OK button or
presses the Enter key, and DialogResult.Cancel if the user clicks the Cancel but-
ton or presses the Esc key.

The Form class handles the keyboard values, namely the Enter and Esc keys,
directly via the AcceptButton and CancelButton properties. We will look at
returning the proper value from the ShowDialog method in a moment.

2 Implement set for this
property to modify the text for
the lblImage label.

 set { lblImage.Text = value; }
 }

Note: This code relies on the .NET Framework to dis-
play this value in the control and deal with an empty
or null string.

3 Add a Caption property. public string Caption
 {

4 Implement set for this
property to modify the text for
the txtCaption text box.

 set { txtCaption.Text = value; }

5 Implement get to return this
text value.

 get { return txtCaption.Text; }
 }

ADD IMAGELABEL AND CAPTION PROPERTIES TO OUR DIALOG (continued)

 Action Result

ALLOW THE DIALOG TO BE CLOSED VIA THE KEYBOARD

 Action Result

6 From the CaptionDlg.cs
[Design] window, assign
the OK button as the
accept button for the form,
to be activated when the
user presses the Enter key.

How-to

a. Display the properties for
the form.

b. Click the down arrow to
the right of the Accept-
Button entry in the list.

c. Select btnOK.
248 CHAPTER 8 DIALOG BOXES

The Form now invokes the OK or Cancel button when the user presses the Enter or
Esc key, respectively.

We also need to ensure that the ShowDialog method returns the proper result
when one of these buttons is clicked or invoked via the keyboard. The Button class
provides a DialogResult property for this purpose. When this property is set, click-
ing the corresponding button will automatically hide the parent form and return the
selected result.3 We already set these properties to the appropriate values while creating
the buttons, so the InitializeComponent method already defines these settings.
 btnOK.DialogResult = System.Windows.Forms.DialogResult.OK;
 btnCancel.DialogResult = System.Windows.Forms.DialogResult.Cancel;

We will see how the settings interact with the ShowDialog method when we display
the dialog from our MainForm class. This is our next topic.

8.3.5 DISPLAYING THE DIALOG IN THE MAINFORM CLASS

We can now turn to our MainForm class in order to invoke the dialog and edit a
photo’s caption. We do this via our menu bar, of course. Since we are editing an
aspect of the photo, we will place a Caption menu item under the Edit menu. This
section defines our new menu and creates a Click handler for this menu to display
the CaptionDlg form to the user.

We will begin by adding a new menu item to our main form.

7 Similarly, set the
CancelButton property to
the btnCancel button.

These settings assign each property to the selected button
object in the InitializeComponent method of the
CaptionDlg.cs source file.

 this.AcceptButton = this.btnOK;
 this.CancelButton = this.btnCancel;

ALLOW THE DIALOG TO BE CLOSED VIA THE KEYBOARD (continued)

 Action Result

3 The term “hide” here is intentional. Pursuant to our earlier discussion on the equivalence of Close
and Dispose, modal dialog boxes must be disposed of manually to allow their members to be accessed
after ShowDialog returns. As a result, the framework only hides our dialog by calling the Hide meth-
od when the OK or Cancel button is clicked.

ADD A CAPTION ITEM TO THE EDIT MENU

 Action Result

1 Click the Edit menu in the
MainForm.cs [Design]
window.

2 Add a menu separator after
the Remove menu item.
MODAL DIALOG BOXES 249

We set the Enabled property for the menu to false since an image will not be
shown when the application starts.

To enable this menu, we could use the existing OnPaint method of our form.
A simpler approach is to add a Popup event handler for the parent Edit menu, and
enable or disable the Caption menu as required just before it displays.

Our Caption menu is enabled whenever photographs are available and therefore dis-
played, and disabled when the album is empty.

The final task in this section is to implement a Click handler for our menu. This
handler will display our CaptionDlg form and modify the caption as required. This task
continues the previous steps and pulls together all the changes we have made in this section.

3 Add a “&Caption…” menu
under the separator.

ADD A CAPTION ITEM TO THE EDIT MENU (continued)

 Action Result

Settings

Property Value

(Name) menuCaption

Enabled False

Text &Caption...

ENABLE THE CAPTION MENU IN A POPUP HANDLER

 Action Result

4 Add a Popup event handler
for the Edit menu.

How-to

Double-click the Popup
item in the list of events for
the Edit menu.

 public void menuEdit_Popup
 (object sender, EventArgs e)
 {

5 Set the Enabled property
for the Caption menu
based on whether an
image is currently
displayed.

 menuCaption.Enabled = (_album.Count > 0);
 }
250 CHAPTER 8 DIALOG BOXES

If you are familiar with the MFC library, this code will be reminiscent of how you
might use the CDialog class to perform a similar task. One major difference is how
the object is created and destroyed. In MFC you would create the dialog on the stack
and rely on C++ to destroy the object by calling its destructor when the stack is
cleaned up. In C#, of course, the memory for our dialog is cleaned up by the garbage
collector. To ensure that its nonmemory resources are cleaned up immediately, we
create the dialog within a using statement.

The dialog does not appear to the user until the ShowDialog method is called, at
which point the entire application waits until the user clicks the OK or the Cancel button.
 if (dlg.ShowDialog() == DialogResult.OK)
 {
 photo.Caption = dlg.Caption;
 this._bAlbumChanged = true;
 sbpnlFileName.Text = photo.Caption;
 statusBar1.Invalidate();
 }

IMPLEMENT A CLICK HANDLER FOR THE CAPTION MENU

 Action Result

6 Add a Click event handler for the
Caption menu.

 protected void menuCaption_Click
 (object sender, System.EventArgs e)
 {

7 Get the current photograph. Photograph photo = _album.CurrentPhoto;
 if (photo == null)
 return; // no current photo

Note: Since the user can only click the Caption
menu if an image is displayed, the value of photo
should never be null. It never hurts to be safe,
though.

8 Use the CaptionDlg object to
modify the caption.

 using (CaptionDlg dlg = new CaptionDlg())
 {

Note: Congratulations, you have just created a
Form. The using statement will clean up the dia-
log’s resources when we are finished.

9 Initialize the dialog with the settings
from the current Photograph.

 dlg.ImageLabel = photo.FileName;
 dlg.Caption = photo.Caption;

10 Display the dialog. if (dlg.ShowDialog() == DialogResult.OK)
 {

11 If the user clicks OK, modify the
Photograph object to use the new
settings.

 photo.Caption = dlg.Caption;
 this._bAlbumChanged = true;

12 Also update the caption text in the
status bar as well.

 sbpnlFileName.Text = photo.Caption;
 statusBar1.Invalidate();
 }
 }
 }
MODAL DIALOG BOXES 251

If the user clicks the OK button, DialogResult.OK is returned and any new cap-
tion he or she entered is stored in the photograph and propagated to the status bar.
Note how we set _bAlbumChanged to true to indicate the album has changed. If
the user clicks the Cancel button, DialogResult.Cancel is returned and the pho-
tograph’s caption will not be altered.

Our dialog is now complete. It is displayed via the Caption menu and initialized
with the current image file and caption settings. The user can modify the caption and
click OK to save it. The new caption appears on the status bar and is stored in the
album file when the album is saved.

We will see more modal dialogs as we continue our trip through Windows Forms.
Before we end the chapter, let’s also discuss modeless dialogs.

8.4 MODELESS DIALOGS

In the previous section we created a dialog box to allow the
user to edit the caption for a photograph. Modal dialog boxes
tend to be in and out. You open it, you do something, you
close it. Modeless dialog boxes tend to show some informa-
tion relevant to the program. In a stock analysis program, for
example, you might have a stock ticker window that runs
independently of the program. This would be a modeless, or
nonmodal, dialog and would update continuously with stock
information, perhaps related to a displayed portfolio or to
what the user is viewing in the main application window.

In this section we will create a modeless dialog to display
the location of the mouse pointer within the image window,
and the color of the image at this location. This information
will update continuously as the location of the mouse pointer
changes, using the dialog in figure 8.6. As you can see in the
figure, the pixel position of the mouse pointer within the
image is shown as an X and Y coordinate, along with the
color in RGB or red, blue, and green, coordinates. This par-
ticular figure indicates that the mouse pointer is over the image at pixel (100, 100) of
the image, and the current color at that pixel has an RGB value of (203, 183, 185).

As for our caption dialog, we will need to make sure our three layers can support
this dialog.

• Data layer. The position and color of the current pixel is based on the loca-
tion of the mouse pointer within the displayed bitmap. Since this information
is already available, no changes are necessary here.

• Presentation layer. As before, we will need a Form-based class to display the
dialog. Since we are showing information about the current pixel, we will call
this class PixelDlg and store it in the file PixelDlg.cs.

Figure 8.6

Our modeless dialog

will show the position

in image coordinates

and RGB color of the

pixel indicated by the

current location of the

cursor.
252 CHAPTER 8 DIALOG BOXES

• Application layer. Our application will again tie the data and presentation
together. To do this, we will create a new menu item under the View menu
called “Pixel Data.”

Since no changes are required to the data layer in this case, we will begin with the pre-
sentation layer

8.4.1 CREATING THE PIXELDLG FORM

The creation of a dialog is much the same whether it is a modal or modeless dialog.
First you create a new Form class for the dialog, update the property settings, lay out
the controls on the form, and finally add code to set or process the controls as
required.

So let’s begin by creating the dialog.

Set the version number of the MyPhotos application to 8.4.

CREATE THE PIXELDLG CLASS

 Action Result

1 Add a new form to the MyPhotos project
with the name “PixelDlg.”

The new class is added to the MyPhotos
project, and a design window for the class is
displayed.

2 Set the properties for the form as indicated.

Note: The border style FixedSingle used
here is similar to FixedDialog, except that
the control box appears on the form. Since
this will be a modeless dialog, it also seems
appropriate to use the default setting of
true for the ShowInTaskbar property.

Settings

Property Value

FormBorderStyle FixedSingle

MaximizeBox false

MinimizeBox false

Size 150, 230

Text Pixel Values
MODELESS DIALOGS 253

3 Create and arrange the five Label objects on
the left side of the dialog.

Note: You can set the TextAlign property
for all controls at once using the following
technique:

4 Create and arrange the five Label objects on
the right side of the dialog.

CREATE THE PIXELDLG CLASS (continued)

 Action Result

How-to

a. Drag Label objects from the Toolbox
onto the form. Note that you can repeat-
edly double-click the Label entry in the
Toolbox to add successive Label con-
trols to the form.

b. Set the TextAlign properties for these
labels to TopRight.

c. Set the Text property for these labels to
X, Y, Red, Green, and Blue, respectively.

a. Using the mouse, click the form and drag
a box around all five controls. The Proper-
ties window now displays the common
properties for the five selected controls.

b. Set the TextAlign property to the
desired value.

How-to

a. Place the new Label objects on the form.
b. Set the BorderStyle property for each

label to Fixed3D.
c. Set the (Name) property to lblXVal,
lblYVal, lblRedVal, lblGreenVal, and
lblBlueVal, respectively.
254 CHAPTER 8 DIALOG BOXES

The code generated here is very similar to the code we saw earlier in this chapter for
the CaptionDlg class, so we will not look at this code in detail. Instead, we will
move on to the internal class members required by this new form.

8.4.2 ADDING CLASS MEMBERS TO PIXELDLG

There really isn’t a lot of work to do here. We need to allow our main application to
modify the display values, and make sure the dialog exits when the Close button is
clicked. We will use properties for the display values, and handle the Click event to
close the form.

You may recall that we did not handle any events for our CaptionDlg form.
Since this was a modal dialog, we took advantage of the DialogResult property in
the Button class. When the corresponding button is clicked and a modal dialog is dis-
played via the ShowDialog method, this property closes the form and returns the
assigned result to the caller. Here, such a scheme is not possible since we are creating
a modeless dialog. Thus our need for a Click event handler.

The steps here are similar to what we have done before, so let’s get to it.

5 Add a Button object to the base of the form
and set its properties.

CREATE THE PIXELDLG CLASS (continued)

 Action Result

Settings

Property Value

(Name) btnClose

Text &Close

ADD THE REQUIRED PIXELDLG CLASS MEMBERS

 Action Result

1 In the PixelDlg.cs [Design]
window, add a Click handler
for the Close button.

 protected void btnClose_Click
 (object sender, System.EventArgs e)
 {

2 Implement this method to
close the form.

 Close();
 }

3 Add an XVal property to set
the value for the X label.

 public int XVal
 {
 set { lblXVal.Text = value.ToString(); }
 }
MODELESS DIALOGS 255

This ensures our dialog can be closed, and provides the properties necessary to update
the labels from our main form. Note how the Form.Close method is used to close
the form, just like in the Exit menu handler for our main application window. The
.NET framework keeps track of which form is the top-level application window, so
the Close method here closes just the PixelDlg window and not the entire applica-
tion. As you’ll recall, this method disposes of any nonmemory resources allocated by
the form as well.

One other change we should make is to allow the standard keyboard shortcuts to
close the dialog. Since there is a single button on our form, we will support both the
Enter and Esc keys for this purpose. Continuing the previous steps:

Our PixelDlg form is ready to go. Next we need to invoke this form from the main
window.

8.4.3 DISPLAYING THE MODELESS PIXELDLG FORM

For our CaptionDlg form, we displayed it as a modal dialog box using the
Form.ShowDialog method. This method displays the form and waits until it exits,

4 Add a YVal property to set the
value for the Y label.

 public int YVal
 {
 set { lblYVal.Text = value.ToString(); }
 }

5 Add RedVal, GreenVal, and
BlueVal properties for their
respective labels.

 public int RedVal
 {
 set { lblRedVal.Text = value.ToString(); }
 }

 public int GreenVal
 {
 set { lblGreenVal.Text = value.ToString(); }
 }

 public int BlueVal
 {
 set { lblBlueVal.Text = value.ToString(); }
 }

ADD THE REQUIRED PIXELDLG CLASS MEMBERS (continued)

 Action Result

SUPPORT KEYBOARD SHORTCUTS TO CLOSE PIXELDLG FORM

 Action Result

6 In the PixelDlg.cs [Design]
window, display the properties for
the PixelDlg form.

7 Set both the AcceptButton
property and the CancelButton
property to btnClose.

The properties are set in the InitializeComponent
method of the PixelDlg.cs source file.
256 CHAPTER 8 DIALOG BOXES

preventing the parent form from accepting any external input until this occurs. For a
modeless dialog a different method is required that will allow the parent form to con-
tinue execution.

The Form.Show method is used for this purpose. The Show method is inherited
from the Control class and sets a control’s Visible property to true. For a Form,
this means it displays in a modeless fashion. The Show method is a void method since
no immediate result is returned.

As for our modal dialog, we will display the form from an item on the menu bar.

Before we use this to display the dialog, let’s ponder what support we need for our
new dialog. Since this is a modeless dialog, it will display while the main form is dis-
played. So the user may change which photo is displayed, or modify the display mode
used. Such changes will require that we modify what is displayed in the dialog.

To facilitate this, we will track whether the dialog is currently displayed, and
which photo is currently represented by the dialog. Let’s continue the previous steps
and add these class members.

ADD PIXEL DATA MENU TO INVOKE THE PIXELDLG FORM

 Action Result

1 Display the View menu in the
MainForm.cs [Design] window.

2 Add a separator at the end of the menu.

3 Add a Pixel Data menu item.

Settings

Property Value

(Name) menuPixelData

Text Pi&xel Data…

ADD CLASS MEMBERS TO TRACK PIXELDLG SETTINGS

 Action Result

4 In the MainForm.cs
window, add a private
member to hold the
PixelDlg form object.

 private PixelDlg _dlgPixel = null;

5 Also add an integer to hold
the current photo
represented in this form.

 private int _nPixelDlgIndex;
MODELESS DIALOGS 257

These members will be used to update the dialog as the main window changes. In
particular, we can use these members to create the dialog in the menu handler.

The code to create and display the dialog should seem familiar, but what about that
code in step 8 of our task. Let’s talk about it.

The first line in step 8 simply assigns the current photo index to the
_nPixelDlgIndex variable. No problem there.
 _nPixelDlgIndex = _album.CurrentIndex;

The next line converts the current screen coordinates of the mouse pointer to its coor-
dinates within in the main Panel object. This uses the static Form.MousePosition
property to retrieve the screen coordinates of the mouse pointer as a Point instance.
This point contains the current X and Y position of the pointer on the screen in pixels.

The location on the screen is not what we need. We need to know the location
of the mouse pointer within the main Panel object. That is, in the pnlPhoto con-
trol. This can then be used to calculate what part of the image is at that location.

The PointToClient method does this conversion. It accepts a point in screen
coordinates and returns the same point in client coordinates. If the given point hap-
pens to be outside the control, the returned Point will contain values outside the dis-
play area of the control.
 Point p = pnlPhoto.PointToClient(Form.MousePosition);

The final line calls an as-yet-undefined UpdatePixelData method. We will write
this method in the next section to accept the current position of the mouse pointer in
Panel coordinates and fill in the appropriate values of the PixelDlg form.
 UpdatePixelData(p.X, p.Y);

IMPLEMENT MENUPIXELDATA_CLICK EVENT HANDLER

 Action Result

6 Add a click handler for the
Pixel Data menu.

 protected void menuPixelData_Click
 (object sender, System.EventArgs e)
 {

7 If the dialog has not been
created or the existing
dialog has been disposed,
create a new dialog.

 if (_dlgPixel == null || _dlgPixel.IsDisposed)
 {
 _dlgPixel = new PixelDlg();
 _dlgPixel.Owner = this;
 }

Note: The Owner property used here ensures that the
PixelDlg form is minimized and maximized along with
the parent form.

8 Assign the initial data to
display in the dialog.

 _nPixelDlgIndex = _album.CurrentPosition;
 Point p = pnlPhoto.PointToClient(
 Form.MousePosition);
 UpdatePixelData(p.X, p.Y);

9 Finally, display the dialog. _dlgPixel.Show();
 }
258 CHAPTER 8 DIALOG BOXES

8.4.4 UPDATING THE PIXELDLG FORM

So far we have created and displayed our form as a modeless dialog. In this section we
will implement the code to update this dialog based on the current location of the
mouse pointer in the pnlPhoto control. We will account for the fact that a photo
might not be displayed, and that the mouse pointer may be located outside of the panel.

This code for UpdatePixelData is a bit long, so let’s get to it.

IMPLEMENT UPDATEPIXELDATA METHOD

Action Result

1 In the MainForm.cs window, add
an UpdatePixelData method to
the end of the file.

 protected void UpdatePixelData
 (int xPos, int yPos)
 {

2 Return immediately if the
PixelDlg does not exist or is not
visible.

 if (_dlgPixel == null || !_dlgPixel.Visible)
 return;

3 Get the currently display photo. Photograph photo = _album.CurrentPhoto;

4 Display all zeros if a Photograph
is not displayed or the given
coordinates are outside the
display area.

Note: The question mark ‘?’ syn-
tax here works the same as in
C++.

 Rectangle r = pnlPhoto.ClientRectangle;
 if (photo == null
 || !(r.Contains(xPos,yPos)))
 {
 _dlgPixel.Text = ((photo == null)
 ? " " : photo.Caption);
 _dlgPixel.XVal = 0;
 _dlgPixel.YVal = 0;
 _dlgPixel.RedVal = 0;
 _dlgPixel.GreenVal = 0;
 _dlgPixel.BlueVal = 0;
 _dlgPixel.Update();
 return;
 }

5 Display the caption for the current
image in the title bar of our dialog.

 _dlgPixel.Text = photo.Caption;

6 Use a switch statement to
determine the current display
mode.

Note: The calculation here
depends on how the image is
displayed, so a switch state-
ment is required.

 // Calc x and y position in the photo
 int x = 0, y = 0;
 Bitmap bmp = photo.Image;
 switch (this._selectedMode)
 {

7 Implement the Actual Size display
mode logic.

Note: In this mode, the display
area and image area are equiva-
lent.

 case DisplayMode.ActualSize:
 // Panel coords equal image coords
 x = xPos;
 y = yPos;
 break;
MODELESS DIALOGS 259

And there you have it. This method updates the PixelDlg form each time it is
called. Since the explanation of each step is embedded in the table, we will not discuss
this code further.

Our final task is to make sure this method is called each time the mouse pointer
moves or the displayed photograph changes.

8.4.5 UPDATING PIXELDLG AS THE MOUSE MOVES

In the previous section we waded through the logic necessary to convert the current
mouse pointer location in panel coordinates to the corresponding image coordinates
to update the PixelDlg form correctly. Next, we need to ensure that UpdatePix-
elData is called whenever appropriate.

8 Implement the Stretch to Fit
display mode logic.

Note: In this mode, the image
fills the entire display area, so we
convert from display position to
image location.

 case DisplayMode.StretchToFit:
 // Translate panel coords to image
 x = xPos * bmp.Width / r.Width;
 y = yPos * bmp.Height / r.Height;
 break;

9 Implement the Scale to Fit display
mode logic.

 case DisplayMode.ScaleToFit:
 // Determine image rectangle.
 Rectangle r2 = photo.ScaleToFit(r);

 if (!r2.Contains(xPos, yPos))
 return; // Mouse outside image

 // Translate r2 coords to image
 x = (xPos - r2.Left)
 * bmp.Width / r2.Width;
 y = (yPos - r2.Top)
 * bmp.Height / r2.Height;
 break;
 }

10 Retrieve the color of the pixel at
the calculated image location.

How-to

Use the Bitmap.GetPixel
method.

 // Extract color at calculated location
 Color c = bmp.GetPixel(x, y);

11 Finally, update the pixel dialog
with the appropriate values.

How-to

For the RGB color values, use the
R, G, and B properties in the
Color structure.

 // Update PixelDlg with new values
 _dlgPixel.XVal = x;
 _dlgPixel.YVal = y;
 _dlgPixel.RedVal = c.R;
 _dlgPixel.GreenVal = c.G;
 _dlgPixel.BlueVal = c.B;
 _dlgPixel.Update();
 }

IMPLEMENT UPDATEPIXELDATA METHOD (continued)

Action Result

How-to

a. Calculate the rectangle contain-
ing the image using the
ScaleToFit method in the
Photograph class.

b. If the mouse pointer is outside
this rectangle, it is not in the
image.

c. Otherwise, convert this rectan-
gle into image coordinates.
260 CHAPTER 8 DIALOG BOXES

The most obvious time is whenever the location of the mouse pointer changes.
There is a MouseMove event inherited from the Control class for this purpose. The
protected OnMouseMove method raises this event, so we could override OnMouse-
Move in our Form class. In this case, we would have to convert from Form coordinates
to Panel coordinates, so handling the event for the Panel class is probably a better
choice. More importantly, by handling mouse pointer movements in the Panel
object directly, our code is only called when the movement occurs inside the panel.

The MouseMove event handler receives a MouseEventArgs parameter containing,
among other event data, an X and Y property defining the current coordinates of the
mouse pointer in the control’s coordinates. We will discuss this and other mouse
events in chapter 12, so we will not go into more detail on this handler here.

The one other instance when the pixel values must be updated is when the dis-
played image changes. The easiest place to track this is when the Panel is painted in
the pnlPhoto_Paint method. Continuing the previous steps:

CALL THE UPDATEPIXELDATA METHOD WHEN THE MOUSE MOVES

 ACTION RESULT

1 In the MainForm.cs
[Design] window, add a
MouseMove event handler
for the pnlPhoto object.

 protected void pnlPhoto_MouseMove
 (object sender,
 System.Windows.Forms.MouseEventArgs e)
 {

2 Call the UpdatePixelData
method with the current
mouse pointer coordinates.

 UpdatePixelData(e.X, e.Y);
 }

CALL UPDATEPIXELDATA WHEN CURRENT PHOTO CHANGES

 Action Result

3 Locate the pnlPhoto_Paint
method in the MainForm.cs
source file.

 protected void pnlPhoto_Paint(. . .)
 {

4 Call UpdatePixelData if a new
photo is displayed.

 // Update PixelDlg if photo has changed
 if ((_dlgPixel != null) && (_nPixelDlgIndex
 != _album.CurrentPosition))
 {
 _nPixelDlgIndex = _album.CurrentPosition;
 Point p = pnlPhoto.PointToClient(
 Form.MousePosition);
 UpdatePixelData(p.X, p.Y);
 }

 // Paint the current photo, if any
 if (_album.Count > 0)
 {
 . . .
 }
 }
MODELESS DIALOGS 261

This code uses the same Form.MousePosition method and nonstatic Panel.Point-
ToClient we saw earlier in this section.

Our modeless dialog is finished. Compile your code, show your friends, and oth-
erwise verify that the dialog works properly. Note how both the form and the dialog
can be manipulated at the same time, and how the dialog behaves when you display
the next or previous image in an album, with the mouse cursor both inside and outside
the panel control.

TRY IT! One nice change you could make here is to modify the cursor used for the
Panel control to use a small cross-hair rather than the normal arrow. Do
this by changing the Cursor property for the Panel class to use the
Cross cursor.

Another interesting change is to allow the user to hide the PixelDlg
window using the main application’s menu bars. One way to do this is to
modify the Text displayed for the menuPixelData menu to be “Hide
Pi&xel Data” whenever the dialog is displayed and back to “Pi&xel Data”
whenever the dialog is hidden or closed. Set the appropriate menu text in
the menuView_Popup handler, and use the Hide method or the Visi-
ble property to hide the dialog.

Before we move on to the next topic, let’s give a quick summary of what we covered
in this chapter.

8.5 RECAP

In this chapter we looked at dialog boxes. We began with simple dialogs using the
MessageBox class, and then created a custom modal dialog based on the Form class,
followed by a custom modeless dialog. Along the way we discussed the difference
between modal and modeless dialog boxes, caught potential exceptions when opening
and saving our album files, examined the relationship between the Close and Dis-
pose methods, saw how to intercept a closing window using the OnClosing
method, and learned how to track the mouse pointer within a panel control.

We are not done with dialog boxes. Since our main form is getting rather full,
future topics will require dialogs in order to continue this book and expand the capa-
bilities of our program. In particular, the next chapter will create a dialog for both our
current album and the individual photos in the album as a way to introduce specific
Windows Forms controls in more detail.
262 CHAPTER 8 DIALOG BOXES

C H A P T E R 9

Basic controls

9.1 Form inheritance 264
9.2 Labels and text boxes 271
9.3 Button classes 290
9.4 Recap 313
The .NET Framework provides a number of controls for use in Windows Forms
applications. This chapter will introduce the most basic of these, namely the Label,
TextBox, Button, RadioButton, and CheckBox controls. These controls date
back to the original version of Windows,1 and before that to other graphical environ-
ments in other operating systems, so they must be somewhat useful. In practice,
labels, text boxes, and the various button types are critical in almost any Windows
application, so it is worth spending a little time to see how they are added to and uti-
lized by applications.

As usual, we will discuss the classes for these controls in the context of our
MyPhotos application. This will require that we do some work on our PhotoAlbum
and Photograph classes. Our controls are not very useful unless they can be inte-
grated into an application, so these changes should illustrate how similar constructs
can be used in your own applications. In addition, such changes present opportunities
to discuss additional concepts such as the .NET DateTime structure and the C# del-
egate keyword.

1 List boxes and combo boxes were part of this version as well, but we will leave these controls to the
next chapter.
263

Specific Windows Forms concepts we will cover in this chapter include:
• Form inheritance: what is it and how do you do it?
• Basic Windows Forms controls: the Label, TextBox, Button, RadioBut-
ton, and CheckBox classes.

• Container controls such as Panel and GroupBox objects.

In addition, we will also look at the following related concepts:
• The C# delegate keyword.
• The System.DateTime structure.
• Keyboard and focus events for controls.
• Using the Control.Tag property.

To enable our discussion of all this and more, we will create two modal dialog boxes
for our form, shown in the first section as figure 9.1. These will represent various set-
tings the user can modify on an individual photograph or entire album. While we
will discuss each control generally, these two dialogs will serve to demonstrate the cre-
ation and usage of each control as we move through the chapter.

We begin our discussion with form inheritance.

9.1 FORM INHERITANCE

The concept of object inheritance is often explained with the canonical Employee
class derived from a Person class. The derived class, in this case Employee, inherits
the properties and functionality found in the parent class, e.g., Person. For example,
the Person class might provide properties and methods for tracking the address of a
person. The Employee class inherits these members and supports this functionality
without the addition of any new code.2

The .NET Framework allows a similar behavior for Forms. You can create a form,
and then reuse that form in the creation of additional forms. The parent form defines
various members and controls that child forms will inherit. Controls on the form
define their access level, such as private, protected, or public, just like members
of any other class. A child form can modify these controls to the extent of their
assigned access level.

For our application, we would like to add the two dialogs shown in figure 9.1.
The first is for editing the properties of a specific photograph, and the second for edit-
ing the properties of an album. While the contents of these two windows are entirely
different, they are both modal dialog boxes and share a common set of buttons at the
base of the form and a panel at the top.

2 The overview of C# in appendix B provides additional information on inheritance.
264 CHAPTER 9 BASIC CONTROLS

We could just be very careful here, and ensure that the two dialogs appear and behave
in a similar manner. But who wants to be careful? Instead, this is a great chance to use
a common Form for both windows to see how form inheritance works.

In this section we will create the base window and a derived window for use in
subsequent sections. Since our new windows will be specific to the PhotoAlbum and
Photograph classes, we will create these objects in the MyPhotoAlbum library.

9.1.1 CREATING A BASE FORM

A base form is created just like any other form object. Since our base form does not
use any settings we haven’t seen in earlier chapters, let’s whip through the creation of
this new window. Before we do, you may recall that we modified the namespace for
the Photograph and PhotoAlbum classes in chapter 5 to include the Manning pre-
fix. Rather than continue to do this by hand, we can modify the project properties so
that this namespace is used by default.

Set the version number of the MyPhotoAlbum to 9.1.

Figure 9.1 These dialogs are created using only the controls discussed in this chapter.

MODIFY THE NAMESPACE FOR FILES IN THE MYPHOTOALBUM PROJECT

 Action Result

1 Set the default namespace for the
MyPhotoAlbum project to
Manning.MyPhotoAlbum.

This ensures that all future classes
created for this project will use the
Manning.MyPhotoAlbum namespace.

How-to

a. Right-click the MyPhotoAlbum project in the
Solution Explorer window.

b. Select Properties.
c. In the MyPhotoAlbum Property Pages window,

make sure the General settings are shown.
d. Modify the Default Namespace setting to be

“Manning.MyPhotoAlbum.”
FORM INHERITANCE 265

This ensures that any new objects added to the project will be created with this
namespace. With this change in place, we can create our base form.

Here we will just create the form and its controls. Later in this section we will cre-
ate some infrastructure that will be useful in our derived forms later in the chapter.

CREATE THE BASEEDITDLG FORM

 Action Result

2 Add a new Form to the MyPhotoAlbum
project called “BaseEditDlg.”

The new class appears in the Solution Explorer
window and the BaseEditDlg.cs [Design]
window is displayed.

3 Add the three buttons to the form. Assign
their settings and position as shown.

4 Add a Panel to the top of the form.

Note: The Modifiers property used here
establishes the accessibility level of the
control. The three buttons use the default
setting of Private. The Protected setting
creates a protected control so that it can
be modified in subclasses.

Settings

Button Property Value

OK (Name) btnOk

DialogResult OK

Text &OK

Reset (Name) btnReset

Text &Reset

Cancel (Name) btnCancel

DialogResult Cancel

Text &Cancel

Settings

Property Value

BorderStyle FixedSingle

Modifiers Protected
266 CHAPTER 9 BASIC CONTROLS

The code generated here is similar to code we have seen for other forms in our appli-
cation. The one exception is the panel1 control. The three buttons are defined as
private controls as have all the controls we created in earlier chapters. The panel1
object is a protected control. As we shall see, this will allow our child forms to
modify the settings of this panel, and in particular change its size to accommodate the
desired collection of controls.
 namespace Manning.MyPhotoAlbum
 {
 /// <summary>
 /// Base form window.
 /// </summary>
 public class BaseEditDlg : System.Windows.Forms.Form
 {
 private System.Windows.Forms.Button btnOk;
 private System.Windows.Forms.Button btnReset;
 private System.Windows.Forms.Button btnCancel;
 protected System.Windows.Forms.Panel panel1;

The cause of this change is the Modifiers property setting. This is not an actual
property in the C# sense, and does not appear in the documentation for the Button
class. This setting appears in the Properties window within Visual Studio to allow the
access level for a control to be set. There are five possible values of this setting, as
shown in the following table:

5 Set the properties for the BaseEditDlg
form to make it a dialog box.

CREATE THE BASEEDITDLG FORM (continued)

 Action Result

Settings

Property Value

AcceptButton btnOk

CancelButton btnCancel

FormBorderStyle FixedDialog

MaximizeBox False

MinimizeBox False

ShowInTaskBar False

Size 300, 320
FORM INHERITANCE 267

Based on the table, we could have used either the Protected or Protected Inter-
nal setting here. Since there is no reason to prevent derived forms in external assem-
blies from modifying the Panel control, the Protected value will work just fine.

Before we move on, notice that our subclasses will not be able to add Click han-
dlers for our private buttons. The OK and Cancel buttons have assigned actions due
to their DialogResult setting. When either button is clicked, the dialog is deacti-
vated and the appropriate value returned. We will require a way to save our modified
settings when the OK button is clicked, and we need a way to perform an action when
the Reset button is clicked.

As a solution, let’s add two protected methods that child classes can implement
to handle these situations. We will create a SaveSettings method to store the mod-
ified values, and a ResetSettings method to handle a click of the Reset button.
This continues our previous steps.

Possible values for the Modifiers property

Value C# equivalent Comments for Form inheritance

Public public Any class, regardless of where and how it is defined, can modify
the control. This is not typically used, since you do not normally
want any object to modify the location, size, or other internal
control settings of your form.

Protected protected Any subclass of the form, regardless of where it is defined, can
modify the control.

Protected
Internal

protected
internal

Any subclass of the form that is defined in the same assembly
can modify the control.

Internal internal Any class in the same assembly, regardless of how it is defined,
can modify the control. This is safer than public access, since
you typically have control over the classes common to an
assembly.

Private private No subclass can modify the control. This is the default setting.

CREATE OVERRIDABLE METHODS FOR OK AND RESET BUTTONS

 Action Result

6 Create a protected virtual method for
resetting the form.

 protected virtual void ResetSettings()
 {
 // Subclasses override to reset form
 }

7 Add a Click handler for the Reset
button to invoke this new method.

 private void btnReset_Click
 (object sender, System.EventArgs e)
 {
 ResetSettings();
 }

8 Create a protected virtual method for
saving the dialog settings when a
form is deactivated. This should return
whether the save was successful.

 protected virtual bool SaveSettings()
 {
 // Subclasses override to save form
 return true;
 }
268 CHAPTER 9 BASIC CONTROLS

The ResetSettings and SaveSettings methods are now available to our
derived forms. Compile your code to make the base form available for inheritance.

Next, let’s create a derived form for editing a photograph’s settings. The Base-
EditDlg form will act as the parent of this new form.

9.1.2 Creating a derived form

A new form is derived from an existing form the same way that any new class is derived
from an existing class. The base form is defined as the parent class of the new form.
 public class PhotoEditDlg : Manning.MyPhotoAlbum.BaseEditDlg
 {
 // class definition goes here
 }

In our case, we will create a derived form and leave the addition of new members for
the subsequent sections. Visual Studio supports the creation of inherited forms
graphically via an Add Inherited Form… menu in the Project menu, or the context
menu of the project itself. This is detailed in the following steps.

9 Override the OnClosing method for
the form to invoke this new method
when the user clicks the OK button.

Note: This method is discussed in
detail in chapter 8. Note how the set-
tings are saved only if a subclass has
not cancelled the operation.

 protected override void OnClosing
 (CancelEventArgs e)
 {
 if (!e.Cancel && (this.DialogResult
 == DialogResult.OK))
 {
 e.Cancel = ! SaveSettings();
 }

 base.OnClosing(e);
 }

CREATE OVERRIDABLE METHODS FOR OK AND RESET BUTTONS (continued)

 Action Result

DERIVE THE PHOTOEDITDLG FORM FROM THE BASEEDITDLG FORM

 Action Result

1 Open the Add New Item dialog to
add a new PhotoEditDlg form
inherited from the existing
BaseEditDlg form.

The Add New Item dialog displays with the Inherited
Form template selected by default.

How-to

a. In the Solution Explorer window,
right-click on the MyPhotoAlbum
project.

b. Select Add Inherited Form…
from the Add menu.

c. Enter the name “PhotoEditDlg.”
FORM INHERITANCE 269

View the code generated in the PhotoEditDlg.cs file, an excerpt of which follows.
You will note that the new class is based on the BaseEditDlg class, and does not yet
contain any controls of its own.
 namespace Manning.MyPhotoAlbum
 {
 public class PhotoEditDlg : Manning.MyPhotoAlbum.BaseEditDlg
 {
 private System.ComponentModel.IContainer components = null;

 . . .

 #region Designer generated code

2 Click the Open button to display the
Inheritance Picker dialog.

This window is shown in the next step.

3 Define BasedEditDlg as the base
class for the new form.

Note: If you get an error here, it
likely means that your BaseEdit-
Dlg form was never compiled.
Visual Studio looks for inheritable
forms in the existing assembly, so
you must compile before you can
inherit.

4 Click the OK button in the
Inheritance Picker dialog to create
the class file and add it to the
MyPhotoAlbum project.

Settings

Set the Text property to
“PhotoEditDlg” to distinguish this
window from our base form.

A new file PhotoEditDlg.cs is added to the project and
the PhotoEditDlg.cs [Design] window is displayed.

Note: Notice the small graphic on the existing
controls here. This graphic indicates that these
controls are inherited by the form.

DERIVE THE PHOTOEDITDLG FORM FROM THE BASEEDITDLG FORM (continued)

 Action Result
270 CHAPTER 9 BASIC CONTROLS

 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 components = new System.ComponentModel.Container();
 . . .
 }
 #endregion
 . . .
 }
 }

Take a look at the properties for the PhotoEditDlg object. The form has inherited
all of the settings from our BaseEditDlg form to make it into a dialog box. The but-
tons and panel from the base class appear on the form as well, and you can examine
the properties for the individual buttons. Note in particular that the OK, Reset, and
Cancel buttons are private and cannot be modified, while the protected Panel can.

We will leave the topic of inherited forms for now and move on to specific con-
trols for our PhotoEditDlg form. Before we do, it is worth realizing how powerful
this feature really is. For example, a standard form for a database table could be cre-
ated. Applications that use this table can customize the form for their specific needs,
or libraries that extend the existing database can build a new form based on the orig-
inal. In many cases, changes to the original database can be encoded in the base class
in such a way that no changes are required in the inherited forms.

When you need a set of forms in your application based on a common concept
or theme, consider creating a base form from which other forms can be derived.

9.2 LABELS AND TEXT BOXES

In our MyPhotos application, we have already used the Label and TextBox classes
while creating dialog boxes in chapter 8. Here we will look at these classes in a bit
more detail as we place them on our PhotoEditDlg form.

To do this, we need to come up with some reasonable properties in our Photo-
graph class that will facilitate the creation of these and other controls. The following
features will serve our purposes rather well:

• Caption—a caption for the photo. We created this property in chapter 8.
• Date—the date the photograph was taken. We will present this as a string on

our form here, and convert our dialog to use the DateTimePicker control in
chapter 11.

• Photographer—the person who took the photo. For now, we will treat this set-
ting as a string. Later in the book this setting will be taken from a list of possi-
ble photographers.

• Notes—random notes or other comments about the photograph.
LABELS AND TEXT BOXES 271

A dialog to support these new settings is shown in figure 9.2. This dialog will be con-
structed and discussed over the next few sections. In this section we will create the
infrastructure required in the Photograph class to support these new settings, add
the required controls to the dialog, and invoke the dialog from the main form of our
MyPhotos class. We also look at some of the settings and events provided by the
TextBox class for modifying the behavior or appearance of the control.

We will start with the changes required in our Photograph class.

9.2.1 EXPANDING THE PHOTOGRAPH CLASS

In order to support the date, photograph, and notes settings in our photos, we need
to make a few changes. This section adds these features to our Photograph object,
as well as the ability to read and write photographs, and update the Save and Open
methods in our PhotoAlbum class.

We begin with some variables to hold these values and properties to provide exter-
nal access.

Set the version number of the MyPhotoAlbum library to 9.2.

Figure 9.2

Our Photo Properties dialog adds

Label and Textbox controls to our

inherited form.

ADD NEW MEMBERS TO THE PHOTOGRAPH CLASS

 Action Result

1 In the Photograph.cs file, add
some variables to hold the new
settings.

Note: The DateTime structure
used here represents a spe-
cific day and time.

 . . .
 private string _caption;
 private DateTime _dateTaken;
 private string _photographer;
 private string _notes;
272 CHAPTER 9 BASIC CONTROLS

This code is similar to member fields and properties we have seen before, except for
the DateTime structure. This structure represents an instant in time measured in
100 nanosecond units since 12:00:00 AM on January 1, 0001, with a maximum
value of 11:59:59 PM on December 31, 9999. Each nanosecond unit of time is called
a tick. Members of this structure allow you to add, subtract, format, and otherwise
manipulate date and time values. A related TimeSpan structure represents an interval
of time. You can look up these structures in the .NET Framework documentation for
more information on these types.

With our fields and properties defined, we next need to store and retrieve these
values in the Save and Open methods of our PhotoAlbum class. Since the Photo-
graph class is becoming a bit more complex, we will create Read and Write methods
in this class to encapsulate the logic required. The Write method will store a photo
into an open StreamWriter object, while various Read methods will accept an open
StreamReader and return a Photograph object.

In our PhotoAlbum class, we will use these new methods to save and load a new
version of our album file. It will be version 92, to match the current section of the book.

Let's continue our previous steps and create Read and Write methods in our
Photograph class.

2 Initialize these new settings in
the constructor.

 public Photograph(string fileName)
 {
 _fileName = fileName;
 _bitmap = null;
 _caption = Path.
 GetFileNameWithoutExtension(fileName);
 _dateTaken = DateTime.Now;
 _photographer = "unknown";
 _notes = "no notes provided";
 }

3 Add properties to set and
retrieve these values.

Note: A Caption property was
added in chapter 8, and is not
shown here.

 public DateTime DateTaken
 {
 get { return _dateTaken; }
 set { _dateTaken = value; }
 }

 public string Photographer
 {
 get { return _photographer; }
 set { _photographer = value; }
 }

 public string Notes
 {
 get { return _notes; }
 set { _notes = value; }
 }

ADD NEW MEMBERS TO THE PHOTOGRAPH CLASS (continued)

 Action Result
LABELS AND TEXT BOXES 273

ADD READ AND WRITE METHODS TO THE PHOTOGRAPH CLASS

 Action Result

4 Create a public Write method in the
Photograph.cs file to store a
Photograph into a given file.

 public void Write(StreamWriter sw)
 {
 // First write the file and caption.
 sw.WriteLine(this.FileName);
 sw.WriteLine(this.Caption);

 // Write the date and photographer
 sw.WriteLine(this.DateTaken.Ticks);
 sw.WriteLine(this.Photographer);

 // Finally, write any notes
 sw.WriteLine(this.Notes.Length);
 sw.Write(this.Notes.ToCharArray());
 sw.WriteLine();
 }

5 Create a ReadVersion66 and
ReadVersion83 method to read in
the data in the existing formats.

Note: These methods are static
since they create a new Photograph
instance from the data provided by
the given stream.

 static public Photograph
 ReadVersion66(StreamReader sr)
 {
 String name = sr.ReadLine();
 if (name != null)
 return new Photograph(name);
 else
 return null;
 }

 static public Photograph
 ReadVersion83(StreamReader sr)
 {
 String name = sr.ReadLine();
 if (name == null)
 return null;

 Photograph p = new Photograph(name);
 p.Caption = sr.ReadLine();
 return p;
 }

How-to

a. Store the file name, caption, and
photographer as a string.

b. Convert the DateTime to a num-
ber of ticks and store this value.

c. Since the notes may span multiple
lines, store the length of this string
and write its value as an array of
characters.
274 CHAPTER 9 BASIC CONTROLS

Before we update the Save and Open methods in the PhotoAlbum class, a short dis-
cussion of our sudden use of the delegate keyword is in order.

We briefly mentioned in chapter 1 that a delegate acts much like a function
pointer in C++. It identifies the signature for a method without actually defining a
method. The advantage of C# delegates is that they are type safe. It is impossible to
assign a nonconforming method to a delegate.

In our code, we create a delegate called ReadDelegate. This delegate encapsu-
lates methods that accept a single StreamReader parameter and return a Photo-
graph object. It just so happens that this matches the signature of the three read
methods we created in the prior steps. This delegate can be used to great advantage
when opening an album. Let’s see how this looks.

6 Create a static ReadVersion92
method to read in a Photograph for
our new version 92 of an album file.

 static public Photograph
 ReadVersion92(StreamReader sr)
 {
 // Use ReadVer83 for file and caption
 Photograph p = ReadVersion83(sr);
 if (p == null)
 return null;

 // Read date (may throw FormatException)
 string data = sr.ReadLine();
 long ticks = Convert.ToInt64(data);
 p.DateTaken = new DateTime(ticks);

 // Read the photographer
 p.Photographer = sr.ReadLine();

 // Read the notes size
 data = sr.ReadLine();
 int len = Convert.ToInt32(data);

 // Read the actual notes characters
 char[] notesArray = new char[len];
 sr.Read(notesArray, 0, len);
 p.Notes = new string(notesArray);
 sr.ReadLine();

 return p;
 }

7 Create a public delegate to use
when selecting the appropriate
reader.

 public delegate Photograph
 ReadDelegate(StreamReader sr);

ADD READ AND WRITE METHODS TO THE PHOTOGRAPH CLASS (continued)

 Action Result

How-to

a. Load the file name and caption
using the ReadVersion83
method.

b. Read the date as a string and con-
vert it to a long integer to instanti-
ate a DateTime object.

c. Read the photographer as a string.
d. For the notes, read in the number

of characters and use this value to
read an equivalent-sized array of
characters. This array can then be
used to create a string.

e. After the Notes property is set, a
final ReadLine call is required to
clear the final line in preparation for
reading the next Photograph
object.
LABELS AND TEXT BOXES 275

.

UPDATE THE SAVE AND OPEN METHODS IN PHOTOALBUM CLASS

 Action Result

8 In the PhotoAlbum.cs source code
window, set the current version
constant to 92.

private const int CurrentVersion = 92;

9 Modify the Save method to use the
new Photograph.Write method.

Note: The initial part of this
method creates the FileStream
and StreamWriter objects. This
code does not change, and is not
shown here.

Similarly, the code for the
finally clause is also not shown.

 public void Save(string fileName)
 {
 . . .
 try
 {
 sw.WriteLine(
 _CurrentVersion.ToString());

 // Store each photo separately
 foreach (Photograph photo in this)
 {
 photo.Write(sw);
 }

 this._fileName = fileName;
 }
 finally
 . . .
 }

10 Modify the Open method to use the
new ReadDelegate delegate.

 public void Open(string fileName)
 {
 . . .
 try
 {
 Clear();
 this._fileName = fileName;
 Photograph.ReadDelegate ReadPhoto;

11 In the switch statement, select the
correct version of the Photograph
reader.

How-to

Use a new statement to instantiate
a new version of the delegate for
each version.

 switch (version)
 {
 case 66:
 ReadPhoto = new
 Photograph.ReadDelegate(
 Photograph.ReadVersion66);
 break;

 case 83:
 ReadPhoto = new
 Photograph.ReadDelegate(
 Photograph.ReadVersion83);
 break;

 case 92:
 ReadPhoto = new
 Photograph.ReadDelegate(
 Photograph.ReadVersion92);
 break;

 default:
 // Unknown version or bad file.
 throw (new IOException(. . .));
 }
276 CHAPTER 9 BASIC CONTROLS

This neat little use of delegates makes our code much more readable. A delegate
instance is declared just like any other variable, except that in this case the type is our
delegate.
 Photograph.ReadDelegate ReadPhoto;

This variable is assigned by creating a new instance of the delegate object, providing a
method with a matching signature. Note that in our case the method happens to be
static. A delegate tracks both an object and a method, allowing both internal and
static members of a class to be used. In our code, when the version number is 92, the
PhotoReader variable is initialized as follows. If the method provided does not match
the signature assigned to the delegate, a compiler error is generated. Such compiler-
time checking is a big advantage of delegates in C# over function pointers in C++.
 case 92:
 ReadPhoto = new Photograph.ReadDelegate(Photograph.ReadVersion92);
 break;

The delegate is then used like any other function call to invoke the assigned method.
 // Read each photograph in the album
 Photograph p = ReadPhoto(sr);
 while (p != null)
 {
 this.Add(p);
 p = ReadPhoto(sr);
 }

Our PhotoAlbum class is now ready. Let’s get back to our PhotoEditDlg form and
begin creating our new form.

9.2.2 CREATING THE PHOTOEDITDLG PANEL AREA

Looking back at the PhotoEditDlg dialog we wish to create, let’s focus on the
Panel control at the top of the form. In chapter 7 we made use of the Panel class
for its drawing and scrolling capabilities. Here, we will use this class as a container
for other controls to improve the overall appearance of our form. While we will not

12 Use the reader delegate to load the
individual photographs.

Note: The code for the finally
clause remains the same and is not
shown here.

 // Read each photograph in the album
 Photograph p = ReadPhoto(sr);
 while (p != null)
 {
 this.Add(p);
 p = ReadPhoto(sr);
 }
 }
 finally
 . . .
 }

UPDATE THE SAVE AND OPEN METHODS IN PHOTOALBUM CLASS (continued)

 Action Result
LABELS AND TEXT BOXES 277

enable scrolling in our panel, realize that controls can be placed outside of the visible
portion of a panel and made accessible via the automated scroll bars discussed in
chapter 7.

We have used the Label and TextBox controls previously in our program, so
let’s update our panel before we talk about these classes in more detail. As you recall,
the Panel object is inherited from the base form, but is modifiable by our class since
it has a protected access level.

CREATE THE PANEL AREA OF THE PHOTOEDITDLG FORM

 Action Result

1 In the PhotoEditDlg.cs [Design] window,
modify the Text property for the new
dialog to be “Photo Properties.”

2 Add the four Label controls to the left
side of the panel, as shown in the graphic.
Resize the panel control if necessary. Set
the properties for each label as shown.

Note: In this step you are placing the con-
trols inside the Panel, rather than inside
the Form. This is an important distinction.

Settings

Label Property Value

label1 Text Photo &File:

TextAlign MiddleRight

label2 Text Cap&tion:

TextAlign MiddleRight

label3 Text &Date Taken:

TextAlign MiddleRight

label4 Text &Photographer:

TextAlign MiddleRight
278 CHAPTER 9 BASIC CONTROLS

Note that the labels and text boxes here are defined within the Panel control, rather
than within the form. In the InitializeComponent method, the controls are
added to the Panel object much like we have seen other controls added to the Form
class in previous chapters.
 this.panel1.Controls.AddRange(new System.Windows.Forms.Control[] {
 this.txtPhotographer,
 this.txtDate,
 this.txtCaption,
 this.txtPhotoFile,
 this.label4,
 this.label3,
 this.label2,
 this.label1 });

3 Add the four TextBox controls to the right
side of the panel. Position and size these
controls as in the graphic, and use the
following properties.

Note: The txtPhotoFile text box dis-
plays a gray background to indicate it is
read-only.

4 Set the tab order for these new controls.

How-to

In the tab order view of the page, click
controls within the panel in order. Press
the Esc key when finished.

Note: As you can see in the graphic, the
controls within the panel are numbered to
indicate both the tab index of the panel
and of the specific control.

CREATE THE PANEL AREA OF THE PHOTOEDITDLG FORM

 Action Result

Settings

TextBox Property Value

Photo File (Name) txtPhotoFile

ReadOnly True

Text

Caption (Name) txtCaption

Text

Date (Name) txtDate

Text

Photographer (Name) txtPhotographer

Text
LABELS AND TEXT BOXES 279

The setting of the tab order in the final step, which internally assigns the TabIndex
property for each control, is very important here. We could have set these values
explicitly in steps 2 and 3, but the method in step 4 allowed us to set all controls at
once. Since the Label and TextBox controls are located within the Panel object,
the tab order defined applies only within the panel, so the TabIndex values for our
labels and text boxes start at zero.

While label controls do not participate in the tab order, their TabIndex setting
is still utilized. When you tab to or activate a label, the next control in the tab order
will receive focus. This is the same behavior provided by the MFC CStatic class in
Visual C++.

.NET Table 9.1 Label class

The Label class is a control that displays a text string or image within a form. This class is
part of the of the System.Windows.Forms namespace, and inherits from the Control class.
A Label object can be assigned a tab index, but when activated the next control in the tab
order will always receive focus. See .NET Table 4.1 on page 104 for a list of members inher-
ited from the Control class.

Public Properties

AutoSize Gets or sets whether the label should
automatically resize to display its contents.

BorderStyle Gets or sets the border for the label, taken from
the BorderStyle enumeration. The default is
None.

FlatStyle Gets or sets the flat style for the label, using the
FlatStyle enumeration. The default is
Standard.

Image Gets or sets the image to appear on the label.

ImageList Gets or sets an ImageList object to associate
with the label. The ImageIndex property
determines which image is displayed on the
label.

PreferredHeight Gets the height of the control, in pixels,
assuming a single line of text is displayed.

PreferredWidth Gets the width of the control, in pixels, assuming
a single line of text is displayed.

TextAlign Gets or sets the text alignment to use for text in
the control.

UseMnemonic Gets or sets whether an ampersand (&) in the
Text property is interpreted as an access key
prefix character.

Public Events

AutoSizeChanged Occurs when the value of the AutoSize
property changes.

TextAlignChanged Occurs when the value of the TextAlign
property changes.
280 CHAPTER 9 BASIC CONTROLS

This tab order behavior is especially relevant for the assigned access key, also
called a mnemonic. For example, the ampersand character “&” in the Photo File label
defines the ‘F’ character as the access key. Typing the keystroke Alt+F sets the focus
to this label. When you do this, the txtPhotoFile control actually receives the
focus. Similarly, typing Alt+P for the Caption label will set the focus to the txtCap-
tion control. Such mnemonics are very useful for users, myself included, who prefer
to avoid the mouse and keep their fingers on the keyboard.

Labels include other features as well, of course. As we saw in chapter 8, they can
display a border and define an alignment for displayed text. These and other features
of the Label class are summarized in .NET Table 9.1. The Label class is also the
parent of the LinkLabel class, which adds the ability to perform an action when the
text on the label is clicked, similar to an HTML link in a web browser. We will use
the LinkLabel class in chapter 18 while discussing how to include ActiveX controls
on a form.

We will use Label objects again in future sections. For now, let’s move on to dis-
cuss some of the features of our TextBox controls, and the TextBox class in general.

9.2.3 CREATING THE MULTILINE TEXT BOX

The TextBox controls on our form are used to display various properties of the
Photograph object. We have already created the text box controls within the panel
area. In this section we create the text box for displaying the Photograph.Notes
property in our dialog, and implement the protected members we defined in our base
class earlier in the chapter.

As we saw in the previous section, text boxes can be editable or read-only. In some
ways a read-only text box is similar to a Label object with a 3D border. The major
difference is that a text box supports cut and paste operations, while a label does not.
The existing CaptionDlg form in our application used a 3D label to illustrate this
point, so you can verify this for yourself if you prefer.

As a result, a read-only TextBox should be used when displaying text that a user
may wish to copy. This, in fact, is why our PhotoEditDlg form uses a read-only
TextBox to display the photograph’s file name.

The TextBox class is based on the TextBoxBase class, which provides much of
the core functionality for text controls. An overview of this base class appears in .NET
Table 9.2.
LABELS AND TEXT BOXES 281

As shown in the table, the TextBoxBase class provides a Multiline property that
indicates whether a derived control can accept multiple lines of text. The bottom part
of our PhotoEditDlg form is designed to show off such a text box. This control

.NET Table 9.2 TextBoxBase class

The TextBoxBase class is a control that displays editable text and can interact with the
Clipboard class to permit cut and paste operations. This class is part of the of the Sys-
tem.Windows.Forms namespace, and inherits from the Control class. Both the TextBox
and RichTextBox classes are derived from this abstract class. See .NET Table 4.1 on page
104 for a list of members inherited from the Control class, and .NET Table 9.3 on page 288
for an overview of the TextBox class.

Public

Properties

AcceptsTab Gets or sets whether a multiline text box displays a Tab
character or moves focus to the next control when the Tab
key is pressed.

CanUndo Gets or sets whether the user can undo the previous edit
performed in the text box.

Lines Gets or sets the array of strings representing the lines of
text in the control.

MaxLength Gets or sets the maximum number of characters the control
will accept.

Multiline Gets or sets whether this is a multiline text box.

ReadOnly Gets or sets whether the text is read-only.

SelectedText Gets or sets the currently selected text in the control. The
SelectedStart property indicates the location of the first
selected character.

WordWrap Gets or sets whether a multiline control automatically
wraps to the next line as required.

Public

Methods

AppendText Appends a string to the existing text in the control.

Copy Copies the current text into the Clipboard.

Paste Replaces the current selection with the contents of the
Clipboard.

ScrollToCaret Ensures the current caret position is visible in a multiline
text box.

SelectAll Selects all text in the control. The Select method can be
used to select a substring.

Undo Undoes the last edit operation in the text box.

Public

Events

AcceptsTab-
Changed

Occurs when the AcceptsTab property changes.

Multiline-
Changed

Occurs when the Multiline property changes.
282 CHAPTER 9 BASIC CONTROLS

displays descriptive text about the photo, and automatically scrolls if the text
becomes too long. The following steps add this control to our dialog:

Our form is now ready, except for the internal logic to process the user’s changes.
Since our dialog is intended to edit a Photograph object within a PhotoAlbum

collection, we need a reference to the associated PhotoAlbum object within the dia-
log. We should also implement the methods necessary to handle the OK and Reset
buttons, namely the ResetSettings and SaveSettings methods provided by the
BaseEditDlg class.

The following steps detail these changes:

ADD A MULTILINE TEXTBOX TO THE PHOTOEDITDLG FORM

 Action Result

1 Add the Notes label to the
PhotoEditDlg form in the
PhotoEditDlg.cs [Design]
window..

The AutoSize property causes the label to resize to exactly fit
its Text value.

2 Add the multiline TextBox
control to the form.

Note: The Multiline property must be set to true
before the control can be resized to contain multiple lines
of text.

The AcceptsReturn property causes the control to
treat an Enter key as a new line rather than allowing the
parent form to invoke the OK button.

Settings

Property Value

AutoSize True

TabIndex 4

Text Notes:

Settings

Property Value

(Name) txtNotes

AcceptsReturn True

Multiline True

ScrollBars Vertical

TabIndex 5

Text
LABELS AND TEXT BOXES 283

Our dialog is complete, at least for now. Applications can use it to display and modify
information about a photograph. The one exception is the date a photograph was
taken. While it is certainly possible to convert a string provided by the user into a
DateTime structure, this is not really the best way to specify a date on a form. Instead,
the DateTimePicker control is provided especially for this purpose. We will look at
this control in chapter 11, and simply ignore the value of txtDate for now.

The next step is to use this new dialog in our main application. This is the topic
of the next section.

INTERACTING WITH THE PHOTOALBUM OBJECT

Action Result

3 In the PhotoEditDlg.cs file add a
private PhotoAlbum variable to
hold the album containing the
photo to display.

 private PhotoAlbum _album;

4 Modify the constructor to accept
a PhotoAlbum parameter.

 public PhotoEditDlg(PhotoAlbum album)
 {

5 Within the constructor, set the
album variable and call
ResetSettings to initialize the
dialog’s controls.

 // This call is required
 InitializeComponent();

 // Initialize the dialog settings
 _album = album;
 ResetSettings();
 }

6 Implement the ResetSettings
method to set the controls to
their corresponding settings in
the current photograph.

 protected override void ResetSettings()
 {
 Photograph photo = _album.CurrentPhoto;

 if (photo != null)
 {
 txtPhotoFile.Text = photo.FileName;
 txtCaption.Text = photo.Caption;
 txtDate.Text
 = photo.DateTaken.ToString();
 txtPhotographer.Text = photo.Photographer;
 this.txtNotes.Text = photo.Notes;
 }
 }

7 Implement SaveSettings to
save the contents of the form to
the current photograph.

Note: Here, the settings are
always stored successfully, so
this method always returns
true.

 protected override bool SaveSettings()
 {
 Photograph photo = _album.CurrentPhoto;

 if (photo != null)
 {
 photo.Caption = txtCaption.Text;
 // Ignore txtDate setting for now
 photo.Photographer = txtPhotographer.Text;
 photo.Notes = txtNotes.Text;
 }

 return true;
 }
284 CHAPTER 9 BASIC CONTROLS

9.2.4 ADDING PHOTOEDITDLG TO OUR MAIN FORM

Now that our new dialog is ready, we need to display it in our MyPhotos application.
This section integrates the dialog into our application, much like we integrated the
CaptionDlg form in chapter 8.

The CaptionDlg form does present a slight problem, in that it already allows
the caption to be edited, just like our new PhotoEditDlg form. We could keep this
dialog around and provide two ways to edit a photograph’s caption. This might be a
little confusing to users, so we will instead remove CaptionDlg from our application.

The step to remove this dialog follows. We will integrate the PhotoEditDlg dia-
log into our application in a moment.

Set the version number of the MyPhotos application to 9.2.

With the caption dialog gone, our way is clear to display the PhotoEditDlg form
from our main window. We will reuse the menuCaption menu for this purpose,
renamed and revamped by the following steps:

REMOVE THE CAPTIONDLG FORM

Action Result

1 In the Solution Explorer window, delete
the CaptionDlg form.

Alternately

Click on the file and press the Delete key.

After clicking OK, the CaptionDlg.cs class is
removed from the project and deleted from the
file system.

How-to

a. Right-click on the CaptionDlg.cs file.
b. Select Delete from the popup menu.
c. Click OK in the confirmation box.
LABELS AND TEXT BOXES 285

Since the dialog itself handles the initialization and storage of any changes made by the
user, and the using statement disposes of the dialog when we are finished, there is not
much work required by our handler. When the user clicks OK, we mark that the
album has changed and update the status bar with any new caption entered by the user.

DISPLAY THE PHOTOEDITDLG FORM FROM THE MAIN WINDOW

 Action Result

2 Double-click the MainForm.cs file in
the Solution Explorer window.

The Windows Forms Designer window appears for
this form.

3 Modify the properties for the Caption
menu item under the Edit menu.

Note: We could elect to use this
menu under its previous name. This
could prove confusing in the future, so
we instead rename the control in line
with its new purpose.

4 Rename the Click event for this
menu to menuPhotoProp_Click.

5 Replace the old handler with an
implementation to display the
PhotoEditDlg form.

Note: The old handler was called
menuCaption_Click.

 private void menuPhotoProp_Click
 (object sender, System.EventArgs e)
 {
 if (_album.CurrentPhoto == null)
 return;

 using (PhotoEditDlg dlg
 = new PhotoEditDlg(_album))
 {
 if (dlg.ShowDialog()
 == DialogResult.OK)
 {
 _bAlbumChanged = true;

 sbpnlFileName.Text
 = _album.CurrentPhoto.Caption;
 statusBar1.Invalidate();
 }
 }
 }

6 Update the Popup event handler for
the Edit menu to use the new menu.

 private void menuEdit_Popup
 (object sender, System.EventArgs e)
 {
 menuPhotoProp.Enabled
 = (_album.Count > 0);
 }

Settings

Property Value

(Name) menuPhotoProp

Text &Photo
Properties…
286 CHAPTER 9 BASIC CONTROLS

So let’s see if your code actually works. Compile and run the application and open
a previously saved album file. Display the Photo Properties dialog. Note in particular
the following features:

• The differences between the read-only and editable text boxes.
• Label text cannot be highlighted, while text within text boxes can, even when

read-only.
• Use the access key for a label and notice how the following text box receives

focus.
• Press the Enter key while editing a single-line text box. The dialog behaves as if

you had clicked the OK button.
• Press the Enter key while editing within the Notes text box. Since we set the
AcceptsReturn property to true, this adds a new line within the Notes box
and does not deactivate the window.

• Right-click on any text box. The default context menu will appear. This con-
text menu contains various commands for editing text, and is shown in
figure 9.3. The items in this menu correspond to methods in the TextBox-
Base class, as shown in .NET Table 9.2.

While our form is working just fine, there are some features missing that might make
our dialog a little more friendly. These are the subject of the next section.

9.2.5 USING TEXTBOX CONTROLS

So let’s add some interesting features to our text boxes. Most of the events for Text-
Box controls are inherited from the Control and TextBoxBase classes. Members

Figure 9.3

The standard context menu for Text-

Box controls, shown here for the Date

Taken text box, disables commands

that are not currently available.
LABELS AND TEXT BOXES 287

specific to the TextBox class appear in .NET Table 9.3. Here we will look more
closely at the KeyPress event and the TextChanged event.

The keyboard events inherited from the Control class are especially interesting,
and consist of the KeyDown, KeyPress, and KeyUp events. These events are inherited
from the Control class, and occur when a key on the keyboard is pushed down and
released while the control has focus. The KeyDown event occurs when the key is first
pressed. The KeyPress event activates while the key is held down and repeats while
the key remains held down. The KeyUp event occurs when the key is released. These
events can be used to fine-tune your interfaces as the user types on the keyboard.

We will look at the keyboard events in more detail in chapter 12, but let’s do a quick
example here. Suppose we wanted the Caption property to only contain letters or
numbers. No punctuation characters and no symbols. The KeyPress event receives
keyboard characters as they are typed, and allows the event handler to handle or
ignore them. The KeyPressEventArgs class is used with this event, and provides a
KeyChar property to get the character pressed, and a Handled property to get or set
whether the character has been handled. If Handled is set to true, then the control
will not receive the character.

The obvious, albeit incorrect, way to implement such a handler would be as follows:
 private void txtCaption_KeyPress(object sender, KeyPressEventArgs e)
 {

.NET Table 9.3 TextBox class

The TextBox class represents a TextBoxBase control that displays a single font. This control
is part of the System.Windows.Forms namespace, and inherits from the TextBoxBase con-
trol. Through its parent class, text boxes can support single or multiple lines, and interact with
the clipboard to cut, copy, or paste text.

Public Properties

AcceptsReturn Gets or sets whether the Enter key in a multiline
text box adds a new line of text or activates the
default button for the form.

CharacterCasing Gets or sets how the control modifies the case
of entered characters. This can be used to
display all uppercase or lowercase letters in the
text box.

PasswordChar Gets or sets the character used to mask the text
display in the control. When this property is set,
cutting or copying to the clipboard is disabled.

ScrollBars Gets or sets which scrollbars should appear in a
multiline text box.

TextAlign Gets or sets how displayed text is aligned within
the control.

Public Events
TextAlignChanged Occurs when the TextAlign property has

changed.
288 CHAPTER 9 BASIC CONTROLS

 char c = e.KeyChar;

 // Ignore all non-alphanumerics – not our approach
 e.Handled = !(Char.IsLetter(c) || Char.IsDigit(c));
 }

This implementation uses members of the System.Char class to see if the category
of the character is a letter or number. It may look good, but it also causes all other
characters to be ignored by the control, such as spaces and backspaces. Clearly, this is
not what we want.

Instead, we will allow all control and white space characters past our event handler.
This will permit the keyboard shortcuts to work, and also allows spaces in our captions.

The caption text box will only receive letters, digits, white space, and all control char-
acters. This may or may not be a good idea, by the way, since a caption such as “one-
way street” is now not permitted, since the dash ‘-’ is a punctuation character. Feel
free to remove this handler if you do not want this behavior in your program.

Another feature we could add to our dialog is to display the caption for the pho-
tograph in the title bar. Of course, this caption can be edited, and we would not want
the text box and the title bar to display different values.

The TextChanged event occurs as text is entered, and can be used here to update
the title bar while the user is typing. We could also implement this feature using the
KeyPress event we just saw, but would have to deal with the delete and backspace
keys as well as some text-editing controls. The TextChanged approach is a bit more
straightforward.

Let’s continue our previous steps and make this change.

ADD KEYPRESS EVENT HANDLER FOR TXTCAPTION CONTROL

 Action Result

1 In the PhotoEditDlg.cs Design
window, add a KeyPress event
for the txtCaption text box
control.

 private void txtCaption_KeyPress
 (object sender, KeyPressEventArgs e)
 {

2 Implement this handler to only
permit letters and numbers to
appear in captions.

 char c = e.KeyChar;

 e.Handled = !(Char.IsLetterOrDigit(c)
 || Char.IsWhiteSpace(c)
 || Char.IsControl(c));
 }
LABELS AND TEXT BOXES 289

Compile and run your application to view these new changes. Verify that the caption
can contain only letters and numbers, and that the title updates automatically as the
caption is modified.

TRY IT! As an exercise in using some of the methods available to TextBox controls,
see if you can create the standard context menu for text boxes manually and
assign it to the Notes control. You will need to add a ContextMenu ob-
ject to the form and assign it to the txtNotes.ContextMenu property.
Assigning this property automatically disables the default context menu.
Add the eight menu items to the menu, namely Undo, a separator, Copy,
Cut, Paste, Delete, another separator, and Select All. To make your menu
different than the standard one, also add a Clear menu item at the end of
the context menu to clear the text in the box.

To process this menu, you will need a Popup event handler for the
menu itself to enable or disable the menu items as appropriate. You will
need to use the CanUndo, SelectedText, SelectionLength, and Se-
lectionStart properties, and the Copy, Cut, Paste, SelectAll, and
Undo methods as part of your implementation.

If you run into difficulties, visit the book’s web site and download the
code required for this change.

This ends our discussion of Label and TextBox objects for now. We will see these
objects again in the next section and elsewhere in the book. Our next topic will create
the Album Properties dialog box as a way to introduce the button classes in the .NET
Framework.

9.3 BUTTON CLASSES

So just what is a button, exactly? For graphical interfaces, a button is a control that
establishes a specific state, typically some form of on or off. Buttons are used to per-
form immediate actions in an interface, define the behavior for a specific feature, or

UPDATE TITLE BAR DURING TXTCAPTION MODIFICATION

 Action Result

3 Add a TextChanged event
for the txtCaption text
box control.

How-to

This is the default event for
text boxes, so you can just
double-click the control.

 private void txtCaption_TextChanged
 (object sender, System.EventArgs e)
 {

4 Modify the title bar to
include the modified text
from the control.

 this.Text = String.Format(
 "{0} - Photo Properties",
 txtCaption.Text);
 }
290 CHAPTER 9 BASIC CONTROLS

turn a setting on or off. Figure 9.4 shows various styles of buttons in Windows
Forms. More generally, the various types of buttons are as follows.

• A push button—is a button that performs some immediate action, such as dis-
playing or deactivating a dialog, or modifying the values in the window. In
Windows Forms, the Button class represents a push button.

• A check box button—allows a user to turn a specific option on or off, such as
whether a file should be saved as read-only or not. In .NET, the CheckBox
class can represent either a check box button or a toggle button. A toggle button
appears as a normal button, but preserves an up or down state to represent a
checked or unchecked mode, respectively.

• A radio button—sometimes called an option button, is used to select from a set
of mutually exclusive options. When one of a group of radio buttons is
selected, the other radio buttons in the group are automatically deselected.
Radio buttons can be displayed normally or as toggle buttons. Windows Forms
provides the RadioButton class for the creation of these objects. All radio
buttons in the same container are automatically part of the same group. Use
container classes such as GroupBox and Panel to support multiple groups of
radio buttons on your forms.

In figure 9.4, note how each button supports a normal three-dimensional style as well
as a flat style. In addition, note that toggle buttons appear identical to regular push
buttons. Unlike push buttons, a toggle button preserves an in or out state when they
are pressed.

All buttons in .NET inherit from the ButtonBase class. This class provides
common functionality for all buttons, including the flat style setting and whether to
display an image on the button. An overview of this class appears in .NET Table 9.4.

Figure 9.4

The three types of buttons

in various styles. Note how

both check boxes and ra-

dio buttons can appear as

toggle buttons.
BUTTON CLASSES 291

In the MyPhotos application, we have already used a number of push buttons in our
application, and we’ve seen how the DialogResult property can be used to auto-
matically exit a modal dialog when a button is clicked. An overview of the Button
class appears in .NET Table 9.5. In this section we build a dialog window for editing
album properties to permit modification of internal album settings by the user. Our
hidden agenda, of course, is to demonstrate the various types of buttons.

We will illustrate various styles of buttons in a dialog box for editing the properties of
a photo album. To do this, we need to start with some reasonable properties for our
PhotoAlbum class that will lend themselves to button objects. The following features
will serve our purposes rather well.

• Title—a title or name for the album. As you may guess, this will be a TextBox
control.

• Photo display name—which Photograph setting should be used as the short
display name for the photo. This will be either the base file name, the caption,
or the date assigned to the photo. This property has three possible values, mak-
ing it perfect as a RadioButton example.

.NET Table 9.4 ButtonBase class

The ButtonBase class represents a control that can be displayed as a button. It is an abstract
class in the System.Windows.Forms namespace, and inherits from the Control class. The
Button, CheckBox, and RadioButton classes all inherit from this class. See .NET Table 4.1
on page 104 for a list of members inherited from the Control class.

Public

Properties

FlatStyle Gets or sets the flat style appearance of the button.

Image Gets or sets an image to display on the button.

ImageAlign Gets or sets the alignment of an image on the button.

ImageIndex Gets or sets an image to display on the button as an
index into the ImageList property.

ImageList Gets or sets an ImageList object to associate with
the button control.

TextAlign Gets or sets the alignment of text on the button.

.NET Table 9.5 Button class

The Button class represents a standard push button. A button may display text, an image, or
both text and an image. This class is part of the System.Windows.Forms namespace, and
inherits from the ButtonBase class. See .NET Table 9.4 for details on this base class.

Public Properties
DialogResult Gets or sets a value that is returned to the parent

form when the button is clicked.

Public Methods PerformClick Generates a Click event for the button.
292 CHAPTER 9 BASIC CONTROLS

• Password—if present, a password is required to open the album. We will use a
CheckBox to indicate whether a password is desired, and TextBox controls to
accept and confirm the password.

A dialog to support these new settings is shown in figure 9.5. Of course, we will need
some additional infrastructure in our PhotoAlbum class to support these new settings.

9.3.1 EXPANDING THE PHOTOALBUM CLASS

In order to support title, display name, and password settings in our albums, we need
to make a few changes. For starters, let’s add some variables to hold these values and
properties to provide external access.

Set the version number of the MyPhotoAlbum library to 9.3.

Figure 9.5

Note how the AlbumEditDlg modifies the Pan-

el control inherited from BaseEditDlg as com-

pared with the PhotoEditDlg just completed.

This is possible since the panel is a protected

member of the base form.

ADD NEW SETTINGS TO THE PHOTOALBUM CLASS

 Action Result

1 In the PhotoAlbum.cs file, add
some variables to hold the new
title, password, and display option
settings.

 private string _title;
 private string _password;

 public enum DisplayValEnum {
 FileName, Caption, Date
 };
 private DisplayValEnum _displayOption
 = DisplayValEnum.Caption;
BUTTON CLASSES 293

Next, we need to store and retrieve these values in the Save and Open methods. This
will also require us to create a new version of our file. The new version will be 93, to
match the current section of the book. Continuing the previous steps:

2 Add properties to set and retrieve
these values.

 public string Title
 {
 get { return _title; }
 set { _title = value; }
 }

 public string Password
 {
 get { return _password; }
 set { _password = value; }
 }

 public DisplayValEnum DisplayOption
 {
 get { return _displayOption; }
 set { _displayOption = value; }
 }

3 Modify the OnClear method to
reset these settings when the
album is cleared.

 protected override void OnClear()
 {
 _currentPos = 0;
 _fileName = null;
 _title = null;
 _password = null;
 _displayOption = DisplayValEnum.Caption;
 . . .
 }

ADD NEW SETTINGS TO THE PHOTOALBUM CLASS

 Action Result

UPDATE SAVE METHOD IN PHOTOALBUM CLASS

 Action Result

4 Change the current version setting
to 93.

private const int CurrentVersion = 93;

5 Update the Save method to store
the new album settings.

 public void Save(string fileName)
 {
 . . .
 try
 {
 sw.WriteLine
 (CurrentVersion.ToString());

 // Save album properties
 sw.WriteLine(_title);
 sw.WriteLine(_password);
 sw.WriteLine(Convert.ToString(
 (int)_displayOption));

 // Store each photo separately
 . . .
 }
294 CHAPTER 9 BASIC CONTROLS

Similar changes are required for the Open method. To make this code a little more
readable, we will extract the code to read the album data into a separate method.

Our PhotoAlbum class can now store and retrieve these settings in the album file.
We can make immediate use of these new settings within the PhotoAlbum class.

UPDATE OPEN METHOD IN PHOTOALBUM CLASS

 Action Result

6 Modify the Open method to use
a new ReadAlbumData method.

 public void Open(string fileName)
 {
 . . .
 try
 {
 // Initialize as a new album
 Clear();
 this._fileName = fileName;
 ReadAlbumData(sr, version);

 // Check for password
 // (we’ll deal with this shortly)

 Photograph.ReadDelegate PhotoReader;
 switch (version)
 {
 . . .
 case 92:
 case 93:
 PhotoReader =
 new Photograph.ReadDelegate(
 Photograph.ReadVersion92);
 break;
 . . .
 }
 . . .
 }

7 Implement the new
ReadAlbumData to read in the
album-related information from
an open stream.

 protected void ReadAlbumData
 (StreamReader sr, int version)
{
 // Initialize settings to defaults
 _title = null;
 _password = null;
 _displayOption
 = DisplayValEnum.Caption;

 if (version >= 93)
 {
 // Read album-specific data
 _title = sr.ReadLine();
 _password = sr.ReadLine();
 _displayOption = (DisplayValEnum)
 Convert.ToInt32(sr.ReadLine());
 }

 // Initialize title if none provided
 if (_title == null || _title.Length == 0)
 {
 _title = Path.
 GetFileNameWithoutExtension(_fileName);
 }
 }
BUTTON CLASSES 295

9.3.2 USING THE NEW ALBUM SETTINGS

Before we create the Album Properties form, let’s make use of our new settings within
the PhotoAlbum class. The title is not used internally, but the password and display
settings are for internal use. The display option indicates which Photograph prop-
erty should be displayed to represent the photo for the album. This will be used by
our main form to decide which string to display on the status bar panel.

The password setting is required when opening the album. When this field is set,
the Open method should prompt for the password before it reads in the file. This
requires a small dialog box to request this string from the user.

We will provide support for the display option first.

This code is fairly straightforward. One new feature is the ability to provide a format-
ting code to the DateTime.ToString method.
 return photo.DateTaken.ToString("g");

The "g" string used here causes the short form of the associated DateTime structure
to be returned. We will discuss additional formatting conventions for DateTime
structures when we discuss the DateTimePicker control in chapter 11.

For the password setting, we require a new dialog to permit this string to be
entered by the user when an album is opened. The following steps create the dialog
for this purpose:

SUPPORT DISPLAY TEXT OPTION

 Action Result

1 In the PhotoAlbum.cs file, add a
new GetDisplayText method
to return the display string for a
given Photograph object.

 public string GetDisplayText(Photograph photo)
 {

2 Implement this method by using
the DisplayOption property to
determine the appropriate value
to return.

 switch (this._displayOption)
 {
 case DisplayValEnum.Caption:
 default:
 return photo.Caption;

 case DisplayValEnum.Date:
 return photo.DateTaken.ToString("g");

 case DisplayValEnum.FileName:
 return Path.GetFileName(photo.FileName);
 }
 }

3 Also add a CurrentDisplay-
Text property to return this
value for the current photo.

 public string CurrentDisplayText
 {
 get { return GetDisplayText(CurrentPhoto); }
 }
296 CHAPTER 9 BASIC CONTROLS

We will use this dialog to request a password when an album is opened. The point
here is to illustrate the PasswordChar property, and not to create a secure mecha-
nism for handling passwords.

CREATE A PASSWORD DIALOG

 Action Result

4 Create a new Windows Form called
PasswordDlg in the MyPhotoAlbum
project.

The PasswordDlg.cs file is created and added to
the project, and its design window is displayed.

5 Create the form as shown, using the
following settings.

Note: The PasswordChar property setting for
the TextBox control masks the user’s entry
with the given character. When this property
is set, the Clipboard cut and copy operations
are disabled (the paste operation is still per-
mitted).

6 Create a Password property to retrieve
the value of the txtPassword control.

 public string Password
 {
 get { return txtPassword.Text; }
 }

Settings

Control Property Value

Label Text as shown

TextBox (Name) txtPassword

Password-Char *

Button (Name) btnOk

DialogResult OK

Text &OK

Form AcceptButton btnOk

ControlBox False

FormBorderStyle FixedDialog

ShowInTaskbar False

Size 262, 142

Text Enter
Password

ENFORCE (INSECURE) PASSWORD MECHANISM

 Action Result

7 In the PhotoAlbum.cs code
window, indicate that this
class uses the Windows
Forms namespace.

using System.Windows.Forms;
BUTTON CLASSES 297

Our PhotoAlbum class is now ready. Each PhotoAlbum instance supports the new
title, password, and display option settings. These settings are saved in the album
file, and in the Open method an album cannot be loaded unless the proper password
is provided.3

Let’s get back to the matter at hand and create our Album Properties dialog.

9.3.3 CREATING THE ALBUMEDITDLG PANEL AREA

With our new infrastructure in place, we are ready to create the AlbumEditDlg
form. This section will inherit the new dialog from our base form, and add controls
to the panel at the top of the form.

8 Use the new PasswordDlg
form in the
PhotoAlbum.Open method
to receive a password from
the user.

 public void Open(string fileName)
 {
 . . .
 try
 {
 . . .
 // Check for password
 if (_password != null && _password.Length > 0)
 {
 using (PasswordDlg dlg = new PasswordDlg())
 {
 dlg.Text = String.Format(
 "Opening album {0}",
 Path.GetFileName(_fileName));
 if ((dlg.ShowDialog() == DialogResult.OK)
 && (dlg.Password != _password))
 {
 throw new ApplicationException(
 "Invalid password provided");
 }
 }
 }
 . . .
 }

ENFORCE (INSECURE) PASSWORD MECHANISM (continued)

 Action Result

3 Of course, the password mechanism here is quite insecure. A user can examine the album file by hand
in order to discern the password. We could make this scheme more secure by using the password as a
scrambling mechanism on the file. For example, rather than storing the password string in the file, call
GetHashCode on the password string and XOR each character in the file with this hash code and the
byte-sum of the password characters. The scrambled result is then stored in the file. The validity of the
password is checked by using it to unscramble the version number of the file to see if it makes sense. If
so, then the password is presumed to be valid. Again, this is not a totally secure mechanism, but it is
slightly better then that shown in the text. For more information on security in .NET in general and
the System.Security namespace in particular, see the book .NET Security by Tom Cabanski from
Manning Publications.
298 CHAPTER 9 BASIC CONTROLS

The Panel control inherited from the BaseEditDlg form will display the
album file and the title in our new AlbumEditDlg form. The following steps create
the new form class and the controls contained by the panel.

CREATE THE ALBUMEDITDLG FORM AND ITS PANEL CONTROLS

 Action Result

1 Derive a new AlbumEditDlg form
from the BaseEditDlg form.

Settings

Set the Text property for the new
dialog to “Album Properties.”

2 Add two labels to the left side of
the form.

The new controls are contained by the Panel control,
rather than by the Form object.

3 Add the two text boxes to the
form. Resize and position the
controls and the panel as shown
in the graphic.

Settings

Label Property Value

label1 Text Album &File

TextAlign MiddleRight

label2 Text &Title

TextAlign MiddleRight

Settings

TextBox Property Value

Album File (Name) txtAlbumFile

ReadOnly True

Text

Title (Name) txtTitle

Text
BUTTON CLASSES 299

With these steps completed, we are ready to add our button controls.

9.3.4 USING RADIO BUTTONS

The bottom part of our dialog will contain some radio and check box buttons. We
will begin with the radio buttons in the middle of the form.

Radio buttons display a set of mutually exclusive options. In our case, they indi-
cate which Photograph setting should be used to represent the photograph in a main
window. Radio buttons in .NET work much the same as radio buttons in other graph-
ical environments. An overview of this class appears in .NET Table 9.6.

In our code, three radio buttons will collectively set the _displayOption set-
ting for the album. Since these are the only radio buttons on the form, it is not nec-
essary to group them within a container control. We will anyway, since it improves
the overall appearance of the form.

A Panel control could be used here, of course, but this is a good opportunity to create
a GroupBox control. The GroupBox class inherits directly from the Control class to

.NET Table 9.6 RadioButton class

The RadioButton class represents a button that displays one of a possible set of options.
Radio buttons are usually grouped together, and only one button may be checked at any one
time. By default, when a radio button is clicked, it is automatically selected and all radio but-
tons in the same group are deselected. This behavior can be disabled using the AutoCheck
property.

The parent container for this control defines its group. So if four radio buttons are con-
tained within a form, then only one of the four buttons may be checked at any one time. Use
container classes such as GroupBox and Panel to provide multiple independent groups of
radio buttons on a single form.

This control is part of the System.Windows.Forms namespace, and inherits from the
ButtonBase class. See .NET Table 9.4 on page 292 for members inherited from this class.

Public Properties

Appearance Gets or sets whether the control appears as a
normal radio button or as a toggle button.

AutoCheck Gets or sets the behavior of related radio buttons
when this button is clicked. If true, then the
framework automatically deselects all radio
buttons in the same group; if false, other radio
buttons in the same group must be deselected
manually.

CheckAlign Gets or sets the alignment of the click box
portion of the control.

Checked Gets or sets whether the control is checked.

Public Methods PerformClick Sends a Click event to the control.

Public Events

AppearanceChanged Occurs when the Appearance property
changes.

CheckedChanged Occurs when the Checked property changes.
300 CHAPTER 9 BASIC CONTROLS

provide a collection of control objects with no scrolling capabilities. A group box
includes a simple border, and the Text property for this control displays an optional
label as part of the border. In general, use a group box control to provide simple con-
tainment of controls, especially when you wish to provide a label for the group.

The Panel and GroupBox controls are similar in that they are both used to con-
tain controls. The Panel class provides some advanced features such as automated
scrolling and configurable borders, while the GroupBox control provides a simple
border with an optional label.

The steps to create the radio buttons on our form are provided in the following
table. Note in particular how the Tag property inherited from the Control class is
used to hold the enumeration value associated with the button.

CREATE THE GROUP BOX SECTION OF THE ALBUMEDITDLG FORM

 Action Result

1 In the AlbumEditDlg.cs [Design]
window, drag a GroupBox control
from the Toolbox onto the form.

A GroupBox object is added to the form.

2 Set the Text property of the
GroupBox control to “Phot&o
Display Text.”

This text is shown in the graphic for step 3.

3 Add three RadioButton buttons
within this GroupBox, and position
as in the graphic.

4 In the AlbumEditDlg constructor,
initialize the Tag property for each
control to contain the corresponding
enumeration value.

 public AlbumEditDlg()
 {
 . . .
 // Initialize radio button tags
 this.rbtnCaption.Tag = (int)
 PhotoAlbum.DisplayValEnum.Caption;
 this.rbtnDate.Tag = (int)
 PhotoAlbum.DisplayValEnum.Date;
 this.rbtnFileName.Tag = (int)
 PhotoAlbum.DisplayValEnum.FileName;
 }

Settings

Button Property Value

File name (Name) rbtnFileName

Text File &name

Caption (Name) rbtnCaption

Text Ca&ption

Date (Name) rbtnDate

Text &Date
BUTTON CLASSES 301

Before we discuss the new code here, the tab behavior of RadioButton and Group-
Box controls is worth a mention.

For radio button controls, all radio buttons in a group are treated as a single tab
index. When you tab to a group of radio buttons, the selected button receives the
focus, and then the left and right arrow keys alter the selected button.

The tab behavior for the GroupBox control is much like the Label class, in that
it never receives the focus directly. Instead, the first control in the box receives the
focus. In our form, when you tab to the group box, or use the access key Alt+O, the
currently selected radio button receives the focus on behalf of the group. We will set
the tab order for our controls shortly, after which we can see this behavior for ourselves.

As for the code changes here, let’s look at them in a bit more detail. Here is an
excerpt of the AlbumEditDlg.cs source file after the previously mentioned code mod-
ifications have been made.
namespace Manning.MyPhotoAlbum
{
 public class AlbumEditDlg : Manning.MyPhotoAlbum.BaseEditDlg
 {
 . . .
 private PhotoAlbum.DisplayValEnum _selectedDisplayOption;

 public AlbumEditDlg(PhotoAlbum album)
 {
 // This call is required by the Windows Form Designer
 InitializeComponent();

 // Initialize radio button tags
 this.rbtnCaption.Tag = (int)PhotoAlbum.DisplayValEnum.Caption;
 this.rbtnDate.Tag = (int)PhotoAlbum.DisplayValEnum.Date;
 this.rbtnFileName.Tag = (int)PhotoAlbum.DisplayValEnum.FileName;
 }

 #region Designer generated code

5 Add a private field to the
AlbumEditDlg class to hold the
currently selected radio button.

 private PhotoAlbum.DisplayValEnum
 _selectedDisplayOption;

6 Create a DisplayOption_Click
method to serve as the Click event
handler for all three buttons.

 private void DisplayOption_Click
 (object sender, System.EventArgs e)
 {
 RadioButton rb = sender as RadioButton;

 if (rb != null)
 this._selectedDisplayOption =
 (PhotoAlbum.DisplayValEnum)rb.Tag;
 }

7 Add this new method as the Click
handler for each of the three radio
buttons.

CREATE THE GROUP BOX SECTION OF THE ALBUMEDITDLG FORM (continued)

 Action Result

Assign tag
values b
302 CHAPTER 9 BASIC CONTROLS

 . . .
 private void InitializeComponent()
 {
 . . .
 this.panel1.SuspendLayout();
 this.groupBox1.SuspendLayout();
 this.SuspendLayout();
 //
 // groupBox1
 //
 this.groupBox1.Controls.AddRange(
 new System.Windows.Forms.Control[] {
 this.rbtnCaption,
 this.rbtnFileName,
 this.rbtnDate});
 this.groupBox1.Location = new System.Drawing.Point(8, 104);
 this.groupBox1.Name = "groupBox1";
 this.groupBox1.Size = new System.Drawing.Size(280, 56);
 this.groupBox1.TabIndex = 4;
 this.groupBox1.TabStop = false;
 this.groupBox1.Text = "Phot&o Display Text";
 //
 // rbtnFileName
 //
 this.rbtnFileName.Location = new System.Drawing.Point(8, 24);
 this.rbtnFileName.Name = "rbtnFileName";
 this.rbtnFileName.Size = new System.Drawing.Size(80, 24);
 this.rbtnFileName.TabIndex = 0;
 this.rbtnFileName.Text = "File &name";
 this.rbtnFileName.Click += new
 System.EventHandler(this.DisplayOption_Click);
 . . .
 this.Controls.AddRange(new System.Windows.Forms.Control[] {
 this.groupBox1,
 this.panel1});
 . . .
 this.panel1.ResumeLayout(false);
 this.groupBox1.ResumeLayout(false);
 this.ResumeLayout(false);
 }
 #endregion

 . . .
 private void DisplayOption_Click(object sender, System.EventArgs e)
 {
 RadioButton rb = sender as RadioButton;

 if (rb != null)
 this._selectedDisplayOption = (PhotoAlbum.DisplayValEnum)rb.Tag;
 }
 }
}

c Suspend
layout logic

Add radio
buttons to
 group box d

Set click
handler e

Add controls to form f

Record selected
radio button g
BUTTON CLASSES 303

Let’s look at the numbered sections of this code in a little more detail.

b The Tag property contains an object to associate with the control. This provides a
general mechanism for associating any data with any control. In our case, we use this
property to hold the DisplayValEnum enumeration value corresponding to the
individual buttons.

c Visual Studio suspends the layout logic for all container controls during initialization,
including our group box. This ensures that the controls do not perform any layout of
their contained objects during initialization.

d As we saw for our Panel control previously, the contained controls, in this case the
three radio buttons, are added directly to the GroupBox control. This means that
layout-related values, such as the Anchor and Dock properties, apply within the
GroupBox container, and not within the Form.

e The Click handler for our three radio buttons is set using the standard += notation
for events.

f It is interesting to note that the form itself only contains two controls so far. These are
the Panel control and the GroupBox control.

g The shared click handler, DisplayOption_Click, receives a radio button object
and records its Tag value as the currently selected radio button. We will use this
selected value to save the settings for our dialog box when the user clicks OK.

Also note the use of the C# as keyword in our shared click handler. An as statement
works much like a cast, except that the value null is assigned if the provided variable
is not of the given type, as opposed to the InvalidCastException that is thrown
when a cast operation fails. This handler could also be written as follows, although
the following code is slightly less efficient since the sender parameter is checked
twice—once for the is statement and once for the cast.
 private void DisplayOption_Click(object sender, System.EventArgs e)
 {
 // Our click handler using the is statement – not our approach
 if (sender is RadioButton)
 {
 RadioButton rb = (RadioButton) sender;
 this._selectedDisplayOption = (PhotoAlbum.DisplayValEnum)rb.Tag;
 }
 }

Before we hook up this new form to our application, let’s create the check box control
on our form as well.

9.3.5 USING CHECK BOX BUTTONS

The CheckBox control is similar to a radio button. While a radio button is used for a
set of mutually exclusive options, a check box is used for a single option that can be
turned on or off. A check box normally appears as a small square followed by a textual
304 CHAPTER 9 BASIC CONTROLS

description of the option. The settings for this control are rather similar to those pro-
vided for RadioButton objects, and are summarized in .NET Table 9.7.

Check boxes are normally used in one of two ways. The first is as a simple on or off
state. For example, we could have elected to add a check box indicating whether the
album can be modified. If yes, then photographs could be added to and removed
from the album. If no, then any attempt to modify the album could throw an
InvalidOperationException object. In a Windows dialog box, this option
could be represented as a check box, which the user would click to turn modifications
on or off.

Another common usage for a check box is to enable or disable a set of controls
related to a specific option. This is the type of check box we will create here. In our
case, the check box relates to whether the photo album has a password associated with
it or not. If it does, then controls to set this password will be enabled on our form. If
it does not, then these controls will be disabled.

Let’s begin by adding the CheckBox and related controls to our AlbumEditDlg
form. These steps also add some logic for processing the check box and associated con-
trols. We discuss the events used here following the table.

.NET Table 9.7 CheckBox class

The CheckBox class represents a button that displays an option to the user. Typically, a check
box represents one of two states, either checked or unchecked. A three-state check box can
also be established, with an additional intermediate state. This third state is useful when
used with a set of objects, where some objects have the option checked and some
unchecked.

This control is part of the System.Windows.Forms namespace, and inherits from the
ButtonBase class. See .NET Table 9.4 on page 292 for members inherited from the Button-
Base class.

Public

Properties

Appearance Gets or sets whether the control appears as a normal
check box button or as a toggle button.

AutoCheck Gets or sets whether the control is checked
automatically or manually. The default is true.

Checked Gets or sets whether the control is checked.

CheckState Gets or sets the state of a three-state check box as a
CheckState enumeration value. This is either
Checked, Unchecked (the default), or Intermediate.

ThreeState Gets or sets whether the check box displays three
states. The default is false.

Public

Events

CheckedChanged Occurs when the Checked property changes.

CheckStateChanged Occurs when the CheckState property changes.
BUTTON CLASSES 305

CREATE THE PASSWORD SECTION OF THE ALBUMEDITDLG FORM

 Action Result

1 In the AlbumEditDlg.cs [Design] window,
drag a CheckBox control from the Toolbox
window onto the form.

2 Add a text box to receive the password,
and an additional label and text box to
confirm the password. Set the size and
position of these controls as shown in the
graphic.

Note: Since the default value for the
CheckBox is unchecked, these controls are
set to disabled by default. We will enable
them when the user clicks the check box.

Also, notice the two different settings
for PasswordChar used here. This is done
only for illustrative purposes. Generally,
you should use the same password charac-
ter for all controls in a window.

Settings

Property Value

(Name) cbtnPassword

Text Require &Password

Settings

Control Property Value

First
TextBox

(Name) txtAlbumPwd

Enabled False

PasswordChar *

Label (Name) lblConfirmPwd

Enabled False

Text Confir&m
Password

TextAlign MiddleLeft

Second
TextBox

(Name) txtConfirmPwd

Enabled False

PasswordChar x
306 CHAPTER 9 BASIC CONTROLS

3 Use the tab order view to assign the
TabIndex properties for the controls in
the dialog, using the order shown in the
graphic.

4 Add a CheckedChanged handler for the
CheckBox object to enable the controls
when the box is checked.

How-to

This is the default event for the CheckBox
control, so simply double-click on the
control.

 private void cbtnPassword_CheckedChanged
 (object sender, System.EventArgs e)
 {
 // Enable pwd controls as required.
 bool enable = cbtnPassword.Checked;
 txtAlbumPwd.Enabled = enable;
 lblConfirmPwd.Enabled = enable;
 txtConfirmPwd.Enabled = enable;

 if (enable)
 {
 // Assign focus to pwd text box
 txtAlbumPwd.Focus();
 }
 }

5 Add a Validating event handler to the
txtAlbumPwd control.

Note: The Validating and Validated
events allow custom validation to be per-
formed on a control.

 private void txtAlbumPwd_Validating
 (object sender, System.
 ComponentModel.CancelEventArgs e)
 {
 if (txtAlbumPwd.TextLength == 0)
 {
 MessageBox.Show(this,
 "The password for the album "
 + "cannot be blank",
 "Invalid Password",
 MessageBoxButtons.OK,
 MessageBoxIcon.Error);
 e.Cancel = true;
 }
 }

CREATE THE PASSWORD SECTION OF THE ALBUMEDITDLG FORM (continued)

 Action Result
BUTTON CLASSES 307

This code demonstrates a couple of new concepts, such as setting the focus and vali-
dating the contents of a control. Let’s look at these changes in a bit more detail.
 private void cbtnPassword_CheckedChanged
 (object sender, System.EventArgs e)
 {
 // Enable the password controls as required
 bool enable = cbtnPassword.Checked;
 txtAlbumPwd.Enabled = enable;
 lblConfirmPwd.Enabled = enable;
 txtConfirmPwd.Enabled = enable;

 if (enable)
 {
 // Assign focus to password control
 txtAlbumPwd.Focus();
 }
 }

 private void txtAlbumPwd_Validating
 (object sender, System.ComponentModel.CancelEventArgs e)
 {
 if (txtAlbumPwd.TextLength == 0)
 {
 MessageBox.Show(this,
 "The password for the album cannot be blank",
 "Invalid Password",
 MessageBoxButtons.OK,
 MessageBoxIcon.Error);

 e.Cancel = true;
 }
 }

 private bool ValidPasswords()
 {

6 Add a ValidPasswords method to return
whether the two passwords match.

 private bool ValidPasswords()
 {
 if ((cbtnPassword.Checked)
 && (txtConfirmPwd.Text
 != txtAlbumPwd.Text))
 {
 MessageBox.Show(this,
 "The password and confirm "
 + "values do not match",
 "Password Error",
 MessageBoxButtons.OK,
 MessageBoxIcon.Error);
 return false;
 }

 return true;
 }

CREATE THE PASSWORD SECTION OF THE ALBUMEDITDLG FORM (continued)

 Action Result

b Handle the
CheckedChanged
event

c Set focus to
txtAlbumPwd
control

Handle the d
Validating

event
308 CHAPTER 9 BASIC CONTROLS

 if ((cbtnPassword.Checked)
 && (txtConfirmPwd.Text != txtAlbumPwd.Text))
 {
 MessageBox.Show(this,
 "The password and confirm values do not match",
 "Password Error",
 MessageBoxButtons.OK,
 MessageBoxIcon.Error);

 return false;
 }

 return true;
 }

The numbered sections in this code warrant the following commentary.

b The AutoCheck property handles the Click event automatically on behalf of our
CheckBox control. To process the change in button state that occurs when this hap-
pens, we handle the CheckedChanged event. The value of the Checked property is
used to enable or display the associated controls, as required.

c When our radio button is checked, the focus, by default, would remain with the
cbtnPassword control. Typically, when a user checks this button, he or she would
immediately want to edit the password field. Calling the Focus method does this
automatically and saves the user an extra step.

d The Validating event is one of a series of events related to entering and leaving a
control. Collectively, these events are sometimes referred to as the focus events. The
focus events, in the order in which they occur, are as follows: Enter, GotFocus,
Leave, Validating, Validated, and LostFocus.These events can be used to
fine-tune the behavior of a control as the user moves from one control to the next.

The validation events, namely Validating and Validated, occur during and
after validation whenever the CausesValidation property is set to true. This
property defaults to true, so the validation events normally occur. The Validating
event receives a CancelEventArgs parameter much like the OnClosing event we
discussed for the Form class in chapter 6. The CancelEventArgs.Cancel property
is used to cancel the operation when the validation fails.

In our case, we want to verify that the password provided is not blank. When this
occurs, we display a message box to inform the user of the problem, and cancel the
operation to indicate that validation has failed. The .NET Framework returns focus
to the control, forcing the user to correct the problem.
BUTTON CLASSES 309

Our check box example does have one drawback. If the user clicks the check box,
then he or she is forced to enter a password before leaving the txtAlbumPwd control.
This could be a little frustrating if the user then wishes to uncheck the check box. We
alleviate this a little by providing a default text string in the txtAlbumPwd control.
From a book perspective, this was a good place to demonstrate the Focus method
and validation events, so we will allow this little design anomaly to remain. In prac-
tice, an alternative might be to ensure that the password is nonempty as part of the
ValidPasswords method.

This completes our discussion of check boxes. The last step here is to add the logic to
reset and save our dialog box values, and display the form from our MyPhotos application.

9.3.6 Adding AlbumEditDlg to our main form

The final task required so that we can see our AlbumEditDlg dialog in action is to
handle the reset and save logic required and link the dialog into our application. Let’s
make this happen.

FINISH THE ALBUMEDITDLG FORM

 Action Result

1 In the AlbumEditDlg.cs source
window, add a private
PhotoAlbum variable to hold the
album to edit.

 private PhotoAlbum _album;

2 Modify the constructor to accept
a PhotoAlbum parameter.

 public AlbumEditDlg(PhotoAlbum album)
 {

3 Within the constructor, set the
album variable and call
ResetSettings to initialize the
dialog’s controls.

 . . .
 // Initialize the dialog settings
 _album = album;
 ResetSettings();
 }
310 CHAPTER 9 BASIC CONTROLS

4 Implement ResetSettings to
set the controls to their
corresponding settings in the
current photograph.

 protected override void ResetSettings()
 {
 // Set file name
 txtAlbumFile.Text = _album.FileName;

 // Set title, and use in title bar
 this.txtTitle.Text = _album.Title;
 this.Text = String.Format(
 "{0} - Album Properties",
 txtTitle.Text);

 // Set display option values
 _selectedDisplayOption
 = _album.DisplayOption;
 switch (_selectedDisplayOption)
 {
 case PhotoAlbum.DisplayValEnum.Date:
 this.rbtnDate.Checked = true;
 break;

 case PhotoAlbum.DisplayValEnum.FileName:
 this.rbtnFileName.Checked = true;
 break;

 case PhotoAlbum.DisplayValEnum.Caption:
 default:
 this.rbtnCaption.Checked = true;
 break;
 }

 string pwd = _album.Password;
 cbtnPassword.Checked
 = (pwd != null && pwd.Length > 0);
 txtAlbumPwd.Text = pwd;
 txtConfirmPwd.Text = pwd;
 }

5 Implement the SaveSettings
method to store the results after
the user has clicked OK.

 protected override bool SaveSettings()
 {
 bool valid = ValidPasswords();

 if (valid)
 {
 _album.Title = txtTitle.Text;
 _album.DisplayOption
 = this._selectedDisplayOption;

 if (cbtnPassword.Checked)
 _album.Password = txtAlbumPwd.Text;
 else
 _album.Password = null;
 }

 return valid;
 }

6 Add a TextChanged event
handler to the txtTitle control
to update the title bar as the title
text is modified.

 private void txtTitle_TextChanged
 (object sender, System.EventArgs e)
 {
 this.Text = String.Format(
 "{0} - Album Properties",
 txtTitle.Text);
 }

FINISH THE ALBUMEDITDLG FORM (continued)

 Action Result

How-to

a. Assign the album file name and
title text boxes.

b. Place the album title in the title
bar as well.

c. Set the radio buttons based on
the DisplayOption setting for
the album.

d. Check the check box button if
the album contains a non-
empty password.

e. Assign both password text
boxes to the current password.

How-to

a. Use the ValidPasswords
method to verify the pass-
words settings.

b. Store the new settings only if
the passwords were valid.

c. Return whether the settings
were successfully stored.
BUTTON CLASSES 311

This completes the dialog. Now let’s invoke this dialog from our main application
window.

Set the version number of the MyPhotos application to 9.3.

And we are finished. Compile and run the application to display properties for an
album. Note the following aspects of the Album Properties dialog:

• This dialog can be displayed for an empty album, as opposed to the Photo Proper-
ties dialog, which requires at least one photograph in the album in order to appear.

• The title bar updates as the title changes.
• The radio buttons receive focus as a group. If you use the Tab key to move

through the form, this is readily apparent. Note how the arrow keys can be
used to modify the selected radio button from the keyboard.

DISPLAY THE ALBUMEDITDLG FORM

 Action Result

7 In the MainForm.cs [Design]
window, add a new Album
Properties menu item to the
Edit menu.

8 Add a Click handler for this
menu to display the
AlbumEditDlg form.

 private void menuAlbumProp_Click
 (object sender, System.EventArgs e)
 {
 using (AlbumEditDlg dlg
 = new AlbumEditDlg(_album))
 {
 if (dlg.ShowDialog()
 == DialogResult.OK)
 {
 // Update window with changes
 this._bAlbumChanged = true;
 SetTitleBar();
 this.Invalidate();
 }
 }
 }

9 Also, make use of the new
CurrentDisplayText
property in the OnPaint
method.

 protected override void OnPaint(. . .)
 {
 if (_album.Count > 0)
 {
 . . .
 // Update the status bar.
 sbpnlFileName.Text
 = _album.CurrentDisplayText;
 . . .
 }

Settings

Property Value

(Name) menuAlbumProp

Text A&lbum
Properties
312 CHAPTER 9 BASIC CONTROLS

• The radio buttons receive focus when you type the access key Alt+O to activate
the GroupBox control.

• Modifying the display option for the album alters the Photograph setting
displayed in the status bar of the main form.

• The password entry controls are enabled and disabled automatically as the
CheckBox control is clicked. Note how the txtPassword control receives
focus automatically when the controls are enabled.

• Try to enter a blank password or an invalid confirmation password to see how
the validation behaves for these controls.

Feel free to experiment with some of the settings here. Also make sure the album and
photograph settings are saved and restored properly whenever you close and later
open an album.

TRY IT! Use the Appearance property to modify the radio buttons in the Albu-
mEditDlg form to be toggle buttons rather than normal radio buttons.
Compile and run the program to see the toggle button behavior in action.
Users typically expect normal radio buttons for situations like this, so make
sure you have a good reason for using an alternate appearance when you
choose to do so.

9.4 RECAP

In this chapter we reviewed the basic controls in Windows Forms, namely the Label,
TextBox, Button, RadioButton, and CheckBox controls. The majority of appli-
cations include one or more of these controls, and many dialogs are based exclusively
on these classes. We examined the members, focus behavior, and some special features
of each control, and used each control in our dialogs.

We also examined how one Form can be based on another Form using form
inheritance. We constructed a base form and used it while building our two dialogs
in Visual Studio .NET. During this process we also took a look at the container con-
trols Panel and GroupBox as a way to logically arrange controls on a form, and in
particular to define a distinct group for a set of radio buttons.

Along the way we looked at access modifiers for controls on a form, the
DateTime structure, the C# delegate keyword, keyboard events, the Tag property,
and focus events. You can review these topics by looking back through the chapter or
by locating the appropriate page number using the book’s index.

There are a number of other controls in .NET, of course. The next chapter con-
tinues our discussion on controls in Windows Forms with a detailed discussion of the
ListBox and ComboBox controls.
RECAP 313

C H A P T E R 1 0

List controls

10.1 List boxes 315
10.2 Multiselection list boxes 325
10.3 Combo boxes 333

10.4 Combo box edits 339
10.5 Owner-drawn lists 343
10.6 Recap 352
This chapter continues our discussion of the Windows Forms controls available in the
.NET Framework. The controls we saw in chapter 9 each presented a single item, such
as a string of text or a button with associated text. In this chapter we will look at some
controls useful for presenting collections of items in Windows-based applications.

While it is certainly possible to use a multiline Textbox control to present a
scrollable list of items, this control does not allow the user to select and manipulate
individual items. This is where the ListBox and other list controls come in. These
controls present a scrollable list of objects that can be individually selected, high-
lighted, moved, and otherwise manipulated by your program. In this chapter we will
look at the ListBox and ComboBox controls in some detail. We will discuss the fol-
lowing topics:

• Presenting a collection of objects using the ListBox class.
• Supporting single and multiple selections in a list box.
• Drawing custom list items in a list box.
• Displaying a selection using the ComboBox class.
• Dynamically interacting with the items in a combo box.
314

Note that the ListView and TreeView classes can also be used with collections of
objects. These classes are covered in chapters 14 and 15.

We will take a slightly different approach to presenting the list controls here.
Rather than using the MyPhotos application we have come to know and love, this
chapter will build a new application for displaying the contents of an album, using the
existing MyPhotoAlbum.dll library. This will demonstrate how a library can be reused
to quickly build a different view of the same data. Our new application will be called
MyAlbumEditor, and is shown in figure 10.1.

10.1 LIST BOXES

A list box presents a collection of objects as a scrollable list. In this section we look at
the ListControl and ListBox classes. We will create a list box as part of a new
MyAlbumEditor application that displays the collection of photographs in a Photo-
Album object. We will also support the ability to display our PhotoEditDlg dialog
box for a selected photograph.

Subsequent sections in this chapter will extend the capabilities of this application
with multiple selections of photographs and the use of combo boxes.

10.1.1 CREATING A LIST BOX

The ListBox and ComboBox controls both present a collection of objects. A list
box displays the collection as a list, whereas a combo box, as we shall see, displays a
single item, with the list accessible through an arrow button. In the window in
figure 10.1, the photo album is displayed within a ComboBox, while the collection
of photographs is displayed in a ListBox. Both of these controls are derived from
the ListControl class, which defines the basic collection and display functionality
required in both controls. A summary of this class appears in .NET Table 10.1.

Figure 10.1

The MyAlbumEditor appli-

cation does not include a

menu or status bar.
LIST BOXES 315

Let’s see how to use some of these members to display the list of photographs con-
tained in an album. The following steps create a new MyAlbumEditor application.
We will use this application throughout this chapter to demonstrate how various con-
trols are used. Here, we will open an album and display its contents in a ListBox
using some of the members inherited from ListControl.

.NET Table 10.1 ListControl class

The ListControl class is an abstract class for presenting a collection of objects to the user.
You do not normally inherit from this class; instead the derived classes ListBox and Com-
boBox are normally used.

This class is part of the System.Windows.Forms namespace, and inherits from the Con-
trol class. See .NET Table 4.1 on page 104 for a list of members inherited by this class.

Public Properties

DataSource Gets or sets the data source for this
control. When set, the individual items
cannot be modified.

DisplayMember Gets or sets the property to use when
displaying objects in the list control. If
none is set or the setting is not a valid
property, then the ToString property is
used.

SelectedIndex Gets or sets the zero-based index of the
object selected in the control.

SelectedValue Gets or sets the value of the object
selected in the control.

ValueMember Gets or sets the property to use when
retrieving the value of an item in the list
control. By default, the object itself is
retrieved.

Public Methods
GetItemText Returns the text associated with a given

item, based on the current
DisplayMember property setting.

Public Events

DataSourceChanged Occurs when the DisplaySource
property changes

DisplayMemberChanged Occurs when the DisplayMember
property changes.
316 CHAPTER 10 LIST CONTROLS

These steps should be familiar to you if you have been following along from the begin-
ning of the book. Since we encapsulated the PhotoAlbum and Photograph classes
in a separate library in chapter 5, these objects, including the dialogs created in
chapter 9, are now available for use in our application. This is quite an important
point, so I will say it again. The proper encapsulation of our objects in the MyPhoto-

CREATE THE MYALBUMEDITOR PROJECT

 Action Result

1 Create a new project called
“MyAlbumEditor.”

How-to

Use the File menu, or the
keyboard shortcut
Ctrl+Shift+N. Make sure you
close your existing solution, if
any.

The new project appears in the Solution Explorer window,
with the default Form1 form shown in the designer
window.

2 Rename the Form1.cs file to
MainForm.cs.

3 In the MainForm.cs source file,
rename the C# class to
MainForm.

 public class MainForm:System.Windows.Forms.Form
 {
 ...

4 Add the MyPhotoAlbum
project to the solution.

5 Reference the MyPhotoAlbum
project within the
MyAlbumEditor project.

How-to

Right-click the References
item in the MyAlbumEditor
project and display the Add
Reference dialog.

How-to

a. Right-click on the MyAlbu-
mEditor solution.

b. Select Existing Project…
from the Add menu.

c. In the Add Existing Project
window, locate the MyPho-
toAlbum directory.

d. Select the MyPhotoAl-
bum.csproj file from within
this directory.
LIST BOXES 317

Album library in chapters 5 and 9 makes the development of our new application that
much easier, and permits us to focus our attention on the list controls.

With this in mind, let’s toss up a couple of buttons and a list so we can see how
the ListBox control works.

Set the version number of the MyAlbumEditor application to 10.1.

CREATE THE CONTROLS FOR OUR NEW APPLICATION

 Action Result

6 Drop two GroupBox controls onto the
form.

How-to

As usual, drag them from the Toolbox
window.

7 Drop a Button control into the Albums
group box, a Listbox control into the
Photographs group box, and a Button
control at the base of the form.

Note: A couple points to note here. First, the
Anchor settings define the resize behavior of
the controls within their container. Note that
the Button and ListBox here are anchored
within their respective group boxes, and not
to the Form itself.

Second, since our application will not have
a menu bar, we use the standard Close button
as the mechanism for exiting the application.

Settings

GroupBox Property Value

First Anchor Top, Left, Right

Text &Albums

Second Anchor Top, Bottom,
Left, Right

Text &Photo-graphs

Settings

Control Property Value

Open Button (Name) btnOpen

Anchor Top, Right

Text &Open

ListBox (Name) lstPhotos

Anchor Top, Bottom,
Left, Right

Close Button (Name) btnClose

Anchor Bottom

Text &Close
318 CHAPTER 10 LIST CONTROLS

Our form is now ready. You can compile and run if you like. Before we talk about this
in any detail, we will add some code to make our new ListBox display the photo-
graphs in an album.

Some of the new code added by the following steps mimics code we provided for
our MyPhotos application. This is to be expected, since both interfaces operate on
photo album collections.

8 Set the properties for the MainForm
form.

Note: When you enter the new Size
setting, note how the controls auto-
matically resize within the form based
on the assigned Anchor settings.

CREATE THE CONTROLS FOR OUR NEW APPLICATION (continued)

 Action Result

Settings

Property Value

AcceptButton btnClose

Size 400, 300

Text MyAlbumEditor

DISPLAY THE CONTENTS OF AN ALBUM IN THE LISTBOX CONTROL

 Action Result

9 In the MainForm.cs file, indicate we
are using the Manning.MyPhotoAlbum
namespace.

. . .
using Manning.MyPhotoAlbum;

10 Add some member variables to track
the current album and whether it has
changed.

 private PhotoAlbum _album;
 private bool _bAlbumChanged = false;

11 Override the OnLoad method to
initialize the album.

Note: The OnLoad method is called a
single time after the form has been
created and before the form is initially
displayed. This method is a good place
to perform one-time initialization for
a form.

 protected override void OnLoad
 (EventArgs e)
 {
 // Initialize the album
 _album = new PhotoAlbum();

 base.OnLoad(e);
 }

12 Add a Click handler for the Close
button to exit the application.

 private void btnClose_Click
 (object sender, System.EventArgs e)
 {
 Close();
 }
LIST BOXES 319

13 Add a CloseAlbum method to close a
previously opened album.

How-to

Display a dialog to ask if the user
wants to save any changes they
have made.

 private void CloseAlbum()
 {
 if (_bAlbumChanged)
 {
 _bAlbumChanged = false;

 DialogResult result
 = MessageBox.Show("Do you want "
 + "to save your changes to "
 + _album.FileName + '?',
 "Save Changes?",
 MessageBoxButtons.YesNo,
 MessageBoxIcon.Question);

 if (result == DialogResult.Yes)
 {
 _album.Save();
 }
 }

 _album.Clear();
 }

14 Override the OnClosing method to
ensure the album is closed on exit.

 protected override void OnClosing
 (CancelEventArgs e)
 {
 CloseAlbum();
 }

15 Add a Click handler for the Open button
to open an album and assign it to the
ListBox.

 private void btnOpen_Click
 (object sender, System.EventArgs e)
 {
 CloseAlbum();

 using (OpenFileDialog dlg
 = new OpenFileDialog())
 {
 dlg.Title = "Open Album";
 dlg.Filter = "abm files (*.abm)"
 + "|*.abm|All Files (*.*)|*.*";
 dlg.InitialDirectory
 = PhotoAlbum.DefaultDir;

 try
 {
 if (dlg.ShowDialog()
 == DialogResult.OK)
 {
 _album.Open(dlg.FileName);
 this.Text = _album.FileName;
 UpdateList();
 }
 }
 catch (Exception)
 {
 MessageBox.Show("Unable to open "
 + "album\n" + dlg.FileName,
 "Open Album Error",
 MessageBoxButtons.OK,
 MessageBoxIcon.Error);
 }
 }
 }

DISPLAY THE CONTENTS OF AN ALBUM IN THE LISTBOX CONTROL (continued)

 Action Result

How-to

a. Close any previously open album.
b. Use the OpenFileDialog class to

allow the user to select an album.
c. Use the PhotoAlbum.Open method

to open the file.
d. Assign the album’s file name to the

title bar of the form.
e. Use a separate method for updating

the contents of the list box.
320 CHAPTER 10 LIST CONTROLS

That’s it! No need to add individual photographs one by one or perform other com-
plicated steps to fill in the list box. Much of the code is similar to code we saw in pre-
vious chapters. The one exception, the UpdateList method, simply assigns the
DataSource property of the ListBox control to the current photo album.
 protected void UpdateList()
 {
 lstPhotos.DataSource = _album;
 }

The DataSource property is part of the data binding support in Windows Forms.
Data binding refers to the idea of assigning one or more values from some source of
data to the settings for one or more controls. A data source is basically any array of
objects, and in particular any class that supports the IList interface.1 Since the
PhotoAlbum class is based on IList, each item in the list, in this case each Pho-
tograph, is displayed by the control. By default, the ToString property for each
contained item is used as the display string. If you recall, we implemented this
method for the Photograph class in chapter 5 to return the file name associated
with the photo.

Compile and run your code to display your own album. An example of the out-
put is shown in figure 10.2. In the figure, an album called colors.abm is displayed,
with each photograph in the album named after a well-known color. Note how the
GroupBox controls display their keyboard access keys, namely Alt+A and Alt+P.
When activated, the focus is set to the first control in the group box, based on the
assigned tab order.

16 Implement a protected UpdateList
method to initialize the ListBox
control.

 protected void UpdateList()
 {
 lstPhotos.DataSource = _album;
 }

DISPLAY THE CONTENTS OF AN ALBUM IN THE LISTBOX CONTROL (continued)

 Action Result

1 We will discuss data binding more generally in chapter 17.
LIST BOXES 321

You will also note that there is a lot of blank space in our application. Not to worry.
These spaces will fill up as we progress through the chapter.

TRY IT! The DisplayMember property for the ListBox class indicates the name
of the property to use for display purposes. In our program, since this prop-
erty is not set, the default ToString property inherited from the Object
class is used. Modify this property in the UpdateList method to a prop-
erty specific to the Photograph class, such as “FileName” or “Caption.”
Run the program again to see how this affects the displayed photographs.

The related property ValueMember specifies the value returned by
members such as the SelectedValue property. By default, this property
will return the object instance itself.

10.1.2 HANDLING SELECTED ITEMS

As you might expect, the ListBox class supports much more than the ability to display
a collection of objects. Particulars of this class are summarized in .NET Table 10.2. In
the MyAlbumEditor application, the list box is a single-selection, single-column list
corresponding to the contents of the current album. There are a number of different
features we will demonstrate in our application. For starters, let’s display the dialogs we
created in chapter 9.

The album dialog can be displayed using a normal button. For the PhotoEdit-
Dlg dialog, we would like to display the properties of the photograph that are cur-
rently selected in the list box. As you may recall, this dialog displays the photograph
at the current position within the album, which seemed quite reasonable for our
MyPhotos application. To make this work here, we will need to modify the current
position to correspond to the selected item.

Figure 10.2

By default, the ListBox control

displays a scroll bar when the

number of items to display ex-

ceeds the size of

the box.
322 CHAPTER 10 LIST CONTROLS

.NET Table 10.2 ListBox class

The ListBox class represents a list control that displays a collection as a scrollable window. A
list box can support single or multiple selection of its items, and each item can display as a
simple text string or a custom graphic. This class is part of the System.Windows.Forms
namespace, and inherits from the ListControl class. See .NET Table 10.1 on page 316 for a
list of members inherited by this class.

Public

Static Fields

DefaultItemHeight The default item height for an owner-drawn ListBox
object.

NoMatches The value returned by ListBox methods when no
matches are found during a search.

Public

Properties

DrawMode Gets or sets how this list box should be drawn.

ItemHeight Gets or sets the height of an item in the list box.

Items Gets the collection of items to display.

MultiColumn Gets or sets whether this list box should support
multiple columns. Default is false.

SelectedIndices Gets a collection of zero-based indices for the items
selected in the list box.

SelectedItem Gets or sets the currently selected object.

SelectedItems Gets a collection of all items selected in the list.

SelectionMode Gets or sets how items are selected in the list box.

Sorted Gets or sets whether the displayed list should be
automatically sorted.

TopIndex Gets the index of the first visible item in the list.

Public

Methods

BeginUpdate Prevents the control from painting its contents while
items are added to the list box.

ClearSelected Deselects all selected items in the control.

FindString Returns the index of the first item with a display value
beginning with a given string.

GetSelected Indicates whether a specified item is selected.

IndexFromPoint Returns the index of the item located at the specified
coordinates.

SetSelected Selects or deselects a given item.

Public

Events

DrawItem Occurs when an item in an owner-drawn list box requires
painting.

MeasureItem Occurs when the size of an item in an owner-drawn list
box is required.

SelectedIndex-
Changed

Occurs whenever a new item is selected in the list box,
for both single and multiple selection boxes.
LIST BOXES 323

The following steps detail the changes required to display our two dialogs.

DISPLAY THE PROPERTY DIALOGS

Action Result

1 In the MainForm.cs [Design]
window, add two buttons to the
form as shown in the graphic.

2 Add a Click event handler for
album’s Properties button.

 private void btnAlbumProp_Click
 (object sender, System.EventArgs e)
 {
 using (AlbumEditDlg dlg
 = new AlbumEditDlg(_album))
 {
 if (dlg.ShowDialog()
 == DialogResult.OK)
 {
 _bAlbumChanged = true;
 UpdateList();
 }
 }
 }

3 Add a Click event handler for
the photograph’s Properties
button to display the
PhotoEditDlg form.

 private void btnPhotoProp_Click
 (object sender, System.EventArgs e)
 {
 if (_album.Count == 0)
 return;

 if (lstPhotos.SelectedIndex >= 0)
 {
 _album.CurrentPosition
 = lstPhotos.SelectedIndex;
 }

 using (PhotoEditDlg dlg
 = new PhotoEditDlg(_album))
 {
 if (dlg.ShowDialog()
 == DialogResult.OK)
 {
 _bAlbumChanged = true;
 UpdateList();
 }
 }
 }

Settings

Button Property Value

album (Name) btnAlbumProp

Anchor Top, Right

Text Propertie&s

photo (Name) btnPhotoProp

Anchor Top, Right

Text Properti&es

How-to

a. Within this handler, display an
Album Properties dialog box
for the current album.

b. If the user modifies the prop-
erties, mark the album as
changed and update the list.

How-to

a Within the handler, if the
album is empty then simply
return.

b. Set the current position in the
album to the selected photo-
graph.

c. Display a Photo Properties
dialog box for the photograph
at the current position.

d. If the user modifies the prop-
erties, mark the album as
changed and update the list.
324 CHAPTER 10 LIST CONTROLS

In the code to display the Photograph Properties dialog, note how the SelectedIn-
dex property is used. If no items are selected, then SelectedIndex will contain the
value –1, and the current position in the album is not modified. When a photograph
is actually selected, the current position is updated to the selected index. This assign-
ment relies on the fact that the order of photographs in the ListBox control matches
the order of photographs in the album itself.
 if (lstPhotos.SelectedIndex >= 0)
 _album.CurrentPosition = lstPhotos.SelectedIndex;

For both dialogs, a C# using block ensures that any resources used by the dialog are
cleaned up when we are finished. We also call UpdateList to update our applica-
tion with any relevant changes made. In fact, neither property dialog permits any
changes that we would display at this time. Even so, updating the list is a good idea in
case we add such a change in the future.

Compile and run your application to ensure that the dialog boxes display cor-
rectly. Note how easily we reused these dialogs in our new application. Make some
changes and then reopen an album to verify that everything works as you expect.

One minor issue with our application occurs when the album is empty. When a
user clicks the photo’s Properties button, nothing happens. This is not the best user
interface design, and we will address this fact in the next section.

So far our application only allows a single item to be selected at a time. List boxes can
also permit multiple items to be selected simultaneously—a topic we will examine next.

10.2 MULTISELECTION LIST BOXES

So far we have permitted only a single item at a time to be selected from our list. In
this section we enable multiple item selection, and add some buttons to perform var-
ious actions based on the selected items. Specifically, we will add Move Up and Move
Down buttons to alter the position of the selected photographs, and a Remove but-
ton to delete the selected photographs from the album.

10.2.1 Enabling multiple selection

Enabling the ListBox to allow multiple selections simply requires setting the right
property value, namely the SelectionMode property, to the value MultiSimple
or MultiExtended. We discuss this property in detail later in the section.

4 Also display the photograph’s
properties when the user
double-clicks on the list.

How-to

Handle the DoubleClick event
for the ListBox control.

 private void lstPhotos_DoubleClick
 (object sender, System.EventArgs e)
 {
 btnPhotoProp.PerformClick();
 }

DISPLAY THE PROPERTY DIALOGS (continued)

Action Result
MULTISELECTION LIST BOXES 325

Whenever you enable new features in a control, in this case enabling multiple
selection in our list box, it is a good idea to review the existing functionality of the form
to accommodate the new feature. In our case, what does the Properties button in the
Photographs group box do when more than a single item is selected? While we could
display the properties of the first selected item, this seems rather arbitrary. A more log-
ical solution might be to disable the button when multiple items are selected. This is,
in fact, what we will do here.

Since the Properties button will be disabled, we should probably have some other
buttons that make sense when multiple items are selected. We will add three buttons.
The first two will move the selected items up or down in the list as well as within the
corresponding PhotoAlbum object. The third will remove the selected items from the
list and the album.

The steps required are shown in the following table:

Set the version number of the MyAlbumEditor application to 10.2.

ENABLE MULTIPLE SELECTIONS IN THE LIST BOX

 Action Result

1 In the MainForm.cs [Design] window,
modify the SelectionMode property
for the list box to be MultiExtended.

This permits multiple items to be selected
similarly to how files can be selected in Windows
Explorer.

2 Add three new buttons within the
Photographs group box as shown in the
graphic.

Settings

Button Property Value

Move Up (Name) btnMoveUp

Anchor Top, Right

Text Move &Up

Move Down (Name) btnMoveDown

Anchor Top, Right

Text Move &Down

Remove (Name) btnRemove

Anchor Top, Right

Text &Remove
326 CHAPTER 10 LIST CONTROLS

3 Set the Enabled property for the four
buttons in the Photographs group box
to false.

Note: This technique can be used to
set a common property for any set of
controls on a form to the same value.

The code in the InitializeComponent method
for all four buttons is modified so that their
Enabled properties are set to false.

 btnMoveUp.Enabled = false;
 . . .
 btnMoveDown.Enabled = false;
 . . .

4 Rewrite the UpdateList method to
add each item to the list manually.

Note: The BeginUpdate method pre-
vents the list box from drawing the
control while new items are added.
This improves performance and pre-
vents the screen from flickering.

This allows us to manipulate and modify the
individual items in the list, which is prohibited
when filling the list with the DisplaySource
property.

 private void UpdateList()
 {
 lstPhotos.BeginUpdate();
 lstPhotos.Items.Clear();
 foreach (Photograph photo in _album)
 {
 lstPhotos.Items.Add(photo);
 }
 lstPhotos.EndUpdate();
 }

5 Handle the SelectedIndexChanged
event for the ListBox control.

How-to

This is the default event for all list
controls, so simply double-click on the
control.

 private void
 lstPhotos_SelectedIndexChanged
 (object sender, System.EventArgs e)
 {
 int numSelected
 = lstPhotos.SelectedIndices.Count;

6 Implement this handler to enable or
disable the buttons in the Photographs
group box based on the number of
items selected in the list box.

Note: The Move Up button should be
disabled if the first item is selected.
The Move Down button should be dis-
abled if the last item is selected. The
GetSelected method is used to deter-
mine if a given index is currently
selected.

 bool someSelected = (numSelected > 0);

 btnMoveUp.Enabled = (someSelected
 && !lstPhotos.GetSelected(0));
 btnMoveDown.Enabled = (someSelected
 && (!lstPhotos.GetSelected(
 lstPhotos.Items.Count - 1)));
 btnRemove.Enabled = someSelected;

 btnPhotoProp.Enabled
 = (numSelected == 1);
 }

ENABLE MULTIPLE SELECTIONS IN THE LIST BOX (continued)

 Action Result

How-to

a. Click the first button.
b. Hold down the Ctrl key and click the

other buttons so that all four buttons
are highlighted.

c. Display the Properties window.
d. Set the Enabled item to False.
MULTISELECTION LIST BOXES 327

You can compile and run this code if you like. Our new buttons do not do anything,
but you can watch them become enabled and disabled as you select items in a newly
opened album.

We assigned the MultiExtended selection mode setting to the List-
Box.SelectionMode property, which permits selecting a range of items using the
mouse or keyboard. This is one of four possible values for the SelectionMode enu-
meration, as described in .NET Table 10.3.

TRY IT! Change the list box selection mode to MultiSimple and run your pro-
gram to see how the selection behavior differs between this and the Multi-
Extended mode.

Our next task will be to provide an implementation for these buttons. We will pick
up this topic in the next section.

10.2.2 HANDLING THE MOVE UP AND MOVE DOWN BUTTONS

Now that our list box allows multiple selections, we need to implement our three but-
tons that handle these selections from the list. This will permit us to discuss some col-
lection and list box methods that are often used when processing multiple selections
in a list.

We will look at the Move Up and Move Down buttons first. There are two prob-
lems we need to solve. The first is that our PhotoAlbum class does not currently pro-
vide an easy way to perform these actions. We will fix this by adding two methods to
our album class for this purpose.

The second problem is that if we move an item, then the index value of that item
changes. For example, if we want to move items 3 and 4 down, then item 3 should
move to position 4, and item 4 to position 5. As illustrated in figure 10.3, if we first

.NET Table 10.3 SelectionMode enumeration

The SelectionMode enumeration specifies the selection behavior of a list box control, such
as the ListBox and CheckedListBox classes. This enumeration is part of the System.Win-
dows.Forms namespace.

Enumeration

Values

None Items cannot be selected.

One A single item can be selected using a mouse
click or the space bar key.

MultiSimple Multiple items can be selected. Items are
selected or deselected using a mouse click or
the space bar.

MultiExtended Multiple items can be selected. This extends
simple selection to permit a range of items to be
selected using a drag of the mouse or the Shift,
Ctrl, and arrow keys.
328 CHAPTER 10 LIST CONTROLS

move item 3 down, it becomes item 4. If you then move item 4 down, you would
effectively move the original item 3 into position 5.

The trick here, as you may realize, is to move item 4 first, and then move item 3. In
general terms, to move multiple items down, we must move the items starting from
the bottom. Conversely, to move multiple items up, we must start at the top.

We will begin with the new methods required in the PhotoAlbum class.

Set the version number of the MyPhotoAlbum library to 10.2.

With these methods in place, we are ready to implement Click event handlers for our
Move Up and Move Down buttons. These handlers are shown in the following steps:

Figure 10.3 When the third item in the list is moved down, the original

fourth item moves into position 3.

IMPLEMENT MOVE METHODS IN PHOTOALBUM CLASS

 Action Result

1 In the PhotoAlbum.cs window, add a
MoveBefore method to move a
photograph at a specified index to the
previous position.

 public void MoveBefore(int i)
 {
 if (i > 0 && i < this.Count)
 {
 Photograph photo = this[i];
 this.RemoveAt(i);
 this.Insert(i-1, photo);
 }
 }

2 Add a MoveAfter method to move a
photograph at a specified index to the
subsequent position.

 public void MoveAfter(int i)
 {
 if (i >= 0 && i < this.Count-1)
 {
 Photograph photo = this[i];
 this.RemoveAt(i);
 this.Insert(i+1, photo);
 }
 }

How-to

a. Ensure the given index is valid.
b. Remove the Photograph at this

index from the list.
c. Insert the removed photograph at

the new position.
MULTISELECTION LIST BOXES 329

Both of these methods employ a number of members of the ListBox class. Let’s
examine the Move Down button handler in detail as a way to discuss these changes.

HANDLE THE MOVE BUTTONS

 Action Result

3 Implement a Click event
handler for the Move Up button.

Note: We could have used a
foreach loop over the indices
array here. This was written as a
for loop to be consistent with
the implementation of the Move
Down handler.

 private void btnMoveUp_Click
 (object sender, System.EventArgs e)
 {
 ListBox.SelectedIndexCollection indices
 = lstPhotos.SelectedIndices;
 int[] newSelects = new int[indices.Count];

 // Move the selected items up
 for (int i = 0; i < indices.Count; i++)
 {
 int index = indices[i];
 _album.MoveBefore(index);
 newSelects[i] = index - 1;
 }

 _bAlbumChanged = true;
 UpdateList();

 // Reset the selections.
 lstPhotos.ClearSelected();
 foreach (int x in newSelects)
 {
 lstPhotos.SetSelected(x, true);
 }
 }

4 Implement the Click handler for
the Move Down button.

 private void btnMoveDown_Click
 (object sender, System.EventArgs e)
 {
 ListBox.SelectedIndexCollection indices
 = lstPhotos.SelectedIndices;
 int[] newSelects = new int[indices.Count];

 // Move the selected items down
 for (int i = indices.Count - 1;
 i >= 0;
 i--)
 {
 int index = indices[i];
 _album.MoveAfter(index);
 newSelects[i] = index + 1;
 }

 _bAlbumChanged = true;
 UpdateList();

 // Reset the selections.
 lstPhotos.ClearSelected();
 foreach (int x in newSelects)
 {
 lstPhotos.SetSelected(x, true);
 }
 }
330 CHAPTER 10 LIST CONTROLS

 private void btnMoveDown_Click(object sender, System.EventArgs e)
 {
 ListBox.SelectedIndexCollection indices = lstPhotos.SelectedIndices;
 int[] newSelects = new int[indices.Count];

 // Move the selected items down
 for (int i = indices.Count - 1; i >= 0; i--)
 {
 int index = indices[i];
 _album.MoveAfter(index);
 newSelects[i] = index + 1;
 }

 _bAlbumChanged = true;
 UpdateList();
 // Reset the selections.
 lstPhotos.ClearSelected();
 foreach (int x in newSelects)
 {
 lstPhotos.SetSelected(x, true);
 }
 }

The following points are highlighted in the code:

b A local indices variable is created to hold the index values of the selected items. The
SelectedIndices property returns a ListBox.SelectedIndexCollection
instance containing an array of the selected index values. The related Selected-
Items property returns the actual objects selected. Note that an array of integers is
also created to hold the new index positions of the objects after they have been moved.

c Starting from the bottom of the list, each selected item is moved down in the album.
Note that the MoveDown button is disabled if the last item is selected, so we know for
certain that index + 1 will not produce an index which is out of range.

d Once all the changes have been made to our album, we update the list box with the
new entries. Note that the UpdateList method has a side effect of clearing the cur-
rent selections from the list.

e Once the list has been updated, the items need to be reselected. The newSelects
array was created for this purpose. The ClearSelected method is used to remove
any default selections added by the UpdateList method, and the SetSelected
method is used to select each entry in the array.

You can run the application here if you like to see how these buttons work. The next
section discusses the Remove button implementation.

10.2.3 HANDLING THE REMOVE BUTTON

The Remove button is a bit like the Move Down button. We have to be careful that
the removal of one item does not cause us to remove incorrect entries on subsequent

c Move selected
items down

Retrieve the
selected items

b

d
Update the
list box

e Reselect the items
MULTISELECTION LIST BOXES 331

items. We will again loop through the list of selected items starting from the end to
avoid this problem.

Also note that by removing the selected photographs, we are making an irrevers-
ible change to the photo album. As a result, this is a good place to employ the Mes-
sageBox class to ensure that the user really wants to remove the photos.

This code uses the SelectedItems property to retrieve the collection of selected
objects. This property is used to determine how many items are selected so that our
message to the user can include this information.
 int n = lstPhotos.SelectedItems.Count;

To perform the deletion, we use the SelectedIndices property to retrieve the
index numbers of each selected object. Since our list is based on the PhotoAlbum
class, we know that the index in the list box corresponds to the index in the album.
Removing a selection is a simple matter of removing the object at the given index
from the album.
 ListBox.SelectedIndexCollection indices = lstPhotos.SelectedIndices;
 for (int i = indices.Count - 1; i >= 0; i--)
 {
 _album.RemoveAt(indices[i]);
 }

HANDLE THE REMOVE BUTTON

 Action Result

1 Add a Click handler to the
Remove button.

 private void btnRemove_Click
 (object sender, System.EventArgs e)
 {

2 Implement this handler to
confirm with the user that
they really want to remove
the selected photos.

How-to

Use the MessageBox class
with the Question icon.

 string msg;
 int n = lstPhotos.SelectedItems.Count;
 if (n == 1)
 msg = "Do your really want to "
 + "remove the selected photo?";
 else
 msg = String.Format("Do you really want to "
 + "remove the {0} selected photos?", n);

 DialogResult result = MessageBox.Show(
 msg, "Remove Photos?",
 MessageBoxButtons.YesNo,
 MessageBoxIcon.Question);

3 If the user says Yes, then
remove the selected items.

How-to

Use the SelectedIndices
property.

 if (result == DialogResult.Yes)
 {
 ListBox.SelectedIndexCollection indices
 = lstPhotos.SelectedIndices;
 for (int i = indices.Count - 1; i >= 0; i--)
 {
 _album.RemoveAt(indices[i]);
 }

 _bAlbumChanged = true;
 UpdateList();
 }
 }
332 CHAPTER 10 LIST CONTROLS

Compile and run the application to see the Remove button and the rest of the inter-
face in action. Note that you can remove photographs and move them around and
still decide not to save these changes when the album is closed.

If you look at our application so far, there is still some space available in the
Albums group box. This space is intended for a ComboBox control holding the list of
available albums. Now that we have seen different ways to use the ListBox control,
it’s time to take a look at the other .NET list control: the ComboBox class.

10.3 COMBO BOXES

A list box is quite useful for presenting a list of strings, such as the photographs in an
album. There are times when only one item will ever be selected, or when the extra
space necessary to display a list box is problematic or unnecessary. The ComboBox
class is a type of ListControl object that displays a single item in a text box and
permits selection from an associated list box. Since a user can enter new values into
the text box control directly, a ComboBox allows additional items to be added much
more simply than a ListBox control.

Features specific to the ComboBox class are shown in .NET Table 10.4. As you
can see, a number of members are reminiscent of members from both the ListBox
class and the TextBox class. The TextBox area of the control is sometimes called the
editable portion of the control, even though it is not always editable, and the ListBox
portion may be called the dropdown portion, since the list drops down below the text
box portion for some display styles.

10.3.1 CREATING A COMBO BOX

In our MyAlbumEditor application, we will add a ComboBox control to permit quick
and easy access to the list of albums stored in the default album directory. The entries
for this control will be taken from the album file names discovered in this directory,
and the user will not be able to add new entries by hand. Figure 10.4 shows how our
application will look after this change, with the ComboBox dropdown list displayed.

Figure 10.4

The dropdown list for a Combo-

Box is hidden until the user

clicks on the small down arrow

to reduce the amount of space

required for the control on the
COMBO BOXES 333

The steps required to create the combo box for our application are as follows:

.NET Table 10.4 ComboBox class

The ComboBox class is a ListControl object that combines a TextBox control with a List-
Box object. A user can select an item from the list or enter an item manually. A ComboBox can
be displayed with or without the list box portion shown and with or without the text box por-
tion editable, depending on the setting of the DropDownStyle property. When the list box
portion is hidden, a down arrow is provided to display the list of available items. This class is
part of the System.Windows.Forms namespace, and inherits from the ListControl class.
See .NET Table 10.1 on page 316 for a list of members inherited by this class.

Public

Properties

DrawMode Gets or sets how elements in the list are drawn in a
window.

DropDownStyle Gets or sets the style used to display the edit and list
box controls in the combo box.

DropDownWidth Gets or sets the width of the list box portion of the
control.

DroppedDown Gets or sets whether the combo box is currently
displaying its list box portion.

Items Gets or sets the collection of items contained by this
combo box.

MaxDropDownItems Gets or sets the maximum number of items
permitted in the list box portion of the control.

MaxLength Gets or sets the maximum number of characters
permitted in the text box portion of the control.

SelectedItem Gets or sets the currently selected item in the
control.

SelectedText Gets or sets any text that is selected in the text box
portion of the control.

Sorted Gets or sets whether the items in the control are
sorted alphabetically.

Public

Methods

BeginUpdate Prevents the control from painting its contents while
items are added to the list box.

SelectAll Selects all text in the text box portion of the control.

Public

Events

DrawItem Occurs when an owner-drawn combo box requires
repainting.

DropDown Occurs just before the dropdown portion of a combo
box is displayed.

SelectionChange-
Committed

Occurs when the selected item in the control has
changed and that change is confirmed.
334 CHAPTER 10 LIST CONTROLS

Set the version number of the MyAlbumEditor application to 10.3.

REPLACE OPEN BUTTON WITH A COMBOBOX CONTROL

 Action Result

1 Delete the Open button in the
MainForm.cs [Design] window.

The button and all related code added by Visual Studio
are removed from the MainForm.cs source file. Any
nonempty event handlers, in this case btnOpen_Click,
remain in the file and must be removed manually.

2 Drag a ComboBox control into
the left side of the Albums group
box as shown in the graphic.

3 Replace the btnOpen_Click
method in the MainForm.cs
source file with an OpenAlbum
method to open a given album
file.

Note: Most of the existing code
for the btnOpen_Click method
is removed. Any exception that
occurs here will be the respon-
sibility of the caller.

 private void OpenAlbum(string fileName)
 {
 CloseAlbum();

 // Open the given album file
 _album.Open(fileName);
 this.Text = _album.FileName;

 UpdateList();
 }

4 Set the Enabled property for
the Properties button in the
Albums group box to false.

Note: We will enable this button when a valid
album is selected in the combo box control.

5 Initialize the contents of the
combo box in the OnLoad
method.

How-to

Use the static GetFiles
method from the Directory
class to retrieve the set of album
files in the default album
directory.

 protected override void
 OnLoad(EventArgs e)
 {
 // Initialize the album
 _album = new PhotoAlbum();

 // Initialize the combo box
 cmbxAlbums.DataSource
 = Directory.GetFiles(
 PhotoAlbum.DefaultDir, "*.abm");

 base.OnLoad(e);
 }

6 At the top of the file, indicate
that we are using objects in the
System.IO namespace.

. . .
using System.IO;

Settings

Property Value

(Name) cmbxAlbums

Anchor Top, Left, Right

DropDownStyle DropDownList

Sorted True
COMBO BOXES 335

As we saw for our ListBox control, the DataSource property provides a quick and
easy way to assign a collection of objects to the cmbxAlbums control. In this case, the
Directory.GetFiles method returns an array of strings containing the set of file
names in the given directory that match the given search string.

Our ComboBox is created with the DropDownStyle property set to DropDown-
List. This setting is taken from the ComboBoxStyle enumeration, and indicates that
the list box associated with the combo box should not be displayed by default, and that
the user cannot manually enter new values into the control. A complete list of values
provided by the ComboBoxStyle enumeration is shown in .NET Table 10.5.

Feel free to compile and run your program if you like. The combo box will display
the available albums, without the ability to actually open an album. Opening an
album requires that we handle the SelectedItemChanged event for our combo
box, which is the topic of the next section.

10.3.2 HANDLING THE SELECTED ITEM

Our ComboBox currently displays a selected album, but it doesn’t actually open it.
The previous section replaced the Click handler for the now-deleted Open button
with an OpenAlbum method, so all we need to do here is recognize when a new
album is selected and open the corresponding album.

The one issue we must deal with is the case where an invalid album exists. While
we initialized our control to contain only album files ending with “.abm,” it is still pos-
sible that one of these album files contains an invalid version number or other problem
that prevents the album from loading. The following steps handle this case by dis-
abling the Properties button and ListBox control when such a problem occurs. An
appropriate error message is also displayed in the title bar.

.NET Table 10.5 ComboBoxStyle enumeration

The ComboBoxStyle enumeration specifies the display behavior of a combo box control. This
enumeration is part of the System.Windows.Forms namespace.

Enumeration

Values

DropDown The text portion of the control is editable. The list
portion is only displayed when the user clicks an
arrow button on the control. This is the default.

DropDownList The text portion of the control is not editable.
The list portion is only displayed when the user
clicks an arrow button on the control.

Simple The text portion of the control is editable, and
the list portion of the control is always visible.
336 CHAPTER 10 LIST CONTROLS

This code provides both text and visual cues on whether the selected album was suc-
cessfully opened. Note how the SelectedItem property is used to retrieve the cur-
rent selection. Even though we know this is a string, the framework provides us an
object instance, so ToString must be called to extract the actual text.
 string albumPath = cmbxAlbums.SelectedItem.ToString();

When the selected album opens successfully, the ListBox background is painted the
normal window color as defined by the system and the Properties button in the
Albums group box is enabled. Figure 10.1 at the beginning of this chapter shows the
interface with a successfully opened album. When the album fails to open, the excep-
tion is caught and the title bar on the form is set to indicate this fact. In addition, the
ListBox background is painted the default background color for controls and the
Button control is disabled.

OPEN THE ALBUM SELECTED IN THE COMBO BOX

 Action Result

1 Add a SelectedItemChanged
handler to the combo box control.

 private void
 cmbxAlbums_SelectedIndexChanged(
 object sender, System.EventArgs e)
 {

2 In the implementation of this
handler, make sure the selected
item is a new album.

Note: If the selected album has
not actually changed, there is no
need to reload it.

 string albumPath
 = cmbxAlbums.SelectedItem.ToString();

 if (albumPath == _album.FileName)
 return;

3 Try to open the album. try
 {
 CloseAlbum();
 OpenAlbum(albumPath);

4 If the album is opened
successfully, enable the album
Properties button, and set the
background color of the list box to
normal window color.

 btnAlbumProp.Enabled = true;
 lstPhotos.BackColor
 = SystemColors.Window;
 }

5 When an error occurs, display a
message in the title bar to reflect
this fact.

 catch (Exception)
 {
 // Unable to open album
 this.Text
 = "Unable to open selected album";

6 Also clear the list box, set its
background color to match the
surrounding controls, and disable
the album Properties button on the
form.

 lstPhotos.Items.Clear();
 lstPhotos.BackColor
 = SystemColors.Control;
 btnAlbumProp.Enabled = false;
 }
 }
COMBO BOXES 337

 catch (Exception)
 {
 // Unable to open album
 this.Text = "Unable to open selected album";
 lstPhotos.Items.Clear();
 lstPhotos.BackColor = SystemColors.Control;
 btnAlbumProp.Enabled = false;
 }

An example of this situation appears in figure 10.5. The specified album, badal-
bum.abm, could not be opened, and between the title bar and the window this fact
should be fairly clear.

TRY IT! The ComboBox in our application does not allow the user to manually en-
ter a new album. This could be a problem if the user has created some al-
bums in other directories. To fix this, add a ContextMenu object to the
form and associate it with the Albums group box. Add a single menu item
called “Add Album…” to this menu and create a Click event handler to
allow the user to select additional album files to add to the combo box via
the OpenFileDialog class.

Note that you have to modify the ComboBox to add the albums from
the default directory manually within the OnLoad method. At present,
since the DataSource property is assigned, the Items collection cannot
be modified directly. Use BeginUpdate and EndUpdate to add a set of
albums via the Add method in the Items collection, both in the OnLoad
method and in the new Click event handler.

The next section provides an example of how to handle manual edits within a combo box.

Figure 10.5

When the selected album can-

not be loaded, only the Close

button remains active.
338 CHAPTER 10 LIST CONTROLS

10.4 COMBO BOX EDITS

The ComboBox created in the previous section used a fixed set of list entries taken
from a directory on the disk. This permitted us to use the DataSource property for
the list of items, and the DropDownList style to prevent the user from editing the
text entry.

In this section we will create another ComboBox that permits manual updates to
its contents by the user. Such a control is very useful when there are likely to be only
a few possible entries, and you want the user to create additional entries as necessary.
It so happens that we have just this situation for the Photographer property of our
Photograph class.

Within a given album, there are likely to be only a handful of photographers for
the images in that album. A combo box control is a good choice to permit the user
to select the appropriate entry from the drop-down list. When a new photographer is
required, the user can enter the new name in the text box.

Figure 10.6 shows how this combo box will look. You may notice that this list only
displays four photographers, whereas our previous album combo box displayed eight
album files at a time. A ComboBox control displays eight items by default. We will
shorten the size here so that the list does not take up too much of the dialog window.

We will add this control to the MyAlbumEditor application in two parts. First we will
create and initialize the contents of the control, and then we will support the addition
of new photographers by hand.

Figure 10.6

Note how the dropdown for the ComboBox ex-

tends outside of the Panel control. This is per-

mitted even though the control is contained by

the panel.
COMBO BOX EDITS 339

10.4.1 REPLACING THE PHOTOGRAPHER CONTROL

The creation of our combo box within the PhotoEditDlg form is much like the
one we created for the MyAlbumEditor application, with the exception of a few set-
tings. The steps required to create this control are shown in the following table:

Set the version number of the MyPhotoAlbum library to 10.4.

ADD THE PHOTOGRAPHER COMBO BOX

 Action Result

1 In the PhotoEditDlg.cs [Design]
window, delete the TextBox control
associated with the Photographer
label.

The control is removed from the form, and the code
generated by Visual Studio is removed as well. The
subsequent steps modify the manually entered
code associated with this control.

2 Place a ComboBox control on the form
where the text box used to be.

The MaxDropDown property here specifies that the
list portion of the combo box displays at most four
items at a time, with any remaining items
accessible via the scroll bar.

3 Modify the ResetSettings method to
initialize the items in the new combo
box if necessary

 protected override void ResetSettings()
 {
 // Initialize the ComboBox settings
 if (cmbxPhotographer.Items.Count == 0)
 {

4 First add the “unknown”
photographer to ensure that the list is
never empty.

 // Create the list of photographers
 cmbxPhotographer.BeginUpdate();
 cmbxPhotographer.Items.Clear();
 cmbxPhotographer.Items.
 Add("unknown");

5 Then add to the ComboBox control any
other photographers found in the
album.

How-to

Use the Items.Contains method to
check that a photographer is not
already in the list.

Note: This code is not terribly effi-
cient, since it rescans the entire list
each time the method is called. A
better solution might be to modify
the PhotoAlbum class to maintain
the list of photographers assigned to
Photograph objects in the album.

 foreach (Photograph ph in _album)
 {
 if (ph.Photographer != null
 && !cmbxPhotographer.Items.
 Contains(ph.Photographer))
 {
 cmbxPhotographer.Items.
 Add(ph.Photographer);
 }
 }
 cmbxPhotographer.EndUpdate();
 }

Settings

Property Value

(Name) cmbxPhotographer

MaxDropDown 4

Sorted True

Text photographer
340 CHAPTER 10 LIST CONTROLS

Note how this code uses both the SelectedItem and Text properties for the Com-
boBox control. The SelectedItem property retrieves the object corresponding to
the item selected in the list box, while the Text property retrieves the string entered
into the text box. Typically these two values correspond to each other, but this is not
always true, especially when the user manipulates the text value directly, as we shall
see next.

10.4.2 UPDATING THE COMBO BOX DYNAMICALLY

With our control on the form, we now need to handle manual entries in the text box.
This is normally handled via events associated with the ComboBox control. The
Validated event, discussed in chapter 9, can be used to verify that a user-provided
entry is part of the list and also add it to the list if necessary. The TextChanged
event can be used to process the text while the user is typing.

We will handle both of these events in our code. First, let’s add a Validated
event handler, and then add code to auto-complete the entry as the user types.

6 Select the photographer of the current
photo in the combo box.

 Photograph p = _album.CurrentPhoto;

 if (p != null)
 {
 txtPhotoFile.Text = p.FileName;
 txtCaption.Text = p.Caption;
 txtDate.Text
 = p.DateTaken.ToString();
 cmbxPhotographer.SelectedItem
 = p.Photographer;
 txtNotes.Text = p.Notes;
 }
 }

7 Update the SaveSettings method to
save the photographer entered into
the combo box.

Note: We will stop ignoring the txt-
Date setting in the next chapter.

 protected override bool SaveSettings()
 {
 Photograph p = _album.CurrentPhoto;

 if (p != null)
 {
 p.Caption = txtCaption.Text;
 // Ignore txtDate setting for now
 p.Photographer
 = cmbxPhotographer.Text;
 p.Notes = txtNotes.Text;
 }

 return true;
 }

ADD THE PHOTOGRAPHER COMBO BOX (continued)

 Action Result
COMBO BOX EDITS 341

Our ComboBox is now updated whenever the user enters a new photographer, and
the new entry will be available to other photographs in the same album.

Another change that might be nice is if the dialog automatically completed a par-
tially entered photographer that is already on the list. For example, if the photographer
“Erik Brown” is already present, and the user types in “Er,” it would be nice to com-
plete the entry on the user’s behalf.

Of course, if the user is typing “Erin Smith,” then we would not want to prevent
the user from doing so. This can be done by causing the control to select the auto-
filled portion of the name as the user types. You will be able to experiment with this
behavior yourself after following the steps in the subsequent table.

VALIDATE THE PHOTOGRAPHER ENTRY

 Action Result

1 Add a Validated event handler for the
cmbxPhotographer control.

 private void cmbxPhotographer_Validated
 (object sender, System.EventArgs e)
 {

2 To implement this handler, get the
text currently entered in the control.

 string pg = cmbxPhotographer.Text;

3 If the cmbxPhotographer control
does not contain this text, then add
the new string to the combo box.

 if (!cmbxPhotographer.Items.Contains(pg))
 {
 _album.CurrentPhoto.Photographer = pg;
 cmbxPhotographer.Items.Add(pg);
 }

4 Set the selected item to the new
text.

 cmbxPhotographer.SelectedItem = pg;
 }

AUTO-COMPLETE THE TEXT ENTRY AS THE USER TYPES

 Action Result

5 Add a TextChanged event
handler for the
cmbxPhotographer
control.

 private void cmbxPhotographer_TextChanged
 (object sender, System.EventArgs e)
 {

6 Search for the current text
in the list portion of the
combo box.

 string text = cmbxPhotographer.Text;
 int index
 = cmbxPhotographer.FindString(text);

7 If found, then adjust the
text in the control to
include the remaining
portion of the matching
entry.

 if (index >= 0)
 {
 // Found a match
 string newText = cmbxPhotographer.
 Items[index].ToString();
 cmbxPhotographer.Text = newText;

 cmbxPhotographer.SelectionStart
 = text.Length;
 cmbxPhotographer.SelectionLength
 = newText.Length - text.Length;
 }
 }
342 CHAPTER 10 LIST CONTROLS

This code uses the FindString method to locate a match for the entered text. This
method returns the index of the first object in the list with a display string beginning
with the specified text. If no match is found, then a –1 is returned.
 int index = cmbxPhotographer.FindString(text);

When a match is found, the text associated with this match is extracted from the list
and assigned to the text box portion of the control.
 if (index >= 0)
 {
 // Found a match
 string newText = cmbxPhotographer.Items[index].ToString();
 cmbxPhotographer.Text = newText;

The additional text inserted into the text box is selected using the SelectionStart
and SelectionLength properties. The SelectionStart property sets the cursor
location, and the SelectionLength property sets the amount of text to select.
 cmbxPhotographer.SelectionStart = text.Length;
 cmbxPhotographer.SelectionLength = newText.Length - text.Length;

 }

TRY IT! The list portion of the control can be forced to appear as the user types with
the DroppedDown property. Set this property to true in the Text-
Changed handler to display the list box when a match is found.

You may have realized that this handler introduces a slight problem with
the use of the backspace key. When text is selected and the user presses the
backspace key, the selected text is deleted rather than the previously typed
character as a user would normally expect. Fix this behavior by handling the
KeyPress event, discussed in chapters 9 and 12, to force the control to de-
lete the last character typed rather than the selected text.

Before leaving our discussion of ListControl objects, it is worth noting that the
controls we have discussed so far all contain textual strings. The .NET Framework
automatically handles the drawing of these text strings within the list window. It is
possible to perform custom drawing of the list elements, in a manner not too differ-
ent than the one we used for our owner-drawn status bar panel in chapter 4.

As a final example in this chapter, let’s take a look at how this is done.

10.5 OWNER-DRAWN LISTS

Typically, your ListBox and ComboBox controls will each display a list of strings.
You assign objects to the list, and the ToString method is used to retrieve the string
to display in the list. The string value of a specific property can be displayed in
place of the ToString method by setting the DisplayMember property for the list.
The .NET Framework retrieves and draws these strings on the form, and life is good.

There are times when you do not want to display a string, or when you would
like to control exactly how the string looks. For these situations you must draw the
OWNER-DRAWN LISTS 343

list manually. This is referred to as an owner-drawn list, and the framework provides
specific events and other mechanisms for drawing the list items in this manner.

In this section we modify our main ListBox control for the application to
optionally include a small representation of the image associated with each photo-
graph. Such an image is sometimes called a thumbnail, since it is a “thumbnail-sized”
image. An example of our list box displaying these thumbnails is shown in figure 10.7.
As you can see, the list includes a thumbnail image as well as the caption string from
the photograph.

We will permit the user to switch between the thumbnail and pure text display using
a context menu associated with the list box. This menu will be somewhat hidden,
since users will not know it exists until they right-click on the list control. A hidden
menu is not necessarily a good design idea, but it will suffice for our purposes. We
will begin our example by adding this new menu.

10.5.1 ADDING A CONTEXT MENU

Since we would like to dynamically switch between an owner-drawn and a frame-
work-drawn control, we need a way for the user to select the desired drawing method.
We will use a menu for this purpose, and include a check mark next to the menu
when the thumbnail images are shown. Context menus were discussed in chapter 3,
so the following steps should be somewhat familiar.

Figure 10.7

The ListBox here shows both

the image and the caption for

each photograph. Note how

none of the items are selected

in this list.
344 CHAPTER 10 LIST CONTROLS

Set the version number of the MyAlbumEditor application to 10.5.

The Click handler for our new menu simply toggles its Checked flag and sets the
drawing mode based on the new value. The DrawMode property is used for both the
ListBox and ComboBox controls to indicate how each item in the list will be drawn.
The possible values for this property are shown in .NET Table 10.6. Since the size of our
photographs in an album may vary, we allow the size of each element in the list to vary
as well. As a result, we use the DrawMode.OwnerDrawVariable setting in our code.

The ItemHeight property contains the default height for each item in the list.
When the DrawMode property is set to Normal, we set this property to the height of
the current font plus 2 pixels. For our owner-drawn list, the item height depends on
the size of the photograph we wish to draw. This requires that we assign the item
height dynamically, and this is our next topic.

ADD A CONTEXT MENU

 Action Result

1 Add a ContextMenu control
named ctxtPhotoList to the
form in the MainForm.cs
[Design] window.

2 Add a single menu item to this
context menu.

3 Set the ContextMenu property
for the ListBox control to this
new menu.

4 Add a Click handler for the
new menu item to reverse the
Checked state of this menu.

 private void menuThumbs_Click
 (object sender, System.EventArgs e)
 {
 menuThumbs.Checked = ! menuThumbs.Checked;

5 When checking the menu, set
the DrawMode for the
Photographs list to be owner-
drawn.

 if (menuThumbs.Checked)
 {
 lstPhotos.DrawMode
 = DrawMode.OwnerDrawVariable;
 }

6 When unchecking the menu,
set the DrawMode to its default
setting. Also reset the default
item height.

 else
 {
 lstPhotos.DrawMode = DrawMode.Normal;
 lstPhotos.ItemHeight
 = lstPhotos.Font.Height + 2;
 }
 }

Settings

Property Value

(Name) menuThumbs

Text &Thumbnail
OWNER-DRAWN LISTS 345

10.5.2 SETTING THE ITEM HEIGHT

Since a ListBox normally holds text in a specific font, the default height of each list
box item is just large enough to accommodate this font. In our case, we want to draw
an image in each item, so the height of the default font is likely a bit on the small side.
We can assign a more appropriate item height by handling the MeasureItem event.
This event occurs whenever the framework requires the size of an owner-drawn item.

Note that this event does not occur with the setting DrawMode.OwnerDraw-
Fixed, since the items are by definition all the same size. For this setting, the Item-
Height property should be assigned to the common height of the items. Since we are
using the DrawMode.OwnerDrawVariable setting, this event will occur each time
a list item must be custom drawn.

A MeasureItem event handler receives a MeasureItemEventArgs class instance
to permit an application to set the width and height of a given item. Specifics of this
class are shown in .NET Table 10.7. In our case, we are drawing an image followed
by a string. We will fit the image into a 45×45 pixel box, and use the Caption prop-
erty as the string portion.

.NET Table 10.6 DrawMode enumeration

The DrawMode enumeration specifies the drawing behavior for the elements of a control. This
enumeration is part of the System.Windows.Forms namespace. Controls that use this enu-
meration include the ListBox, CheckedListBox, and ComboBox classes, although the
CheckedListBox class only supports the Normal setting.

Enumeration

Values

Normal All elements in the control are drawn by the .NET
Framework and are the same size.

OwnerDrawFixed Elements in the control are drawn manually and
are the same size.

OwnerDrawVariable Elements in the control are drawn manually and
may vary in size.

.NET Table 10.7 MeasureItemEventArgs class

The MeasureItemEventArgs class provides the event data necessary to determine the size
of an owner-drawn item. This class is part of the System.Windows.Forms namespace, and
inherits from the System.EventArgs class.

Public Properties

Graphics Gets the graphics object to use when calculating
measurements.

Index Gets the index of the item to measure.

ItemHeight Gets or sets the height of the specified item.

ItemWidth Gets or sets the width of the specified item.
346 CHAPTER 10 LIST CONTROLS

The following steps implement the code required for the MeasureItem event. Fig-
ure 10.8 illustrates the various measurements used to determine the width and height
of the item.

For the item’s height, this code uses the larger of the scaled item’s height and the
ListBox control’s font height, plus 2 pixels as padding between subsequent items in
the list.
 e.ItemHeight = Math.Max(scaledRect.Height, lstPhotos.Font.Height) + 2;

For the item’s width, the width of the scaled image plus the width of the drawn string
is used, plus 2 pixels as padding between the image and the text. To do this, the

Figure 10.8 This figure shows the various measurements used to calculate a list item’s

width and height.

CALCULATE THE LIST ITEM SIZE DYNAMICALLY

 Action Result

1 In the MainForm.cs window, add
a static Rectangle to the
MainForm class to hold the
drawing rectangle for the image.

 private static Rectangle _drawRect
 = new Rectangle(0,0,45,45);

2 Add a MeasureItem event
handler for the lstPhotos list
box.

 private void lstPhotos_MeasureItem
 (object sender,
 Windows.Forms.MeasureItemEventArgs e)
 {

3 Calculate the size of the image
when scaled into the drawing
rectangle.

 Photograph p = _album[e.Index];
 Rectangle scaledRect
 = p.ScaleToFit(_drawRect);

4 Calculate the item’s height. e.ItemHeight = Math.Max(scaledRect.Height,
 lstPhotos.Font.Height) + 2;

5 Calculate the item’s width. e.ItemWidth = scaledRect.Width + 2
 + (int) e.Graphics.MeasureString(
 p.Caption, lstPhotos.Font).Width;
 }
OWNER-DRAWN LISTS 347

Graphics.MeasureString method is used to calculate the size of the string when
drawn with the Font object used by the ListBox control.
 e.ItemWidth = scaledRect.Width + 2
 + e.Graphics.MeasureString(p.Caption, lstPhotos.Font);

Our final task is to draw the actual items using the DrawItem event.

10.5.3 DRAWING THE LIST ITEMS

As you may recall, the DrawItem event and related DrawItemEventArgs class were
discussed in chapter 4. See .NET Table 4.4 on page 119 for an overview of the
DrawItemEventArgs class.

Before we look at how to draw the list items in our application, let’s make a small
change to the Photograph class to improve the performance of our drawing. Since we
may have to draw an item multiple times, it would be nice to avoid drawing the
thumbnail from the entire image each time. To avoid this, let’s create a Thumbnail
property in our Photograph class to obtain a more appropriately sized image.

Set the version number of the MyPhotoAlbum library to 10.5.

STORE A THUMBNAIL IMAGE IN THE PHOTOGRAPH OBJECT

 Action Result

1 In the Photograph.cs file, create an
internal _thumbnail field to store
the new thumbnail image.

 . . .
 private Bitmap _thumbnail = null;

2 Update the Dispose method to
properly dispose of the new object.

 public void Dispose()
 {
 if (_bitmap != null
 && _bitmap != InvalidPhotoImage)
 _bitmap.Dispose();

 if (_thumbnail != null)
 _thumbnail.Dispose();

 _bitmap = null;
 _thumbnail = null;
 }

3 Add a static constant to store the
default width and height for a
thumbnail.

 private const int ThumbSize = 90;
348 CHAPTER 10 LIST CONTROLS

This ensures that we will not have to load up and scale the full-size image every time
we draw an item. With this property in place, we have everything we need to draw
our list items.

4 Add a property to retrieve the
thumbnail.

Note: While we draw our list items
into a 45-pixel box, we draw our
thumbnail into a 90-pixel box. Aside
from the fact that we might want to
use the Thumbnail property in other
code, it is beneficial, when downsiz-
ing an image, to have an original
image with a higher resolution than
the final size.

 public Bitmap Thumbnail
 {
 get
 {
 if (_thumbnail == null)
 {
 // Create the "thumbnail" bitmap
 Rectangle sr = this.ScaleToFit(
 new Rectangle(0,0,
 ThumbSize,ThumbSize));
 Bitmap bm = new Bitmap(sr.Width,
 sr.Height);
 Graphics g = Graphics.FromImage(bm);
 GraphicsUnit u = g.PageUnit;
 g.DrawImage(this.Image,
 bm.GetBounds(ref u));

 _thumbnail = bm;
 }

 return _thumbnail;
 }
 }

STORE A THUMBNAIL IMAGE IN THE PHOTOGRAPH OBJECT

 Action Result

HANDLE THE DRAWITEM EVENT TO DRAW A LIST ITEM

 Action Result

5 Add a static Brush field to
the MainForm.cs file.

 private static SolidBrush _textBrush
 = new SolidBrush(SystemColors.WindowText);

Note: This will improve the performance of our handler
by eliminating the need to recreate a brush each time
an item is drawn.

6 Add a DrawItem event
handler for the ListBox
control.

 private void lstPhotos_DrawItem
 (object sender,
 System.Windows.Forms.DrawItemEventArgs e)
 {

7 To implement this method,
get the Graphics and
Photograph objects
required for this handler.

 Graphics g = e.Graphics;
 Photograph p = _album[e.Index];
OWNER-DRAWN LISTS 349

8 Calculate the Rectangle
that will contain the
thumbnail image.

 Rectangle scaledRect
 = p.ScaleToFit(_drawRect);
 Rectangle imageRect = e.Bounds;
 imageRect.Y += 1;
 imageRect.Height = scaledRect.Height;
 imageRect.X += 2;
 imageRect.Width = scaledRect.Width;

9 Draw the thumbnail image
into this rectangle.

 g.DrawImage(p.Thumbnail, imageRect);
 g.DrawRectangle(Pens.Black, imageRect);

10 Calculate the Rectangle
that will contain the caption
for the image.

How-to

Use the bounding rectangle
without the image area and
centered vertically for the
current font.

 Rectangle textRect = new Rectangle(
 imageRect.Right + 2,
 imageRect.Y + ((imageRect.Height
 - e.Font.Height) / 2),
 e.Bounds.Width - imageRect.Width - 4,
 e.Font.Height);

11 If the current item is
selected, make sure the text
will appear selected as well.

 if ((e.State & DrawItemState.Selected)
 == DrawItemState.Selected)
 {
 _textBrush.Color
 = SystemColors.Highlight;
 g.FillRectangle(_textBrush, textRect);
 _textBrush.Color
 = SystemColors.HighlightText;
 }

Note: The State property used here defines the state
settings for the current item. This contains an or’d set
of values taken from the DrawItemState enumeration.
The code here is preferred over the use of a method
such as ListBox.GetSelected since these and other
methods may not reflect recent user changes until after
the DrawItem event is processed.

HANDLE THE DRAWITEM EVENT TO DRAW A LIST ITEM (continued)

 Action Result

How-to

a. Use e.Bounds to obtain
the bounding rectangle
for item.

b. Adjust this rectangle
based on the size of the
scaled image.

How-to

a. Use DrawImage to paint
the thumbnail into the
rectangle.

b. Use DrawRectangle to
paint a black border
around the image.

How-to

a. Use the State property
to determine if this item
is selected.

b. Use the system High-
light color for the back-
ground.

c. Use the HighlightText
color for the actual text.
350 CHAPTER 10 LIST CONTROLS

Well done! You’ve just created your first owner-drawn list box. This code provides a
number of features that should be useful in your own applications. It includes how to
draw the image as well as the string for the item, and how to handle selected and dese-
lected text. Compile and run the application. Click the Thumbnail context menu and
watch the list display thumbnails. Click it again and the list reverts to normal strings.

TRY IT! Our list box currently displays the file name for each photograph when
DrawMode is Normal, and the caption string when DrawMode is Owner-
DrawVariable. It would be nice if the user could select which string to
display in either mode.

Try implementing this change by adding additional entries to the
ListBox control’s context menu. Add a parent menu called “Display As,”
and a submenu to allow the user to select between “File Name,” “Caption,”
and “Photographer.” Based on their selection, set the DisplayMember
property for the list to the appropriate property string.

In normal draw mode, the framework picks up the DisplayMember
property automatically. For the DrawItem event, you will need to retrieve
the appropriate string based on the DisplayMember value. You can use
string comparisons to do this, or use the System.Reflection name-
space classes and types. This namespace is not discussed in detail in this
book, but the following code excerpt can be used at the end of your Draw-
Item event handler to dynamically determine the value associated with the
property corresponding to a given string.

 PropertyInfo pi = typeof(Photograph).
 GetProperty(lstPhotos.DisplayMember);
 object propValue = pi.GetValue(p, null);

 g.DrawString(propValue.ToString(), e.Font,
 _textBrush, textRect);

12 If the current item is not
selected, make sure the text
will appear normally.

 else
 {
 _textBrush.Color = SystemColors.Window;
 g.FillRectangle(_textBrush, textRect);
 _textBrush.Color
 = SystemColors.WindowText;
 }

13 Draw the caption string in
the text rectangle using the
default font.

 g.DrawString(p.Caption, e.Font,
 _textBrush, textRect);
 }

HANDLE THE DRAWITEM EVENT TO DRAW A LIST ITEM (continued)

 Action Result

How-to

a. Use the system Window
color for the background.

b. Use the WindowText
color for the actual text.
OWNER-DRAWN LISTS 351

This completes our discussion of list controls. The next section provides a quick recap
of the chapter just in case you have already forgotten.

10.6 RECAP

This chapter discussed the basic list classes in the .NET Framework, namely the
ListBox and ComboBox controls. We created a new application for this purpose,
the MyAlbumEditor application, and built this application from the ground up using
our existing MyPhotoAlbum library.

We began with a discussion of the common base class for list controls, namely the
ListControl class, followed by a discussion of both single and multiple selection in
the ListBox class. We saw how to enable and disable controls on the form based on
the number of items selected, and how to handle double clicks for quick access to a
common operation.

For the ComboBox class, we created a noneditable ComboBox to hold the list of
available album files. Modifying the selected value automatically closed the previous
album and opened the newly selected one. We then looked at an editable ComboBox
for our photographer setting in the PhotoEditDlg dialog box. We discussed how to
dynamically add new items to the list, and how to automatically select an existing item
as the user is typing.

We ended with a discussion of owner-drawn list items by providing the option
of displaying image thumbnails in our list box. We saw how to draw both images and
text, including selected text.

There are additional controls than those discussed in chapters 9 and 10, of course.
We will see some of these in the next chapter, and others as we continue our progres-
sion through the book. In chapter 11 we continue with our new MyAlbumEditor
application, and look at Tab pages as a way to organize large amounts of information
on a single form.
352 CHAPTER 10 LIST CONTROLS

C H A P T E R 1 1

More controls

11.1 Tab controls 354
11.2 Tab pages 359
11.3 Dates and Times 366
11.4 Calendars 372
11.5 Recap 381
Chapters 9 and 10 examined basic controls such as buttons and labels, and list con-
trols such as the ListBox class. In this chapter we discuss the tab controls and con-
trols for displaying dates and times. Tab controls are especially useful when used to
separate a large number of controls into logical groups within a single region of a
form. The date controls, of course, are used to present and specify DateTime struc-
tures in a form.

The specific controls discussed in this chapter are the following:
• TabControl
• TabPage
• DateTimePicker
• MonthCalendar

Since the MyAlbumEditor project served us so well in chapter 10, we will continue to
use this project here as well. Of course, any changes we make to our MyPhotoAlbum
library will be available when we return to the MyPhotos project in chapter 12.

We begin our discussion with tab controls.
353

11.1 TAB CONTROLS

Tab controls are used to compact a large amount of data into a single form by seg-
menting the data into different screens, or tab pages. One of the more well-known
examples of this construct is the Properties window associated with files and directo-
ries in the Windows file system. Right-click on a directory and select the Properties
item, and you will see a window similar to figure 11.1. This figure shows the proper-
ties for the MyAlbumEditor directory containing the project we began in chapter 10.
There are three tab pages available to display different types of directory properties:
General, Web Sharing, and Sharing. The exact tabs displayed on your system may
differ depending on which version of Windows you are running and the specific fea-
tures installed and enabled.

You can create windows similar to figure 11.1 using the Windows Forms classes Tab-
Control and TabPage. The TabControl class is a container for one or more
TabPage objects, with each TabPage instance holding the tab information and set
of controls to display for a specific page. Since I haven't shown you a class diagram
for a few chapters, take a look at figure 11.2 showing the class hierarchy for the tab
and tab page controls. It is also worth noting that the complete class hierarchy of all
Windows Forms controls is shown in appendix C.

As shown in figure 11.2, the TabControl class inherits directly from the Con-
trol class we discussed in chapter 3. We will look at the members of this class in a
moment. The TabPage class, on the other hand, inherits from the Panel class. This
makes sense, since each page in a tab control contains a collection of controls, exactly

Figure 11.1

Users switch to a different tab page

by clicking on the desired tab, or us-

ing the keyboard shortcut Ctrl+Tab.
354 CHAPTER 11 MORE CONTROLS

like a Panel object. This also permits tab pages to automatically scroll if the display area
exceeds the size of the window by using members of the ScrollableControl class.
We saw how to enable this type of scrolling for Form and Panel objects in chapter 7.

In this chapter we will look at the details of both the TabControl and the TabPage
class. We examine the TabControl class first.

11.1.1 THE TABCONTROL CLASS

The TabControl class provides a container in which to manage a collection of
TabPage objects. This container class provides members to control the location,
appearance, and behavior of the pages in the control. Details on this class are pro-
vided in .NET Table 11.1.

Tab controls are often forgotten or perhaps forsaken by programmers. It is not
uncommon to see a user interface packed full of buttons, labels, text boxes, and other
controls. Often these are collected into group boxes to separate the information into
logical groups. While such interfaces are very functional, they may not be so effective
since users must process so much information at once. Visual Studio .NET allows
multiple tab pages to be created for an interface quite easily, so perhaps programmers
will think to use these constructs more often in the future. As a rule of thumb, make
sure the controls in each tab page are all related, and try to limit yourself to no more
than seven controls per page. The number seven here is not completely arbitrary, as
user interface research has shown that this is a reasonable maximum number of items
to present to a user at once.1

Figure 11.2

The TabPage class is a Panel object that

exists within a tab control.

1 See the references listed in the bibliography for more information on this and other aspects of good
user interface design.
TAB CONTROLS 355

11.1.2 CREATING A TAB CONTROL

Let’s create a new tab control for our MyAlbumEditor project. We will do this by cre-
ating a new form to display the collection of images in an album. While this is not
necessarily an efficient use of memory, it does provide a nice example of tab controls
and tab pages. Figure 11.3 shows the new dialog with our favorite album displayed.

.NET Table 11.1 TabControl class

The TabControl class is a control that presents a collection of tab pages to the user. Each
tab page is represented by a TabPage class instance. This class is part of the System.Win-
dows.Forms namespace, and inherits from the Control class. See .NET Table 4.1 on
page 104 for a list of members inherited from the Control class, and .NET Table 11.2 on
page 360 for details on the TabPage class.

Public

Properties

Alignment Gets or sets the area of the control where tabs are
displayed, called the tab strip. Defaults to the top of
the control.

Appearance Gets or sets how the tabs are displayed, such as a
normal tab or 3D button.

DrawMode Gets or sets how the tabs are drawn in the control.

HotTrack Gets or sets whether the tabs change their
appearance when the mouse passes over them.

ImageList Gets or sets the list of images to use on the
control’s tabs.

ItemSize Gets or sets the default size of each tab.

Multiline Gets or sets whether more than one line of tabs
can be displayed.

RowCount Gets the number of rows currently displayed on the
control’s tab strip.

SelectedIndex Gets or sets the index of the currently selected tab
page.

SelectedTab Gets or sets the currently selected TabPage object.

ShowToolTips Gets or sets whether the tool tips for each tab page
should be displayed.

SizeMode Gets or sets how the tabs for the control are sized.

TabCount Gets the number of tab pages in the control.

TagPages Gets the collection of TabPage objects contained
by this control.

Public

Methods
GetTabRect Returns the bounding Rectangle for a specified

tab.

Public

Events

DrawItem Occurs when a tab must be drawn.

SelectedIndexChanged Occurs when a new tab page is selected.
356 CHAPTER 11 MORE CONTROLS

Note how the photograph’s base file name is used as the text for each tab page, and
how the full file path appears as a tool tip associated with each tab.

You may think that we need to add a new Form class to our project using Visual Stu-
dio .NET. This would certainly work, but you do not need a new file in Visual Studio
every time a new form is required. Instead, we will create this form by hand. We will
add a new MenuItem object to the context menu built in section 10.5 to provide
access to this new form.

This section creates the new menu item and associated Click handler. The next
section discusses tab pages, and will continue the implementation of this new form.

Set the version number of the MyAlbumEditor application to 11.1.

Figure 11.3

Each tab page in the tab control

for this window displays an im-

age stretched to fit a PictureBox

control.

ADD A NEW CONTEXT MENU ITEM

 Action Result

1 In the MainForm.cs [Design] window,
add a menu separator to the
ContextMenu object on the form.

2 Add a new Images menu.

3 Add a Click handler for this menu. private void menuImages_Click
 (object sender, System.EventArgs e)
 {
 }

Settings

Property Value

(Name) menuImages

Text &Images…
TAB CONTROLS 357

As you may recall, this context menu is associated with the lstPhotos control. When-
ever the user right-clicks on list and selects our new item, the menuImages_Click
handler will execute. In this handler we will create our new form.

The steps to create a tab control on a form programmatically are shown in the
following table. The next section will add the individual tab pages to this form.

As you can see, this code creates a Form with a single TabControl object docked to
fill the entire window area. The hot tracking feature causes a tab’s text to change color
as the mouse passes over the tab. Both this feature and tool tips are enabled for all tab
pages in the control.

IMPLEMENT THE CLICK EVENT HANDLER TO CREATE A NEW FORM

 Action Result

4 Create a new Form in the Click
handler.

 private void menuImages_Click
 (object sender, System.EventArgs e)
 {
 Form imagesDlg = new Form();

5 Create a TabControl object for
the form.

 TabControl tcImages = new TabControl();

6 Suspend the layout of both
objects while the individual tab
pages are created.

 imagesDlg.SuspendLayout();
 tcImages.SuspendLayout();

 // Create a tab page for each photo
 // (see next section)

7 Initialize the tab control. tcImages.Dock = DockStyle.Fill;
 tcImages.HotTrack = true;
 tcImages.ShowToolTips = true;

8 Initialize the form to contain the
tab control.

 imagesDlg.Controls.Add(tcImages);
 imagesDlg.ShowInTaskbar = false;
 imagesDlg.Size = new Size(400, 300);
 imagesDlg.Text = "Images in "
 + Path.GetFileName(_album.FileName);

9 Resume layout of the container
controls.

 tcImages.ResumeLayout();
 imagesDlg.ResumeLayout();

10 Display the form as a modal
dialog.

 imagesDlg.ShowDialog();

Note: We ignore the value returned by the ShowDia-
log method.

11 Dispose of the form. imagesDlg.Dispose();
 }

Settings

Property Value

Dock Fill

HotTrack True

ShowToolTips True

Settings

Property Value

ShowInTaskbar False

Size 400, 300

Text as shown
358 CHAPTER 11 MORE CONTROLS

 tcImages.Dock = DockStyle.Fill;
 tcImages.HotTrack = true;
 tcImages.ShowToolTips = true;

For the Form itself, a standard resizable window is used. The tcImages tab control
is displayed on the form, and the base name of the album is assigned to the title bar.
You can change this form into a more standard modal dialog box if you prefer, using
the settings discussed in chapter 8. In our current code, only the ShowInTaskBar
and Size properties are assigned.
 imagesDlg.Controls.Add(tcImages);
 imagesDlg.ShowInTaskbar = false;
 imagesDlg.Size = new Size(400, 300);
 imagesDlg.Text = "Images in " + Path.GetFileName(_album.FileName);

We display the form as a modal dialog to force the user to close this window before
continuing with the application. Note that a Close button is not provided, so the user
must close the form using the title bar, the system menu, or the keyboard shortcut
Alt+F4.2 After the ShowDialog method returns, we clean up the system resources
assigned to the form by calling the Dispose method.
 imagesDlg.ShowDialog();
 imagesDlg.Dispose();

The application will run just fine with these changes. Of course, all you will see is a
very empty TabControl object. We fill this in with TabPage controls in the next
section.

11.2 TAB PAGES

Tab pages are the heart and soul of a tab control. They define the tabs displayed to
the user and the layout of controls that appear when each page is displayed. An over-
view of the TabPage class is provided in .NET Table 11.2. As you can see, most of
the behavior for tab pages is inherited from the Panel class. Normally, the .NET
Framework displays each tab as a simple text string, as specified by the Text property
for each page inherited from the Control class. Tabs are owner-drawn tabs if the
DrawMode property for the containing tab control is set to OwnerDrawFixed. In
this case, the DrawItem event for the TabControl must be handled to draw each
tab by hand.

2 Of course, the Form object does not actually close in the technical sense of invoking the Close meth-
od. Since this is a modal dialog box, the framework only calls the Hide method here to permit addi-
tional access to the Form and its members. The word “close” is used here for lack of a better word.
TAB PAGES 359

In our application, we will use normal textual tabs that are drawn by the framework.
This section creates tab pages by hand and using Visual Studio .NET. First, we will
finish the code started in the previous section to display the images associated with
an album.

11.2.1 CREATING TAB PAGES DYNAMICALLY

Time for us to finish the menuImages_Click handler begun in section 11.1.2. This
handler responds to the Click event for the Images menu associated with our List-
Box control in the MyAlbumEditor application. We will create a TabPage control
for each image in the album.

Set the version number of the MyAlbumEditor application to 11.2.

.NET Table 11.2 TabPage class

The TabPage class represents a Panel object with an associated tab that exists within a
TabControl object. It contains the set of controls and the tab for a single sheet, or page, of
the tab control. The appearance and location of the tab is controlled by the TabControl class,
as discussed in .NET Table 11.1.

This class is part of the System.Windows.Forms namespace, and inherits from the
Panel class. An overview of the Panel class is provided in .NET Table 7.5 on page 218.

Public

Properties

ImageIndex Gets or sets an index into the ImageList associated with
the TabControl object for this page. The corresponding
image is displayed on this page’s tab.

ToolTipText Gets or sets a string to display as the tool tip for this tab.

CREATE THE TAB PAGES FOR THE IMAGESDLG FORM

 Action Result

1 Display the MainForm.cs file and
locate the menuImages_Click
event handler.

 private void menuImages_Click
 (object sender, System.EventArgs e)
 {

2 Insert a foreach loop to iterate
over the photographs in the
album.

 Form imagesDlg = new Form();
 TabControl tcImages = new TabControl();
 . . .

 // Create a tab page for each photo
 foreach (Photograph photo in _album)
 {

3 In the loop, create a TabPage
object for the photo.

 string shortFileName
 = Path.GetFileName(photo.FileName);
 TabPage newPage
 = new TabPage(shortFileName);

 newPage.SuspendLayout();
360 CHAPTER 11 MORE CONTROLS

This code will now create the required tab pages for each image, resulting in the dia-
log shown previously in figure 11.2. The complete implementation of the
menuImages_Click handler is shown in the subsequent code. Since the individual
lines were discussed in the previous tables, additional commentary is not provided.
The annotated set of lines in this code is referenced in the TRY IT! text following
the code.
 private void menuImages_Click(object sender, System.EventArgs e)
 {
 Form imagesDlg = new Form();
 TabControl tcImages = new TabControl();

 imagesDlg.SuspendLayout();
 tcImages.SuspendLayout();

 // Create a tab page for each photo
 foreach (Photograph photo in _album)
 {
 string shortFileName = Path.GetFileName(photo.FileName);
 TabPage newPage = new TabPage(shortFileName);

 newPage.SuspendLayout();

 // Create the PictureBox for this photo
 PictureBox pbox = new PictureBox();
 pbox.BorderStyle = System.Windows.Forms.BorderStyle.Fixed3D;
 pbox.Dock = DockStyle.Fill;

4 Create a PictureBox control
containing the image for this
photo.

 PictureBox pbox = new PictureBox();
 pbox.BorderStyle = System.Windows.
 Forms.BorderStyle.Fixed3D;
 pbox.Dock = DockStyle.Fill;
 pbox.Image = photo.Image;
 pbox.SizeMode
 = PictureBoxSizeMode.StretchImage;

5 Add the picture box to the page. newPage.Controls.Add(pbox);

6 Set the ToolTipText property
for the page to the full file name
of the photo.

 newPage.ToolTipText = photo.FileName;

7 Add the new tab page to the tab
control.

 tcImages.TabPages.Add(newPage);
 newPage.ResumeLayout();
 }

 . . .
 imagesDlg.ShowDialog();
 imagesDlg.Dispose();
 }

CREATE THE TAB PAGES FOR THE IMAGESDLG FORM (continued)

 Action Result

Settings

Property Value

BorderStyle Fixed3D

Dock Fill

SizeMode StretchImage

Display the
image on
the page b
TAB PAGES 361

 pbox.Image = photo.Image;
 pbox.SizeMode = PictureBoxSizeMode.StretchImage;

 newPage.Controls.Add(pbox);
 newPage.ToolTipText = photo.FileName;

 tcImages.TabPages.Add(newPage);
 newPage.ResumeLayout();
 }

 // Initialize the tab control
 tcImages.Dock = DockStyle.Fill;
 tcImages.HotTrack = true;
 tcImages.ShowToolTips = true;

 // Initialize the form
 imagesDlg.Controls.Add(tcImages);
 imagesDlg.ShowInTaskbar = false;
 imagesDlg.Size = new Size(400, 300);
 imagesDlg.Text = “Images in “ + Path.GetFileName(_album.FileName);

 tcImages.ResumeLayout();
 imagesDlg.ResumeLayout();

 // Display the dialog as modal and ignore any result
 imagesDlg.ShowDialog();
 imagesDlg.Dispose();
 }

Compile and run your program to see this new dialog. This dialog is resizable, and
the controls automatically resize with the window since we set the Dock property to
Fill for our controls.

TRY IT! The TabControl here is created with the default behavior. You can
change the location and style for the tabs by altering the Alignment and
Appearance properties. Try setting these properties to alternate values
to see how the control then appears. Also set the Multiline property to
true and resize the form to see how multiple rows of tabs are displayed.

For a more complicated change, you will note that each image is dis-
played in a PictureBox control much like an image was displayed way
back in chapter 2. This, of course, has the problem that the image is
stretched and distorted as the window is resized. Fix this by replacing the
use of the PictureBox control in the prior code block with a Paint event
handler for the TabPage object. This code is annotated as b in the prior
code block with “Display the image on the page.” As part of this change,
assign the photo to the Tag property of the newPage object so you can re-
trieve this photo in the Paint handler. The replaced code should look
something like the following:

 // Assign a Paint event handler to draw this photo
 newPage.Tag = photo;
 newPage.Paint += new System.EventHandler(this.newPage_Paint);
362 CHAPTER 11 MORE CONTROLS

Implement the newPage_Paint event handler to retrieve the Photo-
graph stored in the sender’s Tag parameter and paint the image with the
proper aspect ratio. This should be similar to how we painted the image
within the Panel for the ScaleToFit display option in chapter 7.

This example is a good reminder that Visual Studio .NET is not needed to create
Windows Forms applications. Visual Studio provides a number of nice features that
are useful for handling layout and complexity issues, as we have seen. Still, it is good
to remember that Visual Studio is just a tool and not a required part of the C# lan-
guage or the .NET Framework.

That said, managing a number of controls on multiple tab pages would get rather
confusing without Visual Studio available. We will see how to use Visual Studio to cre-
ate tab controls and pages next.

11.2.2 CREATING TAB PAGES IN VISUAL STUDIO

In this section we will replace the existing Photographs group box in the MyAlbum-
Editor application with a tab control. This control will contain the controls currently
in the Photographs group box. Here we will only create a single tab page. A second
tab page will be added later in the chapter. Figure 11.4 shows how this new window
will look.

As you can see, the ListBox and four Button controls have been moved inside a
Photos tab page. To make this change, we need to delete the GroupBox control. If we
delete the group box directly, we will also delete the contained controls. While we
could delete the GroupBox, add the TabControl and a TabPage, and then recreate
the controls inside, it would be much nicer if we could somehow move the controls
into a tab page directly. This is, in fact, what we will do.

Figure 11.4

The Photos tab will contain

the controls we created in

chapter 10. The tab, shown

here on the left, can be

placed on any side of the tab

control.
TAB PAGES 363

The solution is to use cut and paste just like you might when moving text around
in a document. We will cut the controls from the group box and then paste them
inside of a tab page. The steps required are described in the following table:

REPLACE THE GROUPBOX WITH A TABPAGE

 Action Result

1 In the MainForm.cs [Design]
window, highlight the set of
controls inside the Photographs
group box.

Alternately

Click inside the GroupBox
control and drag a focus
rectangle to include all five
controls.

2 Cut the selected controls to the
Clipboard.

How-to

Select Cut from the Edit menu.

Alternately

Use the keyboard shortcut
Ctrl+X.

3 Delete the Photographs group
box control from the form.

4 Drag a TabControl object onto
the form, and resize it to be
about the same size as the
deleted Photographs group box.

How-to

a. Click the ListBox control.
b. Hold down the Ctrl key and

click the four Button controls.
364 CHAPTER 11 MORE CONTROLS

5 Add a TabPage object within the
tab control.

Alternately

You can use the TabPages
property of the tab control to
display the TabPage Collection
Editor dialog.

6 Insert the controls inside the
TabPage control. Resize and
position the controls if
necessary.

Alternately

Click inside the control and use
the keyboard shortcut Ctrl+V.

7 Set the properties for the tab
control and page.

REPLACE THE GROUPBOX WITH A TABPAGE (continued)

 Action Result

How-to

a. Right-click the TabControl
object.

b. Select Add Tab from the
menu.

How-to

a. Click inside the TabPage
object to make it the active
control.

b. Select Paste from the Edit
menu.

Settings

Control Property Value

TabControl (Name) tcPhotos

Alignment Left

Anchor Top,
Bottom,

Left, Right

TabPage (Name) tabPhotos

Text Photos
TAB PAGES 365

The Photographs group box is now replaced with a Photos tab page. This tab is
aligned on the left side of the tab control. The Alignment property uses the Tab-
Alignment enumeration, with possible values Top, Bottom, Left, and Right.

As you may have noticed, when the Alignment property for a tab control is
Left or Right, the Multiline property is automatically set to true. Compile and
run the application to make sure the controls still behave as expected, including mul-
tiple selection and the owner-drawn list feature via the Thumbnails menu.

We will add a second TabPage later in the chapter to display the set of dates asso-
ciated with the album in a calendar format. This will enable a discussion of the
MonthCalendar class. Before we can do this, we will first provide the appropriate
support for the DateTaken property of the Photograph class.

11.3 DATES AND TIMES

We will return to tab pages and our MyAlbumEditor application in a moment. In
this section we finally preserve the Date Taken value entered by the user in our Pho-
toEditDlg form. As you may recall, in chapter 9 we intentionally ignored this value
to avoid converting the user-entered string value into a date. At the time we said there
was a better way to deal with date constructs. In this section we finally see exactly
what this looks like.

Dealing with dates and times is one of those issues that prevent some program-
mers from getting a good night’s sleep. With 3600 seconds in an hour, and 24 hours
in a day, and different days per month, and leap years almost but not quite every four
years, it’s no wonder. Fortunately, most languages and environments these days pro-
vide direct support for date-time values to simplify handling of these constructs. In the
.NET Framework, this support extends to Windows Forms controls as well.

In chapter 5 we saw how the DateTime structure is used to represent a date-time
value within a program. In this section we will look at representing a date-time value

8 Manually reestablish the event
handlers for the controls. This
includes the DoubleClick,
DrawItem, MeasureItem, and
SelectedIndexChanged event
handlers for the list box, and the
Click handlers for each of the
four button controls.

How-to

Use the Events listing in the
Properties window, and select
the existing methods from the
appropriate dropdown lists.

The event handlers for the controls are assigned to the
appropriate events.

Note: This step is required whenever a control is
cut from one location and pasted into another. The
event handlers are not preserved, although the
properties of the controls are.

REPLACE THE GROUPBOX WITH A TABPAGE (continued)

 Action Result
366 CHAPTER 11 MORE CONTROLS

on a form using the DateTimePicker class, as summarized in .NET Table 11.3. This
class displays a date and/or time to the user, and allows the user to change the values
from the keyboard or from a dropdown calendar control. The dropdown calendar is
based on the MonthCalendar class, which we will examine in the next section.

11.3.1 DATES AND TIMES

Our Photo Properties dialog with a DateTimePicker control in place is shown in
figure 11.5. As you can see, the dropdown calendar control is displayed for the object.

.NET Table 11.3 DateTimePicker class

The DateTimePicker class represents a date and/or time value on a form. It allows the user
to select a specific date and/or time, and presents this selection in a specified format. The
DateTime value is presented in a text box control, with a down arrow providing access to a
calendar from which an alternate date can be selected. The various parts of the DateTime
value can alternately be modified using an up-down button or the arrow keys on the keyboard.

This class is part of the System.Windows.Forms namespace, and inherits from the Con-
trol class. See .NET Table 4.1 on page 104 for a list of members inherited from this class.

Public Properties

CalendarFont Gets or sets the Font to apply to the calendar
portion of the control.

CalendarForeColor Gets or sets the foreground color for the
calendar.

Checked When the ShowCheckBox property is true, gets
or sets whether the check box is checked.

CustomFormat Gets or sets the custom date-time format.

Format Gets or sets how the date-time value is
formatted in the control.

MaxDate Gets or sets the maximum date-time value for
the control.

MinDate Gets or sets the minimum date-time value for
the control.

ShowCheckBox Gets or sets whether a check box displays to the
left of the selected date.

ShowUpDown Gets or sets whether an up-down control is used
to adjust the date-time value.

Value Gets or sets the DateTime value assigned to the
control. Default is the current date and time.

Public Events

CloseUp Occurs when the dropdown calendar is
dismissed and disappears.

DropDown Occurs when the dropdown calendar is shown.

FormatChanged Occurs when the Format property changes.

ValueChanged Occurs when the Value property changes.
DATES AND TIMES 367

We can add this control to our dialog using the following steps. We will begin with
the default display settings for this control, and look at how to modify these settings
later in the section.

Set the version number of the MyPhotoAlbum application to 11.3.

Figure 11.5

The DateTimePicker shown

here displays the Long date for-

mat, which is the default.

REPLACE THE DATE TEXT BOX WITH A DATETIMEPICKER CONTROL

 Action Result

1 In the PhotoEditDlg.cs [Design]
window, delete the TextBox control
next to the Date Taken label.

2 Place a DateTimePicker control
where the text box used to be.

Note: The location of this control is shown in
figure 11.5.

3 Locate the ResetSettings method
in the MainForm.cs source file.

 protected override void ResetSettings()
 {
 // Initialize the ComboBox settings
 . . .

4 Set the Value property for the date
and time control.

How-to

Use the DateTaken property.

 Photograph photo = _album.CurrentPhoto;

 if (photo != null)
 {
 txtPhotoFile.Text = photo.FileName;
 txtCaption.Text = photo.Caption;
 dtpDateTaken.Value = photo.DateTaken;
 cmbxPhotographer.SelectedItem
 = photo.Photographer;
 txtNotes.Text = photo.Notes;
 }
 }

Settings

Property Value

(Name) dtpDateTaken

TabIndex 5
368 CHAPTER 11 MORE CONTROLS

And there you have it. One DateTimePicker control ready to work. Compile and
run the application, and set the dates for your photographs as appropriate. Make sure
your albums preserve the selected date after exiting and restarting the program.

You may have noticed that our control does not display the time. By default, the date
and time control displays what .NET calls the long date. This includes the day of the
week and month written out in the local language as well as the two-digit day and
four-digit year. The format used by the control is specified by the Format property,
using the DateTimePickerFormat enumeration described in .NET Table 11.4. As
you can see from the table, various values allow either the date or time to be displayed
in a format specified by the operating system.

11.3.2 CUSTOMIZING A DATETIMEPICKER CONTROL

As can be seen in .NET Table 11.4, a custom display setting for the DateTime-
Picker control is used when the Format property is set to DateTimePicker-

5 Locate the SaveSettings method. protected override void SaveSettings()
 {

6 Set the DateTaken property to the
date-time value specified by the user.

 Photograph photo = _album.CurrentPhoto;

 if (photo != null)
 {
 photo.Caption = txtCaption.Text;
 photo.DateTaken = dtpDateTaken.Value;
 photo.Photographer
 = cmbxPhotographer.Text;
 photo.Notes = txtNotes.Text;
 }
 }

REPLACE THE DATE TEXT BOX WITH A DATETIMEPICKER CONTROL (continued)

 Action Result

.NET Table 11.4 DateTimePickerFormat enumeration

The DateTimePickerFormat enumeration specifies how to display a date-time value in a
DateTimePicker control. This enumeration is part of the System.Windows.Forms
namespace. For each value, the default setting for the U.S. English culture is provided. The for-
mat codes used here correspond to the codes supported by the DateTimeFormatInfo class.

Enumeration

Values

Custom A custom format is used, as specified by the
CustomFormat property.

Long The long date format is used. In Windows, this is typically
“dddd, MMMM dd, yyyy” for U.S. English environments.
This is the default value.

Short The short date format is used. In Windows, this is
typically “MM/dd/yyyy” for U.S. English environments.

Time The time format is used. In Windows, this is typically
“HH:mm:ss tt” for U.S. English environments.
DATES AND TIMES 369

Format.Custom. The CustomFormat property contains the string value to use
in this case. A number of format codes are available within this string. These codes
are managed by the sealed DateTimeFormatInfo class. The following table shows
a number of these codes, along with some corresponding properties in the
DateTimeFormatInfo class, which can be especially useful when operating in a
multi-language environment. Consult the .NET documentation for the complete
list of codes and additional information on the specified properties.

Let’s modify our date and time control to display a customized value. We will include
both the date and time in the display.

Date-time codes for the DateTimeFormatInfo class

Pattern Description
Default U.S. English

Values

DateTimeFormatInfo

Property

d Day of the month. 1 to 31

dd Two-digit day of the month. 01 to 31

ddd Abbreviated day of the week. Sun to Sat AbbreviatedDayNames

dddd Full day of the week. Sunday to Saturday DayNames

M Numeric month. 1 to 12

MM Two-digit numeric month. 01 to 12

MMM Abbreviated month name. Jan to Dec AbbreviatedMonthNames

MMMM Full month name. January to December MonthNames

y Year without century. 1 to 99

yy Two-digit year without century. 01 to 99

yyyy Four-digit century. 0001 to 9999

gg Period or era, if any. B.C. or A.D.

h Hour on a 12-hour clock. 1 to 12

hh Two-digit hour on a 12-hour clock. 01 to 12

H Hour on a 24-hour clock. 1 to 24

HH Two-digit hour on a 24-hour clock. 01 to 24

m Minute. 0 to 59

mm Two-digit minute. 00 to 59

s Second. 0 to 59

ss Two-digit second. 00 to 59

tt AM/PM designator. AM or PM AMDesignator and
PMDesignator

: Default time separator. : (a colon) TimeSeparator

/ Default date separator. / (a slash) DateSeparator

‘c’ Displays the specified character. For
example, ‘s’ will display the
character s rather than the number
of seconds.
370 CHAPTER 11 MORE CONTROLS

If you compile and run these changes, you will find that the dropdown calendar still
appears. The time values can be modified by hand or with the arrow keys. You might
try using some alternate format strings, or setting the ShowUpDown property to true
as a way to experiment with these customized settings.

The DateTimePicker class is great for displaying a single date-time value.
When multiple dates or a range of dates are required, the MonthCalendar class can
be used. We will discuss this control next.

More .NET As an alternative to a DateTimePicker control, another option here is to
create separate controls for the month, day, and year, and if necessary the
time of day. While the TextBox or ComboBox controls could be used for
this purpose, you could also use the DomainUpDown and NumericUpDown
controls. These controls are derived from the UpDownBase control, which
in turn is based on the ContainerControl class presented in chapter 7.

The up-down controls present a text-box-like window that displays a
range of values. The DomainUpDown control presents a string value tak-
en from a collection of objects, while the NumericUpDown control pre-
sents a numeric value, optionally over a defined range.

For separate month, day, and year controls, the properties for the DateTime-
FormatInfo class shown earlier in this section may be used to obtain the default
set of month strings for display within a DomainUpDown control. The day
and year values can be displayed in a NumericUpDown control, with the
range set based on the current month and the requirements of the application.

DISPLAY A CUSTOM DATE-TIME VALUE IN THE DATETIMEPICKER CONTROL

 Action Result

1 Display the properties for the
DateTimePicker control in the
PhotoEditDlg.cs [Design] window.

2 Modify this control to display a custom
format string.

The control displays the new format within Visual
Studio.

Settings

Property Value

CustomFormat MM/dd/yy 'at' hh:mm tt

Format Custom
DATES AND TIMES 371

11.4 CALENDARS

Sometimes a single date will not do. A scheduling program, for example, might need
to show a calendar with meeting days highlighted, or display a meeting that covers a
range of dates. The MonthCalendar class allows one or more months to be dis-
played on a Form, with individual days highlighted or a range of days selected.

Since our PhotoAlbum class permits each photograph to specify its own date, it
seems appropriate to demonstrate the calendar control by highlighting the days in a
calendar on which a photograph was taken. We will do this by adding a second
TabPage object to our MyAlbumEditor main window. The result of our changes is
shown in figure 11.6. Note how some dates are in bold to indicate one or more pho-
tographs were taken that day. If the user clicks on a date, a context menu pops up con-
taining the corresponding photographs. When a photograph is selected from this
context menu, the properties for that photograph are displayed.

The interface in figure 11.6 provides a very different view of our album. While
the order of photographs in the album is not apparent, the specific days that a collec-
tion of pictures was taken is immediately available.

This section will discuss the month calendar control in general and add the con-
trol to a new tab page in our application. We will discuss how to bold the dates when
photographs were taken, and how to process and respond to mouse clicks made within
the control.

11.4.1 ADDING A MONTHCALENDAR CONTROL

An overview of the MonthCalendar class is provided in .NET Table 11.5. This class
handles the entire range of dates possible in DateTime objects, which is basically any
date with a four-digit century. This class is a good way to display a series of dates
related to an object or collection of objects.

Figure 11.6

The MonthCalendar control will

automatically display multiple

months as it is resized.
372 CHAPTER 11 MORE CONTROLS

In our case, we will display the dates associated with a collection of photographs. Let’s
begin by adding a new TabPage containing a MonthCalendar control to our form.

.NET Table 11.5 MonthCalendar class

The MonthCalendar class represents a control that displays one or more months to the user.
Days in each month can be displayed in bold, and the user can select single or multiple dates.
This class is part of the System.Windows.Forms namespace, and inherits from the Control
class. See .NET Table 4.1 on page 104 for a list of members inherited from this class.

Public

Properties

AnnuallyBoldedDates Gets or sets an array of DateTime objects that
indicate which days to show in bold on an annual
basis.

BoldedDates Gets or sets an array of DateTime objects of specific
dates to show in bold.

MaxDate Gets or sets the maximum date. The user will not be
able to display months occurring after this date.

MaxSelectionCount Gets or sets the maximum number of dates that can
be selected in the control. Defaults to seven (7).

ScrollChange Gets or sets the number of months to scroll per click
of a scroll button. Defaults to one (1).

SelectionRange Gets or sets the range of dates selected in the
control.

SelectionStart Gets or sets the initial date of the range selected in
the control.

ShowToday Gets or sets whether to display the TodayDate
value at the bottom of the control.

ShowTodayCircle Gets or sets whether the TodayDate value is circled.

TodayDate Gets or sets the DateTime value used as today’s
date.

Public

Methods

AddAnnuallyBoldedDate Adds a day to display in bold on an annual basis.

GetDisplayRange Retrieves the range of dates displayed by the
control.

HitTest Determines which aspect of the month calendar
control is located at a specific point.

RemoveBoldedDate Removes a specific date from the list of nonrecurring
bolded dates.

SetDate Selects the given date in the control.

Public

Events

DateChanged Occurs when the current date in the control is
modified, such as when a new month is displayed.

DateSelected Occurs when the dates selected in the control are
modified.
CALENDARS 373

Set the version number of the MyAlbumEditor application to 11.4.

You will note that the Dock property for our month calendar object is set to Fill.
This ensures that the number of months displayed will expand to fill the entire tab page
as the form is enlarged. As we will see in the next section, months before the MinDate
property value and after the MaxDate value will not be accessible from this control.

11.4.2 INITIALIZING A CALENDAR

Now that our MonthCalendar control is on the form, we can hook it up to our
PhotoAlbum class. We do not want to initialize the calendar needlessly, so we will
only do so when the Dates tab is displayed. By the same token, we do not want to ini-
tialize the lstPhotos list box needlessly, so we need to ensure that this only occurs
when the Photos tab is displayed. Since we used the method UpdateList for our list
box, we will create an UpdateCalendar method to initialize and update our
MonthCalendar control.

The following steps are required for this change:

CREATE THE DATES TAB PAGE

 Action Result

1 In the MainForm.cs [Design]
window, add a second tab page
to the TabControl object.

2 Add a MonthCalendar control
to this page.

Note: Your MonthCalendar control will circle the
current date, which is likely not the date shown in
the graphic.

Settings

Property Value

(Name) tabDates

Text Dates

Settings

Property Value

(Name) monthCalDates

Dock Fill

MaxSelection-
Count

1

ShowToday False
374 CHAPTER 11 MORE CONTROLS

INITIALIZE THE MONTH CALENDAR CONTROL

 Action Result

1 In the MainForm.cs source file,
add an UpdateCalendar method
to update the MonthCalendar
control in the Dates tab.

 private void UpdateCalendar()
 {
 // Initialize MonthCalendar control

2 In this method, calculate the range
of dates used by photographs in
this album.

 DateTime minDate = DateTime.MaxValue;
 DateTime maxDate = DateTime.MinValue;

 DateTime[] dates
 = new DateTime[_album.Count];

3 For each Photograph in the
album, record its date and adjust
the minimum and maximum date
as required.

Note: We could use a foreach
loop here, of course. A for loop
works a little better since an index
for the dates array is required.

 for (int i = 0; i < _album.Count; i++)
 {
 DateTime newDate
 = _album[i].DateTaken;
 dates[i] = newDate;

 if (newDate < minDate)
 minDate = newDate;

 if (newDate > maxDate)
 maxDate = newDate;
 }

4 Assign the MonthCalendar
properties based on the calculated
date values.

Note: The SelectionStart prop-
erty ensures that the initial date
for the album is displayed by the
calendar.

 if (_album.Count > 0)
 {
 monthCalDates.BoldedDates = dates;
 monthCalDates.MinDate = minDate;
 monthCalDates.MaxDate = maxDate;
 monthCalDates.SelectionStart = minDate;
 }
 }

5 Add a new UpdatePhotographs
method to update the appropriate
tab page.

How-to

Use the SelectedTab property of
the tcPhotos control.

 private void UpdatePhotographs()
 {
 if (tcPhotos.SelectedTab == tabPhotos)
 UpdateList();
 else if (tcPhotos.SelectedTab == tabDates)
 UpdateCalendar();
 }

6 Modify the OpenAlbum method to
update the appropriate tab page.

 private void OpenAlbum(string fileName)
 {
 CloseAlbum();

 _album.Open(fileName);
 this.Text = _album.FileName;

 UpdatePhotographs();
 }

7 In the MainForm.cs [Design]
window, handle the
SelectedIndexChanged event for
our tab control.

Note: This is the default event for
tab controls, and occurs when-
ever a new tab is selected by the
user.

 private void tcPhotos_SelectedIndexChanged
 (object sender, System.EventArgs e)
 {
 UpdatePhotographs();
 }
CALENDARS 375

Our calendar, as well as our list box, is updated whenever an album is opened and
whenever the user displays an alternate tab page. Compile and run the application if
you would like to see this in action. The next section processes the user’s mouse clicks
in the control to provide access to the PhotoEditDlg form associated with a
selected date.

11.4.3 HANDLING MOUSE CLICKS IN A CALENDAR CONTROL

Our MonthCalendar control is on the form and displays the dates assigned to an
album’s photographs in bold. The next step is to handle clicks by the user and link
them up with associated photographs.

We will handle the MouseDown event for this purpose, and create a Context-
Menu object on the fly to display any photos associated with the selection point. The
MonthCalendar class also provides the DateChanged event that occurs whenever
a valid date is clicked. We could use this event instead, although the current mouse
position would still be required to display the context menu. Since the MouseDown
event provides the mouse location directly, this event seems a more logical choice.

We will discuss mouse events in more detail in the next chapter. Like the Mouse-
Move event used in chapter 8, a MouseDown event handler receives a MouseEvent-
Args that includes the current position of the mouse. We will use this position both
to determine which aspect of the calendar the user clicked on and to display the con-
text menu at the appropriate location.

Before we see how to add this handler, one other item is needed. When we create
MenuItem objects for the context menu, we will need a way to retrieve the associated
Photograph object if the user later selects the menu. While the Control class pro-
vides a Tag property that associates an object instance with a control, the MenuItem

8 Update the
SelectedIndexChanged event
handler for our combo box control
to enable or disable the controls as
required.

Note: We take a slightly different
approach here than we used ear-
lier in the chapter. The final effect
is the same.

 private void cmbxAlbums_SelectedIndexChanged
 (object sender, System.EventArgs e)
 {
 . . .
 try
 {
 CloseAlbum();
 OpenAlbum(albumPath);
 tcPhotos.Enabled = true;
 btnAlbumProp.Enabled = true;
 }
 catch (Exception)
 {
 // Unable to open album
 this.Text = "Unable to . . . album";
 tcPhotos.Enabled = false;
 lstPhotos.Items.Clear();
 monthCalDates.RemoveAllBoldedDates();
 btnAlbumProp.Enabled = false;
 }
 }

INITIALIZE THE MONTH CALENDAR CONTROL (continued)

 Action Result
376 CHAPTER 11 MORE CONTROLS

class has no such property. As a result, we have to deal with this unfortunate omission
ourselves. In chapter 3, we created an array indexed by the menu location that linked
a display mode to the menu. Now that we are more experienced, we will simply create
a new class derived from MenuItem for a similar purpose.

As you will see, this very simple class will make our click handling much more effi-
cient. Let’s take a look at this code.

CREATE A CUSTOM MENUITEM CLASS TO HOLD THE ALBUM INDEX

 Action Result

1 Within the MainForm class definition,
define a new PhotoMenuItem class
based on the MenuItem class within
the MainForm class.

 private class PhotoMenuItem : MenuItem
 {

2 Add a public field in this class to hold
the integer album index associated
with the menu.

 public int tag;
 }

HANDLE A MOUSE CLICK IN THE CALENDAR CONTROL

 Action Result

3 Add an event handler for the
MouseDown event in the
MonthCalendar control.

 private void monthCalDates_MouseDown
 (object sender,
 System.Windows.Forms.MouseEventArgs e)
 {

4 Determine if the user clicked on a
date.

How-to

Use the HitTest method.

 MonthCalendar.HitTestInfo info
 = monthCalDates.HitTest(e.X, e.Y);
 if (info.HitArea
 == MonthCalendar.HitArea.Date)
 {

5 If so, create a new context menu
to hold any photographs
associated with this date.

 ContextMenu ctxtPhotoCal
 = new ContextMenu();

6 Iterate through the photos in the
album.

 for (int i = 0; i < _album.Count; i++)
 {

7 Look for any photographs taken
on the same date as the date
clicked by the user.

How to

Use the Date property to obtain
only the date portion of the
DateTime objects.

 if (_album[i].DateTaken.Date
 == info.Time.Date)
 {
CALENDARS 377

8 If a matching photo is found,
create a new PhotoMenuItem
object for this photo.

 PhotoMenuItem newItem
 = new PhotoMenuItem();

 newItem.tag = i;
 newItem.Text = _album[i].FileName;
 newItem.Click += new
 EventHandler(
 ctxtPhotoCal_MenuClick);

9 Add this new item to the context
menu.

 ctxtPhotoCal.MenuItems.Add(newItem);
 }
 }

10 If one or more matching
photographs were found, display
the context menu.

How-to

Use the Show method at the
current mouse location.

 if (ctxtPhotoCal.MenuItems.Count >= 1)
 {
 ctxtPhotoCal.Show(monthCalDates,
 new Point(e.X, e.Y));
 }
 }
 }

11 Create a private DisplayPhoto-
EditDlg method to accept an
album index and display the
associated dialog.

Note: This method returns a
boolean value indicating whether
the user modified any settings.

 private bool DisplayPhotoEditDlg(int index)
 {
 _album.CurrentPosition = index;

 using (PhotoEditDlg dlg
 = new PhotoEditDlg(_album))
 {
 if (dlg.ShowDialog() == DialogResult.OK)
 {
 _bAlbumChanged = true;
 return true;
 }
 }

 return false;
 }

12 Implement a ctxtPhoto-
Cal_MenuClick method to
handle any context menu
selection and display the
associated Photo Properties
dialog.

 private void ctxtPhotoCal_MenuClick
 (object sender, System.EventArgs e)
 {
 PhotoMenuItem mi = sender as PhotoMenuItem;

 if ((mi != null)
 && (DisplayPhotoEditDlg(mi.tag)))
 {
 UpdateCalendar();
 }
 }

HANDLE A MOUSE CLICK IN THE CALENDAR CONTROL (continued)

 Action Result

How-to

a. Initialize the tag field to the
photograph’s index.

b. Initialize the MenuItem.Text
property to the image file
name.

c. Set a Click handler for this
menu item.
378 CHAPTER 11 MORE CONTROLS

When the user clicks on the MonthCalendar control, this code will find and display
any photographs associated with a selected date. Note how the HitTest method is
used to retrieve information about the selected point. This method returns a Hit-
TestInfo object. The HitTestInfo class is defined within the MonthCalendar
class, and provides a HitArea property containing the type of area clicked by the
user, and a Time property containing the DateTime value corresponding to the
selected item. The possible values for the HitArea property are defined by the
MonthCalendar.HitArea enumeration, as described in .NET Table 11.6.
 private void monthCalDates_MouseDown
 (object sender, System.Windows.Forms.MouseEventArgs e)
 {
 MonthCalendar.HitTestInfo info = monthCalDates.HitTest(e.X, e.Y);
 if (info.HitArea == MonthCalendar.HitArea.Date)
 {

Another important part of this code is the definition and use of the PhotoMenuItem
class. Without this class, we would be forced to search for a selected photograph
based on the file name stored in the Text property of the menu. This rather simple
extension to MenuItem provides an efficient method of communicating a photo-
graph’s index from the context menu to a menu item’s Click handler.
 private class PhotoMenuItem : MenuItem
 {
 // An integer field to store a photograph’s index
 public int tag;
 }

Because this class is still a MenuItem instance, we can use it just like any other menu
item object. We can set the Text property, establish a Click event handler, and add
the menu to our context menu.
 PhotoMenuItem newItem = new PhotoMenuItem();

 newItem.tag = i;

13 Update the Click handler for the
photo’s Properties button on the
Photos tab page to use the new
DisplayPhotoEditDlg method.

 private void btnPhotoProp_Click
 (object sender, System.EventArgs e)
 {
 if (_album.Count == 0)
 return;

 if (lstPhotos.SelectedIndex >= 0)
 {
 if (DisplayPhotoEditDlg(
 lstPhotos.SelectedIndex))
 {
 UpdateList();
 }
 }
 }

HANDLE A MOUSE CLICK IN THE CALENDAR CONTROL (continued)

 Action Result
CALENDARS 379

 newItem.Text = _album[i].FileName;
 newItem.Click += new EventHandler(ctxtPhotoCal_MenuClick);

 // Add this item to the context menu
 ctxtPhotoCal.MenuItems.Add(newItem);

After the context menu has been displayed, the Click handler receives the menu
item object selected by the user. We downcast the given object into a PhotoMenu-
Item instance in order to retrieve the index in the photo album and display the
appropriate Photo Properties dialog.
 private void ctxtPhotoCal_MenuClick(object sender, System.EventArgs e)
 {
 PhotoMenuItem mi = sender as PhotoMenuItem;

 if ((mi != null) && (DisplayPhotoEditDlg(mi.tag)))
 {
 UpdateCalendar();
 }
 }

Compile and run the application to see how all this code works. Click on a date
where one or more photographs were taken and be amazed as a context menu pops
up with the corresponding photos. Also try clicking on other aspects of the control to
see what happens. In particular, see what happens when you click on the month and
year in the title of the control. Note that your ability to alter the month and year dis-
played is restricted by the range of dates represented in the photo album.

More .NET The PhotoMenuItem class developed in this section extends the Menu-
Item object provided by the Windows Forms namespace. This technique
is useful when you need a class that is similar to an existing control, and the
ability to downcast objects in C# ensures that you can access the additional
members of your derived class in a type-safe manner.

You can also build custom controls by extending the Control class
directly. Windows Forms also provides a UserControl class that is spe-
cifically intended for building customized container controls. The
Project menu in Visual Studio .NET includes an Add User Control item
for creating such a control. There is a walkthrough in the .NET docu-
mentation entitled “Authoring a User Control with Visual C#” that in-
troduces this concept.

Custom controls can also be tightly integrated into the Toolbox and
other parts of Visual Studio .NET. The System.Windows.Forms.De-
sign namespace contains the classes and other types to support such inte-
gration. If you are interested in this topic, search for more information at
any of the .NET web sites listed in appendix D. In particular, as of this
writing there is an article by Shawn Burke entitled “Writing Custom De-
signers for .NET Components” at the Microsoft Developer Network at
msdn.microsoft.com.
380 CHAPTER 11 MORE CONTROLS

11.5 RECAP

In this chapter we created tab controls and tab pages dynamically and using Visual
Studio .NET. We modified our MyAlbumEditor application to use a tab control in
place of the Photographs group box used in chapter 10. We then added a second tab
to contain a calendar control displaying the dates when photographs in the album

.NET Table 11.6 HitArea enumeration

The HitArea enumeration specifies the possible display areas in a MonthCalendar control.
Typically, this is used when analyzing a specific point in a calendar control using the HitTest
method. This enumeration is defined within the MonthCalendar class, and is part of the
System.Windows.Forms namespace.

Enumeration

Values

CalendarBackground The specified point is part of the calendar’s
background.

Date The specified point is part of a specific date of
the current month in the calendar. The Time
property of the
MonthCalendarInfo.HitTestInfo class is set
to the corresponding DateTime value.

DayOfWeek The point is part of a day abbreviation, such as
“Mon.” The Time property should contain the
date on the top row of the calendar.

NextMonthButton The point is part of the next month button at the
top right of the control.

NextMonthDate The point is part of a date from the next month in
the control.

Nowhere The point is not in the MonthCalendar control,
nor is it in an active portion of the control. This is
the default.

PrevMonthButton The point is part of the previous month button at
the top left of the control.

PrevMonthDate The point is part of a date from the previous
month in the control.

TitleBackground The point is over the background of a month’s
title.

TitleMonth The point is over a month name in the title of the
control.

TitleYear The point is over a year value in the title of the
control.

TodayLink The point is over the “today” link at the bottom
of the control.

WeekNumbers The point is over a week number when these
values are displayed. The Time property should
contain the first date of that week.
RECAP 381

were taken, and permitted the user to click on a date to view the properties associated
with the corresponding photographs.

We also examined the DateTimePicker class, and used this control in our
PhotoEditDlg form to present the DateTaken property of a Photograph object.
This led to a discussion of the formats used to display custom date-time strings.

In chapter 12 we will take up an assortment of different topics related to Win-
dows Forms application development.
382 CHAPTER 11 MORE CONTROLS

C H A P T E R 1 2

A .NET assortment

12.1 Keyboard events 384
12.2 Mouse events 387
12.3 Image buttons 393
12.4 Icons 405
12.5 Recap 409
In the last three chapters we looked at various controls available in the Windows
Forms namespace, and demonstrated the use of these controls in applications. In this
chapter we take a break from this aspect of Windows Forms development, and turn
our attention to interacting with the keyboard and mouse, and the placement of
images within certain controls.

For this discussion we return to the MyPhotos application we left in chapter 9.
As usual, the Visual Studio.NET solution is available on the book’s web site in case
you have misplaced your copy. We will examine the following topics:

• Keyboard events
• Mouse events
• Placing images on button controls
• Icons in a form and an application

Our discussion will present each concept in a separate section, beginning with the
keyboard events.
383

12.1 KEYBOARD EVENTS

We looked briefly at keyboard events in chapter 9 while discussing the TextBox
class. There we used the KeyPress event to limit what characters could appear in a
text box control. In this section we look more generically at keyboard events, and use
them in our application to provide some quick shortcuts for the user.

There are three distinct events that occur whenever a key is pressed and released.
Note that we did not say whenever a character is pressed and released. A character may
involve multiple key presses. For example, the letter ‘A’ requires the use of the Shift
key and the A key, typically abbreviated as Shift+A (of course, this is not true if the
Caps Lock key is pressed, but you understand).

The three keyboard events are summarized in the following table. These events
occur for a control in the order shown in the table whenever the control has the focus.

12.1.1 HANDLING THE KEYPRESS EVENT

The KeyPress event is used for generic handling of keyboard characters. Event han-
dlers of this type receive an instance of the KeyPressEventArgs class as its event
parameter. See .NET Table 12.1 for an overview of this class.

It is important to realize that this event, as well as the KeyDown and KeyUp events, is
received by the control that currently has the focus. In particular, they are not nor-
mally received by parent controls such as Panel and Form objects that contain the
control. Normally this is a good thing. The per-character behavior is defined by each
control, with no need for parental involvement. For example, if you are handling the

Keyboard events

Event Description Event Argument

KeyDown Occurs when a key on the keyboard is pressed
down.

KeyEventArgs class

KeyPress Occurs when a character is pressed on the
keyboard, and again each time the character is
repeated while it continues to be pressed.

KeyPressEventArgs class

KeyUp Occurs when a key on the keyboard is released. KeyEventArgs class

.NET Table 12.1 KeyPressEventArgs class

The KeyPressEventArgs class is the event argument class associated with the KeyPress
event. This class represents the keyboard character pressed by the user. It is part of the Sys-
tem.Windows.Forms namespace, and inherits from the System.EventArgs class.

Public Properties

Handled Gets or sets whether the keyboard character
was handled. If true, then the control will not
receive the character.

KeyChar Gets the char value corresponding to the
keyboard character pressed.
384 CHAPTER 12 A .NET ASSORTMENT

KeyPress event to force a text box to contain only integer values, you do not want
to spend precious operating system cycles percolating this event up through the set of
containing objects for the text box. A parent control such as a Panel or GroupBox
will only receive a keyboard event if it specifically has the focus.

This presents a slight problem for subclasses of the ContainerControl object,
and in particular the Form object. As you may recall, a ContainerControl object
manages the focus for the contained controls, and does not receive the focus directly.
There are plenty of situations where you would like to initiate an action from the key-
board regardless of the current control.

The good folks at Microsoft created the KeyPreview property in the Form class
for just this purpose. When this property is set to true, the Form object will receive
all keyboard events before they are passed to the current control. If the event handler
sets the Handled property to true, then the current control will not receive the key-
board key or corresponding character.

Let’s create an example of this in our MyPhotos program by handling the plus
‘+’ and minus ‘–’ characters. The plus character will display the next photograph in
the album, while the minus will display the previous photograph. We would like these
to occur at the Form level, and not just in our Panel object where the image is dis-
played. The following table presents the steps required for this change.

Set the version number of the MyPhotos application to 12.1.

MAP THE PLUS AND MINUS KEYS TO THE NEXT AND PREVIOUS MENUS

 Action Result

1 In the MainForm.cs [Design] window,
modify the KeyPreview property for the
MainForm object to be true.

2 Override the protected OnKeyPress
method in the MainForm.cs source file.

 protected override void OnKeyPress
 (KeyPressEventArgs e)
 {

3 When a plus sign ‘+’ is pressed, invoke
the Next menu handler.

 switch (e.KeyChar)
 {
 case '+':
 e.Handled = true;
 menuNext.PerformClick();
 break;

4 When a minus sign ‘-’ is pressed, invoke
the Previous menu handler.

 case '-':
 e.Handled = true;
 menuPrevious.PerformClick();
 break;

5 For all other characters, do nothing. This
permits the character to be sent to child
controls.

 default: // do nothing
 break;
 }

6 Don’t forget to call the base class at the
end of the method.

 base.OnKeyPress(e);
 }
KEYBOARD EVENTS 385

We could have used an if statement in this code, especially with only two items to
check. Since we may add behavior for additional characters in the future, a switch
statement seems like a good idea. Note how we used the MenuItem.PerformClick
method to simulate a user click of the appropriate menu. We could have called the
Click event handler directly, of course, but this solution is a bit more elegant.

It should be noted here that not all characters are received by the KeyPress and
other keyboard events. Depending on the control, some characters may be prepro-
cessed and unavailable by default in this event. The protected IsInputKey and
IsInputChar methods can be used to determine whether a specific character is pre-
processed in a derived control.

Let’s move on to the KeyDown and KeyUp events.

12.1.2 HANDLING OTHER KEYBOARD EVENTS

The KeyDown and KeyUp events are useful to fine-tune an application’s behavior as
keyboard keys are pressed and released, and for handling noncharacter keys such as
the function or arrow keys. Handlers for these events receive an instance of the
KeyEventArgs class as their event parameter. This class is summarized in .NET
Table 12.2.

We will demonstrate the use of the KeyEventArgs class by setting the Page Up and
Page Down keys to invoke the Previous and Next menus, respectively. We will use the
KeyDown event for this purpose. We have already set the KeyPreview property to
receive keyboard events in our Form, so all we have to do is override the OnKeyDown
method here.

.NET Table 12.2 KeyEventArgs class

The KeyEventArgs class is the event argument class associated with the KeyDown and KeyUp
events. This class represents the keyboard key pressed down or released by the user. It is part
of the System.Windows.Forms namespace, and inherits from the System.EventArgs class.

Public

Properties

Alt Gets whether the Alt key was pressed.

Control Gets whether the Ctrl key was pressed.

Handled Gets or sets whether the event was handled.

KeyCode Gets the specific keyboard key pressed as a value in the Keys
enumeration.

KeyData Gets the combination of keyboard keys pressed at the same
time using the Keys enumeration values.

KeyValue Gets the int character value corresponding to the keyboard
combination.

Modifiers Gets the combination of modifier keys pressed or released
using the Keys enumeration values. This is a combination of the
Ctrl, Shift, and Alt values, or None if no keys were pressed.

Shift Gets whether the Shift key was pressed.
386 CHAPTER 12 A .NET ASSORTMENT

Run the program to see how this code works. Open an album and make sure all four
keys we handled work as expected.

TRY IT! Modify the OnKeyDown method to recognize the Home and End keys as
well. Have the Home key display the first photograph in the album, and
the End key display the last.

As an alternate approach, modify this method so that Shift+PageDown
will display the last photograph, and Shift+PageUp the first photograph in
the album. To implement this change, you will need to modify the method
to check the Shift property within the PageUp and PageDown case
blocks.

That’s probably enough for our quick look at keyboard events. Let’s also take a look at
mouse events.

12.2 MOUSE EVENTS

The mouse device has gone through its own little evolution since it was invented by
Xerox Corporation almost 30 years ago. The number of buttons have varied from one
to three, and the shape has evolved from a rather uncomfortable rectangle to the
hand-fitting contours found in most modern versions. The mouse wheel is a rather
recent addition, permitting automated scrolling from the comfort of your mouse. An
even newer addition is a five-button mouse, with the extra buttons intended for back-
ward/forward navigation in applications such as web browsers.

Regardless of the type mouse you own, the possible events in .NET are the same.
In chapter 8 we used the MouseMove event to update the PixelDlg form as the

MAP THE PAGE DOWN AND PAGE UP KEYS TO THE NEXT AND PREVIOUS MENUS

 Action Result

1 In the MainForm.cs source
window, override the
OnKeyDown method.

 protected override void OnKeyDown
 (KeyEventArgs e)
 {

2 Invoke the Previous menu
when the Page Up key is
pressed down.

 switch (e.KeyCode)
 {
 case Keys.PageUp:
 e.Handled = true;
 menuPrevious.PerformClick();
 break;

3 Invoke the Next menu
when the Page Down key
is pressed down.

 case Keys.PageDown:
 e.Handled = true;
 menuNext.PerformClick ();
 break;

4 Do nothing by default. default: // do nothing
 break;
 }

 base.OnKeyDown(e);
 }
MOUSE EVENTS 387

mouse pointer changed position. In the previous chapter we used the MouseDown
event in our MonthCalendar control to pop up a context menu when the user
clicked on a date. Here, we look at mouse events in general.

Mouse events are somewhat similar to keyboard events. Mouse buttons go down
and up just like keyboard keys, and the events MouseDown and MouseUp occur
accordingly. Since the mouse also controls the mouse pointer, there are events related
to pointer movement as well. The complete list of mouse events is shown in the fol-
lowing table. These events occur with respect to a specific control.

12.2.1 THE MOUSEEVENTARGS CLASS

As you can see from the table, all mouse event handlers received an instance of the
MouseEventArgs class as their event parameters. A summary of this class appears in
.NET Table 12.3. We will illustrate mouse events a few different ways in this chapter.
Our first example will combine the keyboard support we examined in the previous
chapter with mouse events.

12.2.2 HANDLING MOUSE EVENTS

Since we have seen a couple of mouse events before, let’s make a change that involves
both keyboard and mouse events. Keeping with our theme of the Previous and Next
menus, let’s modify the mouse button behavior in our Panel control so that the left
and right buttons invoke the Previous and Next menus, respectively, when the Ctrl
key is pressed.

Mouse events

Event Description Event Argument

MouseDown Occurs when a mouse button is pressed down while
the pointer is over the control.

MouseEventArgs class

MouseEnter Occurs when the mouse pointer enters the control. MouseEventArgs class

MouseHover Occurs when the mouse pointer remains, or hovers,
over a control for a configurable amount of time.

MouseEventArgs class

MouseLeave Occurs when the mouse pointer leaves the control. MouseEventArgs class

MouseMove Occurs when the mouse pointer moves over the
control.

MouseEventArgs class

MouseUp Occurs when a mouse button is released while the
pointer is over the control.

MouseEventArgs class

MouseWheel Occurs when the mouse wheel moves while the
control has focus. The read-only
MouseWheelPresent property in the
SystemInformation class indicates whether the
operating system believes a mouse wheel is
present.

MouseEventArgs class
388 CHAPTER 12 A .NET ASSORTMENT

This requires handling both the KeyDown and KeyUp events to track when the Ctrl
key is held down, and the MouseDown event to map a mouse click to the appropriate
menu. Once we have done this, we will discover some additional changes that will
improve our interface. First, let’s take a look at how to track the Ctrl key.

Set the version number of the MyPhotos application to 12.2.

.NET Table 12.3 MouseEventArgs class

The MouseEventArgs class is the event argument class associated with the mouse events.
This class represents information about the mouse device and the mouse pointer position
when the event occurs. It is part of the System.Windows.Forms namespace, and inherits
from the System.EventArgs class.

Properties

Button Gets the MouseButtons enumeration value corresponding to
the mouse button pressed by the user.

Clicks Gets the number of times the mouse button was pressed and
released. Note that the DoubleClick event should normally be
used to process double-clicks of the mouse.

Delta Gets a signed integer representing the number of detents the
mouse wheel has rotated. A detent is a rotation of the mouse
wheel by one notch.

X Gets the x-coordinate of the current mouse pointer position.

Y Gets the y-coordinate of the current mouse pointer position.

TRACK WHEN THE CTRL KEY IS HELD DOWN

 Action Result

1 In the MainForm.cs window, create a
boolean field to identify when the Ctrl
key is held down.

 private bool ctrlKeyHeld = false;

2 Modify the OnKeyDown method to set
this field to true.

 protected override void OnKeyDown
 (KeyEventArgs e)
 {
 switch (e.KeyCode)
 {
 . . .
 case Keys.ControlKey:
 ctrlKeyHeld = true;
 break;
 . . .
 }
 . . .
 }
MOUSE EVENTS 389

Note that we use the ControlKey value from the Keys enumeration in our switch
statement. There is also a Control value for the Keys enumeration that is used for
the Modifiers property of the KeyEventArgs class which will not work here.

With this in place, we can now use the MouseDown event to invoke the Next and
Previous menus when the Ctrl key is held. Continuing the previous steps:

This looks good, right? Well, not exactly. If you run the program, you’ll find that this
code mostly works as long as you do nothing else while the Ctrl key is pressed. When
you press the right mouse button, the next photo is displayed but the context menu
also pops up. In addition, if you use a keyboard accelerator such as Ctrl+O, or you

3 Override the OnKeyUp method to set
this field to false.

 protected override void OnKeyUp
 (KeyEventArgs e)
 {
 switch (e.KeyCode)
 {
 case Keys.ControlKey:
 ctrlKeyHeld = false;
 break;

 default: // do nothing
 break;
 }

 base.OnKeyUp(e);
 }

TRACK WHEN THE CTRL KEY IS HELD DOWN (continued)

 Action Result

MODIFY THE MOUSE BEHAVIOR WHEN THE CTRL KEY IS HELD

 Action Result

4 In the MainForm.cs
[Design] window, add a
MouseDown event handler
for the Panel control.

 private void pnlPhoto_MouseDown
 (object sender, System.Windows.
 Forms.MouseEventArgs e)
 {

5 If the Ctrl key is currently
held down, see which
button was pressed.

 if (ctrlKeyHeld)
 {
 switch (e.Button)
 {

6 For the left mouse button,
invoke the Previous menu.

 case MouseButtons.Left:
 menuPrevious.PerformClick();
 break;

7 For the right mouse button,
invoke the Next menu.

 case MouseButtons.Right:
 menuNext.PerformClick();
 break;

8 Do nothing if any other
button is pressed.

 default: // do nothing
 break;
 }
 }
 }
390 CHAPTER 12 A .NET ASSORTMENT

happen to open a menu while holding the Ctrl key, you may see some unexpected
behavior. There are really four issues that should be addressed here:

1 There is no feedback. The user cannot tell that an alternate behavior will occur
when the Ctrl key is pressed. Aside from reading the nonexistent documenta-
tion, the user must somehow figure out that this feature is available.

2 The context menu is displayed while the Ctrl key is pressed.

3 If the Ctrl key is released outside of the form, the ctrlKeyHeld field is not reset.

4 If the Ctrl key is released while displaying the menu, again the ctrlKeyHeld
field is not reset.

For the first problem, we can fix this by using an alternate cursor when the Ctrl key is
held. The second problem can be addressed by turning off the context menu when
Ctrl is pressed. The other problems require that we handle the event that occurs in
these situations. The following steps make these changes to finish our example.

MARK CTRL KEY RELEASED WHEN APPROPRIATE

 Action Result

9 Modify the OnKeyDown method so
that when the Ctrl key is pressed:

a. An alternate cursor is used.
b. The context menu is disabled.

 protected override void OnKeyDown
 (KeyEventArgs e)
 {
 . . .
 case Keys.ControlKey:
 ctrlKeyHeld = true;
 pnlPhoto.Cursor = Cursors.SizeWE;
 this.ContextMenu = null;
 break;
 . . .

10 Create a ReleaseCtrlKey method
to encapsulate the logic now
required when the Ctrl key is
released.

 private void ReleaseControlKey()
 {
 ctrlKeyHeld = false;
 pnlPhoto.Cursor = Cursors.Default;
 this.ContextMenu = ctxtMenuView;
 }

11 Use this new method in override of
the OnKeyUp method.

 protected override void OnKeyUp
 (KeyEventArgs e)
 {
 switch (e.KeyCode)
 {
 case Keys.ControlKey:
 ReleaseControlKey();
 break;
 . . .
 }

12 Override the OnDeactivate
method to release the Ctrl key
when the Form is deactivated.

 protected override void OnDeactivate
 (EventArgs e)
 {
 if (ctrlKeyHeld)
 ReleaseControlKey();

 base.OnDeactivate(e);
 }
MOUSE EVENTS 391

Note how the form’s ContextMenu property is set to null and then back to ctxt-
MenuView to disable and then enable the context menu. The cursor to display for the
Panel is modified using the Cursor property inherited from the Control class.

The Cursors class provides access to various mouse pointer cursors available in
the operating system. The actual cursor for many of the properties in this class can be
reconfigured by the user, so the actual images associated with a specific setting may
change. While we could list the available properties in the Cursors class, it would not
be very helpful without the graphics to go with it. Instead, figure 12.1 shows a sam-
pling of the default graphics in Windows 2000 as seen in the Properties window of
Visual Studio .NET. Check out this window in your
version of Visual Studio to see the cursors in use on
your system.

Run the program to make sure it works as
expected. There are now way too many ways to invoke
the Next and Previous menus. We have the menus
themselves, the access keys with the Alt+V and Alt+N/
P, the keyboard shortcuts Ctrl+Shift+N and
Ctrl+Shift+P, the keyboard characters plus ‘+’ and
minus ‘–’, the Page Down and Page Up keys, and
finally the mouse buttons while holding down the Ctrl
key. While this may be a bit overboard for many appli-
cations, it provides a good sampling of the various
types of interfaces you might consider using in your
applications. Consider your choices wisely, and docu-
ment them well, and you may even put a smile on your
customer’s face.

This brings us to the end of our keyboard and
mouse events discussion. Our next topic will be image
buttons.

13 Override the OnMenuStart
method to release the Ctrl key
when a menu is selected.

 protected override void OnMenuStart
 (EventArgs e)
 {
 if (ctrlKeyHeld)
 ReleaseControlKey();

 base.OnMenuStart(e);
 }

MARK CTRL KEY RELEASED WHEN APPROPRIATE (continued)

 Action Result

Figure 12.1 The cursor graphic

can be modified through the

Mouse Properties window avail

able from the Control Panel.
392 CHAPTER 12 A .NET ASSORTMENT

12.3 IMAGE BUTTONS

So far the buttons in this book have contained text strings only. In fact, both button and
label controls support the display of an image instead of or in addition to text. In this
section we will look at images on buttons. Supporting images on labels is quite similar.

For button controls, imaging support is defined by the ButtonBase class, so this
discussion applies equally well to the Button, RadioButton, and CheckBox objects.
A summary of this class was provided in .NET Table 9.4 on page 292. For our pur-
poses, we will focus on the Image property for assigning an image to a button, and the
ImageAlign property to specify how the image is aligned within the button. An index
into a list of images can also be specified using the ImageIndex and ImageList prop-
erties. We will cover image lists when we discuss toolbars in chapter 13.

As our example, we will add the ability to move to the next or previous photo-
graph in our PhotoEditDlg form. Currently, when a user wants to edit the proper-
ties of two different images, he or she must display and edit the dialogs separately from
the main form, so this change provides a nice shortcut for this type task. Figure 12.2
shows the dialog with our new changes. As you can see, two small image buttons have
been added to the top of the form.

This change will require more modifications than you might imagine. Our current
dialog code does not make any allowances for more than a single photo. To take a
somewhat incremental approach to this change, we will first add these buttons with
only text displayed, and later replace the text with an image.

12.3.1 IMPLEMENTING NEXT AND PREV BUTTONS

We have been placing buttons on forms since chapter 1, so this section will run
through the steps required to add and manage our new buttons. A number of steps
are required here to convert our dialog from using the positional methods in the Pho-
toAlbum class to an index-based scheme that can support our new buttons.

Figure 12.2

Buttons can display text only, an image

only, or both an image and text. The Prev

and Next buttons in this figure display

both types of data.
IMAGE BUTTONS 393

To begin, let’s add the new buttons to our window. In order to fit additional con-
trols in our PhotoEditDlg form, we need to do some redecorating. As you’ll recall,
this form inherits its size from the BaseEditDlg form, so we are not able to resize
the form itself. Our first task, then, is to squeeze the existing controls together a bit
and insert our new buttons at the top of the form.

Set the version number of the MyPhotoAlbum library to 12.3.

Each of these buttons will require a Click handler, and this is where it gets a bit
tricky. You might be tempted to implement these handlers as follows:
 private void btnNext_Click(object sender, System.EventArgs e)
 {
 // Increment the current position (not our approach)
 _album.CurrentNext();
 }

ADD THE NEXT AND PREV BUTTONS

 Action Result

1 In the PhotoEditDlg.cs [Design] window, adjust
the existing controls so there is room for the
new buttons at the top of the form.

Note: The instructions here simply
reflect how I made this change, using
the default grid size of 8. Your form
may vary a little, so do whatever
appears to work best.

2 Add a Next button to the top of the form.

3 Add a Prev button to the left of the Next
button.

4 Adjust the tab order for the form’s controls to
have a reasonable sequence.

Note: The order does not affect our
discussion, so use whatever sequence
makes the most sense to you.

How-to

a. Resize the Notes text box to be one grid
size smaller in height.

b. Move the Notes label down as well.
c. Resize the base of the Panel to be closer

to the bottom control.
d. Move the Panel down two grid sizes.

Settings

Property Value

(Name) btnNext

Size 60, 20

Text N&ext

Settings

Property Value

(Name) btnPrev

Size 60,20

Text Pre&v
394 CHAPTER 12 A .NET ASSORTMENT

 private void btnPrev_Click(object sender, System.EventArgs e)
 {
 // Decrement the current position (not our approach)
 _album.CurrentPrev();
 }

Unfortunately, life is not so simple. There are two major problems with this approach.
The first is that the parent form, in this case the main form of our MyPhotos applica-
tion, may rely on the existing value of the current album position. This code might
adversely affect some activity in the application, or even cause a fatal error.

The second problem is that any changes made to the existing photograph are dis-
carded whenever the user views a new photograph. Clicking the Next button should
not throw out the changes already made.

As a result, we need to take a different approach. To resolve the first problem, that
of adversely affecting the parent form, we will use a direct index into the album rather
than modifying the current album position. We will address the second problem, that
of not discarding user changes, in a moment.

These changes will allow us to modify the index value in our event handlers, and the
current album position will not be affected. The second problem, that of saving any
changes made, requires that we save the existing photograph before moving on to the
next or previous one. Of course, we do not want to do this unless the user has actually

ACCESS THE ALBUM USING AN INDEX VALUE

 Action Result

5 Create an _index member in the
PhotoEditDlg class.

 private int _index;

6 Initialize this field in the constructor.

Note: This field must be initialized before
the call to the ResetSettings method.

 public PhotoEditDlg(PhotoAlbum album)
 {
 . . .
 // Initialize the dialog settings
 _album = album;
 _index = album.CurrentPosition;
 ResetSettings();
 }

7 Update the remainder of the file to access
the current photograph using this new
field rather than the CurrentPhoto
method.

Note: This requires updating the Reset-
Settings, SaveSettings, and
cmbxPhotographer_Validated
methods.

For example, in the ResetSettings method:

 protected override void ResetSettings()
 {
 . . .

 Photograph photo = _album[_index];

 . . .

8 Also in the ResetSettings method,
enable or disable the Next and Prev
buttons based on the current index.

 btnPrev.Enabled = !(_index == 0);
 btnNext.Enabled
 = !(_index == _album.Count - 1);
 }
IMAGE BUTTONS 395

made some changes. As a result, we will track the original values for the photograph,
and later compare these against the new values when moving to a new photograph.

The following steps continue our changes and build the infrastructure needed to
do this. Following this table, we will make use of this infrastructure to save any changes
made by the user.

You may have noticed that the Notes text box value is suspiciously missing here.
While comparing a string object to the Text property works fine for a single-line
TextBox control, it is not the preferred method for multiline text boxes. Instead, the
Lines property should be compared line by line with the original settings. This is a
little more work than we want to do, so we will simply mark this text box modified
whenever the user modifies the text.

Recording whether the Notes text has changed will allow us to conditionally save
a photograph’s new settings, which we will do as part of the following steps:

TRACK WHEN PHOTOGRAPH SETTINGS ARE MODIFIED

 Action Result

9 Create variables to hold the original
caption, date taken, and
photographer values.

Note: The file name cannot be
changed, and the Notes value will
require a different approach.

 private string _origCaption;
 private DateTime _origDateTaken;
 private string _origPhotographer;

10 Create a SetOriginals method to
initialize these variables.

 protected void SetOriginals()
 {
 Photograph photo = _album[_index];

 if (photo != null)
 {
 _origCaption = photo.Caption;
 _origDateTaken = photo.DateTaken;
 _origPhotographer = photo.Photographer;
 }
 }

11 Ensure these values are initialized
in the constructor.

 public PhotoEditDlg(PhotoAlbum album)
 {
 . . .
 // Initialize the dialog settings
 _album = album;
 _index = album.CurrentPosition;
 ResetSettings();
 SetOriginals();
 }
396 CHAPTER 12 A .NET ASSORTMENT

SAVE A PHOTO’S SETTINGS ONLY WHEN NECESSARY

 Action Result

12 Create a variable to hold
whether the notes value has
changed.

 private bool _modifiedTxtNotes;

13 Modify the SetOriginals
method to reset this variable.

 protected void SetOriginals()
 {
 . . .
 if (photo != null)
 {
 . . .
 _modifiedTxtNotes = false;
 }
 }

14 Add a TextChanged event
handler for the Notes text box
to update this variable
whenever the user changes
the text.

 private void txtNotes_TextChanged
 (object sender, System.EventArgs e)
 {
 if (txtNotes.Focused)
 _modifiedTxtNotes = true;
 }

15 Create a NewControlValues
method to determine if any of
photograph’s controls have
been modified.

 protected bool NewControlValues()
 {
 bool result =
 ((_origCaption != txtCaption.Text)
 || (_origDateTaken != dtpDateTaken.Value)
 || (_origPhotographer !=
 cmbxPhotographer.Text)
 || (_modifiedTxtNotes));

 return result;
 }

16 Add a variable to track whether
any changes have been saved.

 private bool _hasChanged = false;

17 Modify the SaveSettings
method to save the changes
made to the photograph.

Note: The _hasChanged field
is required to track whether
any photograph has been
modified, as opposed to the
current photo displayed.

 protected override bool SaveSettings()
 {
 if (NewControlValues())
 {
 // Save the photograph’s settings
 Photograph photo = _album[_index];

 if (photo != null)
 {
 photo.Caption = txtCaption.Text;
 photo.DateTaken = dtpDateTaken.Value;
 photo.Photographer
 = cmbxPhotographer.Text;
 photo.Notes = txtNotes.Text;
 _hasChanged = true;
 }
 }
 return true;
 }

18 Add a HasChanged property so
a caller can determine if any
photographs were saved.

 public bool HasChanged
 {
 get { return _hasChanged; }
 }
IMAGE BUTTONS 397

With these changes in place, we can finally add the click handlers for our buttons.

As we said at the start of all this, these buttons required more changes than you might
initially expect. As a final change, we need to modify the Click handler for our
Photo Properties menu to account for the new changes.

Set the version number of the MyPhotos application to 12.3.

HANDLE THE CLICK EVENT FOR THE NEXT AND PREV BUTTONS

 Action Result

19 Add a Click handler for the
Next button.

 private void btnNext_Click
 (object sender, System.EventArgs e)
 {
 SaveSettings();

 if (_index < _album.Count - 1)
 {
 _index ++;
 ResetSettings();
 SetOriginals();
 }
 }

20 Add a Click handler for the
Prev button.

 private void btnPrev_Click
 (object sender, System.EventArgs e)
 {
 SaveSettings();

 if (_index > 0)
 {
 _index --;
 ResetSettings();
 SetOriginals();
 }
 }

UPDATE THE CLICK HANDLER TO DISPLAY THE DIALOG

 Action Result

21 Update the Click handler for
the menuPhotoProp control
to use the HasChanged
property.

 private void menuPhotoProp_Click
 (object sender, System.EventArgs e)
 {
 if (_album.CurrentPhoto == null)
 return;

 using (PhotoEditDlg dlg
 = new PhotoEditDlg(_album))
 {
 if (dlg.ShowDialog() == DialogResult.OK)
 {
 _bAlbumChanged = dlg.HasChanged;
 if (_bAlbumChanged)
 {
 // Redraw to pick up any changes
 this.Invalidate();
 }
 }
 }
 }
398 CHAPTER 12 A .NET ASSORTMENT

Our buttons are now ready to go. Compile and run your code to make sure the buttons
work as expected. Our next topic is the creation of bitmap objects for these buttons.

12.3.2 DRAWING BITMAPS FOR OUR BUTTONS

The creation of graphics for a new product is typically left to the graphic designers
and marketing folks. Still, you never know when you may feel the urge to draw a bit-
map or icon yourself, so let’s look at how to create them from scratch. Fortunately,
Microsoft provides a fairly extensive collection of bitmaps, cursors, and icons that can
be used within our application. We’ll talk about where to find these in a moment.

A bitmap is created much like any other item in a project. We will begin by cre-
ating a bitmap object for our Next button. Later in this section we’ll create another
bitmap for our Prev button.

CREATE THE NEXT BUTTON BITMAP

 Action Result

1 In the Solution Explorer
window, add a bitmap file
“NextButton.bmp” to the
MyPhotoAlbum project.

Alternately

The Add New Item dialog
can be displayed using the
keyboard shortcut
Ctrl+Shift+A.

2 Click the Open button to
create the new file.

The new file appears in Solution Explorer.

The Bitmap Editor appears in the main window and displays
the new bitmap with the default size, which is normally 48×48
pixels.

Note: The new file and Bitmap Editor are shown in
figure 12.3.

How-to

a. Right-click the MyPhoto-
Album project name.

b. Open the Add submenu.
c. Select Add New Item to

display the Add New
Item dialog box.

d. Click Resources from
the list of Categories

e. Click Bitmap File from
the available Templates.

f. Enter “NextButton.bmp”
as the name.
IMAGE BUTTONS 399

This completes our Next button. Figure 12.3 shows Visual Studio .NET with this
button displayed. If you are feeling creative, the editor supports a wide range of draw-
ing controls, in many ways similar to the Microsoft Paint application installed with
the Windows operating systems. In the figure, the drawing controls are available in
the bottom row of toolbar buttons, and the Colors window is shown on the left side
of the window. If not shown, the Colors window is displayed by right-clicking within
the Bitmap Editor window and selecting the Show Colors Window item.

A bitmap for the Prev button can be created in a similar manner as described in
the previous table. An alternate method of creating this file is used in the following steps:

3 Modify the bitmap to have
size 18 ×18 pixels.

Note: The Colors property here is used to select between
Monochrome, 16 Color, 256 Color, and True Color images.
For our purposes, the default of 16 Color is fine.

4 Edit the pixels for the
bitmap to create a right-
direction arrow.

How-to

Copy the graphic shown
here, or create your own
version of this arrow.

CREATE THE NEXT BUTTON BITMAP (continued)

 Action Result

How-to

a. Right-click within the Bit-
map Editor window.

b. Select the Properties item
c. Set the Height and Width

items to 18.

CREATE THE PREV BUTTON BITMAP

 Action Result

5 Make a copy of the NextButton.bmp file. A new bitmap file called “Copy of
NextButton.bmp” is added to the project.

6 Rename this file to “PrevButton.bmp.”

How-to

a. Right-click on the file and select Copy.
b. Right-click on the MyPhotoAlbum project

name and select Paste.
400 CHAPTER 12 A .NET ASSORTMENT

Our two bitmaps are now ready for use. The next step is to assign these bitmaps to
the buttons on our form.

7 Flip the existing bitmap horizontally to create a
left-pointing arrow.

CREATE THE PREV BUTTON BITMAP (continued)

 Action Result

How-to

a. Double-click on the PrevButton.bmp file
name to display the Bitmap Editor window.

b. Right-click within the window to display its
popup menu.

c. Select the Flip Horizontal item.

Figure 12.3 The Bitmap Editor window displays both an actual size and a per-pixel view of the bitmap.
IMAGE BUTTONS 401

12.3.3 PLACING IMAGES ON OUR BUTTONS

We have created the buttons in our PhotoEditDlg form, and created bitmaps for
these buttons within our project. The next step is to reconfigure our buttons to display
these images. A button can contain both an image and text string, or only an image, or
only text. For our example, we will include both the image and text on our buttons.

The steps required are as follows:

ADD THE BITMAP IMAGES TO THE BUTTONS

 Action Result

1 In the PhotoEditDlg.cs [Design]
window, modify the Next button to
display its text on the left side and
image on the right side of the button.

See the graphic in step 2.

2 Assign the NextButton.bmp bitmap to
the Image property of the btnNext
control.

3 Modify the Prev button to display its
text on the right side and image on the
left side of the button.

4 Assign the PrevButton.bmp bitmap to
the Image property of the btnPrev
control.

Settings

Property Value

ImageAlign MiddleRight

TextAlign MiddleLeft

How-to

a. If necessary, save any changes to
the NextButton.bmp file.

b. Click on the Image item in the Prop-
erties window.

c. Click the … button.
d. Locate and open the NextBut-

ton.bmp file.

Settings

Property Value

ImageAlign MiddleLeft

TextAlign MiddleRight
402 CHAPTER 12 A .NET ASSORTMENT

As you can see, the ImageAlign and TextAlign properties are used to set the loca-
tion of the image and text within the button area. These take their values from the
ContentAlignment enumeration, with all nine possible combinations of Top,
Middle, and Bottom with Left, Center, and Right represented. Both properties use
the MiddleCenter value by default.

Assigning the Image property is a simple matter of locating the desired file in the
file system. The source code generated in the InitializeComponent method by
this action is rather interesting. Here is an excerpt of the PhotoEditDlg.cs file.
 private void InitializeComponent()
 {
 System.Resources.ResourceManager resources
 = new System.Resources.ResourceManager(typeof(PhotoEditDlg));
 . . .
 this.btnNext = new System.Windows.Forms.Button();
 this.btnPrev = new System.Windows.Forms.Button();
 . . .
 //
 // btnNext
 //
 this.btnNext.Image = ((System.Drawing.Bitmap)
 (resources.GetObject("btnNext.Image")));
 this.btnNext.ImageAlign
 = System.Drawing.ContentAlignment.MiddleRight;
 . . .
 this.btnNext.Text = "Nex&t";
 this.btnNext.TextAlign = System.Drawing.ContentAlignment.MiddleLeft;
 this.btnNext.Click += new System.EventHandler(this.btnNext_Click);
 //
 // btnPrev
 //
 this.btnPrev.Image = ((System.Drawing.Bitmap)
 (resources.GetObject("btnPrev.Image"))); C
 this.btnPrev.ImageAlign = System.Drawing.ContentAlignment.MiddleLeft;
 . . .
 }

You will note that the names of our original files, NextButton.bmp and PrevBut-
ton.bmp, do not appear in this listing. Instead, these files are encapsulated in a cul-
ture-specific resource for our library. A culture-specific resource is a text string, image,
and other language or culture-specific object used in an application, library, dialog, or
other construct. The term resource is often used as an abbreviation for such objects. A
few comments on the previous code are in order:

b Visual Studio creates a resource file specifically for the MyPhotoAlbum project. This
file is called PhotoEditDlg.resx and appears in the MyPhotoAlbum project directory.
When your program is compiled in Visual Studio, this file is compiled into a
.resources file based on the fully qualified name of the dialog. The resgen.exe com-
piler is used to generate resource files from the command line. In our application, the

Load the PhotoEditDlg
resources b

Load a specific
bitmap resource c
IMAGE BUTTONS 403

.resources file, called Manning.MyPhotoAlbum.PhotoEditDlg.resources, appears in
the obj directory under the MyPhotoAlbum project directory, and is included in the
final MyPhotoAlbum.dll assembly produced by the compiler. The ResourcesMan-
ager class is part of the System.Resources namespace, and loads the .resources
file for the given object type, in this case the Manning.MyPhotoAlbum.Photo-
EditDlg type, so that the specific resources in this file may be accessed.

c A specific resource, in these cases our bitmap files, is loaded from the .resources file
using the GetObject method. This returns the object corresponding to the given
name, which can safely be typecast to the more appropriate Bitmap class.

The important points to take away from this discussion are that .resx files are used to
encapsulate language-specific objects, and get compiled into .resources files for access
by a program. These concepts are the basis for localization support in .NET, permit-
ting the resources required to run a program in the United States to be encapsulated
and later converted to run the same program in France, New Zealand, or Botswana
with language and cultural requirements taken into account.

As long as we’re here, take a quick look at the PhotoEditDlg.resx file. Such files
use an XML format to encapsulate resource objects, permitting graphical programs
such as Visual Studio as well as text editors like Notepad to view and edit their con-
tents. An excerpt of this file, including the btnNext control’s image definition, is
shown as it appears on my computer. We won’t go into the details of XML or the .resx
file format here, but it is useful to see how the bitmap for the Next button, named
btnNext.Image, is specified. Be careful not to change these entries, as you may
adversely affect your program.

<?xml version="1.0" encoding="utf-8"?>
<root>
. . .
 <xsd:schema id="root" . . . >
 . . .
 </xsd:schema>
 . . .
 <data name="btnNext.Image" type="System.Drawing.Bitmap, System.Drawing, Version=1.0.3300.0,
 Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a"
 mimetype="application/x-microsoft.net.object.bytearray.base64">
 <value>
 Qk1OAQAAAAAAAHYAAAAoAAAAEgAAABIAAAABAAQAAAAAAAAAAADEDgAAxA4AABAAAAAQAAAAAAAA/wAA
 gP8AgAD/AICA/4AAAP+AAID/gIAA/8DAwP+AgID/AAD//wD/AP8A/////wAA//8A/////wD/////////
 /////////wASAP///////////wASAP///////////wASAP/////wD////wASAP/////wAP///wASAP//
 ////AA///wASAP//////8AD//wASAP///////wAP/wASAP8AAAAAAAAA/wASAP8AAAAAAAAA/wASAP//
 /////wAP/wASAP//////8AD//wASAP//////AA///wASAP/////wAP///wASAP/////wD////wASAP//
 /////////wASAP///////////wASAP///////////wASAA==
 </value>
 </data>
 . . .
</root>
404 CHAPTER 12 A .NET ASSORTMENT

This completes our rather long discussion of bitmap images. Personally, I am the kind
of programmer who keeps good graphic artists employed, so we will not do any more
hand-drawing of images or other graphics in this book. Fortunately for us, Microsoft
provides a fairly large collection of images that can be imported into your programs.
These are installed by default along with Visual Studio .NET, and they normally
appear in the directory “C:\Program Files\Microsoft Visual Studio .NET\Common7\
Graphics.” There are subdirectories for bitmaps, cursors, icons, metafiles, and even
some videos.1

For the purposes of our discussions, we will use the term common image directory
to refer to this directory rather than using the full directory name every time. In par-
ticular, we will use this directory for our next topic, which is icons.

12.4 ICONS

As long as we are talking about images, let’s take a quick look at icons as well. An icon
is an image used to represent an object in the operating system, typically an application
or other program. Icons are much like bitmaps, except they provide transparency,
meaning that a certain color in the icon will blend in with the background when it is
displayed. If the icon is displayed on a red background, the transparent areas appear red
as well. If the icon is displayed on a purple background, the transparent areas appear
purple. This behavior permits Windows icons to appear on the desktop and in file sys-
tem windows as if they do not have a border. In fact, all icons are rectangular in shape.

The System.Drawing namespace provides an Icon class to create and manip-
ulate icons in your programs. It’s a fine class, but we are not going to discuss it.
Instead, we are going to focus on how to assign icons to your project and to specific
forms. We will look at the Icon property of the Form class, and discuss how icons
can be created and assigned to this property.

Before we do, it is worth mentioning that icons can be included in a project just
like any other object. You can create new icons from the Add New Item dialog and
edit them in Visual Studio as we did for our bitmap files earlier in the chapter. Unlike
bitmaps, icons store multiple image types, or image sizes, in a single file. The most typ-
ical types are 16×16 and 32×32 pixels, so you should generally stick with these for-
mats. New icons in Visual Studio are created with these two types by default, using
16 available colors, and the Icon Editor permits types to be deleted and custom types
of various sizes and colors to be assigned.

1 Of course, if you customized your installation settings when installing Visual Studio .NET, or modi-
fied the installation directory, then these files may not exist on your machine or might be in an alternate
directory. You can reinstall Visual Studio .NET to add these graphics in order to follow the text, or use
alternate graphics in place of the ones we use in the remainder of the book.
ICONS 405

12.4.1 REPLACING THE ICON ON A FORM

So let’s talk icons. In the MyPhotos project, we will assign a new icon to our
main form. By default, Visual Studio uses the graphic at the left as the icon
on all forms.

This icon has been fine so far, but it would be nice to have a custom icon that repre-
sents a photo album in some manner. One such image is shown as the icon in
figure 12.4. Microsoft provides this icon in the common image directory discussed at
the end of the previous section.

The following steps assign this icon to our form.

Set the version number of the MyPhotos application to 12.4.

Figure 12.4

By default, an application displays the small

image associated with an icon in its title bar.

ASSIGN A NEW ICON TO THE MAIN FORM

 Action Result

1 In the Properties window for the
MainForm form, locate the Icon
entry in the list of properties.
406 CHAPTER 12 A .NET ASSORTMENT

The selected icon is shown in the designer window, and will now be used whenever
the application executes. The code generated here is very similar to the code we saw
for our bitmap images.
 private void InitializeComponent()
 {
 System.Resources.ResourceManager resources = new
 System.Resources.ResourceManager(typeof(MainForm));
 . . .
 this.Icon = ((System.Drawing.Icon)
 (resources.GetObject("$this.Icon")));
 . . .
 }

If you look in the MyPhotos project directory in the file system, you will see a Main-
Form.resx file in which the icon data is specified. As we discussed in section 12.3, this
is compiled into the MyPhotos.MainForm.resources file when the program is com-
piled, and the data from this file is included in the MainForm.exe executable assem-
bly for the program.

In a similar manner, we can assign an icon for the PixelDlg form in the project.

2 Assign the icon file “icons/
Writing/BOOKS02.ICO” from the
common image directory as the
icon for the form.

ASSIGN A NEW ICON TO THE MAIN FORM (continued)

 Action Result

How-to

a. Click the … button in the Icon
entry for the form’s properties.

b. In the resulting file dialog,
locate the common image
directory, namely the
Common7\Graphics directory
under the Visual Studio .NET
installation directory.

c. Open the indicated file.

ASSIGN A NEW ICON TO THE PIXEL DIALOG FORM

 Action Result

3 In the Properties window for the
PixelDlg form, set the Icon property
for this dialog to contain the icons/
Writing/PENCIL02.ICO icon from the
common image directory.
ICONS 407

Compile and run the application to verify that these icons now appear on their
respective forms. This method can be used to assign an existing icon to any form. Of
course, a custom icon can be created and assigned to a form as well. We discuss this in
the next section.

At times you may prefer that an icon not appear in a form. The ControlBox
property for the Form class removes the icon as well as the system menu and its short-
cuts from the title bar. As an alternate method, we saw in chapter 8 how setting the
form’s FormBorderStyle property to FixedDialog removes the icon without
affecting the presence of the system menu. Either technique may be used in your appli-
cations, depending on the desired behavior.

12.4.2 REPLACING THE APPLICATION ICON

You might think that the icon for the application is based on the icon assigned to the
main form, namely the form containing the Main entry point for the assembly. A fine
notion, but not true. In fact, the application icon is totally separate from the icons
assigned to any forms within the application. One reason for this is that applications
will not always contain a main form, and console applications and libraries may not
contain any forms at all.

By default, Visual Studio creates an application icon as part of all Windows
Forms projects. This is the App.ico file we first saw back in chapter 2. Double-clicking
on this file in the Solution Explorer window will display the Icon Editor window, and
permit the icon to be edited much like we edited bitmaps earlier in the chapter. Since
icons contain multiple image types, you need to edit each image type when you alter
the default or any other icon file. You can select the image type to display in the Icon
Window by selecting the Current Icon Image Types submenu from the Icon Editor
window’s popup menu.

For our purposes, we will simply select an icon from the set of images provided
by Microsoft in the common image directory. The current application icon, visible by
double-clicking the App.ico file or looking at the MyPhotos.exe file in the MyPhotos
project’s bin directory, looks a bit like this:

We would prefer to use the same icon we assigned to the MainForm window
as the application icon, so let’s see exactly how to do this.

ASSIGN A NEW APPLICATION ICON TO THE MYPHOTOS PROJECT

 Action Result

1 In the Solution Explorer
window, delete the Apps.ico
icon file from the MyPhotos
project.

The file is deleted permanently.
408 CHAPTER 12 A .NET ASSORTMENT

There is no visual indication of the change. Rebuild the application and check out the
bin directory. The MyPhotos.exe program file is now displayed with the assigned icon.

12.5 RECAP

This chapter jumped around the Windows Forms namespace to cover various topics
related to application development. We began by talking about keyboard and mouse
events, and made use of these events in our MyPhotos application. Keyboard event
handlers receive a KeyPressEventArgs parameter for KeyPress events, and a
KeyEventArgs parameter for KeyDown and KeyUp events. All mouse event han-
dlers receive a MouseEventArgs parameter.

We also discussed the creation of image buttons. We saw how to create custom
bitmaps using our precision drawing skills in Visual Studio, and placed these bitmaps
on a button in the PhotoEditDlg form in the MyPhotoAlbum project.

Our final topic was the use of icons for the control box of a Form window, and
the windows icon associated with an application. We discussed how to customize the
icon for a form as well as an application.

Along the way we discussed cursors, including the Cursors class supported by
Windows Forms. We briefly touched on resource files, and looked at some examples
of .resx files and how Visual Studio accesses items within these files using members of
the System.Resources namespace.

The final chapter in part 2 of the book will look at the ToolBar control and the
use of tool tips.

2 Display the Property Pages
dialog for the project.

3 Make sure the General
properties under the
Common Properties heading
is displayed.

4 Click the Application Icon
item in the list of properties.

5 Assign the file
“icons\Writing\BOOK02.ICO”
in the common images
directory as the icon for the
application.

The next time the application is built, the resulting
MyPhotos.exe file will display and employ the assigned icon.

ASSIGN A NEW APPLICATION ICON TO THE MYPHOTOS PROJECT (continued)

 Action Result

How-to

a. Right-click the MyPhotos
project.

b. Select the Properties item.
RECAP 409

C H A P T E R 1 3

Toolbars and tips

13.1 Toolbars 411
13.2 Image lists 416
13.3 Toolbar buttons 420
13.4 Tool tips 430
13.5 Recap 434
In this final chapter of part 2 of the book, we round out our discussion of basic Win-
dows Forms programming with the ToolBar and ToolTip classes. You may wonder
why these concepts were not presented earlier in our discussion, and they certainly
could have been. The reason is either poor planning or clever organization—you
decide which. These two concepts are not necessarily related, but they do make for a
catchy chapter title.

Toolbars in Windows Forms applications are created using the ToolBar and
ToolBarButton classes. We will look at these classes along with the ImageList
class in the first three sections of the chapter. Image lists are used by toolbars and other
controls to hold a set of images available for display within the control. The final sec-
tion in the chapter will examine tool tips and the ToolTip class.

Specific topics we will look at in this chapter include:
• Adding a toolbar to a window.
• Creating toolbar buttons: push buttons, separators, dropdown menus, and

toggle buttons.
• Associating menu commands with a toolbar button.
410

• Interacting with toolbar buttons.
• Creating and managing image lists.
• Providing tool tips for controls in a form.

We begin our discussion with toolbars.

13.1 TOOLBARS

Toolbars were added to windowing environments as an alternate shortcut method for
common tasks, especially menu bar items. While keyboard shortcuts are fine for more
experienced users, they do not have a graphical presence in the window. Toolbars pro-
vide a graphic for each shortcut button, so users should be able to quickly perform com-
mon tasks without the need to hunt through the menus or documentation all the time.

At least that was the theory. Personally, I prefer keyboard shortcuts, and find the
plethora of toolbars a distraction in many interfaces. While common tasks such as
opening and closing a file or selection of a bold or italic font style have developed
somewhat standard graphical buttons, I have trouble deciphering many of the tiny
graphics shown on many toolbars and pre-
fer to search for keyboard shortcuts
instead. When creating toolbars in your
programs, make sure their meaning is
clear, and do not use a toolbar as an excuse
to avoid keyboard shortcuts and access
keys. Some users prefer the keyboard over
the mouse, so it is a good idea to provide
keyboard as well as mouse access to pro-
gram functions.

But I digress. Let’s get back to tool-
bars in .NET. Whether you employ them
yourself or not, your users will likely
expect them. In this section we will look at
the ToolBar class in detail, create a blank
toolbar in our MyPhotos project, and also
introduce the ToolBarButton class.
Later sections will look at image lists and the creation of the various kinds of toolbar
buttons. By the end of section 13.3, our efforts will produce the interface shown in
figure 13.1.

13.1.1 THE TOOLBAR CLASS

As you might expect, there is a ToolBar class in the Windows Forms namespace,
and a corresponding .NET Table with some details about this class, namely .NET
Table 13.1. A ToolBar control is a bit like the StatusBar or TabControl objects,
in that they all serve primarily as containers for other graphical objects.

Figure 13.1 Our toolbar will use a raised-

button appearance for displaying its but-

tons. A flat appearance is also possible.
TOOLBARS 411

13.1.2 ADDING A TOOLBAR

A toolbar is typically docked to the top of a window, although it can also be docked
to the left, right, or bottom of a form. The following steps add a toolbar to the top of
our MainForm window.

.NET Table 13.1 ToolBar class

The ToolBar class represents a control that displays ToolBarButton objects on a form. Such
objects typically provide shortcuts to menu commands and other commonly used tasks. This
class is part of the System.Windows.Forms namespace, and inherits from the Control class.
See .NET Table 4.1 on page 104 for a list of members inherited from Control.

Public Properties

Appearance Gets or sets the display style of the toolbar.

AutoSize Gets or sets whether the toolbar adjusts its size
automatically based on the contained buttons
and the docking style.

Buttons Gets or sets the collection of ToolBarButton
objects contained by the control.

ButtonSize Gets or sets the size of the toolbar’s buttons. If
not set, the button size will default to 24 pixels
wide by 22 pixels high, or a size appropriate for
the largest button in the collection.

Divider Gets or sets whether to display a divider in the
toolbar. The default is true.

DropDownArrows Gets or sets whether dropdown menus in the
control display a down arrow next to the button.
The default is false.

ImageList Gets or sets the collection of Image objects
available to buttons in the control.

ImageSize Gets the size of the images in the ImageList
assigned to the control.

ShowToolTips Gets or sets whether tool tips for the buttons in
the control are displayed. The default is false.

TextAlign Gets or sets the alignment of toolbar button text
in relation to any image assigned to the button.

Wrappable Gets or sets whether multiple rows of buttons
should be displayed when necessary.

Public Events

ButtonClick Occurs when a button on the toolbar is clicked.

ButtonDropDown Occurs when a dropdown button on the toolbar
is clicked.
412 CHAPTER 13 TOOLBARS AND TIPS

Set the version number of the MyPhotos application to 13.1.

As you can see, the Dock property of a ToolBar is set to Top by default. Visual Stu-
dio also sets the DropDownArrows and ShowToolTips properties to true, even
though the default for both settings is false.

The code generated here is nothing unusual, so we will move on to the Tool-
BarButton class.

13.1.3 THE TOOLBARBUTTON CLASS

By themselves, toolbars do not present much information to the user. These objects
take on meaning and purpose once they have one or more toolbar buttons placed on
them. In this section we look at the ToolBarButton class in some detail. We will
hold off discussing exactly how to place our buttons on the toolbar until section 13.3,
after we have introduced the idea of an image list in section 13.2.

An overview of the ToolBarButton class appears in .NET Table 13.2. This
object is a component, so it does not inherit any properties from the Control class.
As a result, a number of control-like properties such as Enabled, Tag, and Visible
are defined explicitly by this class.

ADD A TOOLBAR TO THE MAINFORM WINDOW

 Action Result

1 In the MainForm.cs
[Design] window, drag a
ToolBar object onto the
form.

A toolbar is displayed on the form.

Note: You need to be careful here. If you drop the toolbar
on the Panel object, the ToolBar will happily place itself
inside the panel. By dropping it onto the title bar of the
form, you ensure that it is part of the Form itself.

2 Bring the Panel control to
the front of the z-order.

How-to

Select Bring to Front from
the panel’s popup menu.

The toolbar and a portion of our panel appear in the graphic for
step 3.

3 Set the properties for the
toolbar as follows.

Note: The TextAlign property takes its values from the
ToolBarTextAlign enumeration, with possible values
Underneath and Right. The default is Underneath.

How-to

a. Click the ToolBar item
in the Toolbox window.

b. Click the title bar of the
form to add the control.

Settings

Property Value

(Name) toolBarMain

TextAlign Right
TOOLBARS 413

Toolbar buttons can display a text string, an image, or both an image and text. They
appear in one of four styles, based on the Style property setting. The possible styles
are defined by the ToolBarButtonStyle enumeration. The values in this enumer-
ation appear in .NET Table 13.3. In our application, we will create at least one but-
ton in each style in order to see how these appear in our toolbar.

.NET Table 13.2 ToolBarButton class

The ToolBarButton class represents a button that appears within a toolbar control. These
buttons typically provide shortcuts to menu commands and other commonly used tasks for
the associated form. This class is part of the System.Windows.Forms namespace, and inher-
its from the System.ComponentModel.Component class.

Public Properties

DropDownMenu Gets or sets the Menu object to display as the
menu for a button with a dropdown style. While
this property is of type Menu, a ContextMenu
instance should normally be provided.

Enabled Gets or sets whether this button is active.

ImageIndex Gets or sets the index into the parent toolbar’s
ImageList property to display on this button.

Parent Gets the ToolBar object containing this toolbar
button.

PartialPush Gets or sets whether a button with a toggle style
is displayed as partially pushed.

Pushed Gets or sets whether a button with a toggle style
is displayed as pushed.

Rectangle Gets the bounding rectangle for the toolbar
button.

Style Gets or sets the display style for this button.

Tag Gets or sets an object instance to associate
with this toolbar button.

Text Gets or sets the text string to display on the
button.

ToolTipText Gets or sets the tool tip string to associate with
the button.

Visible Gets or sets whether the button is shown on the
toolbar.
414 CHAPTER 13 TOOLBARS AND TIPS

As for images on our buttons, we will use the common images provided by Microsoft
with Visual Studio .NET. These are installed by default into the directory “C:\Pro-
gram Files\Microsoft Visual Studio .NET\Common7\Graphics,” and we will con-
tinue to use the term common image directory introduced in chapter 12 to refer to this
directory. If you are not using Visual Studio, have not installed these files, or are feel-
ing especially creative, you can construct or find your own image files here instead of
the common ones employed in the examples.

We will create ten toolbar buttons altogether in order to demonstrate various
styles and behaviors. The following table summarizes the name, style, and purpose of
each button. It also shows the menu item associated with each button. In most cases,
clicking a toolbar button will be identical to selecting the associated menu item.

Each of these buttons, except the separators, of course, will require a different image.
The images placed on toolbar buttons are stored in an ImageList object associated

.NET Table 13.3 ToolBarButtonStyle enumeration

The ToolBarButtonStyle enumeration specifies the various styles available to toolbar but-
tons placed within a toolbar. The style for a specific ToolBarButton is defined by the Style
property for that button.

Enumeration

Values

DropDownButton A dropdown menu that displays a Menu object when
clicked. This menu may be owner-drawn, permitting
arbitrary windows to be displayed.

PushButton A standard push button. This is the default value for
the Style property in the ToolBarButton class.

Separator A space or line separating sets of buttons, depending
on the value of the Appearance property for the
associated toolbar.

ToggleButton A standard toggle button.

Toolbar buttons for our application

Name Button Style Purpose Menu Item

tbbNew PushButton Open a new album. menuNew

tbbOpen PushButton Open an existing album. menuOpen

tbbSave PushButton Save the current album. menuSave

default Separator

tbbNext PushButton Display the next photo. menuNext

tbbPrevious PushButton Display the previous photo. menuPrev

default Separator

tbbImage DropDownButton Select the image display mode. menuImages

default Separator

tbbPixelData ToggleButton Show/Hide the Pixel Data dialog. menuPixelData
TOOLBARS 415

with the parent toolbar. Image lists are used by a number of Windows Forms controls
to manage the images displayed or available within the control. As a result, we will
hold off on creating our toolbar buttons until section 13.3 in order to take a look at
this rather important construct.

13.2 IMAGE LISTS

There are a number of controls that require one or more images in order to display
their contents. Often, the requirement is for a set of images, rather than a single image.
For example, the set of toolbar buttons in a ToolBar object, or the images required
for a set of Button controls on a form. The Windows Forms namespace provides the
ImageList class for managing such collections of images. As we shall see in chapters
14 and 15, this class is also utilized by the ListView and TreeView controls.

This section examines the ImageList class in some detail, and creates a set of
images for use in the toolbar we created in the previous section.

13.2.1 THE IMAGELIST CLASS

The ImageList class, summarized in .NET Table 13.4, provides a convenient way to
store and access images required by various objects. An ImageList component

.NET Table 13.4 ImageList class

The ImageList class represents a collection of Image objects. Typically, this class is used to
support one or more Windows Forms controls in the management and display of images
within the control. Classes that use image lists include the Button, ToolBar, ListView, and
TreeView classes. This class is part of the System.Windows.Forms namespace, and inherits
from the System.ComponentModel.Component class.

Public Properties

ColorDepth Gets or sets the color depth for images in the list.

Handle Gets the Win32 handle for the image list.

HandleCreated Gets whether the underlying Win32 handle has been
created.

Images Gets the collection of images for this image list. Use
this collection to add, remove, and otherwise
manage the list’s images programmatically.

ImageSize Gets or sets the size for images in the list.

ImageStream Gets or sets the ImageListStreamer object to
associate with this list. This object manages the data
associated with the list.

TransparentColor Gets or sets the color to treat as transparent in the
list’s images.

Public Methods
Draw Draws an indicated image in a specified Graphics

object.

Public Events
RecreateHandle Occurs when the underlying Win32 handle is

recreated for the list.
416 CHAPTER 13 TOOLBARS AND TIPS

works much like an array of Image objects, and can be thought of as such. Classes
that use this construct specify an index into the list, designating which image they
wish to display. Typically, a class that uses such a list provides an ImageList prop-
erty to specify a list to use, and classes that display an image out of such lists provide
an ImageIndex property to indicate which image to display.

In Visual Studio .NET, an ImageList can be associated with a Form graphically
and assigned to one or more controls within that form using the Windows Forms
Designer and the Properties windows. Visual Studio creates the list within the set of
components for the Form, so that it is disposed when the application disposes of the
Form via the Close or Dispose methods. We will look at the code generated for this
purpose in a moment.

13.2.2 CREATING AN IMAGE LIST

For the ToolBar object we created in our MainForm class, we need an ImageList
containing the set of images required for our ToolBarButton objects. We will use
some of the bitmaps and icons in the common image directory provided with Visual
Studio. If you skipped chapter 12, or were simply not paying attention, this directory
is typically “C:\Program Files\Microsoft Visual Studio .NET\Common7\Graphics.”

The following steps create an ImageList and associate the required image files
with it.

Set the version number of the MyPhotos application to 13.2.

CREATE AN IMAGE LIST FOR OUR TOOLBAR

 Action Result

1 Associate an ImageList
component with the MainForm
form in the MainForm.cs
[Design] window.

Note: Windows Forms compo-
nents such as the ImageList
class are available from the
Toolbox window, just like Win-
dows Forms controls.

The new image list is shown in the component tray area
below the form.

2 Set the (Name) property for the
image list to imageListToolBar.

3 Display the Image Collection
Editor window.

How-to

Click the … button next to the
Images item in the Properties
window.

A blank Image Collection Editor dialog box appears. This
dialog with all eight images added is shown in step 5.
IMAGE LISTS 417

This creates a collection of all the images we will need for our toolbar. An excerpt of
the code generated by these changes is as follows.
. . .
namespace MyPhotos
{
 . . .
 public class MainForm : System.Windows.Forms.Form
 {
 . . .
 private System.ComponentModel.IContainer components = null;
 . . .
 private System.Windows.Forms.ImageList imageListToolBar;
 . . .
 protected override void Dispose(bool disposing)
 {
 if(disposing)
 {

4 Add an image for creating a new
album to the collection.

The image appears as member 0 within the Image
Collection Editor dialog.

5 Similarly, add the following
images files to the collection.

6 Click the OK button to save the
changes.

The assigned images are stored in the image list.

CREATE AN IMAGE LIST FOR OUR TOOLBAR (continued)

 Action Result

How-to

a. Click the Add button.
b. In the file dialog, locate the

NEW.BMP file under the
common image directory in
the “bitmaps/OffCtlBr/Small/
Color” directory.

c. Click the Open button to add
the image.

• bitmaps/OffCtlBr/Small/Color/
OPEN.BMP

• bitmaps/OffCtlBr/Small/Color/
SAVE.BMP

• icons/arrows/ARW08LT.ICO
• icons/arrows/ARW08RT.ICO
• icons/Writing/BOOK02.ICO
• icons/Traffic/TRFFC10C.ICO
• icons/Traffic/TRFFC10A.ICO
418 CHAPTER 13 TOOLBARS AND TIPS

 if (components != null)
 {
 components.Dispose();
 }
 }
 base.Dispose(disposing);
 }
 . . .
 private void InitializeComponent()
 {
 . . .
 this.imageListToolBar
 = new System.Windows.Forms.ImageList(this.components);
 . . .
 //
 // imageListToolBar
 //
 this.imageListToolBar.ColorDepth
 = System.Windows.Forms.ColorDepth.Depth8Bit;
 this.imageListToolBar.ImageSize = new System.Drawing.Size(16, 16);
 this.imageListToolBar.ImageStream
 = ((System.Windows.Forms.ImageListStreamer)
 (resources.GetObject("imageListToolBar.ImageStream")));
 this.imageListToolBar.TransparentColor
 = System.Drawing.Color.Transparent;
 . . .
 }

The annotated lines merit some additional discussion.

b This line disposes of the components container, which in turn disposes of any com-
ponents contained within this object. The controls on the form are contained within
the Form object itself. As a result, the resources allocated to the controls in the form
are disposed by the Form.Dispose method itself. This works for components such
as the MainMenu and StatusBarPanel objects as well, since the menu is assigned
to the form, and status bar panels are contained within status bar controls.

c This line initializes an ImageList object and assigns it to the components con-
tainer. This is required to ensure that the list is properly disposed of by the Form
object’s Dispose method. If you create your own ImageList objects manually, be
sure to dispose of the object when you are finished in order to free any Windows or
file system resources assigned to the list.

d Like the bitmap files we created in the previous chapter, a ResourcesManager
object is used to retrieve the stream of image data from a .resources file. This data is
retrieved as an ImageListStream object. This object is assigned to the Imag-
eStream property and used internally by the ImageList class to manage and access
the images in the collection.

b Dispose of the
components object

Create the image
list within the

components container

c

Load the
image stream

for the list

d

IMAGE LISTS 419

On this last point for our code, note that the MyPhotos project directory in the file
system contains a MainForm.resx file that defines the binary form of the image
stream for our list. This is very similar to how our bitmap images were defined for our
Button objects in the previous chapter. An excerpt of this file follows. In addition to
the definition of the image stream, note how the positioning of objects displayed in
the component tray area of Visual Studio, such as the location of our imageList-
ToolBar object, are also stored in this file

 <?xml version="1.0" encoding="utf-8"?>
 <root>
 . . .
 <data name="imageListToolBar.Location" type="System.Drawing.Point,
 System.Drawing,
 Version=1.0.3300.0, Culture=neutral,
 PublicKeyToken=b03f5f7f11d50a3a">
 <value>255, 17</value>
 </data>
 <data name="imageListToolBar.ImageStream"
 mimetype="application/x-microsoft.net.object.binary.base64">
 <value>

 AAEAAAD/////AQAAAAAAAAAMAgAAAFpTeXN0ZW0uV2luZG93cy5Gb3JtcywgVmVyc2lvbj0xLjAuMzMw

 MC4wLCBDdWx0dXJlPW5ldXRyYWwsIFB1YmxpY0tleVRva2VuPWI3N2E1YzU2MTkzNGUwODkFAQAAACZT

 eXN0ZW0uV2luZG93cy5Gb3Jtcy5JbWFnZUxpc3RTdHJlYW1lcgEAAAAERGF0YQcCAgAAAAkDAAAADwMA
 . . .
 </value>
 . . .
 </root>

This completes our discussion on image lists for now. Let’s get back to the ToolBar
for our application and create the ToolBarButton components using the images we
just assigned to our list.

13.3 TOOLBAR BUTTONS

Now that we have some understanding of image lists, we can return to the topic of
toolbar buttons. This section adds the ten buttons, both images and separators, we
decided to place on our toolbar. The discussion is divided into two parts. First we will
look at the most basic of styles, the push button. Then we’ll tackle the dropdown and
toggle styles of ToolBarButton objects.

13.3.1 ADDING A PUSH BUTTON

We have a toolbar and we have an image list, so let’s get to it. We will start with the
push buttons related to the File menu, and later hook up these buttons to their corre-
sponding menu item, after which we will create the buttons associated with the Next
and Previous menu items.
420 CHAPTER 13 TOOLBARS AND TIPS

Set the version number of the MyPhotos application to 13.3.

Our ToolBar now contains three toolbar buttons. Visual Studio displays the images
associated with each button in the designer window. If text is assigned to a button,

ADD THE TOOLBAR BUTTONS FOR THE FILE MENU

 Action Result

1 In the MainForm.cs [Design]
window, modify the properties
for the toolBarMain control.

The images in our image list are now available to any
buttons placed on the toolbar.

2 Display the ToolBarButton
Collection Editor window.

How-to

In the toolbar’s Properties
window, click the … button
associated with the Buttons
item.

Note: You can modify the properties for these
objects in the collection editor or in the Properties
window. The collection editor is shown here. To use
the Properties window, create the buttons, click OK
to close the window, and then simply select the
desired toolbar button from the list at the top of the
Properties window.

3 Click the Add button three times
to create three new
ToolBarButton objects.

4 Click OK to close the editor. The new buttons appear on the form.

Settings

Property Value

ButtonSize 16, 16

ImageList imageListToolBar

Settings

Button Property Value

0 (New) (Name) tbbNew

ImageIndex 0

ToolTipText Create
album

1 (Open) (Name) tbbOpen

ImageIndex 1

ToolTipText Open
album

2 (Save) (Name) tbbSave

ImageIndex 2

ToolTipText Save
album
TOOLBAR BUTTONS 421

Visual Studio will display this as well, assuming the button provides room for the text
to appear.

The next step is to link these to operations within our form. The ButtonClick
event in the ToolBar class is used for this purpose. Event handlers for this event
receive a ToolBarButtonClickEventArgs parameter that contains a Button
property. This property retrieves the ToolBarButton instance clicked by the user.

One means for handling our button clicks uses a series of if statements. The code
would look something like the following:
 private void toolBarMain_ButtonClick(object sender,
 System.Windows.Forms.ToolBarButtonClickEventArgs e)
 {
 // Determine which button was clicked – not our approach
 if (e.Button == tbbNew)
 {
 menuNew.PerformClick();
 }
 else if (e.Button == tbbOpen)
 {
 menuOpen.PerformClick();
 }
 else if (e.Button == tbbSave)
 {
 menuSave.PerformClick();
 }
 }

This can get a bit unwieldy as the number of buttons increase. A more elegant
approach takes advantage of the Tag property for ToolBarButton instances. This
property holds an object instance, and in particular can hold a MenuItem object to
associate with the button. Since we would like our buttons to perform the same
action as the corresponding menu item, we will associate the proper menu item with
each of our buttons. Continuing our prior steps:

SET THE TAG PROPERTY FOR THE TOOLBAR BUTTONS

 Action Result

5 Create a new InitToolBarButtons
method in the MainForm.cs code window.

 private void InitToolBarButtons()
 {

6 Set the Tag property for each toolbar
button to the corresponding MenuItem
object.

 tbbNew.Tag = menuNew;
 tbbOpen.Tag = menuOpen;
 tbbSave.Tag = menuSave;
 }

7 Add a call to this new method from the
MainForm instance constructor.

 public MainForm()
 {
 . . .
 InitToolBarButtons();
 }
422 CHAPTER 13 TOOLBARS AND TIPS

Our implementation of the ButtonClick handler for our toolbar can now take
advantage of these settings to simply invoke the Click event handler associated with
the corresponding menu item.

Note how the as keyword is used to ensure that the Tag property does, in fact, refer
to a MenuItem object. If a new button is added without an associated menu, then
this code is safely ignored.

We can also use this method for the Next and Previous toolbar buttons. The follow-
ing steps also define a separator button to differentiate between these two sets of buttons.

HANDLE THE BUTTONCLICK EVENT FOR THE TOOLBAR

 Action Result

8 Add a ButtonClick event handler for
the ToolBar control.

How-to

This is the default event for toolbars, so
simply double-click the toolbar control
in the MainForm.cs [Design] window.

 private void toolBarMain_ButtonClick
 (object sender, System.Windows.Forms.
 ToolBarButtonClickEventArgs e)
 {

9 Implement this handler using the Tag
property of the ToolBarButton
component.

 // Handle menu buttons
 MenuItem mi = e.Button.Tag as MenuItem;
 if (mi != null)
 mi.PerformClick();
 }

ADD THE NEXT AND PREVIOUS TOOLBAR BUTTONS

 Action Result

10 In the ToolBarButton Collection Editor,
add three new toolbar buttons.

11 Update the InitToolBarButtons
method for these new buttons.

 private void InitToolBarButtons()
 {
 tbbNew.Tag = menuNew;
 tbbOpen.Tag = menuOpen;
 tbbSave.Tag = menuSave;

 tbbPrevious.Tag = menuPrevious;
 tbbNext.Tag = menuNext;
 }

Settings

Button Property Value

3 Style Separator

4 (Prev) (Name) tbbPrevious

ImageIndex 3

ToolTipText Previous
image

5 (Next) (Name) tbbNext

ImageIndex 4

ToolTipText Next image
TOOLBAR BUTTONS 423

Our ButtonClick event handler automatically handles these buttons based on their
associated menu items, so no further changes are needed. Compile and run the pro-
gram to make use of these buttons. Note how the tool tips pop up when the mouse
hovers over these buttons.

TRY IT! Two things to try here. First, modify the Appearance property for the
toolbar to be Flat. The buttons will no longer have a three-dimensional
appearance, and the separator will be a line between the two sets of buttons.

Second, modify the Dock property for the toolbar to be Left. This
places the control on the left side of the form. Run the program to verify
that everything still works as expected.

There are two other types of toolbar buttons, namely the DropDownButton and Tog-
gleButton styles. The next two sections take a look at these alternate button styles.

13.3.2 ADDING A DROPDOWN BUTTON

To create a dropdown menu on our form, we will make use of our existing Images
submenu displayed via the menuImages menu item created way back in chapter 3,
and updated in chapter 6. The changes are detailed by the following steps, and dis-
cussed in the subsequent text.

ADD A DROPDOWN BUTTON

 Action Result

1 In the MainForm.cs [Design] window,
add a new ContextMenu object to the
MainForm window.

A second context menu appears in the
component tray.

2 Set the (Name) for the menu to
ctxtMenuImage.

3 Assign the menuImage_Popup event
handler as the Popup event handler for
the ctxtMenuImage menu.

Note: If you look at our implementation of
this event handler back in chapter 3, you
will find that we cast the sender parame-
ter to a Menu object, rather than a Menu-
Item object, so that it would work with any
type of menu.

4 Modify the DefineContextMenu
method to copy the contents of the
menuImage menu into the new context
menu.

Note: This clones the submenus of the
menuImage object and assigns them to
the ctxtMenuImage object. We created
and discussed this method in chapter 3.

 private void DefineContextMenu()
 {
 //Copy View menu into ctxtMenuView
 . . .
 // Copy Image menu into ctxtMenuImage
 foreach (MenuItem mi in
 menuImage.MenuItems)
 {
 ctxtMenuImage.MenuItems.
 Add(mi.Index, mi.CloneMenu());
 }
 }
424 CHAPTER 13 TOOLBARS AND TIPS

Our new toolbar button requires a new context menu, which we use as the dropdown
menu for our new button. Even though the DropDownMenu property for the Tool-
BarButton class is defined as a type of Menu object, a ContextMenu instance is
required to properly display a dropdown menu beneath the button. We could have
used the ctxtMenuView context menu, although we would then display the entire
View menu beneath the toolbar button.

Compile, run, open, click, and otherwise make sure the new button works. The
.NET Framework does all the hard work here. When the button is clicked, the menu
item collection associated with the ctxtMenuImage menu is displayed. This causes
the Popup event associated with this menu to fire, invoking the menuImage_Popup
event handler. Figure 13.2 shows the application with the popup menu displayed for
our new button.

5 In the ToolBarButton Collection Editor,
add two new toolbar buttons.

Note: The down arrow to the right of the
image appears because the toolbar’s
DropDownArrow property is true. Set this
property to false to display the button
without the arrow.

ADD A DROPDOWN BUTTON (continued)

 Action Result

Settings

Button Property Value

6 Style Separator

7 (Image)

(Name) tbbImage

DropDownMenu ctxtMenuImage

ImageIndex 5

Style DropDownButton

ToolTipText Set display mode

Figure 13.2

When the down arrow for a toolbar but-

ton is shown, as it is here, the user must

click on this arrow to display the associ-

ated menu.
TOOLBAR BUTTONS 425

Of course, you don’t always have an existing menu in your menu bar to clone and use
in your dropdown toolbar buttons. A custom ContextMenu object can be created and
assigned to the button. If desired, you can also draw your own menu items similar to
how we drew a custom status bar panel in chapter 4 and list box items in chapter 10.

Alternately, you may wish to forgo a menu entirely and create a custom window
to associate with your button. This can be done as well. The ButtonDropDown event
occurs for the parent ToolBar control whenever a dropdown menu on the control is
clicked. Event handlers for this event receive a ToolBarButtonClickEvent-Args
class instance as the event parameter. This class contains a Button property to retrieve
the dropdown ToolBarButton instance that was clicked. The Rectangle property
for the button identifies the location of the button and can be used to properly place
a small window or other graphical object at the proper location.

Our last style of button is a toggle button.

13.3.3 ADDING A TOGGLE BUTTON

Our final toolbar button will illustrate the ToggleButton style to show and hide
the pixel data dialog created in chapter 8. Toggle buttons, as you may recall from
chapter 9, provide two different states: one when the button is pressed in, and one
when it is not.

We will do something a little different here that seems appropriate for our exam-
ple. If you are keeping track of the images available in our image list, you may realize
there are two images left, while only one more button. We will use one image when
the button is pushed in, and the other when it is not. Figure 13.3 shows our applica-
tion with the button pressed in and the PixelDlg form displayed.

Figure 13.3

The toggle button on our toolbar

displays a green light when the

pixel dialog is shown, and a red

light otherwise.
426 CHAPTER 13 TOOLBARS AND TIPS

This will require some coordination with the rest of the application to make sure the
button is never pressed when the pixel dialog is hidden. We’ll begin by creating the
button and implementing the ButtonClick event support.

ADD THE TOGGLE TOOLBAR BUTTONS

 ACTION RESULT

1 In the ToolBarButton Collection Editor,
add two new toolbar buttons.

2 Implement an AssignPixelData
method in the MainForm.cs code
window to adjust the button settings
based a specified value.

How-to

Display the green light icon when the
button is pushed, and the red light
otherwise.

Note: This will be used by various meth-
ods to update the toggle button as the
state of the pixel data dialog changes.

 protected void
 AssignPixelToggle(bool push)
 {
 tbbPixelData.Pushed = push;
 if (push)
 {
 tbbPixelData.ImageIndex = 7;
 tbbPixelData.ToolTipText
 = "Hide pixel data";
 }
 else
 {
 tbbPixelData.ImageIndex = 6;
 tbbPixelData.ToolTipText
 = "Show pixel data";
 }
 }

3 Update the ButtonClick event handler
to adjust the state of both the dialog and
the button when the toggle is clicked.

 private void toolBarMain_ButtonClick
 (object sender,
 ToolBarButtonClickEventArgs e)
 {
 // Handle menu buttons
 . . .
 // Handle Pixel Data button
 if (e.Button == tbbPixelData)
 {
 if (e.Button.Pushed)
 {
 // Display pixel dialog
 menuPixelData.PerformClick();
 }
 else if (this._dlgPixel != null
 && _dlgPixel.Visible)
 {
 // Hide pixel dialog
 _dlgPixel.Hide();
 }

 // Update the button settings
 AssignPixelToggle(e.Button.Pushed);
 }
 }

Settings

Button Property Value

8 Style Separator

9 (Pixel)

(Name) tbbPixelData

ImageIndex 6

Style ToggleButton

ToolTipText Show pixel data

How-to

a. When the button is pushed, invoke
the Pixel Data menu to ensure the
dialog is displayed.

b. Otherwise, hide the dialog if it is cur-
rently displayed.

c. Also call the AssignPixelToggle
method to update the button settings.
TOOLBAR BUTTONS 427

These changes implement the correct functionality for the button. When the button
is pushed, a Click event for the menuPixelData menu is performed, which dis-
plays the dialog. When the button is unpushed,1 the dialog is hidden using the Hide
method. In this later case we ensure that the dialog exists and is shown before trying
to hide it. The AssignPixelToggle method adjusts the image and the tool tip to
reflect the new state of the button.

You can run the program to see the button in action. If you do, you may notice
that there are two problems we still need to address:

• The button is not pushed when the pixel data dialog is displayed using the
View menu item.

• The button is not unpushed when the dialog is closed manually.

For the first problem, we simply need to adjust the button in the Click event han-
dler for this menu. Let’s do this before we discuss the second problem.

Our second problem, that of the user closing the pixel data dialog by hand, is more
problematic. Since this dialog is a nonmodal window, this dialog can be closed at
any time. So we need a mechanism for notifying our main window whenever the
dialog is closed.

If you recall, and as shown in step 5 in the previous table, the MainForm form
is defined as the owner of the PixelDlg form. This ensures that both windows are

1 I know, I know. There is no such word as “unpushed.” You know what I mean. I thought about the
word “released,” but unpushed seems much more packed with meaning.

UPDATE THE TOGGLE BUTTON WHEN THE PIXEL DATA MENU IS SELECTED

 Action Result

4 Locate the menuPixelData_Click
event handler in the MainForm.cs
code window.

 private void menuPixelData_Click
 (object sender, System.EventArgs e)
 {

5 Update this method to adjust the
toggle button settings.

 if (_dlgPixel == null
 || _dlgPixel.IsDisposed)
 {
 _dlgPixel = new PixelDlg();
 _dlgPixel.Owner = this;
 }

 _nPixelDlgIndex = _album.CurrentPosition;
 Point p = pnlPhoto.PointToClient(
 Form.MousePosition);
 UpdatePixelData(p.X, p.Y);
 AssignPixelToggle(true);

 _dlgPixel.Show();
 }
428 CHAPTER 13 TOOLBARS AND TIPS

shown when either window is displayed or minimized. We can take advantage of this
relationship to ensure that our main window is notified when the pixel dialog is closed.

The trick is to force the MainForm window to activate whenever the PixelDlg
dialog is closed. Our main form will then receive an Activated event, at which time
we can update our button. Since the MainForm class derives directly from Form, we
can handle this event by overriding the protected OnActivated method.

The following steps implement this mechanism.

This code ensures that whenever the user closes the PixelDlg form, the main form
is activated and the toggle toolbar button immediately updated. Compile and run the
application to ensure that it works as expected.

TRY IT! Add two new menus to the top of the View menu called menuToolBar
and menuStatusBar. Implement these menus to show and hide the cor-
responding controls in the application. Use the Visible property inher-
ited from the Control class to identify the control’s current state and set
it to the opposite one. If you are careful, you can implement a single Click

UPDATE THE TOGGLE BUTTON WHEN THE PIXELDLG FORM IS CLOSED

 Action Result

6 In the PixelDlg.cs code window,
override the OnClosing method to
activate the owner of the dialog, if any.

Note: Since the dialog may not be
fully closed here if the Main-
Form.OnActivated method runs
immediately, we set the Visible
property to false to ensure the cor-
rect behavior occurs.

Also note that overriding the
OnClosed method instead does not
work because the Owner property is
no longer valid once the dialog has
been closed.

 protected override void OnClosing
 (CancelEventArgs e)
 {
 Visible = false;
 if (this.Owner != null)
 Owner.Activate();

 base.OnClosing(e);
 }

7 Back in the MainForm.cs code
window, override the OnActivated
method.

 protected override void
 OnActivated(EventArgs e)
 {

8 If the pixel dialog does not exist,
then make sure our button is not
pushed down.

 // Update toggle button if required
 if (_dlgPixel == null
 || _dlgPixel.IsDisposed)
 {
 AssignPixelToggle(false);
 }

9 Otherwise, set the button state
based on the Visible property of
the pixel dialog.

 else
 AssignPixelToggle(_dlgPixel.Visible);

 base.OnActivated(e);
 }
TOOLBAR BUTTONS 429

handler for both menus by using the sender parameter and observing that
both objects are Control instances. When you run the program with
these changes, note how the control shows or hides their contained buttons
or panels as well.

This completes our discussion of toolbars. We now move on to the mostly unrelated
but similarly named ToolTip class.

13.4 TOOL TIPS

You never know when a good tip might come in handy. In Windows applications, tool
tips provide short and quick explanations of the purpose of a control or other object. A
number of classes provide their own tool tip mechanism through a ToolTipText
property, in particular the StatusBarPanel, TabPage, and ToolBarButton
classes. For classes derived from the Control object, the ToolTip class handles this
logic in a general fashion.

.NET Table 13.5 ToolTip class

The ToolTip class is a component that provides a small popup window for a control. This window nor-
mally contains a short phrase describing the purpose of the control, and appears whenever the mouse hovers
over the control for a configurable amount of time. This class is part of the System.Windows.Forms
namespace, and supports the IExtenderProvider interface. The ToolTip class derives from the
System.ComponentModel.Component class.

Public

Properties

Active Gets or sets whether the ToolTip is currently active. When
false, no tool tips will appear. The default is true.

AutomaticDelay Gets or sets the default delay time in milliseconds.
Whenever this property is set, the AutoPopDelay,
InitialDelay, and ReshowDelay properties are initialized.
The default is 500.

AutoPopDelay Gets or sets the time in milliseconds before a displayed tool
tip will disappear. The default is ten times the
AutomaticDelay setting.

InitialDelay Gets or sets the time in milliseconds before a tool tip will
appear when the mouse is stationary. The default is the
AutomaticDelay setting.

ReshowDelay Gets or sets the time in milliseconds after the first tool tip is
displayed before subsequent tool tips are displayed as the
mouse moves from one assigned control to another. The
default is one-fifth (1/5) the AutomaticDelay setting.

ShowAlways Gets or sets whether to display the tool tip for an inactive
control. The default is false.

Public

Methods

GetToolTip Retrieves the tool tip string associated with a given control.

RemoveAll Removes all tool tip strings defined in this component.

SetToolTip Associates a tool tip string with a given control.
430 CHAPTER 13 TOOLBARS AND TIPS

13.4.1 THE TOOLTIP CLASS

An overview of the ToolTip class is provided in .NET Table 13.5. Note that a
ToolTip object is not strictly speaking a control, although it is sometimes referred to
as such. Normally, a single ToolTip object is used to create the tips for all controls in
a single Form.

13.4.2 Creating tool tips

While it is certainly possible to assign tool tips for our MainForm controls in the
MyPhotos project, this would not be a very exciting example. Since menu objects are
not controls, we cannot assign tool tip text to our menu items. As we saw earlier in
this chapter and in chapter 4, the ToolBar and StatusBar controls provide their
own tool tip mechanism. That leaves the Panel object, which is only a single control.

Instead, we will look to our now-famous MyPhotoAlbum library for a rich source
of tool tip hungry controls. Figure 13.4 shows the PhotoEditDlg form with a tool
tip displayed for the Date Taken text box.

Let’s crank up an Action-Result table and create a ToolTip object for this dialog.
Once the tool tip exists, we can discuss how to associate specific messages with indi-
vidual controls.

Figure 13.4

The framework displays tool tip text just

below the mouse cursor, which in most

cases will not obscure the control’s con-

tents from view.
TOOL TIPS 431

Set the version number of the MyPhotoAlbum library to 13.4.

As usual, the new object is defined within the PhotoEditDlg class and initialized in
the InitializeComponent method.
 private System.Windows.Forms.ToolTip toolTipPhotos;
 . . .
 private void InitializeComponent()
 {
 . . .
 this.toolTipPhotos = new System.Windows.Forms.ToolTip(this.components);
 . . .
 }

As we saw for the ImageList in our MyPhotos application, the ToolTip is created
within the Form object’s components container to ensure that the object is disposed
of when the Form itself is disposed.

We can add a series of tool tip strings for our controls using Visual Studio
directly. This table continues our previous steps.

ADD A TOOL TIP OBJECT TO THE PHOTOEDITDLG FORM

 Action Result

1 In the PhotoEditDlg.cs [Design]
window, add a ToolTip object
to the form.

The new object appears in the component tray below the
form designer.

2 Set the (Name) for the tool tip to
“toolTipPhotos.”
432 CHAPTER 13 TOOLBARS AND TIPS

That’s all it takes. Visual Studio .NET generates the code as is shown in the table. Of
course, you can define tool tips explicitly in your code using the SetToolTip
method without using Visual Studio. The steps used here simply demonstrate the
support provided by the development environment.

Compile and run the program to make sure your tool tips work. Open an album
and display the PhotoEditDlg dialog for a photo. Place the mouse over a control and
watch the tool tip appear. As you look at the tool tips we just defined, note the fol-
lowing features:

• There is a short pause, about half a second, before the tool tip text appears, and
then it disappears after about 5 seconds. These intervals are controlled by the
InitialDelay and AutoPopDelay properties.

ADD TOOL TIP STRINGS TO THE FORM’S CONTROLS

 Action Result

3 Add the tool tip “Previous photo” for the
Prev button control on the form.

:

4 Define tool tip strings for the other controls
on the form.

Note: You can assign tool tips to Label
controls as well. Since the user cannot nor-
mally interact with such controls, it is typi-
cally not appropriate to do so.

Visual Studio .NET generates the code
required for each tool tip in the
InitializeComponent method.

 private void InitializeComponent()
 {
 . . .
 this.toolTipPhotos.SetToolTip(
 this.btnNext, "Next photo");
 . . .
 this.toolTipPhotos.SetToolTip(
 this.txtNotes,
 "Details about this photo");
 . . .
 }

How-to

a. Display the properties for the button in
the Properties window.

b. Locate the new entry “ToolTip on toolTip-
Photos” that is now present

c. Enter the string “Previous photo.”

Settings

Control ToolTip String

btnNext Next photo

txtPhotoFile Image file containing
photo

txtCaption Short caption for photo

dateTimeTaken When photo was taken

cmbxPhotographer Person who took photo

txtNotes Details about this photo
TOOL TIPS 433

• Display a tool tip, then move the mouse to another control and note how the
tool tip for the second control appears almost immediately. This secondary delay
defaults to 100 milliseconds, and is specified by the ReshowDelay property.

• The tool tips for the Next and Prev buttons do not appear when these buttons
are inactive. The behavior for inactive controls is determined by the ShowAl-
ways property.

TRY IT! Create a ToolTip object for the AlbumEditDlg form and set tool tip
text for the nonlabel controls in this form. Note that you can set tool tips
for Panel and GroupBox objects, although this may confuse users and is
probably not a good idea for this form.

That’s pretty much all you need to know about tool tips. You may wonder if you can
create balloon-style or custom drawn tool tips. Right now the answer is no, at least
within the ToolTip class. We might see this type of support in a future release of the
framework, or you can build a custom control for this purpose yourself.

More .NET The HelpProvider class is a component that provides popup help using
a mechanism similar to the ToolTip class. The HelpProvider class pro-
vides a SetHelpString method for this purpose, in a manner similar to
the SetToolTip method for the ToolTip component. You can see this
by dragging a HelpProvider component onto a form and modifying the
HelpString entry that appears in the Properties window. This string will
appear when the user hits the F1 key while the control has the focus.

The Form class also provides a related HelpButton property. When
the MinimizeBox and MaximizeBox properties for a form are false,
setting the HelpButton property to true will cause a Help button to ap-
pear in the title bar. Clicking on this button and then on a control displays
the popup help string assigned to that control.

It is also worth noting that the HelpProvider class supports more so-
phisticated help for an application. In particular, this class can specify a link
into an HTML file where help text on specific elements of a form is available.
Consult the online documentation for more information on this feature.

13.5 RECAP

This completes chapter 13 as well as part 2 of the book. We’ve come a long way from
figure 1.1 on page 4, and hopefully have learned how to create Windows applications
with a large variety of controls and behaviors.

In this chapter we looked at the ToolBar and ToolTip classes. We created a
toolbar in our MyPhotos application, and used the four different styles of toolbar but-
tons supported by .NET. We also saw how to dynamically change the image displayed
on a button.
434 CHAPTER 13 TOOLBARS AND TIPS

We then created some tool tips for our PhotoEditDlg form. We associated a
ToolTip instance with our form, and saw how to assign tool tips to the various con-
trols contained within this form.

Along the way we examined the ImageList class as a way to store and manage
a collection of Image objects on behalf of a control or other object. We again looked
at the resource file generated by Visual Studio .NET to contain the images assigned
to such a list, and we created an image list for use within our ToolBar control.

In addition, we pointed out how Component objects such as ImageList and
ToolTip instances are disposed of when created within Visual Studio. Such objects
are contained within the form’s components member to ensure they can be tidied up
when the Dispose method is invoked.

I would encourage you to experiment with the controls and features discussed
here and in earlier chapters in this book. The foundation presented so far is critical to
developing and understanding Windows Forms applications, and will come in handy
as we discuss the concepts presented in part 3.
RECAP 435

3
P A R T
Advanced Windows Forms
If you have actually read this book from the beginning, then I applaud your forti-
tude and welcome you to the third and final part of this book. For those readers who
have jumped directly to this page, I would encourage you to actually read the earlier
chapters, as they build a foundation for much of the discussion that will occur in this
part of the book. Of course, if you are browsing this book with the idea of buying it,
then feel free to look around.

In part 3 we look at what might be considered advanced topics. If you have a firm,
or at least decent, grasp of the material from part 2 of this book, then this section
should be quite understandable.

Chapter 14 kicks off our discussion with the topic of “List views.” This chapter cre-
ates a new MyAlbumExplorer application incorporating a ListView control, and
demonstrates various means of displaying and interacting with objects in this control.

Chapter 15 on “Tree views” extends the MyAlbumExplorer application to support
a standard explorer-style interface. The Splitter and TreeView controls are dis-
cussed, and various interactions between the ListView and TreeView controls in
the MyAlbumExplorer application are examined.

Chapter 16 turns to the topic of “Multiple document interfaces.” This chapter dis-
cusses the support provided by the .NET Framework for multiple document interface,
or MDI, applications in Windows Forms. Here we return to our MyPhotos applica-
tion from part 2 and convert it into an MDI application, using our MainForm class
as the child window.

The topic of “Data binding” is taken up in chapter 17. This discusses complex data
binding by way of the DataGrid control, and simple binding of data to Windows
Forms controls in general. This chapter will illustrate how to provide transactional
updates within a class and automatically invoke these updates from a bound control.
A new MyAlbumData application is constructed over the course of this chapter.

Chapter 18 is called “Odds and ends .NET,” and completes our discussion with
a review of various topics that should be of further interest. These include printing,
Windows Forms timers, drag and drop, and ActiveX controls. An example for each
topic is provided using the MyPhotos MDI application built in chapter 16.

Following this last chapter are four appendices with some additional information
on C#, an overview of .NET namespaces, a class hierarchy chart of the Windows
Forms namespace, and resources for additional information on C# and the .NET
Framework.
438 PART 3 ADVANCED WINDOWS FORMS

C H A P T E R 1 4

List views

14.1 The nature of list views 440
14.2 The ListView class 443
14.3 ListView columns 453

14.4 Selection and editing 464
14.5 Item activation 472
14.6 Recap 483
To kick off the advanced section of the book, we take a detailed look at the List-
View class. This class is used by applications such as Windows Explorer to present a
collection of items in list form. We will examine this class in detail, including the fol-
lowing topics:

• Various styles supported by the ListView class.
• Members of the ListView class.
• Defining list view columns in Visual Studio and programmatically.
• Selecting and editing items in the list.
• Activating list view items.
• Dynamically switching the contents of a list view.

We will start from scratch here and build a new application called MyAlbumEx-
plorer. In this chapter we will display both albums and photographs in the main
window. The next chapter will add support for a TreeView control to this applica-
tion to create a window much like the Windows Explorer application utilizes for file
system objects.
439

14.1 THE NATURE OF LIST VIEWS

In many ways, a list view is a more glamorous version of a list box. Other than the
fact that they are both controls, there is no relation from a class hierarchy perspective,
but conceptually both present a scrollable list to the user. The ListBox class stores a
collection of object instances, while the ListView class contains a collection of
ListViewItem instances, which in turn contains a collection of ListViewSub-
Item objects.

Another difference is how their contents are displayed. The ListBox control dis-
plays a string associated with each object by default, and supports an owner-drawn
style to display other formats. The ListView control displays its items in one of four
views represented by the View enumeration, as described by .NET Table 14.1. When
the Details view is displayed, the collection of subitems appears in a configured set
of ColumnHeader objects associated with the control.

.NET Table 14.1 View enumeration

The View enumeration specifies the different ways the contents of a ListView control can
appear. This enumeration is part of the System.Windows.Forms namespace. The following
table provides an example obtained from the Windows Explorer application.

Enumeration

Values

LargeIcon Each item appears as a large icon with a label below it. By
default, items can be dragged around and placed at any location
within the control.

SmallIcon Each item appears as a small icon with a label at the right. By
default, items can be dragged and placed at any location in the
control.
440 CHAPTER 14 LIST VIEWS

Figure 14.1 shows a Form with a ListView control displayed in the Details view
mode. This figure illustrates various features and classes used by this control. We will
look at these in detail as we progress through the chapter.

Enumeration

Values

List Items are arranged as small icons, in columns with no headers,
and with the labels on the right.

Details Items are arranged in columns with headers. Items appear as
small icons with the labels on the right, and additional
information about each item appears in the columns.

.NET Table 14.1 View enumeration

b
c

d

e

The
class represents a single

column for the list.

ColumnHeader f

Multiple instances of the
class

represent additional
information associated

with each item.

ListViewSubItem e

The
class represents a

single item in the list.

ListViewItem d

The primary text associated
with each item is called

the item label.

c

An icon taken from an
instance is

associated with each item.
ImageList

b

f

Figure 14.1

This graphic

illustrates

important

classes and

terms used for

the ListView

control.
THE NATURE OF LIST VIEWS 441

.NET Table 14.2 ListView class

The ListView class is a control that displays a collection of labeled items as a list in one of
four different views. Typically an icon is displayed for each item in the collection to provide a
graphical indication of the nature or purpose of the item. Items can be displayed with large
icons, small icons, in a list format, or in a detailed list format. The detailed list permits additional
information about each item to appear in columns within the control. This class is part of the
System.Windows.Forms namespace, and inherits from the Control class. See .NET Table
4.1 on page 104 for a list of members inherited by this class.

Public

Properties

Activation Gets or sets how an item is activated, and whether the font
changes as the mouse passes over the item.

CheckBoxes Gets or sets whether a check box is displayed next to each
item. Default is false.

Columns Gets the collection of ColumnHeader components
associated with the control.

HeaderStyle Gets or sets the column header style for the control.
Default is ColumnHeaderStyle.Clickable.

Items Gets the collection of items in the list.

LabelEdit Gets or sets whether the user can edit item labels in the
list. Default is false.

LargeImageList Gets or sets the ImageList for the LargeIcon view.

ListViewItemSorter Gets or sets an IComparer interface to use when sorting
items in the list.

MultiSelect Gets or sets whether multiple items in the list may be
selected at the same time. Default is false.

SelectedItems Gets the collection of items selected in the list.

SmallImageList Gets or sets the ImageList instance for the views other
than the LargeIcon view.

Sorting Gets or sets how items in the list are sorted, if at all.

StateImageList Gets or sets the ImageList list for state icons.

View Gets or sets the current View enumeration value for the
list. Default is LargeIcon.

Public

Methods

Clear Removes all items and columns from the list view control.

EnsureVisible Ensures a given item is visible, scrolling it into view if
necessary.

Public

Events

AfterLabelEdit Occurs after an item label has been edited.

ColumnClick Occurs when the user clicks a column header in the
Details view.

ItemActivate Occurs when an item is activated. How this occurs
depends on the Activation property.

ItemDrag Occurs when a user begins dragging an item in the list.

SelectedIndex-
Changed

Occurs when the selection state of an item changes.
442 CHAPTER 14 LIST VIEWS

14.2 THE LISTVIEW CLASS

This section begins our examination of list views by creating our new application and
displaying a list view control within its main window. An overview of the ListView
class appears in .NET Table 14.2.

Our initial application is shown in figure 14.2. This window displays the default,
or Large Icons, view. Creating this application will require three separate tasks. First
we will create the new project, then add the Menu components and ListView control
required, and finally populate the ListView with the available set of albums.

14.2.1 CREATING THE MYALBUMEXPLORER PROJECT

We discussed the steps for creating a new project in Visual Studio in chapter 2 and
again in chapter 10. Since we have already seen this a couple of times, the following
table will gloss over many of the details and just hit the highlights. We will also set an
icon for our Form and application, as we discussed at the end of chapter 12.

Figure 14.2

MyAlbumExplorer will use

a book graphic for

individual albums. Note

how a separate icon is

used when an album

cannot be opened.
THE LISTVIEW CLASS 443

This creates a solution for our new application. We will also establish an icon for the
Form as well as the generated application file. This uses the term common image direc-
tory, which as you’ll recall is our shorthand for the graphics files provided with Visual
Studio .NET. By default, these can be found in “C:\Program Files\Microsoft Visual
Studio .NET\Common7\Graphics.”

Set the version number of the MyAlbumExplorer application to 14.2.

CREATE THE MYALBUMEXPLORER PROJECT

 Action Result

1 Create a new Windows Application
project called “MyAlbumExplorer.”

2 Rename the Form1.cs file and
Form1 class name to MainForm.cs
and MainForm, respectively.

3 Add the project MyPhotoAlbum to
the solution.

4 Reference this project within the
MyAlbumExplorer project.

5 In the MainForm.cs code window,
override the OnLoad method to
display the version number in the
title bar.

 protected override void OnLoad(EventArgs e)
 {
 // Assign title bar
 Version v = new Version(Application.
 ProductVersion);
 this.Text = String.Format(
 "MyAlbumExplorer {0:#}.{1:#}",
 v.Major, v.Minor);
 }

DEFINE ICONS FOR THE FORM AND APPLICATION

 Action Result

6 In the MainForm.cs [Design] window,
set the Icon property for the Form to
use the icon file “icons/Writing/
BOOKS04.ICO” in the common image
directory.

7 Delete the existing “App.ico” icon file
for the MyAlbumExplorer project.
444 CHAPTER 14 LIST VIEWS

With these tasks out of the way, we are ready to add a ListView control to our form.

14.2.2 CREATING A LIST VIEW

This section will drop some menu objects and a list view control onto our form so we
can examine and manipulate these controls in Visual Studio .NET. These steps will
also create some menus we will use as we move through the chapter.

8 Set the Application Icon setting for the
MyAlbumExplorer project to use the
BOOKS04.ICO icon as well.

How-to

Right-click on the project name in
Solution Explorer and select the
Properties item to display the
appropriate dialog.

The icon is presented to the Windows operating
system to represent the application.

DEFINE ICONS FOR THE FORM AND APPLICATION (continued)

 Action Result

ADD A MENU AND LIST VIEW TO OUR FORM

 Action Result

1 Add a MainMenu object to the form in
the MainForm.cs [Design] window.

2 Create the following top-level menus. This graphic is the result of steps 2 and 3.

Settings

Menu Property Value

File (Name) menuFile

Text &File

Edit (Name) menuEdit

Text &Edit

View (Name) menuView

Text &View
THE LISTVIEW CLASS 445

3 Create four menus underneath the
View menu.

Note: The View menus allow the user to alter
how the ListView appears. To match the
style used by Windows Explorer, we set the
RadioCheck property to true so that a small
circle is used as the check mark.

4 Add an Exit menu underneath the File
menu, along with an appropriate
Click event handler to close the
form.

 private void menuExit_Click
 (object sender, System.EventArgs e)
 {
 Close();
 }

5 Establish appropriate Size and Text
properties for the MainForm form.

ADD A MENU AND LIST VIEW TO OUR FORM (continued)

 Action Result

Settings

Menu Property Value

Large
Icons

(Name) menuLargeIcons

Checked True

RadioCheck True

Text Lar&ge Icons

Small
Icons

(Name) menuSmallIcons

RadioCheck True

Text S&mall Icons

List (Name) menuList

RadioCheck True

Text &List

Details (Name) menuDetails

RadioCheck True

Settings

Property Value

(Name) menuExit

Text E&xit

Settings

Property Value

Size 400, 300

Text MyAlbumExplorer
446 CHAPTER 14 LIST VIEWS

Since we already know how to manipulate menu objects, we may as well set up the
appropriate event handlers here as well. We will need a Popup event handler for the
View menu to make sure the appropriate menu item is checked, and a Click menu
for each item to assign the ListView.View property to the corresponding value.
We could try to do something fancy here to limit the amount of code we needed to
write. Instead, we will simply code this up directly and save our fancy tricks for later.

6 Place a ListView control onto the
form.

How-to

Use the tool box as you would for any
other control.

ADD A MENU AND LIST VIEW TO OUR FORM (continued)

 Action Result

Settings

Property Value

(Name) listViewMain

Dock Fill

ADD EVENT HANDLERS FOR THE VIEW MENU

 Action Result

7 Add a Popup event handler
for the View menu.

 private void menuView_Popup
 (object sender, System.EventArgs e)
 {

8 Implement this handler to
check the appropriate entry
based on the View property
of the ListView control.

 View v = listViewMain.View;
 menuLargeIcons.Checked = (v == View.LargeIcon);
 menuSmallIcons.Checked = (v == View.SmallIcon);
 menuList.Checked = (v == View.List);
 menuDetails.Checked = (v == View.Details);
 }
THE LISTVIEW CLASS 447

Your program will work just fine here. It doesn’t do very much, but it does work. Our
final step for this section is to populate the list control with the available albums.

14.2.3 Populating a ListView

Our final task here is to populate the ListView control. As we said earlier in the chap-
ter, a ListView control contains a collection of ListViewItem objects. As indicated
in .NET Table 14.3, the ListViewItem object inherits directly from the Sys-
tem.Object class. All of the painting and other management of list items are per-
formed by the ListView class itself. This painting behavior is consistent with other
container controls we have seen such as the StatusBar control containing Status-
BarPanel objects, and the ListBox control containing a set of object instances.

Our use of the ListViewItem object here will be fairly modest. We will get
more complicated later in the chapter. For now, we simply wish to create an item for
each album with the file name as the label and an appropriate image icon assigned.
This requires that we create an ImageList for both the small and large icons to dis-
play in the view, and populate the Items property for the list with a ListViewItem
for each album.

9 Add Click event handlers
for each of the four menus
in the View menu.

Note: These handlers set
the View property value in
the listViewMain control,
which alters how the con-
tents of the control appear
to the user.

 private void menuLargeIcons_Click
 (object sender, System.EventArgs e)
 {
 listViewMain.View = View.LargeIcon;
 }

 private void menuSmallIcons_Click(. . .)
 {
 listViewMain.View = View.SmallIcon;
 }

 private void menuList_Click(. . .)
 {
 listViewMain.View = View.List;
 }

 private void menuDetails_Click(. . .)
 {
 listViewMain.View = View.Details;
 }

ADD EVENT HANDLERS FOR THE VIEW MENU (continued)

 Action Result
448 CHAPTER 14 LIST VIEWS

.NET Table 14.3 ListViewItem class

The ListViewItem class is an object that can be displayed within a ListView control. It is part
of the System.Windows.Forms namespace, and supports the IClonable and ISerializ-
able interfaces.

Public

Constructors

ListViewItem Initializes a new ListViewItem instance.

Overloads

ListViewItem(string label);
ListViewItem(string[] labelAndSubitems);
ListViewItem(string label, int imageIndex);
ListViewItem(ListViewItem item,
 ListViewSubItem[] subitems,
 int imageIndex);

Public

Properties

Bounds Gets the bounding rectangle of the item, including any
displayed subitems.

Focused Gets or sets whether the item has the focus within the
containing view. Defaults to false.

Font Gets or sets the Font for the item. If null, the containing
ListView uses its font for this purpose.

ForeColor Gets or sets the foreground Color for the item.

ImageIndex Gets or sets the index used to retrieve the icon for this item.

Index Gets the index corresponding to the current position of the
item within the containing ListView.

ListView Gets the ListView control that contains this item.

Selected Gets or sets whether the item is currently selected in the
containing view.

StateImageIndex Gets or sets the index for the state icon for this item.

SubItems Gets the collection of list view subitems assigned to this
item. Note that this includes the item label as the first
element in this collection.

Tag Gets or sets the object associated with this item.

Text Gets or sets the text string for this item. This is the item label.

Public

Methods

BeginEdit Initiates an edit of this item’s label.

EnsureVisible Ensures a given item is visible, scrolling the containing
view as necessary.

Remove Removes the item from the collection of ListViewItem
objects in the containing view.
THE LISTVIEW CLASS 449

We will begin with the ImageList components.

CREATE THE IMAGE LISTS FOR THE VIEW

 Action Result

1 In the MainForm.cs [Design] window, add
two new ImageList objects to the form.

The objects appear in the component tray area
below the form.

Note: The first list will contain the large
icons for the View.LargeIcon display
mode, and the second the small icons for
all other modes. Since the icons provided
in the common image area define both
image types, each list will use the same
set of files. The Size property defines the
actual image to use by each list.

2 Define the images from the common
image area required for the
imageListLarge object.

How-to

Use the Image Collection Editor, as
discussed in chapter 13.

The icons are stored in the image list and
available to the application.

Note: The first icon will be used for Pho-
tograph objects later in this chapter. The
next two are for a “good” and “bad”
album, respectively. The final three will be
used in chapter 15 when discussing the
TreeView class.

3 Similarly, define the same set of images
for the imageListSmall object.

Note: You might be tempted to create
this image list by making a copy of the
imageListLarge object and then apply-
ing the settings from step 1. While this
works, the small images are scaled from
the larger size stored in the image-
ListLarge object, resulting in poorer
quality icons.

The same set of icons, albeit in different sizes,
is now available from both image lists.

4 Assign the two image lists to the
corresponding property in the ListView
control.

Images from each list can now be displayed for
items in the ListView control.

Settings

List Property Value

List 1 (Name) imageListLarge

Size 32. 32

List 2 (Name) imageListSmall

Size 16, 16

Settings

Image File

0 icons/Misc/FACE01.ico

1 icons/Writing/BOOK01A.ico

2 icons/Misc/MISC02.ico

3 icons/Misc/FACE02.ico

4 icons/Writing/BOOK02.ico

5 icons/Writing/BOOKS04.ico

Settings

Property Value

LargeImageList imageListLarge

SmallImageList imageListSmall
450 CHAPTER 14 LIST VIEWS

The code generated by these changes is similar to examples we have seen before. The
images are stored in a .resx file for the MainForm object, and loaded into the applica-
tion using the ResourceManager class.

Now that we have the image lists defined, the form containing a ListView con-
trol, and the View menu primed and ready, we have nothing to do but add our photo
albums to the list. We do this in the OnLoad method, which is called just before the
Form displays the first time. We could instead add these items in the MainForm con-
structor, but the OnLoad method is preferred for such actions to ensure that the Form
is fully initialized.

Let’s see how this code looks.

ADD EACH ALBUM TO THE VIEW

 Action Result

5 In the MainForm.cs source code
window, indicate that this file will
use members of the System.IO
and the Manning.MyPhotoAlbum
namespaces.

using System.IO;
using Manning.MyPhotoAlbum;

6 Add a set of constant fields for the
image list indices required.

Note

Using constants in this manner is a
good idea in case our values ever
change in the future.

 private const int PhotoIndex = 0;
 private const int AlbumIndex = 1;
 private const int ErrorIndex = 2;

7 Modify the OnLoad method to load
the default set of albums through a
private method.

 protected override void OnLoad(EventArgs e)
 {
 . . .
 LoadAlbumData(PhotoAlbum.DefaultDir);
 }

8 Create a private OpenAlbum method
to open an album.

 private PhotoAlbum OpenAlbum(string fileName)
 {
 PhotoAlbum album = new PhotoAlbum();

 try
 {
 album.Open(fileName);
 }
 catch (Exception)
 {
 return null;
 }

 return album;
 }
THE LISTVIEW CLASS 451

This creates a list item for each album found, using the base file name as the text for
the album. If an album fails to open, then an error image is assigned as its icon. If any
of your albums happen to have a nonempty password set, then the PhotoAlbum class
will prompt you for this password before opening the album.

As you progress through this chapter, you will note that the album password is
required repeatedly as the album is opened, which is not of course the nicest interface
one could ask for. We could fix this by only requiring the password in the Photo-
Album class when the user wants to examine the photos or modify the album settings.
We will not actually do this, but we could.

Compile and run this program to see our new list view at work. Also alter the dis-
play setting using the items in the View menu. Assuming you have some album files
in the album directory, you should find that the Large Icons, Small Icons, and List
menus work just fine. Curiously, the Details setting displays nothing at all.

This is because the Details view requires a set of columns to be assigned to the
form. So far we have not done this, so we will make it our next topic.

9 Implement the LoadAlbumData
method by iterating over the set of
album files in the given album
directory.

Note: Accepting the directory from
which to load the albums may
come in useful if we ever want to
support multiple directories.

 private void LoadAlbumData(string dir)
 {
 string[] albumFiles
 = Directory.GetFiles(dir, "*.abm");
 foreach (string s in albumFiles)
 {

10 Try to open the album file. // See if we can open this album
 PhotoAlbum album = OpenAlbum(s);

Note: Of course, if the album requires a pass-
word, then the user must enter it here, which is
not the best user interface. See the TRY IT! para-
graph later in this section for a discussion on an
alternative approach.

11 Initialize a new ListViewItem
based on whether the album was
opened successfully.

 // Create a new list view item
 ListViewItem item = new ListViewItem();

 item.Text
 = Path.GetFileNameWithoutExtension(s);
 if (album != null)
 item.ImageIndex = MainForm.AlbumIndex;
 else
 item.ImageIndex = MainForm.ErrorIndex;

12 Add the new item to the ListView
control.

 listViewMain.Items.Add(item);
 }
 }

ADD EACH ALBUM TO THE VIEW (continued)

 Action Result
452 CHAPTER 14 LIST VIEWS

TRY IT! You may have noticed that our interface is not very friendly for albums that
happen to contain a password. Since each album is opened in the OnLoad
method, before the MainForm window is displayed, any passwords re-
quired must be entered before the user even sees the application window.

As an alternative approach, modify the PhotoAlbum class to provide a
static GetInfo method, and use this new method in the Main-
Form.OpenAlbum method of our application. This method should sim-
ply return the required statistics for a given album and ignore any
password required. While this alters the meaning of the existing password
mechanism slightly, it does not provide access to the photographs con-
tained in the album.

In your implementation of the GetInfo method, return a new Albu-
mInfo structure that provides access to the statistics for the album. This
structure can use the same property names as the PhotoAlbum class. In or-
der to accommodate changes made in the remainder of this chapter, you
should implement properties to provide the title of the album, whether or
not a password is required, and the number of photographs stored in the
album. Make certain you close the album regardless of whether or not an
exception occurs.

14.3 LISTVIEW COLUMNS

The MyAlbumExplorer application displays three out of four possible View settings
just fine. Not the best percentage we could hope for, so let’s see what it takes to add a
Details view to our application. This is the only view that displays the collection of
subitems associated with each item. The subitems display in columns to the right of
the item label, as shown in figure 14.3.

The columns in a list view are contained in the control’s Columns property. This
property contains a collection of ColumnHeader components. The order of objects in
this collection reflects the order in which columns are displayed in the control. As a
result, the order of subitems in each ListViewItem object must match the order of

Figure 14.3

The size of a column in the Details view

can be changed by clicking on the line

at the end of the column.
LISTVIEW COLUMNS 453

objects contained in the Columns collection. An overview of the ColumnHeader
class is given in .NET Table 14.4. Note that the contents of the Columns property are
cleared whenever the Clear method is called on the associated ListView control.

In order to fill in the Details view for our list control, we will first create the
columns for the list, and then add the required subitems to each item as we populate
the list. This section will finish with a discussion of how sorting can be performed in
the Details view.

14.3.1 CREATING THE COLUMNS

We will create four columns in our application. Each column will represent a setting
associated with our PhotoAlbum object. In this section, we will create our columns
in the Forms Designer Window, and allow Visual Studio to generate them as part of
the InitializeComponent method. Since columns are cleared whenever the list
view is cleared, in many cases it is better to create the ColumnHeader objects pro-
grammatically. This also permits alternate columns to be used for different types of
items displayed in the list. We will see this later in the chapter when we display both
Photograph and PhotoAlbum objects in our list.

The following table summarizes the columns for our application, providing the
variable name we will use and the text to appear at the top of the column. A description
of the contents of each column is given as well.

.NET Table 14.4 ColumnHeader class

The ColumnHeader class represents a single column in a ListView control. These columns
appear when the View property for the control is set to Details, and they display the subitems
associated with each item in the view. The ColumnHeader class is part of the System.Win-
dows.Forms namespace. It is derived from the System.ComponentModel.Component class,
and supports the IClonable interface.

Public Properties

Index Gets the location of the component within the containing
ListView control’s Columns collection.

ListView Gets the list view control containing this column header.

Text Gets or sets the text to display in the column header.

TextAlign Gets or sets the horizontal alignment of both the text in the
header and the subitems displayed in the column.

Width Gets or sets the width of the header in pixels.

Public Methods
Clone Creates an identical copy of the column header. This new

header is not contained in any list view control.

Columns for displaying the albums

ColumnHeader Text Description

columnName Name The base name of the album file.

columnTitle Title Value of the Title property.

columnPassword Pwd Whether the album requires a password.

columnSize Size Number of Photograph objects in the album.
454 CHAPTER 14 LIST VIEWS

So let’s see how this is done. The following steps create these four columns and ini-
tialize their settings.

Set the version number of the MyAlbumExplorer application to 14.3.

A quick excerpt of the InitializeComponent method follows. As the code gener-
ated here is similar to other collections we have created in earlier chapters, we will not
discuss this code any further.
 private void InitializeComponent()
 {
 . . .
 this.columnTitle = new System.Windows.Forms.ColumnHeader();
 this.columnSize = new System.Windows.Forms.ColumnHeader();
 . . .
 //
 // columnTitle

CREATE THE COLUMNS HEADERS FOR THE LIST

 Action Result

1 In the MainForm.cs [Design]
window, display the
ColumnHeader Collection Editor
for the ListView control.

How-to

Click the … button associated with
the Columns property item in the
Properties window.

Note: Visual Studio does not display the columns
in the designer window because the View prop-
erty for the list control is set to LargeIcon by
default. Set this property to Details and the col-
umns will appear.

2 Add four ColumnHeader objects
and assign their properties.

Settings

Column Property Value

File (Name) columnName

Text Name

Width 80

Title (Name) columnTitle

Text Title

Width 100

Pwd (Name) columnPassword

Text Pwd

TextAlign Center

Width 40

Size (Name) columnSize

Text Size

TextAlign Right

Width 40
LISTVIEW COLUMNS 455

 //
 this.columnTitle.Text = "Title";
 this.columnTitle.Width = 100;
 //
 // columnSize
 //
 this.columnSize.Text = "Size";
 this.columnSize.TextAlign
 = System.Windows.Forms.HorizontalAlignment.Center;
 this.columnSize.Width = 40;
 . . .
 //
 // listViewMain
 //
 this.listViewMain.Columns.AddRange(
 new System.Windows.Forms.ColumnHeader[] {
 this.columnName,
 this.columnTitle,
 this.columnPassword,
 this.columnSize});
 . . .
 }

Note that the order in which the ColumnHeader objects are added to the Columns
collection is significant here as this determines the order in which the columns appear
in the control. You can alter the order of a column in the ColumnHeader Collection
Editor dialog using the up and down arrow buttons.

Feel free to run the application if you wish. You should now see the albums
appear in the first column. The next section will populate these columns with the
properties of each album.

14.3.2 POPULATING THE COLUMNS

The columns in a Details listing contain both the item label and the text associated
with each subitem. The first column always contains the item label, and the subsequent
columns contain the contents of the list item’s SubItems property. The SubItems
property contains a collection of ListViewSubItem objects. The ListViewSub-
Item class is only valid within the ListViewItem class, so the fully qualified class
name within the Windows Forms namespace is ListViewItem.ListViewSubItem.

This class is typically created implicitly while initializing an existing ListView-
Item object or ListView control. A summary of this object appears in .NET
Table 14.5.
456 CHAPTER 14 LIST VIEWS

There are a number of methods provided by the framework for adding subitems to
items and items to list views. Some of the constructors available are shown here, and
you can look through the online documentation to examine these and also the Add
method overloads provided for each collection object. In our code we will use a fairly
straightforward method to expose the individual steps along the way. In your own
applications you can use the methods employed here or whatever other means works
best for your situation.

Since the columns and items are already defined for our control, the only change
required is to update the LoadAlbumData method to add the required subitems. The
following steps outline the actions required to add the three required subitems, namely
the password flag, the album size, and the album file name.

.NET Table 14.5 ListViewSubItem class

The ListViewSubItem class is an object that represents a property or other value associated
with a ListViewItem object. A ListViewSubItem appears in a ListView control when the
control’s View property is set to Details and a column is configured for the subitem. The set
of ListViewSubItem objects associated with an item is defined by the SubItems property in
the ListViewItem object.

This class is often written as ListViewItem.ListViewSubItem. It is defined within the
ListViewItem class and is therefore part of the System.Windows.Forms namespace.

Public

Constructors

ListViewSubItem Initializes a new ListViewSubItem instance.

Overloads

ListViewItem.ListViewSubItem(
 ListViewItem owner,
 string text);
ListViewItem.ListViewSubItem(
 ListViewItem owner,
 string text,
 Color foreColor,
 Color backColor,
 Font font);

Public Properties

BackColor Gets or sets the background Color for this subitem.
If null, or if the UserItemStyleForSubitems
property for the containing ListViewItem is true,
then the background color of this subitem is identical
to the Color used for the item.

Font Gets or sets the Font for this subitem, with the
identical caveat as that given for the BackColor
property.

ForeColor Gets or sets the foreground Color for this subitem,
with the identical caveat as that given for the
BackColor property.

Text The text string for this subitem.
LISTVIEW COLUMNS 457

Compile and run your code to ensure that it works. When you look at the Details
view, note how the width of each column can be adjusted by clicking on the vertical
line between two columns and dragging it to the left or right.

Congratulations, you have just completed your first list view! Your life may never
be the same. Before you go off and celebrate, there is one other topic related to col-
umns that is worth some discussion.

14.3.3 SORTING A COLUMN

It is typical in applications such as Windows Explorer to sort the contents of a List-
View control column whenever a column title is clicked. The first time the title is
clicked, the items are sorted based on the column’s contents in ascending order, or a to
z order for strings; and a second click sorts in descending, or z to a, order. Whether to
support this behavior in your applications depends on the nature of the application
and the user environment for which it is targeted. Many Windows users expect such
behavior, and may find it odd if an application does not support this feature. In this
section we look at how to support this feature in Windows Forms applications, using
our MyAlbumExplorer application as an example.

ADD THE SUBITEMS FOR EACH ITEM IN THE LIST

 Action Result

1 Locate the LoadAlbumData
method in the MainForm.cs
source code window.

 private void LoadAlbumData(string dir)
 {
 . . .

2 When the album is opened
successfully, create the three
subitems using the
PhotoAlbum object.

 foreach (string s in albumFiles)
 {
 . . .
 ListViewItem item = new ListViewItem();

 item.Text
 = Path.GetFileNameWithoutExtension(s);
 if (album != null)
 {
 item.ImageIndex = MainForm.AlbumIndex;

 // Add the subitems
 item.SubItems.Add(album.Title);
 bool hasPwd = (album.Password != null)
 && (album.Password.Length > 0);
 item.SubItems.Add(hasPwd ? "y" : "n");
 item.SubItems.Add(album.Count.ToString());
 }

3 When the album fails to load,
set the subitems to
appropriate defaults.

 else
 {
 item.ImageIndex = MainForm.ErrorIndex;
 item.SubItems.Add(item.Text);
 item.SubItems.Add("?");
 item.SubItems.Add("0");
 }

4 In either case, add the item
to the list view.

 listViewMain.Items.Add(item);
 }
 }
458 CHAPTER 14 LIST VIEWS

The ListView class provides three members of particular importance when you
wish to support sorting in the Details view.

• The Sorting property defines how the items are initially sorted. This is a
SortOrder enumeration value, one of None for no sorting, Ascending, or
Descending. This defaults to None, which is why our application currently
displays the items in random order.

• The ColumnClick event occurs when a column is clicked. This is used to mod-
ify the control’s sorting behavior as appropriate for the selected column. Event
handlers for this event receive a ColumnClickEventArgs parameter that con-
tains a Column property indicating the column header clicked by the user.

• The ListViewItemSorter property defines the IComparer interface used
to compare two ListViewItem objects for the list. An overview of the ICom-
parer interface is given in .NET Table 14.6.

We will use each of these members to define the sorting behavior for our application.
We will define a class supporting the IComparer interface first, and then use this
class to implement a ColumnClick event handler.

For a ListView object, the comparison interface must accept two ListViewItem
objects and return an appropriate value depending on the current column and sorting
order. The ListView object itself defines the current sorting order based on the
Sorting property value. We will need to keep track of the current column as part of
our IComparer implementation.

We will begin by implementing a comparison class within our MainForm defi-
nition. We will use the rather noncreative name MyListViewComparer for this class.

.NET Table 14.6 IComparer interface

The IComparer interface is an interface for comparing two objects, and is part of the Sys-
tems.Collections namespace. This namespace also provides two implementations of this
interface for comparing string objects. The Comparer class supports case-sensitive com-
parisons, while the CaseInsensitiveComparer class supports case-insensitive compari-
sons. Both of these classes provide a Default property that returns an initialized instance of
the class.

Public Methods

Compare Returns an integer value indicating the equality
relationship between two object instances. The
value returned is less than zero, zero, or greater
than zero, corresponding to whether the first
object is less than, equal to, or greater than the
second, respectively.
LISTVIEW COLUMNS 459

To avoid hard-coding integer values into our code, the following steps also define con-
stants for the column indices.

DEFINE A COMPARER CLASS FOR THE LIST VIEW

 Action Result

1 In the MainForm.cs source code
window, define four constants for
each of the columns in our
ListView control.

 private const int AlbumNameColumn = 0;
 private const int AlbumTitleColumn = 1;
 private const int AlbumPwdColumn = 2;
 private const int AlbumSizeColumn = 3;

2 Define the
MyListViewComparer class
within the MainForm class
definition.

 private class MyListViewComparer : IComparer
 {
 // Associate a ListView with the class
 // Track the current sorting column
 // Compare method implementation
 }

3 Associate a ListView object
with this class via the
constructor.

 // Associate a ListView with the class
 private ListView _listView;

 public MyListViewComparer(ListView lv)
 {
 _listView = lv;
 }

4 Also define a ListView property
to retrieve this setting.

 public ListView ListView
 {
 get { return _listView; }
 }

5 Allow the current sorting column
to be specified via a SortColumn
property.

 // Track the current sorting column
 private int _sortColumn = 0;

 public int SortColumn
 {
 get { return _sortColumn; }
 set { _sortColumn = value; }
 }

6 Define the Compare method
required by the IComparer
interface.

 // Compare method implementation
 public int Compare(object a, object b)
 {

7 In this method, convert the two
objects into list view items.

 // Throws exception if not list items
 ListViewItem item1 = (ListViewItem)a;
 ListViewItem item2 = (ListViewItem)b;

8 Swap the two items if the current
sorting order is descending.

Note: We could handle the sort
order as part of each compari-
son, but swapping the items up
front seems easier.

 // Account for current sorting order
 if (ListView.Sorting
 == SortOrder.Descending)
 {
 ListViewItem tmp = item1;
 item1 = item2;
 item2 = tmp;
 }
460 CHAPTER 14 LIST VIEWS

9 Handle the case where the
current view is not Details.

Note: The comparer is called
whenever the items must be
sorted, regardless of the current
view.

Note how we use the default
Comparer instance provided by
the CaseInsensitiveCom-
parer class.

 // Handle nonDetails case
 if (ListView.View != View.Details)
 {
 return CaseInsensitiveComparer.Default.
 Compare(item1.Text, item2.Text);
 }

10 For the Details view, use a
separate method to compare the
two items.

 return CompareAlbums(item1, item2);
 }

11 For the CompareAlbums method,
the following steps are required.

a. Find the subitem instances
corresponding to each item.

b. Return the appropriate result
based on the current column.

 public int CompareAlbums
 (ListViewItem item1, ListViewItem item2)
 {
 // Find the subitem instances
 ListViewItem.ListViewSubItem sub1
 = item1.SubItems[SortColumn];
 ListViewItem.ListViewSubItem sub2
 = item2.SubItems[SortColumn];

 // Return value is based on sort column
 switch (SortColumn)
 {

12 When one of the three string
columns is selected, use the
default Comparer to compare the
two strings.

 case MainForm.AlbumNameColumn:
 case MainForm.AlbumTitleColumn:
 case MainForm.AlbumPwdColumn:
 {
 return
 CaseInsensitiveComparer.
 Default.Compare(
 sub1.Text, sub2.Text);
 }

13 When the Size column is
selected:

a. Convert the strings to integer
values.

b. Return the appropriate result.
Note: The ToInt32 method
used here will throw an excep-
tion if the given string cannot be
converted to an integer.

 case MainForm.AlbumSizeColumn:
 {
 // Compare using integer values.
 int x1 = Convert.ToInt32(sub1.Text);
 int x2 = Convert.ToInt32(sub2.Text);

 if (x1 < x2)
 return -1;
 else if (x1 == x2)
 return 0;
 else
 return 1;
 }

14 For any other column value,
throw an exception indicating the
column was not recognized.

 default:
 throw new IndexOutOfRangeException(
 "unrecognized column index");
 }
 }

DEFINE A COMPARER CLASS FOR THE LIST VIEW (continued)

 Action Result
LISTVIEW COLUMNS 461

This code defines a comparison class for our ListView control. The next step is to
hook this into our actual form. This requires that we create an instance of the
MyListViewComparer class and assign it as the comparer for our list. Let’s do this
first, and then we can handle the ColumnClick event to adjust the comparison set-
tings. This continues our previous steps.

We now have a comparison class assigned to our view. The ListView control will
automatically call this class’s Compare method whenever it must sort the contents of
the view. This occurs each time the Sorting property is set to a new value other
than None.

We can take advantage of this in our ColumnClick handler to ensure that the
list is updated whenever a column is clicked. As we indicated earlier, ColumnClick
event handlers receive a ColumnClickEventArgs class as the event parameter. This
class defines a Column property containing the index of the selected column in the
corresponding list view.

Let’s define this handler to complete our implementation of column sorting.

ASSIGN COMPARER TO THE LIST VIEW CONTROL

 Action Result

15 Define a private variable to hold
the comparer class for the form.

 private MyListViewComparer _comparer;

16 Create and assign this comparer
to the view in the OnLoad
method.

Note: This is done at the begin-
ning of this method to ensure
the comparer exists during con-
trol initialization.

 protected override void OnLoad(EventArgs e)
 {
 // Define the list view comparer
 _comparer = new
 MyListViewComparer(listViewMain);
 listViewMain.ListViewItemSorter = _comparer;
 listViewMain.Sorting = SortOrder.Ascending;
 . . .
 }

HANDLE THE COLUMNCLICK EVENT

 Action Result

17 Handle the ColumnClick
event for the listViewMain
control.

 private void listViewMain_ColumnClick
 (object sender, System.Windows.
 Forms.ColumnClickEventArgs e)
 {

18 Reset the sorting order for
the control.

 SortOrder prevOrder = listViewMain.Sorting;
 listViewMain.Sorting = SortOrder.None;

19 If the current column was
clicked, then invert the
existing sort order.

 if (e.Column == _comparer.SortColumn)
 {
 // Switch the sorting order
 if (prevOrder == SortOrder.Ascending)
 listViewMain.Sorting = SortOrder.Descending;
 else
 listViewMain.Sorting = SortOrder.Ascending;
 }
462 CHAPTER 14 LIST VIEWS

Twenty steps in one section. That might be a record. Note how we reset the sort order
to None at the beginning of the handler. This ensures that the framework will re-sort
the contents when we set the actual sort order a few lines later. Without this reset, the
control will not invoke the comparer if the sort order is not a new value, such as when
two different columns are clicked one after another.

Compile and run to verify that this sorting works as advertised. Make sure you
click the Size column to perform integer-based sorting. An example of such a sort
in descending order is shown in figure 14.4.

Alternate sorting mechanisms are possible here as well. Later in the chapter, we will
see how to sort date and time values in the control.

TRY IT! The AllowColumnReorder property indicates that the user may rear-
range the columns by clicking and dragging them with the mouse. Set this
property to true to see how this works. What happens when you sort a col-
umn after reordering the columns? Note that the ColumnClick event
does not occur during a drag, even though the user must click and then re-
lease the column header.

This completes our initial discussion of items and subitems in the list view control.
The remaining sections examine some of the more common events normally used
with this control.

20 Otherwise, sort the control
based on the newly selected
column.

 else
 {
 // Define new sort column and reset order
 _comparer.SortColumn = e.Column;
 listViewMain.Sorting = SortOrder.Ascending;
 }
 }

HANDLE THE COLUMNCLICK EVENT (continued)

 Action Result

Figure 14.4

In this graphic, the ListView con-

trol in the application is sorted by

the Size column.
LISTVIEW COLUMNS 463

14.4 SELECTION AND EDITING

So far we have created a ListView control in our application and supported column
sorting. In this section we’ll look at some of the events used to interact with specific
items in the list. Specifically, we will look at adding the following features:

• Viewing the properties associated with a selected item in the list.
• Editing the label of an item in our list.
• Displaying the Photograph objects in the album when the user double-clicks

on an item.

The first two topics are covered in this section. The last topic is related to item activa-
tion, which is the subject of section 14.5.

14.4.1 SUPPORTING ITEM SELECTION

Like the ListBox control, a list view can support single item or multiple item selec-
tion. The MultiSelect property is a boolean property that indicates which type of
selection to support. We looked at multiple selection within list boxes in chapter 10,
so we will stick with single selection in this chapter.

The SelectedIndices property holds the collection of indices corresponding
to the selected items in the list. These index values refer to the position of the items
within the collection represented by the Items property. The SelectedItems prop-
erty holds the collection of selected items directly.

To make use of the selected item, we will create a menu item to display the properties
associated with the selected album, as shown in figure 14.5. The Click event han-
dler for this menu will open the selected album, display the properties dialog for this

Figure 14.5

The properties window

displayed for the

leeds.abm album.
464 CHAPTER 14 LIST VIEWS

album, and update both the album and the ListView control with any changes
made by the user.

The following steps explain how to add both the menu and the Click handler.

Set the version number of the MyAlbumExplorer application to 14.4.

ADD A MENU TO DISPLAY ALBUM PROPERTIES

 Action Result

1 In the MainForm.cs [Design]
window, add a Properties menu
under the Edit menu.

2 Add a Click event handler for
this menu to display the property
dialog for the selected album, if
any.

Note: We separate the display
logic into a separate DisplayAl-
bumProperties method in case
we ever want to call it from other
portions of our application.

 private void menuProperties_Click
 (object sender, System.EventArgs e)
 {
 if (listViewMain.SelectedItems.Count <= 0)
 return;

 ListViewItem item
 = listViewMain.SelectedItems[0];
 DisplayAlbumProperties(item);
 }

3 In order to locate the album file
name in our new method, record
the album file name in the Tag
property associated with each list
item in the LoadAlbumData
method.

 private void LoadAlbumData(string dir)
 {
 . . .
 foreach (string s in albumFiles)
 {
 . . .
 if (album != null)
 {
 item.Tag = album.FileName;
 item.ImageIndex = MainForm.AlbumIndex;
 . . .

4 Add the
DisplayAlbumProperties
method to display the album
dialog.

 private void DisplayAlbumProperties
 (ListViewItem item)
 {

5 Implement this method by
obtaining the file name for the
selected album.

 string fileName = item.Tag as string;

6 Try to open the album
corresponding to this file name.

 PhotoAlbum album = null;
 if (fileName != null)
 album = this.OpenAlbum(fileName);

Settings

Property Value

(Name) menuProperties

Text &Properties…
SELECTION AND EDITING 465

We employ the using statement to ensure that our dialog is properly disposed of at
the end of the handler. Also note how multiple exceptional handling blocks are used
to catch errors that occur. You may wonder if it is expensive to perform such opera-
tions, especially if you are familiar with exception-handling mechanisms in languages
like C and C++ where it indeed can be an expensive proposition to call try multiple
times. In C#, the exception handling is built into the language and the compiler, so
checking for exceptions as we do here is not much more expensive than an if state-
ment. The expense comes if an exception actually occurs, since the compiler must

7 Display an error message if the
album could not be opened.

Note: Here and throughout the
remainder of the book, we use
the simplest form of the Mes-
sageBox dialog. Feel free to use
an alternate form if you prefer.
See chapter 8 for detailed infor-
mation on the MessageBox
class.

 if (album == null)
 {
 MessageBox.Show("The properties for "
 + "this album cannot be displayed.");
 return;
 }

8 Display the AlbumEditDlg if the
album is opened successfully.

 using (AlbumEditDlg dlg
 = new AlbumEditDlg(album))
 {

9 If any changes are made by the
user, save these changes into the
album file. Catch any errors that
occur.

 if (dlg.ShowDialog() == DialogResult.OK)
 {
 // Save changes made by the user
 try
 {
 album.Save();
 }
 catch (Exception)
 {
 MessageBox.Show("Unable to save "
 + "changes to album.");
 return;
 }

10 Also update any subitem text that
might be affected by the user’s
changes.

 // Update subitem settings
 item.SubItems[MainForm.
 AlbumTitleColumn].Text
 = album.Title;

 bool hasPwd = (album.Password != null)
 && (album.Password.Length > 0);
 item.SubItems[MainForm.
 AlbumPwdColumn].Text
 = (hasPwd ? "y" : "n");
 }
 }

11 Dispose of the album at the end
of the method.

 album.Dispose();
 }

ADD A MENU TO DISPLAY ALBUM PROPERTIES (continued)

 Action Result
466 CHAPTER 14 LIST VIEWS

then construct the Exception object, unravel the call stack and clean up any objects
as required, plus locate the appropriate catch block for the particular exception.

The fact that exception clean up can impact a program’s performance is one more
reason to ensure that you throw exceptions only for truly exceptional conditions.
Common problems or situations should be handled through the use of an error code.
As a case in point, this is one reason why file-related read and write methods in the
.NET Framework do not raise an exception when the end of a file is reached.

Back to our code, this discussion tells us that our use of try and catch here
should not affect our performance very much since we do not normally expect an
exception to occur other than when opening an invalid album. We could improve the
performance if we kept track of the invalid albums during the OnLoad method, since
then we would not need to re-open these albums again here. We will not actually do
this here, but it was worth a mention.

The remainder of the previous code is fairly self-explanatory. One other point
worth mentioning is our use of the Tag property. This works well in our Display-
AlbumProperties method since all we need to keep track of is the album’s file
name. It is also possible here to assign a PhotoAlbum instance to the Tag property
rather than a string instance, although this requires extra memory and other
resources to maintain the album for each item in memory.

An alternative approach often used to track more complex relationships is to
derive a new class from the ListViewItem class. For our application, an excerpt of
such a class might look something like the code shown in listing 14.1. Since this class
is a ListViewItem object, instances of it can be assigned to and manipulated within
the ListView control. Whenever the PhotoAlbum object for an album is required,
a list view item can be downcast to the PhotoAlbumListItem class, where the
Album property and other members may be used to manipulate the album.

 public class PhotoAlbumListItem : ListViewItem, IDisposable
 {
 private string _fileName;
 private PhotoAlbum _album;

 PhotoAlbumListItem(string file)
 {
 _fileName = file;
 _album = null;
 }

 public void Dispose()
 {
 // Dispose implementation
 . . .
 }

 public PhotoAlbum Album

Listing 14.1 Example deriving a new class from ListViewItem (not our approach)
SELECTION AND EDITING 467

 {
 get
 {
 if (_album == null)
 {
 _album = new PhotoAlbum();
 _album.Open(_fileName);
 }

 return _album;
 }
 }

 // Other methods as required
 . . .
 }

For our purposes the use of a simple string value in the Tag property was sufficient to
display the album’s properties dialog. Another feature worth supporting here is the
ability to edit item labels.

14.4.2 SUPPORTING LABEL EDITS

Editing an item label in place is one of the advantages the ListView class has over
ListBox objects. In our application it would be nice if the user could edit the album
name in order to rename an album file. This section will show how to support this
feature.

Label editing is disabled by default, and turned on by setting the LabelEdit
property to true. An actual edit of an item is initiated by the BeginEdit method
of the ListViewItem class. The corresponding ListView control receives two
events during the editing process. The BeforeLabelEdit event occurs before the
edit process begins, while the AfterLabelEdit event occurs when the user com-
pletes the edit by pressing the Enter key or clicking outside of the edit area. Event han-
dlers for both events receive the LabelEditEventArgs class as their event handler.
See .NET Table 14.7 for an overview of this class.

We will allow an item to be edited in two ways. The first way is through a Name
menu under the top-level Edit menu, and the second way is by selecting an item and
pressing the F2 key. This matches the keyboard shortcut supported by Windows
Explorer, so it seems appropriate here.

In a production environment, we would probably handle both events in our
application. In the BeginLabelEdit event handler we would make sure the album
is valid and can be successfully opened. This provides some assurance that the edit will
be successful before the user begins typing. The AfterLabelEdit event handler
would update the album with a new title and store the album to disk. It would also
update the album file on disk with the change.
468 CHAPTER 14 LIST VIEWS

Since we are not in a production environment, we will take the easy way out and only
handle the AfterLabelEdit event. This means a user may edit an album only to
find that he or she cannot save his changes, which is not the best interface from a
usability perspective.

The code changes required are given in the following steps:

.NET Table 14.7 LabelEditEventArgs class

The LabelEditEventArgs class represents the event arguments received by BeforeLa-
belEdit and AfterLabelEdit event handlers for the ListView class. This class is part of
the System.Windows.Forms namespace, and inherits from the System.EventArgs class.

Public

Properties

CancelEdit Gets or sets whether the edit operation should be cancelled.
This property can be set both before and after the item is
edited.

Item Gets the zero-based index into the list view’s Items collection
of the ListViewItem to be edited.

Label Gets the new text to assign to the label of the indicated item.

INITIATE LABEL EDITING

 Action Result

1 In the MainForm.cs [Design]
window, set the LabelEdit
property of the ListView control
to true.

Item labels in the list view may now be edited.

2 Add a Name menu to the top of
the Edit menu.

3 Add a Click event handler for
this menu.

 private void menuEditLabel_Click
 (object sender, System.EventArgs e)
 {

4 Within this handler, if an item is
selected, edit the item.

 if (listViewMain.SelectedItems.Count == 1)
 listViewMain.SelectedItems[0].BeginEdit();
 }

Note: This code only edits the label if a single item
is selected. While we do not permit multiple items
to be selected in our ListView control, this code
establishes an appropriate behavior in case such
selection is ever permitted in the future.

5 Add a KeyDown event handler for
the ListView control.

 private void listViewMain_KeyDown
 (object sender, System.Windows.
 Forms.KeyEventArgs e)
 {

Settings

Property Value

(Name) menuEditLabel

Text &Name
SELECTION AND EDITING 469

That’s all it takes to begin an edit. The actual work of interacting with the user is han-
dled by the framework. When the user is finished, we can pick up the result in an
AfterLabelEdit event handler. There is also a BeforeLabelEdit event that is
useful for selectively permitting an edit or altering an item before the edit begins. For
our purposes, the AfterLabelEdit event will suffice.

6 If the F2 key is pressed and an
item is selected, edit the item.

 if (e.KeyCode == Keys.F2)
 {
 if (listViewMain.SelectedItems.Count == 1)
 {
 listViewMain.SelectedItems[0].
 BeginEdit();
 e.Handled = true;
 }
 }
 }

INITIATE LABEL EDITING (continued)

 Action Result

PROCESS A LABEL EDIT

 Action Result

7 Add an AfterLabelEdit
event handler for the
ListView control.

 private void listViewMain_AfterLabelEdit
 (object sender, System.Windows.
 Forms.LabelEditEventArgs e)
 {

8 If the user cancelled the edit,
then we are finished.

Note: For example, if the
user presses the Esc key dur-
ing editing, this handler is
invoked with a null label.

 if (e.Label == null)
 {
 // Edit cancelled by the user
 e.CancelEdit = true;
 return;
 }

9 In this handler, locate the item
to be edited.

 ListViewItem item = listViewMain.Items[e.Item];

10 Update the album name, and
cancel the edit if an error
occurs.

Note: Once again we sepa-
rate the logic to operate on
our album into a separate
method.

 if (UpdateAlbumName(e.Label, item) == false)
 e.CancelEdit = true;
 }
470 CHAPTER 14 LIST VIEWS

This code uses some methods from the Path and File classes to manipulate the file
name strings and rename the album file. Our application now supports displaying
album properties and editing of album labels. The next topic of discussion is item
activation.

11 Add the UpdateAlbumName
method to update the title of
the album.

 private bool UpdateAlbumName
 (string newName, ListViewItem item)
 {
 string fileName = item.Tag as string;
 string newFileName
 = RenameFile(fileName, newName, ".abm");
 if (newFileName == null)
 {
 MessageBox.Show(
 "Unable to rename album to this name.");
 return false;
 }

 // Update Tag property
 item.Tag = newFileName;
 return true;
 }

12 Implement the RenameFile
method to construct the new
name for the file.

 private string RenameFile
 (string origFile, string newBase, string ext)
 {
 string fileName = Path.
 GetDirectoryName(origFile) + "\\" + newBase;
 string newFile = Path.ChangeExtension(fileName,
 ext);

13 Rename the file using the
Move method in the File
class.

 try
 {
 File.Move(origFile, newFile);
 return newFile;
 }

14 Return null if an error
occurs.

 catch (Exception)
 {
 // An error occurred
 return null;
 }
 }

PROCESS A LABEL EDIT (continued)

 Action Result

How-to

a. Retrieve the file name from
the Tag property for the
item.

b. Rename the file using a pri-
vate method that returns
the new name.

c. Inform the user if the file
could not be renamed.

d. Otherwise, update the Tag
property with the new
name.

How-to

a. Use the GetDirecto-
ryName method to retrieve
the directory for the file.

b. Use the ChangeExtension
method to ensure the file
has the correct extension.
SELECTION AND EDITING 471

14.5 ITEM ACTIVATION

As you might expect, item activation is the means by which an item is displayed or
otherwise activated by the control. Normally, activation is just a fancy way to say
double-click. In our ListBox class in chapter 10, we activated an item in the list by
handling the DoubleClick event and displaying the properties dialog associated
with the item. Such behavior is activation.

The reason for the fancy term is that the ListView class allows activation other
than a double-click to be supported. The Activation property determines the type
of activation supported, based on the ItemActivation enumeration. The possible
values for this enumeration are shown in .NET Table 14.8. Note that the OneClick
style is similar to an HTML link in a Web browser. In our program, we will stick with
the standard activation.

Regardless of how items are activated, an ItemActivate event occurs whenever an item
is activated. The event handler for this event receives a standard System.EventArgs
parameter, so the activated item is obtained from the SelectedItems collection.

The activation behavior for our MyAlbumExplorer application will display the
Photographs in the selected album. This is a rather complicated change, since the
columns and list item behavior must now accommodate the display of both albums
and photos here. The fact that we were careful to separate much of the album logic
into individual methods along the way will help us keep our code straight. Figure 14.6
shows our application with photographs displayed in the ListView control. These
photographs are sorted by the date each photo was taken. The icon used here might
not be your first choice for a photograph icon, but it will suffice for our purposes. If
you find another icon you prefer, or are feeling creative, you can use an alternate icon
in your application.

.NET Table 14.8 ItemActivation enumeration

The ItemActivation enumeration specifies the type of activation supported by a control.
This enumeration is part of the System.Windows.Forms namespace.

Enumeration

Values

OneClick A single click activates an item. The cursor appears as a
hand pointer, and the item text changes color as the mouse
pointer passes over the item.

Standard A double-click activates an item.

TwoClick A double-click activates an item, plus the item text changes
color as the mouse pointer passes over the item.
472 CHAPTER 14 LIST VIEWS

14.5.1 HANDLING ITEM ACTIVATION

The ultimate goal here is to display either the list of albums or the list of photos in an
album within our ListView control. To do this, we must keep track of whether
albums or photographs are currently shown in the view, and whether the PhotoAl-
bum object corresponds to the view when photographs are displayed. The following
steps create private fields in our Form to track this information, and also implement
an event handler for the ItemActivate event. Once these are available, we will look
at the additional steps required to fully support activation.

Set the version number of the MyAlbumExplorer application to 14.5.

Figure 14.6

In this detailed view

of Photographs, note

how three dots auto-

matically appear

when the text length

exceeds the width of

the column.

HANDLE THE ITEMACTIVATE EVENT FOR THE LIST VIEW

 Action Result

1 Add private fields to track the
current ListView control contents
in the MainForm.cs code window.

 private bool _albumsShown = true;
 private PhotoAlbum _album = null;

2 Add an ItemActivate event
handler to the ListView control.

 private void listViewMain_ItemActivate
 (object sender, System.EventArgs e)
 {

3 If albums are currently shown and
an item is selected, then open the
album corresponding to the
selected item.

 if (_albumsShown &&
 listViewMain.SelectedItems.Count > 0)
 {
 ListViewItem item
 = listViewMain.SelectedItems[0];
 string fileName = item.Tag as string;

 // Open the album for this item
 PhotoAlbum album = null;
 if (fileName != null)
 album = OpenAlbum(fileName);
 if (album == null)
 {
 MessageBox.Show("The photographs for "
 + "this album cannot be displayed.");
 return;
 }

4 If the album loads successfully,
load the album’s photographs into
the list view.

 // Switch to a photograph view
 LoadPhotoData(album);
 }
 }
ITEM ACTIVATION 473

Of course, we need to implement the LoadPhotoData method that appears in this
code. This method should set up the view to display photographs, including an
appropriate set of columns, and reset the list of items to hold the set of photographs.
Once this is done, there is also the support we created for our albums that must now
be implemented for photographs. To help us keep our facts straight, let’s make a list
of the tasks we need to perform here.

• Define new columns for displaying photographs.
• Populate the ListView control with the photographs in the album.
• Support column sorting.
• Display the photo properties dialog.
• Support item editing on photographs.
• Allow the user to select the desired view, albums or photos.

We will cover each of these topics in a separate section, in the same order as shown here.

14.5.2 DEFINING NEW COLUMNS

As you’ll recall, we defined the list of columns for our control using the Column-
Header Collection Editor dialog in Visual Studio .NET. Now that we need to display
different columns depending on what is displayed, this method no longer makes
sense. Instead, we will create the columns programmatically in the LoadAlbumData
method. Our new LoadPhotoData method we have yet to implement will define
the columns for displaying photographs.

The easiest way to add columns to a ListView control programmatically is
through the Columns property. The following steps remove the columns we created
in Visual Studio and will add them via the LoadAlbumData method.

CREATE THE ALBUM COLUMNS PROGRAMMATICALLY

 Action Result

1 In the MainForm.cs [Design]
window, remove the four
columns currently defined for
the Columns property.

How-to

Use the ColumnHeader
Collection Editor dialog.

Note: This is not strictly required since we clear the
contents of the list, including the column defini-
tions, as part of the next step. Reducing unneces-
sary clutter in your code is always a good idea, so
performing this step makes sense.

2 Modify the LoadAlbumData
method to initially clear the
existing contents of the control.

 private void LoadAlbumData(string dir)
 {
 listViewMain.Clear();

3 Reset the fields that track the
current album.

 _albumsShown = true;
 if (_album != null)
 {
 _album.Dispose();
 _album = null;
 }
474 CHAPTER 14 LIST VIEWS

The Columns property refers to a ColumnHeaderCollection object. This collec-
tion class includes an Add method that creates a new column for the control. One
version of this method simply accepts a ColumnHeader class instance. Our code uses
a slightly more convenient form, with the following signature:
 void Add(string columnText, int width, HorizontalAlignment align);

We can use this same method to add columns when photographs are displayed. The
following table summarizes the columns we will use for this purpose.

The following table defines constants for our new albums as well as the beginnings of
our LoadPhotoData implementation. This table continues our previous steps.

4 Define the columns for the
control before the album items
are loaded.

How-to

Use the Add method available
through the Columns property
for the control.

 // Define the columns
 listViewMain.Columns.Add("Name",
 80, HorizontalAlignment.Left);
 listViewMain.Columns.Add("Title",
 100, HorizontalAlignment.Left);
 listViewMain.Columns.Add("Pwd",
 40, HorizontalAlignment.Center);
 listViewMain.Columns.Add("Size",
 40, HorizontalAlignment.Right);

 // Load the albums into the control
 . . .
 }

CREATE THE ALBUM COLUMNS PROGRAMMATICALLY (continued)

 Action Result

Columns for displaying photographs

Column Text Description

0 Caption The caption for this photo.

1 Taken The date the photograph was taken.

2 Photographer The photographer for this photo.

3 File Name The fully qualified image file name.

CREATE THE PHOTO COLUMNS PROGRAMMATICALLY

 Action Result

5 In the MainForm.cs code
window, create constants to
hold the positions of the
columns when photographs are
displayed.

 private const int PhotoCaptionColumn = 0;
 private const int PhotoDateTakenColumn = 1;
 private const int PhotoPhotographerColumn = 2;
 private const int PhotoFileNameColumn = 3;

6 Add a private LoadPhotoData
method.

 private void LoadPhotoData(PhotoAlbum album)
 {
ITEM ACTIVATION 475

This code defines the four columns required to display photographs. We are now
ready to populate the list view with the photos from a selected album.

14.5.3 POPULATING THE LISTVIEW

This section completes the implementation of the LoadPhotoData method by cre-
ating the ListViewItem objects for the control. The following steps add an item to
our control for each Photograph in the album, and define the subitems associated
with each item.

In the course of implementing support for photographs, we will need the Pho-
tograph object itself. We had a similar requirement for PhotoAlbum objects, and
were able to use the file name setting to load the album into memory. While the file
name is available for our photos as well, our PhotoAlbum class does not provide a
good mechanism for locating a Photograph in an album based on the file name.

The most convenient means for locating a specific photograph is based on the
index. What we need, then, is a way to look up the index. This value will be stored
in the Tag property for our list view item, in a manner similar to how we used this
property for photo albums.

Of course, an alternate technique here would be to derive a new class from the
ListView class as we discussed at the end of section 14.4. The Tag property is fine
for our purposes. In your application, you can use whichever technique seems appro-
priate for your current and expected requirements.

7 To implement this method, clear
the list and set the album fields.

 listViewMain.Clear();
 if (_album != null && album != _album)
 _album.Dispose();
 _albumsShown = false;
 _album = album;

Note: Disposing and assigning the _album field as
shown is not strictly required here. This will come in
useful in chapter 15 when we call this method with
an album other than the default _album used in this
chapter.

8 Define the columns required for
displaying photographs.

 // Define the columns
 listViewMain.Columns.Add("Caption",
 100, HorizontalAlignment.Left);
 listViewMain.Columns.Add("Taken",
 70, HorizontalAlignment.Center);
 listViewMain.Columns.Add("Photographer",
 100, HorizontalAlignment.Left);
 listViewMain.Columns.Add("File Name",
 200, HorizontalAlignment.Left);
 }

CREATE THE PHOTO COLUMNS PROGRAMMATICALLY (continued)

 Action Result
476 CHAPTER 14 LIST VIEWS

This code initializes the control with the contents of the open album. Note in partic-
ular how we define the Tag property to hold the integer index. Since the Tag prop-
erty holds an object instance, this line boxes the integer value in order to store it as
a reference type. Boxing was mentioned in chapter 5, and is discussed in detail in
appendix A.

You can compile and run this code if you like. Double-click on an album to acti-
vate it and display the contained photographs. Most of the support for photographs
is still missing, so you’ll find it rather easy to cause an error.

The remainder of this section implements the support required for both albums
and photographs to coexist in our ListView control. We begin with column sorting.

14.5.4 SORTING A COLUMN (AGAIN)

Our users will want to sort the columns for both the album and photograph display,
so we need to make some changes in our MyListViewComparer class to enable this
support. Of key importance is the ability to tell which type of object we are compar-
ing. When comparing photos, we also need to know the PhotoAlbum they come

ADD THE PHOTOS IN AN ALBUM TO THE LIST

 Action Result

1 Modify the LoadPhotoData
method to simply return if the
given album is null or empty.

 private void LoadPhotoData(PhotoAlbum album)
 {
 . . .
 // Handle null or empty album
 if (album == null || album.Count == 0)
 return;

2 Iterate over the photographs in
the album.

How-to

Use a for loop to permit access
to the index values.

 // Load the photo items
 for (int i = 0; i < album.Count; i++)
 {

3 Create a new ListViewItem for
each photo.

 Photograph photo = album[i];
 ListViewItem item = new ListViewItem();

4 Assign the caption as the item
label, and the image list index to
our small photograph image.

 item.Text = photo.Caption;
 item.Tag = i;
 item.ImageIndex = MainForm.PhotoIndex;

5 Add the subitem values. // Add the subitems
 item.SubItems.Add(photo.
 DateTaken.ToShortDateString());
 item.SubItems.Add(photo.Photographer);
 item.SubItems.Add(photo.FileName);

6 Add the new item to the control. listViewMain.Items.Add(item);
 }
 }

How-to

a. Use the short date format
for the Taken column.

b. Also place the photo’s index
value in a hidden subitem.
ITEM ACTIVATION 477

from. We can handle both requirements through a private album field. When the
album is null, we are comparing PhotoAlbum objects. When an album is assigned,
we are comparing Photograph instances.

Let’s add this field and update our Compare method to make use of this value.

Now all we have to do is implement the ComparePhotos method to compare two
Photograph items. Much of this will be similar to the CompareAlbums method.
The one difference is when we need to compare items using the Taken column. This
column holds a date value, so a string comparison is not appropriate. It turns out the
DateTime structure provides a Compare method for just this purpose.

We can use this method in the ComparePhotos method to our comparer class.

IDENTIFY THE TYPE OF OBJECT TO COMPARE

 Action Result

1 Locate the MyListViewComparer
class defined in the MainForm.cs
source file.

 private class MyListViewComparer
 : IComparer
 {
 . . .

2 Add a PhotoAlbum field and
corresponding property.

 PhotoAlbum _album = null;
 public PhotoAlbum CurrentAlbum
 {
 get { return _album; }
 set { _album = value; }
 }

3 Use this property to identify which
object to compare in the Compare
method.

Note: Since the label for both types
of items is a string, the existing
code for the non-Details case will
work for both objects.

 public int Compare(object a, object b)
 {
 . . .
 // Handle the nonDetails case
 if (ListView.View != View.Details)
 {
 return CaseInsensitiveComparer.
 Default.Compare(
 item1.Text, item2.Text);
 }

 if (CurrentAlbum == null)
 return CompareAlbums(item1, item2);
 else
 return ComparePhotos(item1, item2);
 }
 }
478 CHAPTER 14 LIST VIEWS

.

The last change required for column sorting is to update the CurrentAlbum prop-
erty for our comparer field whenever the contents of the ListView control are
refreshed. This ensures that our Compare implementation performs the proper com-
parison based on the contents of the control.

IMPLEMENT METHOD TO COMPARE TWO PHOTO ITEMS

 Action Result

4 Add a new ComparePhotos
method to the MyListView-
Comparer class.

 public int ComparePhotos
 (ListViewItem item1, ListViewItem item2)
 {
 ListViewItem.ListViewSubItem sub1;
 ListViewItem.ListViewSubItem sub2;

 switch (SortColumn)
 {

5 For the columns containing text
strings, use the default
comparer provided by the
CaseInsensitiveComparer
class.

 case MainForm.PhotoCaptionColumn:
 case MainForm.PhotoPhotographerColumn:
 case MainForm.PhotoFileNameColumn:
 sub1 = item1.SubItems[SortColumn];
 sub2 = item2.SubItems[SortColumn];
 return CaseInsensitiveComparer.
 Default.Compare(sub1.Text,
 sub2.Text);

6 For the Taken column, determine
the index into the album for each
photo.

 case MainForm.PhotoDateTakenColumn:
 // Find the indices into the album
 int index1 = (int)item1.Tag;
 int index2 = (int)item2.Tag;

7 Then determine the
corresponding DateTime value
for each photo.

 // Look up the dates for each photo
 DateTime date1
 = CurrentAlbum[index1].DateTaken;
 DateTime date2
 = CurrentAlbum[index2].DateTaken;

8 Use the Compare method
provided by the DateTime
structure to calculate the result.

 return DateTime.Compare(date1, date2);

9 Throw an exception if an
unrecognized column is
provided.

 default:
 throw new IndexOutOfRangeException(
 "unrecognized column index");
 }
 }

UPDATE THE CURRENTALBUM PROPERTY WHEN REQUIRED

 Action Result

10 Update the LoadPhotoData
method to assign the current
album to the comparer.

 private void LoadPhotoData(PhotoAlbum album)
 {
 . . .
 _albumsShown = false;
 _album = album;
 _comparer.CurrentAlbum = _album;
 . . .
 }
ITEM ACTIVATION 479

Our application can now sort both photographs and albums. Once again you can
compile and run the program if you are careful not to use any photograph functional-
ity we have not yet implemented. Our next task is the Properties dialog.

14.5.5 UPDATING THE PROPERTIES MENU

You may think we are moving through this code rather quickly, and you would be
right. While these changes are required as a result of our defined item activation
behavior, there are not a lot of new concepts to cover. This is especially true here. As a
result, we will simply run through the steps in the following table and then move on
to our final topic of editing the item label.

11 Update the LoadAlbumData
method to assign a null album
to the comparer.

 private void LoadAlbumData(string dir)
 {
 listViewMain.Clear();
 _comparer.CurrentAlbum = null;
 . . .
 }

UPDATE THE CURRENTALBUM PROPERTY WHEN REQUIRED (continued)

 Action Result

UPDATE THE CLICK HANDLER FOR THE PROPERTIES MENU

 Action Result

1 In the MainForm.cs code
window, update the Click event
handler for the Properties menu
to call a new DisplayPhoto-
Properties method when
photographs are shown in the
control.

 private void menuProperties_Click
 (object sender, System.EventArgs e)
 {
 if (listViewMain.SelectedItems.Count <= 0)
 return;

 ListViewItem item
 = listViewMain.SelectedItems[0];
 if (this._albumsShown)
 DisplayAlbumProperties(item);
 else
 DisplayPhotoProperties(item);
 }

2 Add the new DisplayPhoto-
Properties method.

 private void DisplayPhotoProperties
 (ListViewItem item)
 {

3 Determine the index of the
selected photo in the current
album.

Note: While the is keyword
works fine with integer types,
the as keyword can only be used
with reference types.

 if (!(item.Tag is int))
 return;

 int index = (int)item.Tag;

4 Assign the current position in the
album to this index.

 _album.CurrentPosition = index;
480 CHAPTER 14 LIST VIEWS

14.5.6 UPDATING LABEL EDITING

Updating the label for our photographs again does not use any new constructs, so we
will hurry through this code as well. As you’ll recall, the caption for each photograph
is displayed as the item label. We should note that the menuEditLabel_Click han-
dler does not require any changes, since this simply initiates the edit. The After-
LabelEdit event handler is where the new value is processed.

5 Display the properties dialog for
the photo.

 using (PhotoEditDlg dlg
 = new PhotoEditDlg(_album))
 {
 if (dlg.ShowDialog() == DialogResult.OK)
 {

6 If any changes were made in the
dialog, save the entire album to
disk.

Note: As you’ll recall, we permit
multiple photographs to be mod-
ified in the dialog. As a result,
the entire album must be saved
and reloaded into the control to
pick up any changes.

 // Save any changes made
 try
 {
 _album.Save(_album.FileName);
 }
 catch (Exception)
 {
 MessageBox.Show("Unable to save "
 + "changes to photos in album.");
 }

7 Reload the entire album into the
control to pick up the new
changes.

 // Update the list with any new settings
 LoadPhotoData(_album);
 }
 }
 }

UPDATE THE CLICK HANDLER FOR THE PROPERTIES MENU (continued)

 Action Result

UPDATE THE AFTERLABELEDIT EVENT HANDLER

 Action Result

1 In the MainForm.cs code
window, modify the After-
LabelEdit event handler to call
a new UpdatePhotoCaption
method to process an edit when
photographs are displayed.

 private void listViewMain_AfterLabelEdit
 (object sender, System.Windows.
 Forms.LabelEditEventArgs e)
 {
 if (e.Label == null)
 {
 // Edit cancelled by the user
 e.CancelEdit = true;
 return;
 }

 ListViewItem item =
 listViewMain.Items[e.Item];

 if (this._albumsShown)
 e.CancelEdit = !UpdateAlbumName(e.Label,
 item);
 else
 e.CancelEdit = !UpdatePhotoCaption(e.Label,
 item);
 }
ITEM ACTIVATION 481

One further change we can make here is to alter the text displayed in the correspond-
ing menu item. This will provide visual feedback to the user on which property they
are actually changing, especially when the Details view is not displayed.

2 Add the UpdatePhotoCaption
method to the MainForm class.

 private bool UpdatePhotoCaption
 (string caption, ListViewItem item)
 {

3 Make sure the new caption is
not empty.

 if (caption.Length == 0 || !(item.Tag is int))
 {
 MessageBox.Show("Invalid caption value.");
 return false;
 }

4 Determine the index for this
photograph.

 int index = (int)item.Tag;

5 Set the photograph’s caption to
the new value.

 _album[index].Caption = caption;

6 Save the album to store the new
value.

 try
 {
 _album.Save(_album.FileName);
 }
 catch (Exception)
 {
 MessageBox.Show("Unable to save new "
 + "caption to album file.");
 }

 return true;
 }

UPDATE THE AFTERLABELEDIT EVENT HANDLER (continued)

 Action Result

MODIFY THE TEXT DISPLAYED IN THE EDIT LABEL MENU

 Action Result

7 In the MainForm.cs [Design]
window, add a Popup event
handler for the menuEditLabel
menu.

 private void menuEdit_Popup
 (object sender, System.EventArgs e)
 {

8 Enable the contained menus
only if a single item is selected
in the view.

 menuEditLabel.Enabled
 = (listViewMain.SelectedItems.Count == 1);
 menuProperties.Enabled
 = (listViewMain.SelectedItems.Count == 1);

9 Set the menu’s text to “Name”
or “Caption” depending on
which type of object is displayed
in the list.

 if (this._albumsShown)
 menuEditLabel.Text = "&Name";
 else
 menuEditLabel.Text = "&Caption";
 }
482 CHAPTER 14 LIST VIEWS

14.5.7 REDISPLAYING THE ALBUMS

As a final change, we need to give our user the opportunity to redisplay the album
view. We may as well provide a menu to display the photo view as well, as an alterna-
tive to double-clicking on the album.

14.6 RECAP

This completes our discussion of the ListView class. In this chapter we discussed
list views in detail, and created a new MyAlbumExplorer interface to display the col-
lection of albums available in our default album directory. We supported all four pos-
sible views available in a ListView control, and provided support for column

ALLOW USER SELECTION OF THE KIND OF OBJECT TO DISPLAY

 Action Result

1 In the MainForm.cs [Design]
window, add three menu items
to the bottom of the View menu.

2 Add a Click handler for the
Albums menu.

 private void menuAlbums_Click
 (object sender, System.EventArgs e)
 {
 // Display albums in the list
 if (!_albumsShown)
 {
 LoadAlbumData(PhotoAlbum.DefaultDir);
 }
 }

3 Add a Click handler for the
Photos menu.

Note: This is the same as acti-
vating an album item.

 private void menuPhotos_Click
 (object sender, System.EventArgs e)
 {
 // Activate the selected album
 listViewMain_ItemActivate(sender, e);
 }

4 Update the Popup handler for
the View menu to enable or
disable the Photos menu as
appropriate.

 private void menuView_Popup
 (object sender, System.EventArgs e)
 {
 View v = listViewMain.View;
 . . .
 if (_albumsShown && listViewMain.
 SelectedItems.Count > 0)
 menuPhotos.Enabled = true;
 else
 menuPhotos.Enabled = false;
 }

Settings

Menu Property Value

separator Text -

Albums (Name) menuAlbums

Text &Albums

Photos (Name) menuPhotos

Text &Photos
RECAP 483

sorting, item selection, and label editing. We finished by implementing this same
support for the photos in an album, so that our application can display albums or
photographs in the control.

Along the way we looked at a number of classes provided to support this control,
most notably the ListViewItem, ListViewItem.ListViewSubItem, and Col-
umnHeader classes. We also examined the IComparer interface as a way to define
how two objects should be compared, and implemented a class supporting this inter-
face in order to sort the columns in our detailed view of the list.

The next chapter looks at a close cousin to the ListView class, namely the
TreeView control.
484 CHAPTER 14 LIST VIEWS

C H A P T E R 1 5

Tree views

15.1 Tree view basics 486
15.2 The TreeView class 486
15.3 Dynamic tree nodes 497

15.4 Node selection 505
15.5 Fun with tree views 513
15.6 Recap 524
In the previous chapter we created the MyAlbumExplorer application incorporating a
ListView control. This program presents the default set of photo albums available
and the collection of photographs contained within these albums.

In this chapter we extend this program to include a TreeView control in order
to present a more traditional explorer-style interface. Specific topics we will cover in
this chapter include the following:

• Exploring the TreeView class.
• Using the Splitter control to divide a container.
• Populating a tree with the TreeNode class, both in Visual Studio and pro-

grammatically.
• Selecting nodes in a tree.
• Editing the labels for a tree.
• Integrating a ListView and TreeView control into an application.

As we did for list views, we begin this chapter with a general discussion of tree views
and a discussion of the terms and classes used for this control.
485

15.1 TREE VIEW BASICS

The TreeView class is a close cousin of the ListView class. List views display a col-
lection as a list, while tree views display collections as a tree. Each item in a tree view
is called a tree node, or just a node. Tree nodes can contain additional nodes, called
child nodes, to arbitrary levels in order to represent a hierarchy of objects in a single
control. Various elements of a TreeView control are illustrated in figure 15.1.

The explorer-style interface shown in the figure and used by other applications such
as Windows Explorer is a common use of the TreeView and ListView classes. In
this chapter we build such an interface by extending the MyAlbumExplorer project
constructed in chapter 14.

15.2 THE TREEVIEW CLASS

The TreeView class is summarized in.NET Table 15.1. Like the ListView class,
this class inherits directly from the Control class, and provides an extensive list of
members for manipulating the objects displayed by the tree.

b
c

d

e

An icon taken from an
instance is

associated with each node.
ImageList

b

An alternate icon from the
I can be displayed
when a node is selected.
mageList

c

The class
represents a single
element, or node,
in the list.

TreeNodee

The primary text
associated with each
node is called the
node .label

d

Figure 15.1 The TreeView control automatically shows the entire label in a tool tip style for-

mat when the mouse hovers over a node, as was done for the “From the Walking Path” entry

in this figure.
486 CHAPTER 15 TREE VIEWS

A TreeView object is created much like any other control in Visual Studio .NET:
you simply drag the control onto the form. In our MyAlbumExplorer application, we
already have a ListView on our form, so it looks like all we need to add is a tree
view in order to support the interface shown in figure 15.2.

.NET Table 15.1 TreeView class

The TreeView class represents a control that displays a collection of labeled items as a tree-
style hierarchy. Typically an icon is displayed for each item in the collection to provide a graphi-
cal indication of the nature or purpose of the item. Items in the tree are referred to as nodes,
and each node is represented by a TreeNode class instance. This class is part of the Sys-
tem.Windows.Forms namespace, and inherits from the Control class. See .NET Table 4.1 on
page 104 for a list of members inherited by this class.

Public

Properties

CheckBoxes Gets or sets whether check boxes are displayed next to each
node in the tree. The default is false.

HideSelection Gets or sets whether a selected node remains highlighted
even when the control does not have focus.

ImageIndex Gets or sets an index into the tree’s image list of the default
image to display by a tree node.

ImageList Gets or sets an ImageList to associate with this control.

LabelEdit Gets or sets whether node labels can be edited.

Nodes Gets the collection of TreeNode objects assigned to the
control.

PathSeparator Gets or sets the delimiter used for a tree node path, and in
particular the TreeNode.FullPath property.

SelectedNode Gets or sets the selected tree node.

ShowPlusMinus Gets or sets whether to indicate the expansion state of
parent tree nodes by drawing a plus ‘+’ or minus ‘-‘ sign next
to each node. The default is true.

Sorted Gets or sets whether the tree nodes are sorted alphabetically
based on their label text.

TopNode Gets the tree node currently displayed at the top of the tree
view control.

Public

Methods

CollapseAll Collapses all the tree nodes so that no child nodes are visible.

GetNodeAt Retrieves the tree node at the specified location in pixels
within the control.

GetNodeCount Returns the number of top-level nodes in the tree, or the total
number of nodes in the entire tree.

Public

Events

AfterExpand Occurs after a tree node is expanded.

AfterLabelEdit Occurs after a tree node label is edited.

BeforeCollapse Occurs before a tree node is collapsed.

BeforeSelect Occurs before a tree node is selected.

ItemDrag Occurs when an item is dragged in the tree view.
THE TREEVIEW CLASS 487

15.2.1 CREATING A TREE VIEW

There is, in fact, an issue here with how a tree view and list view are arranged on the
form. The gray vertical bar in the middle of our interface is a special control called a
splitter to separate the two controls. We will talk about splitters in a moment. First,
let’s add a TreeView to our form and see what happens.

Set the version number for the MyAlbumExplorer application to 15.2.

Figure 15.2

A traditional explorer-style interface

displaying photo albums.

CREATING A TREE VIEW CONTROL

 Action Result

1 In the MainForm.cs [Design]
window, drag a TreeView
control onto the form and set its
properties.

2 Bring the list view to the top of
the z-order.

How-to: Right-click the List-
View control and select the
Bring to Front option.

3 Set the HideSelection
property in both the ListView
and the TreeView to false.

Note: This will highlight the selected object in both
controls even when these controls do not have the
focus.

Settings

Property Value

(Name) treeViewMain

Dock Left
488 CHAPTER 15 TREE VIEWS

So far, so good. We have a TreeView on the left and a ListView on the right. If you
run this program, you will see the interface shown in figure 15.3. The tree control is
on the left, and the list view on the right. We have not added any nodes to our tree yet,
but the photo albums from the default album directory appear in the list view as was
discussed in chapter 14. Note here that the ListView must be brought to the top of
the z-order in step 2 to ensure it is not obscured by the TreeView control.

TRY IT! Send the ListView control to the bottom of the z-order using the Send to
Back menu item. Run the application to see what happens. Because the con-
trols are placed on the form starting at the bottom of the z-order, the List-
View in this case fills the entire client window. The TreeView is then
docked to the left of the form. When the ListView is at the top, the
TreeView is docked first, and then the ListView fills the remaining area.

You will note that if you resize the form in figure 15.3, the size of the tree view does
not change. In addition, the line between the two controls cannot be dragged as is the
case in other explorer-style programs such as Windows Explorer.

We can enable this behavior by adding a Splitter control to our form. We will
do this next, after which we will look at populating our tree with some items.

15.2.2 USING THE SPLITTER CLASS

As a short aside to our discussion on tree views, the Splitter class is useful for divid-
ing all or part of a form or other container into two resizable sections. While some
readers may not consider a splitter control to be an advanced concept, it fits nicely into
our discussion of the MyAlbumExplorer application, so this is where it goes.

Typically a splitter provides separate areas for two collection or container con-
trols, normally one of the ListBox, ListView, TreeView, or Panel controls. An
overview of the Splitter class is given in .NET Table 15.2.

A splitter can appear horizontally or vertically. When docked to the top or bottom
of a container, it is a horizontal splitter; when docked to the left or right, it is a vertical

Figure 15.3

The ListView control here

works as before, just within a

smaller area.
THE TREEVIEW CLASS 489

splitter. We will create a vertical splitter in our MyAlbumExplorer application, and
then discuss how to turn this into a horizontal splitter.

The steps to create a vertical splitter are detailed in the following table.

Compile the application to see the splitter in action. Figure 15.4 shows our window
with the splitter dragged far to the right. The MinExtra property setting ensures that
the items in the ListView cannot be obscured by dragging the splitter all the way to
the right side of the window. The ListView can still disappear when the form is
resized, which we will fix in a moment.

.NET Table 15.2 Splitter class

The Splitter class represents a control that divides a container into two sections. Each sec-
tion contains a docked control, and the splitter permits the user to resize each section at run-
time. This class is part of the System.Windows.Forms namespace, and inherits from the
Control class. See .NET Table 4.1 on page 104 for a list of members inherited by this class.

Public

Properties

BorderStyle Gets or sets the border style for the control.

Cursor
(overridden from
Control)

Gets or sets the cursor for the control. A horizontal splitter
uses the HSplit cursor by default, while a vertical splitter
uses the VSplit cursor by default.

Dock
(overridden from
Control)

Gets or sets the docking style. A splitter must be docked
to one side of its container. This setting determines the
orientation, either vertical or horizontal, of the splitter. The
None and Fill values are not permitted. The position of
the splitter in the z-order determines the location of the
splitter within its container.

MinExtra Gets or sets the minimum size for the remainder of the
container, which is occupied by the subsequent control in
the docking order.

MinSize Gets or sets the minimum size for the target of the
splitter, which is the previous control in the docking order.

SplitPosition Gets or sets the position of the splitter, in pixels.

Public

Events

SplitterMoved Occurs when the splitter has moved.

SplitterMoving Occurs when the splitter is moving.

ADD A SPLITTER CONTROL

 Action Result

1 In the MainForm.cs [Design]
window, drag a Splitter object
onto the form.

2 Set the MinExtra property for
the splitter to 100.

Note: This ensures that the large icons in our List-
View will always be visible.

3 Move the ListView control to
the front of the z-order.

The window looks much the same as before. The
difference occurs when the application is executed.
490 CHAPTER 15 TREE VIEWS

Before we make some additional changes to our application, let’s talk briefly about
how the splitter is positioned. Here is an excerpt of the InitializeComponent
method generated by Visual Studio .NET for our form.
 private void InitializeComponent()
 {
 . . .
 this.listViewMain.Dock = System.Windows.Forms.DockStyle.Fill;
 . . .
 this.treeViewMain.Dock = System.Windows.Forms.DockStyle.Left;
 this.treeViewMain.Size = new System.Drawing.Size(100, 253);
 . . .
 //
 // splitter1
 //
 this.splitter1.Location = new System.Drawing.Point(100, 0);
 this.splitter1.MinExtra = 100;
 this.splitter1.Size = new System.Drawing.Size(3, 253);
 . . .
 //
 // MainForm
 //
 this.ClientSize = new System.Drawing.Size(392, 253);
 this.Controls.AddRange(new System.Windows.Forms.Control[] {
 this.listViewMain,
 this.splitter1,
 this.treeViewMain});
 . . .
 }

In the AddRange call made within this code, note how the Splitter control
“splits” the Control array added to the Controls property for the form. This
establishes the proper z-order for the form so that the controls appear properly. We
can change this to a vertical splitter by changing the Dock property for both the
Splitter and the TreeView controls to DockStyle.Top. Visual Studio .NET

Figure 15.4

The splitter control permits the

user to resize the display areas as

required for the specific contents.
THE TREEVIEW CLASS 491

automatically adjusts the Size property for each control to accommodate the hori-
zontal orientation.

While this is not part of our final application, these changes are shown in the fol-
lowing code. The corresponding application window appears in figure 15.5.
 private void InitializeComponent()
 {
 // Changes to configure the application with a horizontal splitter
 // (not part of our final application)
 . . .
 this.listViewMain.Dock = System.Windows.Forms.DockStyle.Fill;
 . . .
 this.treeViewMain.Dock = System.Windows.Forms.DockStyle.Top;
 this.treeViewMain.Size = new System.Drawing.Size(392, 100);
 . . .
 //
 // splitter1
 //
 this.splitter1.Dock = System.Windows.Forms.DockStyle.Top;
 this.splitter1.Location = new System.Drawing.Point(100, 0);
 this.splitter1.MinExtra = 100;

 this.splitter1.Size = new System.Drawing.Size(392, 3);
 . . .
 }

If you make these changes in your code, make certain you undo them before continu-
ing, as we would like to have a vertical splitter in our final application. Let’s get back
to our TreeView object and add some nodes to this control.

15.2.3 USING THE TREENODE CLASS

Now that the list and tree views on our form are separated by a splitter control, we
will get back to the tree view itself. Tree views contain nodes, which may contain
other nodes, which may contain still other nodes, and so forth. Each node in the tree
is represented by a TreeNode object. This class is summarized in .NET Table 15.3.
In the Windows Explorer application, for example, each directory is represented as a
tree node, and may contain other directories or files.

Figure 15.5

This figure displays a

horizontal splitter be-

tween a tree view and

list view control (not our

approach).
492 CHAPTER 15 TREE VIEWS

.NET Table 15.3 TreeNode class

The TreeNode class represents a marshal by reference object that acts as an element, or a
node, within a TreeView control. A TreeNode object can contain other nodes to represent a
hierarchy of objects within a tree view. Contained nodes are called child nodes. A top-level node
in a TreeView object is called a root node of the tree. Each TreeNode object can be contained
by exactly one TreeView or TreeNode object. This class is part of the System.Win-
dows.Forms namespace, and inherits from the System.MarshalByRefObject class.

Public

Constructors

TreeNode Initializes a new TreeNode instance.

Overloads

TreeNode(string label);
TreeNode(string label,
 TreeNode[] childNodes);
TreeNode(string label,
 int imageIndex,
 int selectedImageIndex);

Public

Properties

FirstNode Gets the first child node contained by this node.

ImageIndex Gets or sets an index into the tree’s image list of the
default image to display for this node.

Index Gets the position of this node within the Nodes collection
of the containing TreeView or TreeNode.

IsEditing Gets whether this node is currently being edited.

IsExpanded Gets whether the children of this node are currently
displayed.

IsSelected Gets whether this node is currently selected.

IsVisible Gets whether this node is currently visible in the
containing tree view.

NextVisibleNode Gets the first subsequent child, sibling, or other node
visible in the containing tree view control.

NodeFont Gets or sets the Font used to display the label text for this
node.

Nodes Gets the collection of TreeNode objects assigned to this
node.

Parent Gets the TreeNode object containing this node, if any.

PrevNode Gets the previous tree node in the Nodes collection
containing this node.

SelectedImage-
Index

Gets or sets an index into the tree’s image list of the image
to display by this node when the node is selected.

Tag Gets or sets an object to associate with this tree node.

Text Gets or sets the text displayed in the label for this node.

Public

Methods

BeginEdit Initiates an edit of this node’s label.

Collapse Ensures that no children of this node are currently displayed.

ExpandAll Expands all tree nodes contained by this node.

Toggle Toggles the tree node between the expanded or collapsed
state, based on the IsExpanded setting.
THE TREEVIEW CLASS 493

In our tree view for the MyAlbumExplorer application, we would like to represent
each album as a node in the tree, with each album containing a node for each photo-
graph in that album. Since albums can appear in any directory, we might also wish to
indicate where a set of albums is located. We will do this by generating a tree struc-
ture similar to the one shown in figure 15.6. This tree was generated in Visual Studio
to illustrate the hierarchy we will employ. The ListView control in this figure is
totally unrelated to the contents of our tree. This is not what we ultimately want, but
it is okay for now.

As an introduction to tree nodes, let’s create the structure shown in figure 15.6 in
Visual Studio .NET. The following table details the steps required.

Figure 15.6

In the TreeView, note how

the selected album employs

a different icon than the un-

selected one

CREATE TREE NODES IN VISUAL STUDIO

 Action Result

1 In the MainForm.cs [Design]
window, set the ImageList
property of the tree view to use
the existing imageListSmall
component already associated
with the form.

2 Set default index values for
nodes in the tree.

Settings

Property Value

ImageIndex 1

SelectedImageIndex 4
494 CHAPTER 15 TREE VIEWS

3 Display the TreeNode Editor
dialog box for the control.

How-to

Click the … button for the Nodes
entry in the Properties window,
as shown in the graphic for
steps 1 and 2.

4 Create a top-level node for the
tree.

How-to

Click the Add Root button.

A top-level Default Albums node appears in the TreeNode
Editor. This node is shown in the graphic for step 6.

5 Add three child nodes for the
Default Albums node.

How-to

Add each node by clicking the
Add Child button while the
Default Albums node is
selected.

Both nodes appear using the default indexes.

Note: When you select a node, notice how the
selected image assigned to the node is displayed in
the tree.

CREATE TREE NODES IN VISUAL STUDIO (continued)

 Action Result

Settings

Property Value

Label Default Albums

Image books image

Selected Image books image

Settings

Node Property Value

First Label Album 1

Second Label Album 2

Third Label Album 3
THE TREEVIEW CLASS 495

The new nodes appear in the designer window, and are present as we saw in
figure 15.6. Run the program and note how the image changes when each node is
selected. Also note the plus and minus signs that appear to indicate whether a node is
expanded or collapsed.

Let’s take a look at the code generated in the InitializeComponent method.
The assignment of the Nodes property is shown, reformatted to be a bit more readable
than the code that is generated by Visual Studio.
 this.treeViewMain.Nodes.AddRange(new System.Windows.Forms.TreeNode[]
 {
 new System.Windows.Forms.TreeNode("Default Albums", 5, 5,
 new System.Windows.Forms.TreeNode[]
 {
 new System.Windows.Forms.TreeNode("Album 1",
 new System.Windows.Forms.TreeNode[]
 {
 new System.Windows.Forms.TreeNode("Photo 1", 0, 3)
 }),
 new System.Windows.Forms.TreeNode("Album 2"),
 new System.Windows.Forms.TreeNode("Album 3")
 })
 });

This code uses various forms of the TreeNode constructor to create the nodes in the
tree. If you look carefully, you will realize that the Nodes property for the tree contains
a single entry, our root Default Albums node. This root node is created to contain an
array of three TreeNode objects, namely the Album 1, Album 2, and Album 3 nodes.

6 Add a child node for the Album 1
node.

How-to

Click the Add Child button while
the Album 1 node is selected.

7 Click the OK button to save the
new nodes.

The nodes are displayed in the designer window.

CREATE TREE NODES IN VISUAL STUDIO (continued)

 Action Result

Settings

Property Value

Label Photo 1

Image The normal face
image

Selected Image The smiley face
image
496 CHAPTER 15 TREE VIEWS

Of these, the first Album 1 node contains a single TreeNode object representing the
Photo 1 node.

The point here is to see firsthand how TreeNode objects are created and appear
on the form. In the next section we will create nodes for our actual albums and pho-
tographs programmatically. The TreeNode Editor we used here is useful for creating
a fixed set of nodes, or for creating the top-level nodes for a tree. For example, in a
program with a large number of application settings, you might organize these settings
into a hierarchy and display them in a tree view. The user could then interact with the
tree to modify the application’s settings. In this case, the TreeView.CheckBoxes
property might be useful to enable or disable each setting via a check box.

15.3 DYNAMIC TREE NODES

In this section we will look at programmatically creating and modifying the set of tree
nodes associated with a tree view control. We have already decided to display a top-
level “Default Albums” node, under which the albums in the default album directory
will be displayed. Within each album the set of photos in the album will appear. The
result should look something like figure 15.7. This section will focus on populating
the tree view with the appropriate set of tree nodes. Section 15.4 will examine how to
coordinate the contents of our TreeView and ListView controls.

To make this change, we will first create some index constants for use when
accessing our image list. Once this is done, we will look at how to create the album
nodes and photograph nodes in code.

15.3.1 ASSIGNING INDEX CONSTANTS

Before we talk about how to create this tree, recall that we created constants for the
image indices in chapter 14. Figure 15.7 shows the closed book icon for each unse-
lected album, and the open book icon for the selected “leeds” album. Let’s create

Figure 15.7

A TreeView automatically displays

horizontal and vertical scroll bars as

required. Note that the contents of

the TreeView and ListView controls

are not yet synchronized.
DYNAMIC TREE NODES 497

some constants for the remaining images in our ImageList objects so that we can
use them in this section.

This is done with the following step.

Set the version number of the MyAlbumExplorer application to 15.3.

With these constants in place, we are ready to discuss adding the actual albums to our tree.

15.3.2 CREATING THE ALBUM NODES

The proper way to add nodes to a tree depends somewhat on the size of a tree. For a
small set of nodes, it makes sense to add the entire hierarchy of nodes at one time,
and then allow the control to manage the nodes as they are expanded and collapsed
by the user. For a large hierarchy, adding a huge number of nodes can use up a lot of
memory. Imagine if the Windows Explorer program created a TreeNode object for
every directory and file on your computer. This would be a lot of nodes on most
computers.

Instead, applications typically add only the nodes a user initially requires, and
then insert additional nodes based on the user’s actions. This saves both time and
memory, since less work is required to initialize the tree when the application starts,
and memory is only allocated as new nodes are added to the tree.

In our application, the number of albums present could be few or many. We
could create the entire hierarchy all at once as shown in listing 15.1. This requires that
we open each album file and iterate through every photograph in every album. Since
this could be expensive for a large number of albums, we will not use this method nor
discuss this code in any detail. Hopefully, it is instructive to see how the entire hier-
archy might be created in a single method.

 private void InitTreeData()
 {
 treeViewMain.BeginUpdate();
 treeViewMain.Nodes.Clear();

 // Create the top-level node
 TreeNode defaultRoot = new TreeNode("Default Albums",
 AlbumDirectoryIndex, AlbumDirectoryIndex);
 treeViewMain.Nodes.Add(defaultRoot);

ASSIGN IMAGE INDEX CONSTANTS

 Action Result

1 In the MainForm.cs code
window, update the image index
constants to account for
unselected and selected items.

 private const int PhotoIndex = 0;
 private const int AlbumIndex = 1;
 private const int ErrorIndex = 2;
 private const int SelectedPhotoIndex = 3;
 private const int SelectedAlbumIndex = 4;
 private const int AlbumDirectoryIndex = 5;

Listing 15.1 Create the entire set of tree nodes required (not our approach)
498 CHAPTER 15 TREE VIEWS

 // Create a node for each album file
 foreach (string s in Directory.GetFiles(
 PhotoAlbum.DefaultDir, "*.abm"))
 {
 String baseName = Path.GetFileNameWithoutExtension(s);
 TreeNode albumNode = new TreeNode(baseName)
 defaultRoot.Nodes.Add(albumNode);

 // Open the album
 PhotoAlbum album = OpenAlbum(s);
 if (album == null)
 {
 // Bad album, so adjust the image index settings
 albumNode.ImageIndex = ErrorIndex;
 albumNode.SelectedImageIndex = ErrorIndex;
 continue;
 }

 // Create a node for each photo in this album
 foreach (Photograph p in album)
 {
 string text = album.GetDisplayText(p);
 TreeNode photoNode = new TreeNode(text,
 PhotoIndex, SelectedPhotoIndex);
 albumNode.Nodes.Add(photoNode);
 }

 album.Dispose();
 }

 treeViewMain.EndUpdate();
 }

Instead, we will take an “as-needed” approach to our tree nodes. Initially we will cre-
ate only the album nodes, and then add the photographs for an album only when the
user expands that album’s node.

To begin this process, we need to modify our OnLoad method to create the initial
tree structure.

MODIFY THE ONLOAD METHOD

 Action Result

1 In the MainForm.cs code
window, update the OnLoad
method to initialize the tree view
control before the form is
displayed.

 protected override void OnLoad(EventArgs e)
 {
 . . .

 // Initialize the tree and list controls
 InitTreeData();
 LoadAlbumData(PhotoAlbum.DefaultDir);
 }
DYNAMIC TREE NODES 499

The InitTreeData method will clear the nodes we created with the TreeNode Edi-
tor and add the top-level default node and set of albums from the default album
directory. This table continues the steps from the previous table.

ADD THE INITTREEDATA METHOD

 Action Result

2 Add an InitTreeData method to the
MainForm.cs code window.

 private void InitTreeData()
 {

3 To implement this method, first clear
any existing nodes in the tree view
control.

Note: The BeginUpdate method
should be used when adding multi-
ple nodes to a TreeView control so
that it will not repaint its window
while the new nodes are added.

 treeViewMain.BeginUpdate();
 treeViewMain.Nodes.Clear();

4 Create the top-level node for the tree. // Create the top-level node
 TreeNode defaultRoot
 = new TreeNode("Default Albums",
 AlbumDirectoryIndex,
 AlbumDirectoryIndex);
 defaultRoot.Tag = PhotoAlbum.DefaultDir;
 treeViewMain.Nodes.Add(defaultRoot);
 treeViewMain.SelectedNode = defaultRoot;

5 Create a node for each album file in
the default album directory.

 foreach (string s in Directory.GetFiles(
 PhotoAlbum.DefaultDir, "*.abm"))
 {

6 Create a new TreeNode for this
album using the base file name as the
label text for the node.

 // Create a node for this album
 String baseName = Path.
 GetFileNameWithoutExtension(s);
 TreeNode albumNode
 = new TreeNode(baseName,

7 Create a child node in each album
node with the label text “child.”

 new TreeNode[] {
 new TreeNode("child")
 });

8 Set the Tag property for the node to
contain the album file path.

 albumNode.Tag = s;

Note: We will use the Tag property to identify
the album related to a specified node when
handling events for the TreeView control.

9 Add the new node to the collection of
nodes under the default root node.

 defaultRoot.Nodes.Add(albumNode);
 }

10 Allow the TreeView to repaint by
calling the EndUpdate method.

 treeViewMain.EndUpdate();
 }

How-to

a. Use the label “Default Albums.”
b. Set the image indices to use the

album directory icon.
c. Add the node as a root of the tree.
d. Select this node by default.
500 CHAPTER 15 TREE VIEWS

This code uses a few tricks to ensure that our application will perform as expected.
When a new album node is created, a single child node is added to ensure that the
TreeView control will allow the node to be expanded.
 TreeNode albumNode = new TreeNode(baseName,
 new TreeNode[] { new TreeNode("child") });

Without this child, the control would presume that our node has no children, and
would not display a plus sign next to the album to permit the user to expand the
node. We will make use of this in the next section, where we implement the expan-
sion of an album node. This line simply ensures that the user can initiate this step.

We also assign the Tag property for each node to contain the file path corre-
sponding to the node. For the root node, this path is the default album directory. For
each album, this path is the fully qualified album file name.
 . . .
 defaultRoot.Tag = PhotoAlbum.DefaultDir;

 foreach (string s in Directory.GetFiles(. . .)
 {
 . . .
 albumNode.Tag = s;
 defaultRoot.Nodes.Add(albumNode);
 }

This setting will permit us to identify the object corresponding to a given node while
processing a user action on behalf of the tree view. Like other Tag properties we have
seen for .NET, this property can be set to any object instance.

Notice as well that we use the default image index and selected image index for
all album files. Since we do not open the corresponding PhotoAlbum during our ini-
tialization step, we have no way to know which albums can be opened and which will
generate an error. We start by assuming that all albums can be opened, and will update
the image index values if we discover any problems.

It is also worth noting that using the Tag property as we do in the previous code
is not always a practical solution. Another common tactic, especially in more complex
applications, is to derive a new class from the TreeNode class, and use this new class
to populate the tree. This alternate approach can encapsulate node-specific function-
ality in the derived class, and can improve the maintenance and readability of the
resulting code.

Compile and run your application to verify that the albums appear in the tree.
Our next topic is the insertion of photographs when the user expands an album node.

15.3.3 CREATING THE PHOTOGRAPH NODES

So far our TreeView control displays the albums from the default album directory
during start-up. We created a default child node within each album to permit the user
to expand these nodes. The next step is to handle this expansion and replace the
default child node with the set of photos in the album.
DYNAMIC TREE NODES 501

There are a number of ways tree nodes can be expanded and collapsed. These
include the following:

• From the mouse. The user can double-click on a tree node to toggle between
expand and collapse operations. When the ShowPlusMinus property is
true, a click on a plus ‘+’ sign will expand the node while a click on a minus
‘–’ sign will collapse a node.

• From the keyboard. The user can press the right arrow key to expand the
selected node in the tree, and the left arrow key to collapse the selected node.

• From code. The TreeNode class includes an Expand method to expand the
node, a Collapse method to collapse the node, and a Toggle method to
switch the node to the opposite of its current state. The TreeView class
includes the ExpandAll and CollapseAll methods to expand or collapse
all nodes in the tree.

In addition, the TreeNode.EnsureVisible method will expand nodes as required
to have the node appear within the containing TreeView control.

Regardless of how a node is expanded or collapsed, the BeforeExpand, After-
Expand, BeforeCollapse, and AfterCollapse events occur in the TreeView
class for each node as it alters its state. The before events receive a TreeViewCan-
celEventArgs class instance as their event parameter, while the after events receive
a TreeViewEventArgs class instance. The TreeViewCancelEventArgs class is
summarized in .NET Table 15.4. The TreeViewEventArgs class provides the same
two Action and Node properties shown in the table, but inherits from the Sys-
tem.EventArgs class rather than the CancelEventArgs class. The CancelEv-
entArgs class is discussed in chapter 8.

Let’s get back to our application and make use of some of these constructs. We would
like to insert a set of nodes for the photos in an album whenever the album node is
expanded. We can do this by handling the BeforeExpand event for our tree.

.NET Table 15.4 TreeViewCancelEventArgs class

The TreeViewCancelEventArgs class is a CancelEventArgs object that contains event
data for events in the TreeView class that occur before an operation takes place. The event
handler receiving this class has the opportunity to cancel the operation by setting the inher-
ited Cancel property to true. This class is part of the System.Windows.Forms namespace,
and inherits from the System.ComponentModel.CancelEventArgs class.

Public Properties

Action Gets the TreeViewAction enumeration member
representing the action that caused this event to occur.

Node Gets the TreeNode object that is the target of the current
operation.
502 CHAPTER 15 TREE VIEWS

Before we actually do this, a utility method to open a PhotoAlbum using a given
album node will turn out to be useful here and later on in the chapter. We will create
this method first.

With this method in place, we can create a BeforeExpand event handler for our
TreeView control. The following table continues the previous steps to create this
handler.

CREATE AN OPENTREEALBUM METHOD

 Action Result

1 In the MainForm.cs code window,
create a new OpenTreeAlbum method
that accepts a TreeNode object and
returns an album.

 private PhotoAlbum OpenTreeAlbum
 (TreeNode node)
 {

2 Begin this method by opening the
album associated with the node.

How-to

Use the OpenAlbum method created in
chapter 14.

 string s = node.Tag as string;
 PhotoAlbum album = OpenAlbum(s);

3 Update the image index values for this
node.

 if (album == null)
 {
 // Unable to open album
 node.ImageIndex = ErrorIndex;
 node.SelectedImageIndex = ErrorIndex;
 }
 else
 {
 // Album opened successfully
 node.ImageIndex = AlbumIndex;
 node.SelectedImageIndex
 = SelectedAlbumIndex;
 }

4 Return the result of the OpenAlbum
call.

 return album;
 }

How-to

a. If the album cannot be opened,
use the error icon for both images.

b. Otherwise, use the standard
album images.

HANDLE THE BEFOREEXPAND EVENT

 Action Result

5 In the MainForm.cs [Design] window,
add a BeforeExpand event handler
for the TreeView control.

 private void treeViewMain_BeforeExpand
 (object sender, System.Windows.
 Forms.TreeViewCancelEventArgs e)
 {
 TreeNode node = e.Node;
DYNAMIC TREE NODES 503

This code returns fairly quickly if the node does not represent an album. Before an
album node is expanded, this code adjusts the node and its contents for one of three
possible situations:

1 If the album cannot be opened, then the ErrorIndex constant is assigned to
the ImageIndex and SelectedImageIndex properties via the OpenTree-

6 To implement this handler, see if the
expanding node is an album.

 string s = node.Tag as string;
 if (s == null
 || (Path.GetExtension(s) != ".abm"))
 {
 // Not an album node
 return;
 }

7 Clear the existing contents of the
node.

 // Found an album node
 node.Nodes.Clear();

8 Open the corresponding PhotoAlbum
object for this node.

 using (PhotoAlbum album
 = OpenTreeAlbum(node))
 {

Note: Recall that in chapter 5 we supported
the IDisposable interface in our PhotoAlbum
class, which allows us to employ the using
statement here.

9 If the album could not be opened or
is empty, then cancel the operation.

 // Cancel if null or empty album
 if (album == null || album.Count == 0)
 {
 e.Cancel = true;
 return;
 }

10 Otherwise, enumerate through the
Photograph objects in the album to
update the contents of the album
node.

 // Add a node for each photo in album
 treeViewMain.BeginUpdate();
 foreach (Photograph p in album)
 {

11 Create a new TreeNode for this
photo.

Note: Set the default and selected
image index for the node to use the
appropriate photograph icon.

 // Create a new node for this photo
 TreeNode newNode
 = new TreeNode(
 album.GetDisplayText(p),
 MainForm.PhotoIndex,
 MainForm.SelectedPhotoIndex);

12 Assign the file path for the photo to
the Tag property of the new node.

 newNode.Tag = p.FileName;

13 Add the new node to the Nodes
collection of the expanding tree node.

 node.Nodes.Add(newNode);
 }
 treeViewMain.EndUpdate();
 }
 }

HANDLE THE BEFOREEXPAND EVENT (continued)

 Action Result

How-to

a. Convert the Tag property for the
node to a string.

b. See if this string has an album file
extension.

c. If not, simply return.
504 CHAPTER 15 TREE VIEWS

Album method. The Nodes collection is cleared and the expand operation is
cancelled.

2 If the album is opened and found to be empty, then the Nodes collection is
cleared and the expand operation is cancelled.

3 If the album is opened and found to be nonempty, then the existing Nodes col-
lection is replaced with a collection of TreeNode objects based on the photo-
graphs in the album.

Note that we once again use the Tag property to hold the file path, this time for the
Photograph object’s file name. This will come in useful when we look at node selec-
tion in the next section.

Compile and run the program to exercise our new event handler. Try to repro-
duce each of these three possibilities to see the result. Also note how the icon for the
photograph nodes differs when the node is selected.

TRY IT! Handle the AfterCollapse event for the tree to clear the collection con-
tained in an album node. This event handler should again use the Tag
property for the node to determine if the node represents an album. When
an album node is collapsed, call the Clear method on its Nodes collection
and recreate the default “child” node so the album can be expanded later on.

Of course, a more complex tree hierarchy will require nodes at various levels of the
tree to expand and collapse depending on their requirements. The code we created
here is for a three-level tree, but can be extended to support more complicated struc-
tures. Once again it is worth mentioning that the use of the Tag property works well
in our application since there are only three types of objects. For a more complex tree
view, consider creating one or more new classes based on the TreeNode class.

So far we have not worried about synchronizing the contents of our ListView
and TreeView controls. In the next section we finally take up this topic while dis-
cussing the selection of tree nodes.

15.4 NODE SELECTION

A node in a tree view is selected whenever the user clicks on the node with the mouse.
In our application, the tree nodes correspond to albums and photographs that can be
displayed in the ListView area of the form. Whenever a user selects a node, the con-
tents of that node should be displayed in the list view.

Such behavior is typical of applications that employ a TreeView control. The
nodes in the tree contain or refer to other data that is or can be displayed on the form.
Whenever a new tree node is selected, the data displayed must be updated as well. For
example, in Windows Explorer, the tree view contains directories,1 while the list view
contains files contained in these directories. When the user selects a directory entry
from the tree view, the contents of that directory are displayed in the list view of the
window. The reverse is also true. When the user double-clicks on a directory in the
NODE SELECTION 505

list view, that directory is shown in the tree view and its contents are displayed in the
list view.

In this section we will look at how to implement this behavior in our MyAl-
bumExplorer application. This will link up our TreeView and ListView controls
so they work together and present a consistent interface to the user.

These changes come in two flavors. First there are changes to ensure that the
ListView is properly updated when the TreeView changes. Next there are changes
to ensure that the TreeView is properly updated when the ListView changes. All
of these updates will be driven by the selection of a tree view node using the Select-
edNode property of the TreeView control. Figure 15.8 shows our application with
an album selected in the tree view and the corresponding collection of photographs
displayed in the list view.

We will begin these changes by updating our form when a node is selected in our
TreeView control.

15.4.1 SUPPORTING NODE SELECTION

As we saw for the expand and collapse operations, there are two events associated
with node selection. The BeforeSelect event occurs before the node is selected in
the control, and receives a TreeViewCancelEventArgs instance containing the
event data. The AfterSelect event occurs after the node has been selected, and
receives a TreeViewEventArgs instance.

1 It also contains disks, the desktop, the control panel, and other objects. For the purposes of our exam-
ple, we can pretend that it contains only directories.

Figure 15.8 In this figure, the TreeView and ListView controls are finally

coordinated.
506 CHAPTER 15 TREE VIEWS

The BeforeSelect event is useful when you may wish to cancel a selection based
on the state or other settings related to a given node. Since we have no need to do this
here, we will use the AfterSelect event to update the ListView control based on
the selected node. The following table summarizes the types of nodes in our tree, how
to identify each type, and what the ListView control should contain for each type.

We can use this information to implement our event handler. The steps required are
described by the following table.

Set the version number of the MyAlbumExplorer application to 15.4.

Contents of ListView for each type of TreeNode

TreeNode Type How to identify this type What to show in the ListView

Top-level node The parent node is null. The collection of albums.

Album node The associated file has an album
file extension.

The collection of photos in this album.

Photograph
node

The node is not a top-level or an
album node.

Nothing for now. Later we will draw the actual
photograph associated with this node.

IMPLEMENT A HANDLER FOR THE AFTERSELECT EVENT

 Action Result

1 In the MainForm.cs [Design] window,
add an AfterSelect event handler for
the TreeView control.

 private void treeViewMain_AfterSelect
 (object sender, System.Windows.
 Forms.TreeViewEventArgs e)
 {

2 Obtain the file name associated with the
selected node.

 TreeNode node = e.Node;
 string fileName = node.Tag as string;

3 If the file name string is null, throw an
exception.

Note: This should not happen, and indi-
cates that something is wrong.

 if (fileName == null)
 throw new ApplicationException
 ("selected tree node has "
 + "invalid tag");

4 If the node is a top-level node, display
the albums associated with this node in
the list view.

 if (node.Parent == null)
 {
 // Top-level node
 LoadAlbumData(fileName);
 }

5 If the node is an album node, display the
photographs associated with the album
in the list view.

 else if (Path.GetExtension(fileName)
 == ".abm")
 {
 // Album node selected
 PhotoAlbum album
 = OpenTreeAlbum(node);
 LoadPhotoData(album);
 }

6 Otherwise, the node must be a
photograph node.

 else // must be a photograph
 {
 // Just clear the list for now.
 listViewMain.Clear();
 }
 }
NODE SELECTION 507

As you can see, we take advantage of the LoadAlbumData and LoadPhotoData
methods implemented in chapter 14. By encapsulating our load functionality in a
method, we are able to reuse the methods here with no changes. Both of these meth-
ods are based on a file path from which to load the data, and we make use of this fact
here to specify the appropriate data associated with the selected tree node. For a top-
level node this is an album directory. For an album node this is an album file which is
loaded as a new PhotoAlbum object. For a photograph node, this is the image file,
although we do not make use of this fact here.

Astute readers will realize that there is some inefficiency here since we have sep-
arated the logic for updating our two views. For instance, when an album node is
expanded and selected, we open the album to load the collection of photographs in
the treeViewMain_BeforeExpand method, and then open the album again to
update the contents of the ListView control from the treeViewMain_After-
Select method. This is the result, in part, of how we have separated our discussion
of the two controls. In a production program, you would likely want to merge these
efforts to ensure that an album is only opened one time for each update.

One situation we will fix is the behavior of the OnLoad method. The method per-
forms the following tasks:

1 The InitTreeData method is called, which does the following:

a Creates and selects the top level node,
b Creates tree nodes for each album in the default album directory.

2 As a result of selecting the top-level node, the treeViewMain_After-Select
event handler is called, which does the following:

a Calls LoadAlbumData to populate the ListView control.
3 Back in the OnLoad method, the LoadAlbumData method is called to initialize

the ListView control.

Clearly the second call to LoadAlbumData is no longer required, so we can remove
it from our program.

UPDATE THE ONLOAD METHOD

 Action Result

7 Modify the OnLoad method to
only initialize the TreeView
control.

 protected override void OnLoad(EventArgs e)
 {
 . . .

 // Initialize the contents of the form
 InitTreeData();
 }
508 CHAPTER 15 TREE VIEWS

This completes the update of the list view as the contents of the tree view are modi-
fied. You can compile and run the application to verify that the ListView contents
changes as different nodes are selected.

Our next topic is to update the contents of the TreeView control based on user
interactions with the list view items.

15.4.2 REVISITING THE LIST VIEW

The contents of our ListView control can be modified directly by the user through
the control itself and through the menu bar items. There are three actions a user can
perform to alter the list contents:

1 Select the Albums menu item under the View menu. This invokes a Click
event for the menu, and our menuAlbums_Click event handler.

2 Select the Photos menu item under the View menu, which can only be done
when an item representing an album is selected in the list view. This invokes a
Click event for the menu, and our menuPhotos_Click event handler.

3 Double-click on an item in order to activate it. This invokes the ItemActi-
vate event, and our listViewMain_ItemActivate event handler.

We will handle each of these actions by selecting the appropriate node in our Tree-
View control. This permits the tree view to “be in charge” of ensuring that all con-
trols on the form display the proper information based on the currently selected
node. This is a good general mechanism that can be employed in any application.

Let’s take a moment to consider what the behavior should be for each of these
actions. These are summarized in the following table.

As you can see, all three actions should result in the selection of a node in the tree. This
will cause the AfterSelect event to occur, which will invoke our treeView-
Main_AfterSelect event handler. This handler will, in turn, cause the proper set of
items to appear in the ListView control, as described in the previous table.

As a result, we simply need to modify the behavior for these three actions to select
the proper tree node, and our existing code will do the rest. We will begin with our
Albums menu item.

Result of user actions modifying the ListView control

Action Result in TreeView Result in ListView

Select the Albums
menu item.

The top-level Default Albums node
should be selected.

The collection of albums from the
default album directory should be
displayed.

Select the Photos
menu item.

The tree node corresponding to the
current album should be selected.

The collection of photographs for the
current album should be displayed.

Double-click on an item
in the list view.

The tree node corresponding to the
activated item should be visible and
selected.

The contents of the item should be
displayed.
NODE SELECTION 509

Since we initialize the tree with a top-level node, we know this will always exist and
appear first in the tree view object’s Nodes collection. We select this by assigning this
node to the SelectedNode property of the tree.

For the Photos menu, you may recall that we created a menuView_Popup event
handler that enables this menu only if an album is selected in the ListView control.
The existing menuPhotos_Click event handler, shown in the following code,
already activates the selected item. This behavior works just fine for our current appli-
cation, so no changes are required to this handler.

 private void menuPhotos_Click(object sender, System.EventArgs e)
 {
 // Activate the selected album
 listViewMain_ItemActivate(sender, e);
 }

The final event handler, the listViewMain_ItemActivate method, requires some
discussion. Our existing handler, shown in the following code, only permits albums to
be activated. This handler retrieves the selected item, opens the album file correspond-
ing to the item, and calls LoadPhotoData to display the photographs in the album.

 private void listViewMain_ItemActivate(object sender, EventArgs e)
 {
 if (_albumsShown && listViewMain.SelectedItems.Count > 0)
 {
 ListViewItem item = listViewMain.SelectedItems[0];
 string fileName = item.Tag as string;

 // Open the album for this item
 PhotoAlbum album = null;
 if (fileName != null)
 album = OpenAlbum(fileName);
 if (album == null)
 {
 MessageBox.Show(
 "The photographs for this album cannot be displayed.");

UPDATE THE MENUALBUMS_CLICK EVENT HANDLER

 Action Result

1 Locate the menuAlbums_Click event
handler in the MainForm.cs code
window.

 private void menuAlbums_Click
 (object sender, System.EventArgs e)
 {

2 Modify this handler to select the Default
Albums tree node.

How-to

Set the SelectedNode property for the
tree to the first node in the tree.

 // Select Default Albums node
 if (treeViewMain.Nodes.Count > 0)
 {
 treeViewMain.SelectedNode
 = treeViewMain.Nodes[0];
 }
 }
510 CHAPTER 15 TREE VIEWS

 return;
 }

 // Switch to a photograph view
 LoadPhotoData(album);
 }
 }

In our new code, we will permit any type of item to be activated. Albums will display
the photos in the album, and photographs will display a blank list, which we will
update shortly to display the actual image. Our logic to select the TreeNode corre-
sponding to the item will go something like this:
 private void listViewMain_ItemActivate(object sender, EventArgs e)
 {
 if (listViewMain.SelectedItems.Count > 0)
 {
 // Find the file path for the selected item
 // Find the tree node with an identical path
 // Select the node to activate it
 }

 }

We will need some assistance with the first two steps. As you may recall, we utilized the
Tag property in chapter 14 to store the file name of album items and the index of pho-
tograph items. We can use this property to retrieve the path for either type item.

Our next step is to locate the node which matches a given file path. This is a little
trickier than it seems, since the node may not yet exist. There are two critical obser-
vations we can make in order to properly implement this functionality:

• First, the node corresponding to the parent of the activated item will already be
selected in the tree. We ensure that a node is selected at all times in our tree, so
we can count on this fact to identify the Nodes collection containing our
desired node.

• Second, the matching node may not actually exist. For example, if a user acti-
vates a photograph, a node for the photograph will only exist if the album node
containing the photo has been expanded. As a result, we must expand the par-
ent node before we search for a matching node to ensure that the node exists.

With these facts in mind, we are ready to implement a method to locate a node,
which we will call FindNode.
NODE SELECTION 511

With these changes in place, we can revamp our ItemActivate handler to select
the corresponding tree node.

IMPLEMENT A FINDNODE METHOD

 Action Result

3 Create a new FindNode
method.

Note: This method accepts a
file name and returns the
matching TreeNode object, if
any.
This also accepts a boolean
value indicating whether to
expand the node. This feature
will come in handy later in the
chapter.

 private TreeNode FindNode
 (string fileName, bool expandNode)
 {

4 Make sure the selected node is
not null.

Note: This value should never
be null, but it is always good
to check.

 TreeNode node = treeViewMain.SelectedNode;
 if (node == null)
 return null;

5 If expandNode is true, make
sure the contents of the
selected node are loaded into
the tree.

 // Ensure contents of node are available
 if (expandNode)
 node.Expand();

6 Find the node that matches the
given string.

 // Search for a matching node
 foreach (TreeNode n in node.Nodes)
 {
 string nodePath = n.Tag as string;
 if (nodePath == fileName)
 {
 // Found it!
 return n;
 }

7 If no match is found, return
null.

 }

 return null;
 }

How-to

a. For each child of the selected
node, find the file associated
with the node.

b. If a match is found, return it to
the caller.

REIMPLEMENT THE ITEMACTIVATE EVENT HANDLER

 Action Result

8 Replace the ItemActivate event
handler in the MainForm.cs code
window.

 private void listViewMain_ItemActivate
 (object sender, System.EventArgs e)
 {
512 CHAPTER 15 TREE VIEWS

Our two view controls are now totally in sync with each other. The appropriate tree node
is always selected, and as a result the contents of the list view are updated as required.

15.5 FUN WITH TREE VIEWS

There are a few loose ends to tie up in our application. In this section we look at addi-
tional uses for a tree view class in order to complete the functionality required in the
MyAlbumExplorer application. This section is to demonstrate various features and
functionality, rather than explain additional Windows Forms concepts. As a result,
this section will be short on discussion and simply present the code required to make
the described changes.

There are three changes we will make here:

1 Display the image associated with a selected photograph node.
2 Permit the label text for a node to be edited.
3 Display the album or photo property dialog associated with a node.

9 If an item is selected, locate the file
name associated with this item.

 if (listViewMain.SelectedItems.Count > 0)
 {
 // Find the file path for selected item
 string fileName = null;
 ListViewItem item
 = listViewMain.SelectedItems[0];
 if (_albumsShown)
 {
 // Get the file for this album
 fileName = item.Tag as string;
 }
 else if (item.Tag is int)
 {
 // Use the index of the photograph
 int index = (int)item.Tag;
 fileName = _album[index].FileName;
 }

10 If no file name is present, the item
cannot be activated.

 if (fileName == null)
 {
 MessageBox.Show("This item cannot "
 + "be opened.");
 return;
 }

11 If a file name is found, locate the
TreeNode corresponding to this
item.

 // Find tree node with identical path
 TreeNode node
 = FindNode(fileName, true);

12 If the node is found,

a. Make sure the node is visible.
b. Select the node.

 if (node != null)
 {
 // Select the node to activate it.
 node.EnsureVisible();
 treeViewMain.SelectedNode = node;
 }
 }
 }

REIMPLEMENT THE ITEMACTIVATE EVENT HANDLER (continued)

 Action Result

How-to

a. If albums are displayed, the Tag
property contains the album
path.

b. If photographs are displayed, the
Tag property contains the index
of this photo in the album.
FUN WITH TREE VIEWS 513

We will discuss these topics in the order they appear in this list.

15.5.1 DISPLAYING THE PHOTOGRAPH

Our first topic is displaying the photograph when a photograph node is selected in
the tree view. You might think that we could draw directly on the ListView control.
In fact, the ListView class does not permit the Paint event to be handled by an
instance of the class. So an alternate approach is required.

Instead, we will use a PictureBox control for this purpose. Since the Picture-
Box control does not support a proper aspect ratio for its contained image, we will
handle the Paint event and draw the image manually. This is shown in figure 15.9.
When a list of albums or photographs is displayed, we will hide the picture box con-
trol. Conversely, when a photograph is displayed, we will hide the list view control.

The following table details the steps necessary to add this feature to our interface.

Set the version number of the MyAlbumExplorer application to 15.4.

Figure 15.9

Normally a PictureBox control ap-

pears with standard control colors.

Since this PictureBox appears in

place of a ListView control, we will

use standard window colors instead.

DISPLAY PHOTOGRAPH IN A PICTUREBOX CONTROL

 Action Result

1 In the MainForm.cs [Design]
window, add a PictureBox control
to the area where the ListView
control is already located.

Settings

Property Value

(Name) pictureBoxMain

BackColor Window (under
the System tab)

BorderStyle Fixed3D

Dock Fill

Visible False
514 CHAPTER 15 TREE VIEWS

2 In the MainForm.cs code window,
add a new DisplayPhoto
method.

Note: We will use the Tag prop-
erty for the PictureBox control
to hold the photo to display, if any.

 private void DisplayPhoto(TreeNode node)
 {
 if (node == null)
 {
 pictureBoxMain.Visible = false;
 listViewMain.Visible = true;
 return;
 }

 // Parent of photo node is album node
 string file = node.Parent.Tag as string;
 if (_album == null
 || (_album.FileName != file))
 {
 if (_album != null)
 _album.Dispose();

 _album = OpenTreeAlbum(node.Parent);
 }

 if (_album != null)
 {
 // Proper PhotoAlbum is now open
 pictureBoxMain.Tag = _album[node.Index];
 pictureBoxMain.Invalidate();
 pictureBoxMain.Visible = true;
 listViewMain.Visible = false;
 }
 }

3 Create a Pen object in the
MainForm class for drawing a
border around a photo.

 private static Pen borderPen
 = new Pen(SystemColors.WindowFrame);

4 Add a Paint event handler for the
PictureBox control to draw the
assigned Photograph in the
PictureBox client area with the
proper aspect ratio.

 private void pictureBoxMain_Paint
 (object sender, System.Windows.
 Forms.PaintEventArgs e)
 {
 Photograph photo
 = pictureBoxMain.Tag as Photograph;

 if (photo == null)
 {
 // Something is wrong, give up
 e.Graphics.Clear(pictureBoxMain.
 BackColor);
 return;
 }

 // Paint the photograph
 Rectangle rect = photo.ScaleToFit(
 pictureBoxMain.ClientRectangle);
 e.Graphics.DrawImage(photo.Image, rect);
 e.Graphics.DrawRectangle(borderPen, rect);
 }

DISPLAY PHOTOGRAPH IN A PICTUREBOX CONTROL (continued)

 Action Result

How-to

a. If the given node is null, hide
the picture box and display the
ListView control.

b. If a node was given, ensure the
PhotoAlbum containing the
photo is open.

c. Assign the Photograph to
display to the PictureBox.Tag
property.

d. Make the PictureBox visible.

How-to

a. Retrieve the Photograph
object stored in the picture box.

b. If a photograph is not found,
simply clear the client area.

c. Otherwise, use the
ScaleToFit method to deter-
mine the proper drawing rect-
angle.

d. Draw the assigned image into
this rectangle.

e. Draw a border around the
image using the Pen object
created in the previous step.
FUN WITH TREE VIEWS 515

As we mentioned at the start of this section, we will not spend much time discussing
these changes, since they leverage concepts and features we have seen before. Let’s
move on to editing a tree node’s label.

15.5.2 SUPPORTING LABEL EDITS

Tree nodes can be edited in a manner similar to list items. There is a BeginEdit
method in the TreeNode class to initiate a label edit programmatically, and Befor-
eLabelEdit and AfterLabelEdit events in the TreeView class that occur before
and after the user edits the label. Event handlers for these events receive the NodeLa-
belEditEventArgs class for the event parameter. This class is summarized in
.NET Table 15.5, and is manipulated in much the same way as we saw for the
LabelEditEventArgs class when handling label events for the ListView class.

5 Update the AfterSelect event
handler to use the new
DisplayPhoto method to ensure
the proper control is visible.

 private void treeViewMain_AfterSelect(. . .)
 {
 . . .
 if (node.Parent == null)
 {
 // Bad tag or top-level node.
 LoadAlbumData(fileName);
 DisplayPhoto(null);
 }
 else if (Path.GetExtension(fileName) . . .)
 {
 // Album node selected
 PhotoAlbum album = OpenTreeAlbum(. . .);
 LoadPhotoData(album);
 DisplayPhoto(null);
 }
 else // must be a photograph
 {
 // Clear the list and display the photo
 listViewMain.Clear();
 DisplayPhoto(node);
 }
 }

6 Add a Resize event handler for
the PictureBox control to force
the control to redraw the entire
image when it is resized.

 private void pictureBoxMain_Resize
 (object sender, System.EventArgs e)
 {
 // Force the entire control to repaint
 pictureBoxMain.Invalidate();
 }

DISPLAY PHOTOGRAPH IN A PICTUREBOX CONTROL (continued)

 Action Result
516 CHAPTER 15 TREE VIEWS

In our application, we will permit nodes to be edited using the menuEditLabel
menu item, or by pressing the F2 key when a tree node is selected and the tree view
has the focus. The following table details the steps required for this change:

.NET Table 15.5 NodeLabelEditEventArgs class

The NodeLabelEditEventArgs class represents the event data associated with the Befor-
eLabelEdit and AfterLabelEdit events in the TreeView class. This class is part of the
System.Windows.Forms namespace, and inherits from the System.EventArgs class.

Public Properties

CancelEdit Gets or sets whether the edit operation should
be cancelled. This property can be set both
before and after the node is edited.

Label Gets the new text to assign to the label of the
indicated node.

Node Gets the TreeNode object being edited.

SUPPORT EDITING OF TREE NODE LABELS

Action Result

1 Set the LabelEdit property for
the TreeView control to true
in the MainForm.cs [Design]
window.

Tree node labels may now be edited.

2 Handle the KeyDown event for
the TreeView control to initiate
a label edit when the F2 key is
pressed in the tree control.

 private void treeViewMain_KeyDown
 (object sender, System.Windows.
 Forms.KeyEventArgs e)
 {
 if (e.KeyCode == Keys.F2)
 {
 if (treeViewMain.SelectedNode != null)
 {
 treeViewMain.SelectedNode.BeginEdit();
 e.Handled = true;
 }
 }
 }

3 Update the menuEdit_Popup
event handler to use the text
“Node” for the
menuEditLabel menu when
the TreeView has the focus.

How-to

Use the Focused property for
the TreeView class.

 private void menuEdit_Popup
 (object sender, System.EventArgs e)
 {
 if (treeViewMain.Focused)
 {
 menuEditLabel.Enabled
 = (treeViewMain.SelectedNode != null);
 menuEditLabel.Text = "&Node";
 }
 else // assume ListView has focus
 {
 menuEditLabel.Enabled
 = (listViewMain.SelectedItems.Count > 0);
 if (this._albumsShown)
 menuEditLabel.Text = "&Name";
 else
 menuEditLabel.Text = "&Caption";
 }
 }
FUN WITH TREE VIEWS 517

4 Update the menuEdit-
Label_Click event handler to
edit the appropriate item based
on the current focus.

 private void menuEditLabel_Click
 (object sender, System.EventArgs e)
 {
 if (treeViewMain.Focused)
 {
 if (treeViewMain.SelectedNode != null)
 treeViewMain.SelectedNode.BeginEdit();
 }
 else if (listViewMain.SelectedItems.Count > 0)
 listViewMain.SelectedItems[0].BeginEdit();
 }

5 Handle the AfterLabelEdit
event for the TreeView control.

Note: We permit the user to
edit the root node here to alter
a top-level name in the tree,
even though this change is dis-
carded when the application
exits. A more robust solution
might be to prevent this from
occurring, or to save the
change in a configuration file.

 private void treeViewMain_AfterLabelEdit
 (object sender, System.Windows.
 Forms.NodeLabelEditEventArgs e)
 {
 if (e.Label == null)
 {
 // Edit cancelled by the user
 e.CancelEdit = true;
 return;
 }

 // No changes required for root node
 if (e.Node.Parent == null)
 return;

 string fileName = e.Node.Tag as string;
 if (Path.GetExtension(fileName) == ".abm")
 e.CancelEdit = !UpdateAlbumName(e.Label,
 e.Node);
 else
 e.CancelEdit = !UpdatePhotoCaption(e.Label,
 e.Node);
 }

6 Rewrite the UpdateAlbum-
Name method to accommodate
both list items and tree nodes.

 private bool UpdateAlbumName
 (string newName, object obj)
 {
 ListViewItem item = obj as ListViewItem;
 TreeNode node = obj as TreeNode;

 // Determine the file name
 string fileName = null;
 if (item != null)
 {
 fileName = item.Tag as string;
 node = FindNode(fileName, false);
 }
 else if (node != null)
 fileName = node.Tag as string;

Note: Recall that the list view’s AfterLabelEdit
event handler from chapter 14 provides a ListView-
Item object when calling this method. This invocation
is still valid and is properly dealt with by this code.

SUPPORT EDITING OF TREE NODE LABELS (continued)

Action Result

How-to

a. Cancel the edit if the new
text is null.

b. Do nothing if the node is a
root node.

c. For an album node, use the
UpdateAlbumName.method.

d. For a photograph node, use
the UpdatePhotoCaption
method.

How-to

a. Change the second parame-
ter to an object rather than
a ListViewItem.

b. Convert the given object to
both a list item and a tree
node.

c. Determine the file name for
the appropriate object.

d. If the object is a list view
item, also find the node cor-
responding to this item.
518 CHAPTER 15 TREE VIEWS

7 Rename the file.

How-to

Use the RenameFile method
from chapter 14.

 // Rename the file
 string newFileName = null;
 if (fileName != null)
 {
 newFileName
 = RenameFile(fileName, newName, ".abm");
 }

 if (newFileName == null)
 {
 MessageBox.Show("Unable to rename album "
 + "to this name.");
 return false;
 }

8 Update the Tag property for the
appropriate object.

Note: When the object is a list
item, this updates the corre-
sponding node as well.

 // Update the appropriate Tag property
 if (item != null)
 {
 item.Tag = newFileName;
 if (node != null)
 node.Text = newName;
 }
 else if (node != null)
 node.Tag = newFileName;

 return true;
 }

9 Rewrite the UpdatePhoto-
Caption method to accom-
modate both list items and tree
nodes.

 private bool UpdatePhotoCaption
 (string caption, object obj)
 {
 ListViewItem item = obj as ListViewItem;
 TreeNode node = obj as TreeNode;

 // Determine the album index
 int index = -1;
 if ((item != null) && (item.Tag is int))
 {
 index = (int)item.Tag;
 node = FindNode(_album[index].FileName,
 false);
 }
 else if (node != null)
 {
 index = node.Index;
 }

10 Return false if the caption
cannot be updated.

 if ((caption.Length == 0) || (index < 0))
 {
 MessageBox.Show("Invalid caption value.");
 return false;
 }

SUPPORT EDITING OF TREE NODE LABELS (continued)

Action Result

How-to

a. Change the second param-
eter to an object rather
than a ListViewItem.

b. Convert the given object
to both a list item and a
tree node.

c. Determine the album index
for the appropriate object.

d. If the object is a list view
item, also find the node
corresponding to this item.
FUN WITH TREE VIEWS 519

Our program now permits editing of nodes in the TreeView and items in the List-
View. Editing is initiated with the menuLabelEdit menu or the F2 key, and is
based on which control currently has the focus.

In both update methods, note how the as keyword is used to convert the given
object into both a TreeView and a ListView, as is shown in the following excerpt.
The remainder of each method executes the appropriate statements based on which
type of control is provided.
 ListViewItem item = obj as ListViewItem;
 TreeNode node = obj as TreeNode;

Also of note is our use of the FindNode method created earlier in the chapter as part
of section 15.4.2. As you may recall, we included a parameter to this method that
indicated whether to expand the selected node. We set this second parameter to
false here to ensure that the contents of the tree view control are not altered.

Our final change is to support the display of our album and photograph property
dialogs from the TreeView control.

15.5.3 UPDATING THE PROPERTIES MENU

In chapter 14 we created a Properties menu. We handled the Click event for this
menu in a menuProperties_Click method, and created the DisplayAlbumProp-
erties and DisplayPhotoProperties methods to display the two types of dialogs
required. Here we would like to change the behavior of this menu to the following:

• When the TreeView has the focus, display the appropriate properties dialog if
an album node or a photograph node is selected.

• When the ListView has the focus, display the appropriate properties dialog
for the selected item.

• When the PictureBox has the focus, display the photograph properties dia-
log associated with the displayed image.

To make this change, we will modify our Display methods to accept either a List-
ViewItem or a TreeNode object. The following table details the changes required.

11 Update the photograph’s
caption, and save the changes
to the album.

Note: When the object is a list
item, this updates the corre-
sponding node as well.

 // Update caption
 _album[index].Caption = caption;
 if (item != null && node != null)
 {
 // Update node text as well
 node.Text = caption;
 }

 // Save the changes to the album
 . . .
 }

SUPPORT EDITING OF TREE NODE LABELS (continued)

Action Result
520 CHAPTER 15 TREE VIEWS

UPDATE PROPERTIES MENU TO HANDLE TREE NODES

 Action Result

1 In the MainForm.cs code
window, update the
menuProperties_Click event
handler to accommodate the
three controls that might have
the focus.

 private void menuProperties_Click
 (object sender, System.EventArgs e)
 {
 if (treeViewMain.Focused)
 {
 TreeNode node = treeViewMain.SelectedNode;
 string file = node.Tag as string;
 if (node == null || node.Parent == null
 || file == null)
 return; // do nothing

 if (Path.GetExtension(file) == ".abm")
 DisplayAlbumProperties(node);
 else
 DisplayPhotoProperties(node);
 }
 else if (pictureBoxMain.Focused)
 {
 // Display photograph for this image
 TreeNode node = treeViewMain.SelectedNode;
 if (node != null)
 DisplayPhotoProperties(node);
 }
 else
 if (listViewMain.SelectedItems.Count > 0)
 {
 ListViewItem item
 = listViewMain.SelectedItems[0];
 if (this._albumsShown)
 DisplayAlbumProperties(item);
 else
 DisplayPhotoProperties(item);
 }
 }

2 Rewrite the DisplayAlbum-
Properties method to accept
an object instance.

 private void DisplayAlbumProperties
 (object obj)
 {
 ListViewItem item = obj as ListViewItem;
 TreeNode node = obj as TreeNode;

 // Open the album as appropriate
 PhotoAlbum album = null;
 if (item != null)
 {
 string fileName = item.Tag as string;
 if (fileName != null)
 album = this.OpenAlbum(fileName);
 }
 else if (node != null)
 {
 album = OpenTreeAlbum(node);
 }

 if (album == null)
 . . . // as in chapter 14

How-to

a. For the TreeView control,
ignore the parent node and
call the appropriate Proper-
ties method based on the
node type.

b. For the PictureBox control,
call the DisplayPhoto-
Properties method on the
selected photo node.

c. For the ListView control,
the code is the same as in
chapter 14.

How-to

a. Convert the given object to
a ListViewItem and a
TreeNode instance.

b. Open the PhotoAlbum using
whichever object is not
null.

c. If the album could not be
opened, display an error
message.
FUN WITH TREE VIEWS 521

3 When displaying the album edit
dialog, only update the list item
settings if the given item is a list
view item.

Note: If the given item is a tree
node, then photographs are dis-
played in the list view, and
these settings should not be
updated.

 using (AlbumEditDlg dlg
 = new AlbumEditDlg(album))
 {
 if (dlg.ShowDialog() == DialogResult.OK)
 {
 // Save changes made by the user
 . . .
 // Update item settings
 if (item != null)
 {
 item.SubItems[MainForm.
 AlbumTitleColumn].Text
 = album.Title;

 bool hasPwd = (album.Password != null)
 && (album.Password.Length > 0);
 item.SubItems[MainForm.
 AlbumPwdColumn].Text
 = (hasPwd ? "y" : "n");
 }
 }
 }

 album.Dispose();
 }

4 Modify the
DisplayPhotoProperties
method to accept an object
instance.

How-to

This is similar, at least in spirit, to
the DisplayAlbumProperties
method.

 private void DisplayPhotoProperties
 (object obj)
 {
 ListViewItem item = obj as ListViewItem;
 TreeNode node = obj as TreeNode;

 int index = 0;
 if (item != null && (item.Tag is int))
 {
 index = item.Tag;
 }
 else if (node != null)
 {
 index = node.Index;
 }

 _album.CurrentPosition = index;

UPDATE PROPERTIES MENU TO HANDLE TREE NODES (continued)

 Action Result
522 CHAPTER 15 TREE VIEWS

As you can see, the display methods use the as keyword to convert a given object
into both a ListViewItem and a TreeNode instance. Whichever instance is non-
null indicates how to display the property dialog.

TRY IT! As a further change to our TreeView control, add a context menu to this
control to perform the following tasks.
1 An “Add Directory” menu item that permits a new album directory to

be added to the tree. This should prompt for a directory name and add
a top-level node to the tree for each album discovered in that directory.

2 A “Properties” menu item that displays the properties dialog for the
nearest node. This should select the nearby node, and then call the
PerformClick method for the menuProperties menu.

3 A “Delete” menu item that deletes a node from the tree. This should
delete the album file from the file system or the Photograph from the
containing album for the given node. You should prompt the user to
make sure they really wish to do this.

You will need to use the GetNodeAt method to locate the TreeNode instance at a
given pixel position, so that the action applies to the specific tree node located at the
current mouse position.

5 After displaying the dialog,
update the list or node with any
modified photograph settings.

Note: Recall that our photo edit
dialog permits all photographs
in an album to be updated. As a
result, when the photographs
are shown in the tree node, the
label for each related node must
be updated as well. This is true
regardless of the type object
given.

 using (PhotoEditDlg dlg
 = new PhotoEditDlg(_album))
 {
 if (dlg.ShowDialog() == DialogResult.OK)
 {
 // Save any changes made
 . . .
 // Update controls with new settings
 TreeNode baseNode = null;
 if (item != null)
 {
 LoadPhotoData(_album);
 baseNode = treeViewMain.SelectedNode;
 }
 else if (node != null)
 {
 baseNode = node.Parent;
 }

 if (baseNode != null)
 {
 // Update all child labels
 foreach (TreeNode n in baseNode.Nodes)
 {
 n.Text = _album[n.Index].Caption;
 }
 }
 }
 }
 }

UPDATE PROPERTIES MENU TO HANDLE TREE NODES (continued)

 Action Result
FUN WITH TREE VIEWS 523

You could also implement these items within the ListView control as well.
This completes our discussion on the TreeView class. Before we move on, let’s do a
quick recap of what we covered in this chapter.

15.6 RECAP

In this chapter we extended the MyAlbumExplorer project built in chapter 14 to add
a TreeView control. We divided our main window using the Splitter class in
order to create a classic explorer window such as that used in the Windows operating
system for browsing the file system.

A tree view contains a hierarchy of TreeNode objects, and we created a tree dis-
playing our album files and the photos in each album. We discussed common oper-
ations within a tree view such as expand, collapse, selection, and label editing. During
the course of the chapter, the ListView and TreeView controls were integrated to
display a common interface, with changes to one control reflected in the other control.
We also added a PictureBox control in order to display the image associated with
a selected photograph node in the tree.

The explorer interface we saw in these last two chapters is one of three kinds of
standard Windows interfaces. In part 2 of this book we built what is called a single
document interface. In the next chapter we will look at another kind of interface,
namely the multiple document interface.
524 CHAPTER 15 TREE VIEWS

C H A P T E R 1 6

Multiple document
interfaces

16.1 Interface styles 526
16.2 MDI forms 530
16.3 Merged menus 535

16.4 MDI children 543
16.5 MDI child window management 557
16.6 Recap 563
The ListView and TreeView classes discussed in chapters 14 and 15 present a col-
lection of objects within a single list or tree control. These are especially useful when
creating an explorer-style interface such as our MyAlbumExplorer application, or the
common Windows Explorer application. Another kind of interface is the multiple
document interface, also called an MDI (normally pronounced em-dee-eye).

An MDI application presents a collection of forms within a single application
window. We will discuss MDI applications through the following discussion areas:

• Understanding various interface styles.
• Creating an MDI container window.
• Converting an SDI application into an MDI application.
• Using MDI-related class members of various controls.
• Merging two menus into a single merged menu.
• Managing menus and forms in an MDI application.

These topics will be covered as we progress through the chapter, beginning with the
concept of interface styles.
525

16.1 INTERFACE STYLES

Before we discuss exactly how multiple document interfaces are created, let’s take a
step back and consider the various types of application interfaces used for Windows
applications. Most Windows applications fall into one of three interface categories:

• Single document interfaces.
• Explorer interfaces.
• Multiple document interfaces.

We will discuss each type of interface separately.

16.1.1 SINGLE DOCUMENT INTERFACES

A single document interface, also called an SDI, is an interface that displays a single
document or other encapsulated data within a single form. Our MyPhotos applica-
tion, as shown in figure 16.1, is a good example of this style, in which a single photo
album is displayed. The user can look at multiple photo albums only by examining
one after another. The contents of two albums cannot be compared unless two copies
of the program are running.

In the Windows operation system, the Notepad and WordPad applications pro-
vide additional examples of the SDI style.

16.1.2 EXPLORER INTERFACES

The MyAlbumExplorer application built in chapters 14 and 15 is an example of an
explorer interface, and can be seen in figure 16.2. In this style, a hierarchy of informa-
tion is presented to the user. Normally a TreeView control displays this hierarchy,
typically on the left, with details on the selected node provided in a ListView con-
trol. Sometimes the TreeView control can be hidden, and sometimes it is always

Figure 16.1

Our single document

interface displays one

photo album at a time.
526 CHAPTER 16 MULTIPLE DOCUMENT INTERFACES

present. Alternate information may appear on the list side of the window as well, such
as the photographic image we displayed in chapter 15 for a selected photograph in
the MyAlbumExplorer application.

In Windows, of course, the Windows Explorer application is another example of
this style.

16.1.3 MULTIPLE DOCUMENT INTERFACES

A multiple document interface (MDI) allows multiple views of one or more docu-
ments or other encapsulated data to be displayed at the same type. This permits alter-
nate views of the same data, or separate presentations of the same style of data, within
a single window. For example, a stock market MDI application might present differ-
ent historical or graphical views of a single portfolio, each as a separate window. Alter-
nately, such an application might present multiple portfolios, each as its own window
within a containing application window.

In the original conception of this style, a single window acted as a container for
other windows, where each contained window displayed a specific instance or view of
a type of data. More recently, well-known MDI applications such as Microsoft Word
and Excel have taken the approach of displaying all of their windows directly on the
desktop, each within a separate application window, while still preserving an MDI
look and feel from the menu bar and other parts of the interface. This relatively new
style, the Multiple Single Document Interface, or MSDI, is consistent with the man-
ner in which Web browsers have typically worked. While an MSDI interface can be
created in Visual Studio.NET, it is not necessarily an easy task.

Figure 16.2 Our explorer interface presents the collection of photo albums in list form.
INTERFACE STYLES 527

Also note that Visual Studio .NET, while providing an MDI-like interface, uses
more of a TabControl look and feel for the set of displayed windows, or what might
be called a Multiple Tabbed Documents Interface, or MTDI. In this style, multiple
sets of windows are displayed as horizontal or vertical groups of tabs. Both the MSDI
and MTDI approaches can be created using the .NET Framework as an alternative to
the traditional MDI interface, although there is not really any direct support for these
newer interfaces. As a result, implementing such interfaces requires much more effort
from the developer.

For our purposes, a traditional MDI application provides the means to discuss
and demonstrate the manner in which the .NET Framework supports such applica-
tions. We will convert the existing MyPhotos application into the MDI application
shown in figure 16.3. As you can see, this application will incorporate the Form classes
we have created in part 2 of this book.

The reuse of our existing classes is possible because of the manner in which the Form
class in general and MDI support in particular is integrated into the Windows Forms
hierarchy. As we discussed in chapter 7, a Form object is a Control instance that
happens to display an application window. For MDI applications, Form controls are
contained by a parent Form. Of course, the contained forms can be resized and
moved within their container, and can still display menus, toolbars, status bars, and
other controls. As we shall see, the relationship between MDI parent and child forms
is different than the relationship between control containers and controls.

Figure 16.3 Our multiple document interface, created in this chapter, displays a se-

lected set of photo albums within a single window.
528 CHAPTER 16 MULTIPLE DOCUMENT INTERFACES

16.1.4 SUPPORT IN WINDOWS FORMS

To provide some insight and perhaps some perspective on MDI applications, the fol-
lowing table lists a number of class members specific to the implementation of MDI
applications in the .NET Framework. Of course, these members can be used for
other purposes, and additional properties, methods, and events are certainly used in
MDI applications. These events highlight many of the MDI-specific tasks that are
often performed in this style interface. The table provides a short description of each
member and a reference to the section in this chapter where more information on
each item may be found.

Class members often used in MDI applications

Class
Member

type
Member name Description

See

section

Form

Properties ActiveMdiChild Gets the MDI child window that is currently
active.

16.4.1

IsMdiChild Gets whether the form is an MDI child. 16.3.2

IsMdiContainer Gets whether the form is an MDI container
form.

16.2.1

MdiChildren Gets the set of MDI children contained by
this form as an array of Form objects.

16.4.3

MdiParent Gets or sets the MDI container for this form.
If set, then this form is an MDI child form.

16.2.2

MergedMenu Gets the MainMenu object representing the
current merged menu for an MDI container
form.

16.3

Methods LayoutMdi Arranges the MDI children within this form
using a given layout style.

16.5.1

Events MdiChildActivate Occurs when an MDI child form is activated
or deactivated within an MDI application.
Note that MDI children do not receive the
Activated and Deactivate events.

16.4.4

Menu

Properties MdiListItem Gets the MenuItem object contained by this
menu that displays a list of MDI child forms
for the associated form object.

16.5.2

Methods MergeMenu Merges the MenuItem objects in a given
menu with those contained by this menu.

16.3

MenuItem

Properties MdiList Gets or sets whether this menu should be
populated with a list of MDI child forms
contained by the associated form.

16.5.2

MergeOrder Gets or sets the relative position of this menu
item when it is merged with another menu.

16.3.2

MergeType Gets or sets how this menu should be
merged with other menus. The default is
MergeType.Add.

16.3.1
INTERFACE STYLES 529

Also note that the behaviors of desktop-related actions within an MDI child form are
modified. For example, the Minimize and Maximize buttons on the title bar work
within the parent window, rather than on the desktop itself.

In the rest of this chapter we will enhance our MyPhotos application to support
a multiple document interface. We begin with the MDI container form.

16.2 MDI FORMS

So let’s convert our existing MyPhotos application into an MDI application. This ini-
tial work is not as difficult as you might think. Generally, we need one Form to act as
the top-level container, and the ability to create other forms as children within this
container. Here, we will do this via the following tasks:

1 Create a new parent form for the application to act as the MDI container.

2 Add a menu bar and New menu item to create MDI child forms.

3 Define a new Main method in the parent as the entry point for the application.

Of course, there will be other work to perform to clean up the behavior of our appli-
cation. These steps will get us going, and subsequent sections will deal with other
required changes. Figure 16.4 shows how our application will look by the end of this
section. Note in particular the two File menus. We will address this issue in the next
section while discussing Merged Menus.

Figure 16.4 Note the two File menus for this window. The menus from both

our ParentForm and MainForm classes appear separately on the menu bar. We

will address this in section 16.3.
530 CHAPTER 16 MULTIPLE DOCUMENT INTERFACES

16.2.1 CREATING AN MDI CONTAINER FORM

The creation of an MDI container form is much like the creation of any other form.
Such a form is often referred to as a parent form, since it acts as the parent for one or
more MDI child forms. The following table details the steps required for this task.

Set the version number of the MyPhotos application to 16.2.

As you can see, the contents of the window appear in a darker color and includes a 3-
D border to indicate that this form is now an MDI container. This color is the Sys-
tem.AppWorkspace color, which is typically a darker version of the System.Con-
trol color. This background is a hidden MdiClient control, and cannot be
manipulated in code as it is not exposed by the Form class. This background contains
the MDI child forms, and is always last in the z-order. As a result, any controls added
to the form will appear above this background, and therefore in front of any MDI
children. Typically, controls added to an MDI container are docked to one edge of
the parent form.

The code generated for our ParentForm class is much like other forms we have
seen in this book. The InitializeComponent method generated by Visual Studio
.NET is as follows:
 private void InitializeComponent()
 {
 //
 // ParentForm
 //
 this.AutoScaleBaseSize = new System.Drawing.Size(5, 13);
 this.ClientSize = new System.Drawing.Size(592, 373);

CREATE A NEW FORM AS AN MDI CONTAINER

 Action Result

1 In the Solution Explorer window,
add a new Windows Form to the
application called ParentForm.

The new file appears in the Solution Explorer window and
the ParentForm.cs [Design] window is displayed.

2 Set the icon property for the
form to the “icons/Writing/
BOOKS04.ICO” file in the
common image directory.

3 Set the IsMdiContainer
property to true.

Note: This establishes the form
as an MDI container form.

4 Set the Size property to
600×400 pixels.
MDI FORMS 531

 this.IsMdiContainer = true;
 this.Name = “ParentForm”;
 this.Text = “ParentForm”;
 }

With the parent form created, we can turn our attention to the child form.

16.2.2 CREATING AN MDI CHILD FORM

With our MDI container in place, we can add the infrastructure required for generat-
ing MDI child forms. This will consist of a menu bar and a New menu item. Fortu-
nately, we already have our MainForm class available to act as the child form.

The following table shows how to create a child form in our application. As part
of this task, we will add an Exit menu as well.

ADD ABILITY TO CREATE CHILD FORMS

 Action Result

1 Add a MainMenu object to the ParentForm
class in the ParentForm.cs [Design] window.

2 Add a top-level File menu containing the
three menu items as shown.

3 Add a Click event handler for the Exit
menu to close the form.

 private void menuExit_Click
 (object sender, System.EventArgs e)
 {
 Close();
 }

4 Add a Click event handler for the New
menu.

 private void menuNew_Click
 (object sender, System.EventArgs e)
 {

Settings

Menu Property Value

File (Name) menuFile

Text &File

New (Name) menuNew

Shortcut CtrlN

Text &New

separator

Exit (Name) menuExit

Text E&xit
532 CHAPTER 16 MULTIPLE DOCUMENT INTERFACES

That’s all it takes to create a child form. You have almost created your first MDI
application.

If you compile and run the application, you will note that the MyPhotos appli-
cation runs exactly as before. This is because the MainForm.Main method is still the
entry point for the application, and it displays the MainForm object using the Appli-
cation.Run method. To fix this, we need to display the ParentForm class in the
entry point for the application. This is our next subject.

16.2.3 ADDING A NEW ENTRY POINT

One quite simple means to fix our entry point would be to modify the Main method
in the MainForm class directly. The new code would look as follows, with the change
highlighted in bold:
 public class MainForm : System.Windows.Forms.Form
 {
 . . .
 [STAThread]
 static void Main()
 {
 Application.Run(new ParentForm());
 }
 . . .
 }

While this code would do exactly what we want, a drawback of this change is that we
could no longer compile the application as the single document interface we created in
chapter 13. To preserve this ability, we will instead create a Main method as part of the
ParentForm class, and modify the project to use this new method as the entry point.

The following table creates a new entry point within the ParentForm class.

5 Within this handler, create a MainForm
object as an MDI child form.

 MainForm newChild = new MainForm();
 newChild.MdiParent = this;
 newChild.Show();
 }

ADD ABILITY TO CREATE CHILD FORMS (continued)

 Action Result

How-to

a. Create a new MainForm object.
b. Define this form as an MDI child by set-

ting the current form as its MDI parent.
c. Display the child form using the Show

method.
MDI FORMS 533

The application is now ready. The startup object specified here is used by the C#
compiler to establish the entry point for the application, and is only required if there
are multiple Main methods in your project. On the command-line, the C# compiler
accepts the /main switch to specify the class containing the Main method to use as
the application’s entry point.

Run the application to verify that the ParentForm window appears and the New
menu can be used to create MainForm objects as child windows. If you explore this new
application, you will find some rather peculiar behavior for some of the controls. We
will discuss and address these issues throughout the remainder of this chapter.

TRY IT! Of course, the MyPhotos Property Pages dialog used in step 2 can also be
used to set the Startup Object to the MyPhotos.MainForm class. When
this is done, the application displays the familiar single document interface
created in part 2 of this book. Make this change and run the application to
observe this behavior.

Among the odd features you may notice in the MDI version of this application is the
menu bar. In particular, there are two File menus when a MainForm window is dis-
played. Adjusting this behavior is our next topic.

CREATE AN ENTRY POINT IN THE PARENT FORM

 Action Result

1 Create a Main method in the
ParentForm.cs code window to
serve as the entry point for our
MDI application.

Note: If you compile the applica-
tion after this step, you will get an
error indicating that the program
defines more than one entry
point.

 /// <summary>
 /// Entry point for MDI application.
 /// </summary>
 [STAThread]
 static void Main()
 {
 Application.Run(new ParentForm());
 }

2 Set the Startup Object for the
MyPhotos project to the
MyPhotos.ParentForm class.

How-to

a. Display the Property Pages dia-
log for the project.

b. Click the down arrow associ-
ated with the Startup Object
entry.

c. Select the MyPhotos.Parent-
Form class.
534 CHAPTER 16 MULTIPLE DOCUMENT INTERFACES

16.3 MERGED MENUS

By definition, an MDI application permits multiple windows to be displayed. Each
child window may be the same or different, and each may display different informa-
tion about one or more objects. It would be nice if the menu items for the application
could be customized depending on which child window is displayed. Exactly how to
do this is the subject of this section.

As an example, consider a car-buying application that permits users to search for,
display, and purchase used cars. As an MDI application, this might display a photo-
graph of the car in one window, standard features and warranty information in
another window, and optional packages and pricing information in a third window.
Clearly the set of menus and the contents of each menu should differ depending on
which style window is currently active. For instance, menus for the photograph win-
dow might permit different colors to be viewed or different parts of the vehicle to be
shown. These concepts make no sense for the other windows, and should not be acces-
sible when these windows are active.

While our application is not quite so ambitious, we do have the problem of our
File menu, since both the ParentForm and the MainForm class contain this item.
Once we make the two File menus merge, we also have to deal with the contents of
these menus, to ensure the items appear in an appropriate order.

The Menu class provides a MergeMenu method for merging two menus together.
This method accepts a Menu object and merges it with the calling Menu object. The
MenuItem class provides additional overrides of this method to merge MenuItem
objects and to copy a menu item so that it may be merged with other menus. This lat-
ter method has the advantage of not affecting the existing MenuItem object.

In MDI applications, an MDI container form automatically merges the menu for
the active child form with the MainMenu object stored in its Menu property. The
Form.MergedMenu property contains the result of this merge, and can be used to
access or modify the merged menu directly. The Form.Menu property always contains
the original menu assigned to the form.

Since this merging occurs automatically for MDI applications, this section will
focus on how menus are merged together, and make the appropriate changes in our
MDI application to merge the two File menus together. First we will discuss the var-
ious ways to merge two menus, followed by the mechanism for establishing the order
of merged menu items.

16.3.1 ASSIGNING MERGE TYPES

As mentioned at the start of this chapter, the MenuItem class contains two properties
that control exactly how two menus are merged together. This section will discuss the
MergeType property that controls how the menus are merged. Later we will look at
the MergeOrder property that controls the final position of a merged item.
MERGED MENUS 535

The MergeType property gets or sets a MenuMerge enumeration value specify-
ing how this menu should be merged with other menus. An overview of this enumer-
ation appears in .NET Table 16.1. The default setting for the MergeType property
is MenuMerge.Add. This default adds each item separately, and is the cause of the two
File menus in our current application.

This explains why our existing application has two File menus. Since the MergeType
property defaults to Add, the menus are simply added to the collection separately.

We can fix this by modifying the MergeType property for these menus.

Set the version number of the MyPhotos application to 16.3.

Compile and run the application, and open a client form in the parent window to see
the merged menu as shown in the table. The two menus are merged, but their contents

.NET Table 16.1 MenuMerge enumeration

The MenuMerge enumeration specifies various types of behavior for a MenuItem object
when it is merged with another menu. This enumeration is used by the MergeType property
in the MenuItem class, and is part of the System.Windows.Forms namespace.

Enumeration

Values

Add The item is added to the collection of MenuItem
objects in the merged menu.

MergeItems All MenuItem objects contained by the item are
merged with those contained by the menu at the
same position in the merged menu.

Remove The item is not included in the merged menu.

Replace The item replaces an existing MenuItem object
at the same position in the merged menu.

MERGE THE PARENT AND CHILD FILE MENUS

 Action Result

1 In the MainForm.cs [Design]
window, set the MergeType
property of the File menu item
to MergeItems.

The two File menus in the parent and child form will now
merge into a single menu in the application, the result of
which is shown in this graphic. The menu items exhibit
the default merge behavior, which is Add.

2 Similarly, set the MergeType
property to MergeItems for the
File menu in the ParentForm.cs
[Design] window.

Note: The MergeType property
must be set for both File menu
objects to merge the two
menus together.
536 CHAPTER 16 MULTIPLE DOCUMENT INTERFACES

are not exactly in an acceptable order. This is because each of the MenuItem objects
within their respective File menus use the default MergeType property, which is Add.
As a result, each menu item is simply added to the end of the list. The items from the
parent form appear first, followed by the items from the child form.

We can fix this, of course, but first a brief aside.

TRY IT! Modify the MergeType property for either File menu so that one menu
uses the MergeItems member value and the other the Add value. Run the
application to verify that the menus no longer merge.

Also rename the File menu in the ParentForm class to use the name
“Fickle.” Run the application and see which name is shown in the applica-
tion. You will find that the name in the MDI child is preferred over the
name in the parent. This is a consequence of how the menus are merged,
and can be utilized to rename a menu in the parent form when a specific
kind of child is displayed.

Back in our application, we have two problems with the merged File menu. The first
is that we have two versions of the New and Exit menus, and the second is that the
order of the merged menu is a bit of a mess.

We will address these two problems together as part of a discussion on the Merge-
Order property.

16.3.2 ASSIGNING MERGE ORDER

So far we have merged our two File menus into a single menu. The next step is to
clean up the contents of this menu. This involves setting the appropriate MergeType
for each menu, and using the MergeOrder property to establish the order of these
items within the merged menu. The MergeOrder property contains the zero-based
position where the menu should appear within the merged menu. If multiple items
are assigned the same order, they appear one after another in the merged menu. This
is the case in our existing code, where all menus in the File menu use the default
MergeOrder value of zero.

Before we start making changes to our existing menus, let’s step back and consider
what a reasonable File menu should contain for our MDI application. Such a menu
is described by the following table, which shows the menu name, its position, a short
description, and some implementation notes.

Contents of the merged File menu in our MDI application

Menu name Position Description Implementation Notes

New 0 Opens a new album in a new MDI
child window.

Same as existing New menu in the
ParentForm class.

Open 1 Opens an existing album file in a
new MDI child window.

This should be processed by the
ParentForm class in order to create
the new child window.
MERGED MENUS 537

This details how the merged menu should look. There is still the question of the
menu structure in the ParentForm and MainForm classes. Based on the previous
table, we can establish how the File menu should appear for each Form class. The fol-
lowing table details the contents of each menu, and describes its behavior in the
merged menu object.

We are now ready to update our menus based on these tables. Our first change will
simply update the menus so that they appear as described within the application.

Close 2 Closes the active MDI child
window.

Similar to the Exit menu in the
MainForm class.

separator 3

Save 4 Saves the album in the active MDI
child window.

Same as existing Save menu in the
MainForm class

Save As 5 Saves the album in the active MDI
child window under a new name.

Same as existing Save As menu in
the MainForm class.

separator 6

Exit 7 Closes all child windows as well as
the MDI container form.

Same as existing Exit menu in the
ParentForm class.

Individual File menu for our MDI parent and child classes

Class Menu Implementation notes

ParentForm

New This menu should behave as it already does, and replace the New menu
in the child form.

Open This is a new menu to open an existing album in a new window.

separator This menu should not exist when the menus are merged.

Exit This menu should behave as it already does, and appear at position 7
when the menus are merged.

MainForm

New Should not be present in the merged menu for our MDI application.

Open Should not be present in the merged menu.

separator Should become the first separator at position 3 in the merged menu.

Save As currently exists, at position 4 in the merged menu.

Save As As currently exists, at position 5 in the merged menu.

separator Should become the second separator at position 6 in the merged menu.

Exit Should become the Close menu at position 2 in the merged menu.

Contents of the merged File menu in our MDI application (continued)

Menu name Position Description Implementation Notes
538 CHAPTER 16 MULTIPLE DOCUMENT INTERFACES

Once this is done, we will look at implementing any changes required to support
these menus.

The following table details the steps required:

The key points here are the fact that the New and Open menus in the ParentForm
class replace those in the MainForm class, and the merge order for each menu must
match the desired position we discussed earlier. One other interesting point is the
reuse of the Exit menu in the MainForm class for the Close menu in the merged
menu. This makes sense, although we still need to rename the menu text to read

ASSIGN THE TYPE AND ORDER FOR OUR FILE MENUS

 Action Result

1 In the ParentForm.cs [Design]
window, add an Open menu to the
File menu just after the existing New
menu.

2 Update the merge settings for the
items in the File menu.

3 In the File menu for the MainForm.cs
[Design] window, update the merge
settings for the items in this menu.

Settings

Property Value

(Name) menuOpen

Shortcut CtrlO

Text &Open

Settings

Menu MergeType MergeOrder

New Replace 0

Open Replace 1

separator Remove 0

Exit Add 7

Settings

Menu MergeType MergeOrder

New Remove 0

Open Remove 1

separator Add 3

Save Add 4

Save As Add 5

separator Add 6

Exit Add 2
MERGED MENUS 539

“Close” rather than “Exit.” We will do this in a way that continues to preserve the
SDI application from part 2.

This change ensures that the Exit menu displays “Close” when the MainForm object is
created as an MDI child window. Otherwise, the default setting of “Exit” will be used.

Compile and run the application to verify that our changes produce the appro-
priate menu structure. Create a new MDI child window and display the File menu.
Your application should appear as in figure 16.5. Note how all the menus are now in
the desired order, including the separator menus. Also note that the Exit menu from
the MainForm class is reincarnated as the Close menu in the MDI application.

CHANGE THE EXIT MENU TEXT WHEN RUNNING AS AN MDI CHILD FORM

 Action Result

4 Override the OnLoad method in
the MainForm.cs code window.

 protected override void OnLoad(EventArgs e)
 {

5 If the form is an MDI child
window, then modify the Exit
menu to appear as a Close
menu.

How-to

Use the IsMdiChild property.

 if (IsMdiChild)
 menuExit.Text = "&Close";

 base.OnLoad(e);
 }

Figure 16.5 The merged File menu here gives no indication that different

menu items are processed in different classes.
540 CHAPTER 16 MULTIPLE DOCUMENT INTERFACES

Of course, the Open menu is not yet implemented for our ParentForm class. Also
note that the Toolbar control in our child window still provides access to the now
hidden New and Open menus in the MainForm class.

We will deal with our toolbar shortly. First, let’s discuss our new Open menu.

16.3.3 OPENING A CHILD FORM

The Open menu in the parent form should work much like the now hidden Open
menu for the MainForm class. The handler for this menu should display an Open-
FileDialog and create a new child window containing the selected album. To cre-
ate the MainForm instance, we will create a new constructor that accepts an album
file name with which to initialize the window.

The code required here is nothing new to us, so let’s get to it.

IMPLEMENT HANDLER FOR OPEN MENU IN PARENT FORM

 ACTION RESULT

1 Add a using statement for
our library at the start of
the ParentForm.cs code
window.

using Manning.MyPhotoAlbum;

2 Add a Click handler for
the Open menu in the
ParentForm.cs [Design]
window.

 private void menuOpen_Click
 (object sender, System.EventArgs e)
 {

3 Implement this handler to
display an OpenFile-
Dialog instance from
which to select an album.

 // Allow user to select a new album
 using (OpenFileDialog dlg = new OpenFileDialog())
 {
 dlg.Title = "Open Album";
 dlg.Filter = "abm files (*.abm)|"
 + "*.abm|All files (*.*)|*.*";
 dlg.InitialDirectory = PhotoAlbum.DefaultDir;
 dlg.RestoreDirectory = true;

 if (dlg.ShowDialog() == DialogResult.OK)
 {

4 If an album is selected, try
to open the file in a new
window.

How-to

Use a not-yet-implemented
constructor that accepts an
album file.

 try
 {
 // Open new child window for the album
 MainForm form = new MainForm(dlg.FileName);
 form.MdiParent = this;
 form.Show();
 }
MERGED MENUS 541

The code displays an open file dialog and creates a child window using the selected
album file. This code requires a new constructor for the MainForm class, namely one
that accepts the file name of a photo album.

In this new constructor, we would like to make use of the constructor code
already present in the existing constructor. We can do this in C# by simply invoking
the default constructor with the this keyword. The following table illustrates this
syntax, and the changes required for our new constructor.

These changes permit the ParentForm class to create a new child window contain-
ing an open album. Compile and run the application to verify that this works as
expected. The File menu from our two classes is now fully merged, and all menus are
fully implemented.

As can be seen from this discussion, the ability to merge menus provides a pow-
erful mechanism for controlling the menu bar in MDI applications. They permit the
exact placement of menu items, and control over which class, the parent or child, will
process each item. While we only merged a single menu here, you may find in your

5 If an error occurs creating
the child window, display
an error message to the
user.

 catch (Exception ex)
 {
 MessageBox.Show(this,
 "Unable to open file " + dlg.FileName
 + "\n (" + ex.Message + ")",
 "Open Album Error",
 MessageBoxButtons.OK,
 MessageBoxIcon.Error);
 }
 }
 }
 }

IMPLEMENT HANDLER FOR OPEN MENU IN PARENT FORM (continued)

 ACTION RESULT

CREATE A MAINFORM CONSTRUCTOR THAT ACCEPTS AN ALBUM FILE

 Action Result

6 In the MainForm.cs file, create a
new constructor that accepts
the name of an album file.

 public MainForm(string albumFile)

7 Invoke the default constructor
within our new constructor.

 : this()
 {

8 Within the constructor, create a
PhotoAlbum for the given file.

Note: If a file cannot be opened
as an album, this will throw an
exception.

 _album = new PhotoAlbum();
 _album.Open(albumFile);
 SetTitleBar();
 }
542 CHAPTER 16 MULTIPLE DOCUMENT INTERFACES

own MDI applications that multiple menus must be merged. The principles and
methods for doing this are identical to those utilized here.

With our menus completed, the next item in the development of our MDI appli-
cation is to tidy up other parts of the interface such as the toolbar and the pixel data
dialog. This cleanup is our next topic.

16.4 MDI CHILDREN

Our MDI application is coming along nicely. So far we have a parent form that con-
tains MainForm class instances as child forms. Each form displays a new or existing
album, and the menu bars have been integrated to present a logical set of choices for
the user. There are additional members of the Form class that are related to the cre-
ation of MDI applications. This section will examine a few of these members as we
correct some issues with our MyPhotos MDI application.

If you have experimented with the MyPhotos interface created in the previous
section, you may have found the following three issues that do not behave as you
might expect.

• The toolbar control. The toolbar on the child form gives access to the New
and Open menu in the MainForm class, which we are trying not to expose in
the MDI version of our application.

• The pixel data form. This dialog appears separate from the MDI application,
rather than as a child form within it. In addition, when multiple album win-
dows are open, each window opens its own separate PixelDlg form, which
can get rather confusing.

• Opening multiple albums. If you open the same album twice, you end up
with two windows both showing the same album. Aside from the errors that
can occur from having two instances operate on different versions of the same
album simultaneously, it seems a bit strange to permit two copies of the same
file to open in the same parent window.

We will address each of these items separately, and make use of MDI-related mem-
bers of the Form class as required.

16.4.1 REPLACING THE TOOLBAR

Our toolbar was designed to interact with the menu bar for our MainForm class, and
not the merged menu in our MDI application. As a result, it is no longer appropriate
for our purposes. As a simple solution to this problem, we will simply hide the toolbar
when the MainForm object is an MDI child form. While we are at it, we can create a
very simple toolbar in the ParentForm class to demonstrate such a control in an MDI
application. Figure 16.6 shows our application after these changes have been made.
MDI CHILDREN 543

This following table shows the changes required to hide the toolbar in the child window.

Set the version number of the MyPhotos application to 16.4.

Not very exciting, but it does the job. A similar argument could be made for the sta-
tus bar. In this case, since the status bar is still accurate and provides some useful
information related to the displayed album, we will simply leave this control alone.

As for a Toolbar control in the parent form, we will create a simple control with
five buttons to demonstrate how this is done. Our buttons will correspond to the
New, Open, Save, Previous, and Next menu items in our merged menu. The one

Figure 16.6 The toolbar here must locate the appropriate event handler for

the active child form whenever a button is clicked.

HIDE THE TOOLBAR IN OUR CHILD FORM

 Action Result

1 Locate the OnLoad method in
the MainForm.cs code window.

 protected override void OnLoad(EventArgs e)
 {

2 Update this method to hide the
toolbar when this form is an MDI
child form.

 if (IsMdiChild)
 {
 menuExit.Text = "&Close";
 toolBarMain.Visible = false;
 }

 base.OnLoad(e);
 }
544 CHAPTER 16 MULTIPLE DOCUMENT INTERFACES

change from what we saw in chapter 13 when creating our original toolbar is that the
Save, Previous, and Next buttons must operate on the active child form, rather than
the parent form.

The ActiveMdiChild property in the Form class is used to identify the active
child for a form. We will use this to implement our toolbar buttons in the parent form.

We will also use the C# internal keyword here to expose some of our MenuItem
objects in the MainForm class to other classes in our assembly, and in particular to our
ParentForm class. This keyword is an access modifier like public or protected,
and permits any other class in the same assembly to have access to the class member.

Let’s see how these constructs are used by creating the Toolbar control for our
parent form. Since toolbars were discussed in chapter 13, we will simply highlight the
required changes without too much detailed discussion.

CREATE A TOOLBAR IN THE PARENT FORM

 Action Result

3 Add an ImageList called
imageListParent to the ParentForm
class in the ParentForm.cs [Design]
window.

The image list appears in the component tray for
the form.

4

5 Add a ToolBar control to the
ParentForm class.

Add the following images to the Images
property of this list:

• bitmaps/OffCtlBr/Small/Color/
NEW.BMP

• bitmaps/OffCtlBr/Small/Color/
OPEN.BMP

• bitmaps/OffCtlBr/Small/Color/
SAVE.BMP

• icons/arrows/ARW08LT.ICO
• icons/arrows/ARW08RT.ICO

Settings

Property Value

(Name) toolBarParent

ImageList imageListParent

TextAlign Right
MDI CHILDREN 545

This adds the toolbar and toolbar buttons to the form. Next we need to add the code
to handle the ButtonClick event for our toolbar. As you may recall from chapter 13,
this event occurs when the user clicks one of the toolbar buttons.

6 Using the ToolBarButton Collections
Editor, add six ToolBarButton objects
to this toolbar.

CREATE A TOOLBAR IN THE PARENT FORM (continued)

 Action Result

Settings

Button Property Value

New (Name) tbbNew

ImageIndex 0

ToolTipText New

Open (Name) tbbOpen

ImageIndex 1

ToolTipText Open

Save (Name) tbbSave

ImageIndex 2

ToolTipText Save

separator (Name) tbbSep

Style Separator

Previous (Name) tbbPrev

ImageIndex 3

ToolTipText Previous

Next (Name) tbbNext

ImageIndex 4

ToolTipText Next

HANDLE THE BUTTONCLICK EVENT IN THE PARENT FORM

 Action Result

7 In the MainForm class, add
internal methods to click the
menuSave, menuPrevious, and
menuNext menu items.

Note: We could alternately
change the access for these
objects from private to
internal. This approach is a bit
more robust.

 internal void ClickSaveMenu()
 {
 menuSave.PerformClick();
 }

 internal void ClickPreviousMenu()
 {
 menuPrevious.PerformClick();
 }

 internal void ClickNextMenu()
 {
 menuNext.PerformClick();
 }
546 CHAPTER 16 MULTIPLE DOCUMENT INTERFACES

This code invokes the menus in the ParentForm class for the New and Open but-
tons, and the appropriate menu in the active MainForm object, if any, otherwise.
Note the use of the internal keyword for the new methods in the MainForm class.
This permits these members to be accessed from within the MyPhotos.exe assembly
only, in this case from the ParentForm class.

Compile and run the code to verify that your toolbar works property. Make sure
the buttons perform as expected when no child window is present, and when the active
child does and does not contain any photographs in its album.

TRY IT! Add a new button to the parent form similar to the tbbImages button in
our MainForm toolbar. This will require a DropDownButton style of tool-
bar button, and a new internal method in MainForm to assign the display
mode for the form.

With our toolbar complete, our next task is to handle the PixelDlg form.

8 In the ParentForm constructor,
assign the Tag property for the
New and Open buttons to the
corresponding menu item.

 public ParentForm()
 {
 // Required for Designer support
 InitializeComponent();

 // Initialize toolbar buttons
 tbbNew.Tag = menuNew;
 tbbOpen.Tag = menuOpen;
 }

9 Also in the ParentForm class,
add an event handler for the
ButtonClick event in the
toolbar.

 private void toolBarParent_ButtonClick
 (object sender, System.Windows.Forms.
 ToolBarButtonClickEventArgs e)
 {

10 Implement this handler to invoke
the corresponding menus for the
New and Open buttons.

 if (e.Button.Tag is MenuItem)
 {
 MenuItem mi = e.Button.Tag as MenuItem;
 mi.PerformClick();
 return;
 }

11 For the other buttons, convert
the active child form, if any, to a
MainForm instance.

 // Must be MDI child button
 MainForm child
 = ActiveMdiChild as MainForm;

12 If the active child is a MainForm
object, then click the menu item
corresponding to the selected
button.

 if (child != null)
 {
 if (e.Button == tbbSave)
 child.ClickSaveMenu();
 else if (e.Button == tbbPrev)
 child.ClickPreviousMenu();
 else if (e.Button == tbbNext)
 child.ClickNextMenu();
 }
 }

HANDLE THE BUTTONCLICK EVENT IN THE PARENT FORM (continued)

 Action Result
MDI CHILDREN 547

16.4.2 DISPLAYING PIXEL DATA

The PixelDlg form is another area where the behavior in our MDI application is not
quite as desired. Right now each child has a separate pixel dialog, and these dialogs are
separate from the parent form. To integrate this feature with our MDI application, it
would be nice if a single PixelDlg was used for all album windows, and if this dialog
was an MDI child form as well. We would also like to preserve our ability to run the
MyPhotos application as an SDI where only a single album is displayed at a time.

This section will make the changes in our code required by these features, the
result of which appears in figure 16.7. These changes will involve the following tasks:

• Create a global PixelDlg instance that can be shared by all MainForm
instances.

• Provide a means to display this dialog as an MDI child form.
• Access this global instance from the MainForm class instances.
• Ensure this dialog is always associated with any active MainForm window.

This may seem like a daunting task for a single section. In fact, our application is
well-prepared for these changes. Pulling out my soap box for a moment, the real test

Figure 16.7 The PixelDlg form in this figure is partially obscured to prove that it really is

a child form in our MDI application, rather than the modeless dialog originally created in

chapter 8.
548 CHAPTER 16 MULTIPLE DOCUMENT INTERFACES

of an architecture is not its ability to work as designed, but rather its ability to per-
form tasks for which it was not designed. The coding techniques we have used
throughout the book are useful in any application to accommodate future require-
ments. These techniques include frequent encapsulation of tasks into separate meth-
ods; sketching a user interface design or enumerating the steps required before
writing any code; and building reusable libraries and methods where possible.

As a result, our code has some advantages for new changes such as this in that we
have consistently tried to use good coding practices and not duplicate our tasks in mul-
tiple places. While perhaps not always successful, I believe we have done a reasonable job.

In the PixelDlg form, for example, we were careful to only update this form in
the UpdatePixelData method of the MainForm class. Similarly, the only location
where the PixelDlg form is created right now is in the Click event handler for the
menuPixelData object. Such organization occasionally requires a little extra work,
or in our case a few more pages, but this effort often pays off as the code is maintained
and updated in the future.

Stepping off my soap box and returning to the topic at hand, we will make our
changes in the order shown in the previous list, beginning with a global PixelDlg
instance. For this we will provide a static property in the PixelDlg class that
returns a shared form.

The GlobalDialog property provides the mechanism by which all child MainForm
instances can access the same PixelDlg form. Recall that our PixelDlg form is

CREATE A SHARED PIXELDLG INSTANCE

 Action Result

1 In the PixelDlg.cs code window,
create static members to hold
the shared instance and an MDI
parent form, if any.

 static private Form _mdiForm = null;
 static private PixelDlg _globalDlg;

2 Create an internal property to
assign and retrieve an MDI
container form.

 static internal Form GlobalMdiParent
 {
 get { return _mdiForm; }
 set { _mdiForm = value; }
 }

3 Create a public property to
retrieve the shared form.

How-to

If the current _globalDlg value
is invalid, then create a new
instance of the Form.

 static public PixelDlg GlobalDialog
 {
 get
 {
 if (_globalDlg == null
 || _globalDlg.IsDisposed)
 {
 _globalDlg = new PixelDlg();
 _globalDlg.MdiParent = GlobalMdiParent;
 }

 return _globalDlg;
 }
 }
MDI CHILDREN 549

disposed whenever the user clicks the Close button. For this reason, this property rec-
reates the dialog whenever it is null or disposed.

The GlobalMdiParent property provides a method for turning this global dia-
log into an MDI child form. We can use this property in our ParentForm class to
establish the MDI container for our global dialog.

This ensures that whenever a new global dialog is created, the ParentForm object is
assigned as the MDI parent. With this in place, we are ready to access the global dia-
log from the MainForm class. As mentioned earlier, right now the dialog is created
only in the menuPixelData_Click method, so this is the only place we need to
call our new property.

This change simply retrieves the global dialog rather than creating a new instance.
You can compile and run this if you like. You will see that our code works fine for a
single MDI child window. When a second window is added, the PixelDlg form is
not associated with this window, and no longer works.

SET THE MDI PARENT FOR THE GLOBAL PIXELDLG FORM

 Action Result

4 In the ParentForm.cs code
window, override the OnLoad
method to assign this form as
the MDI parent for the global
PixelDlg form.

 protected override void OnLoad(EventArgs e)
 {
 PixelDlg.GlobalMdiParent = this;

 base.OnLoad(e);
 }

ACCESS THE GLOBAL PIXELDLG FROM THE MAINFORM CLASS

 Action Result

5 Locate the
menuPixelData_Click method
in the MainForm.cs code
window.

 private void menuPixelData_Click
 (object sender, System.EventArgs e)
 {

6 Modify the creation of the
PixelDlg form to use the new
GlobalDialog property.

 if (_dlgPixel == null
 || _dlgPixel.IsDisposed)
 {
 _dlgPixel = PixelDlg.GlobalDialog;
 }

 _nPixelDlgIndex = _album.CurrentPosition;
 Point p = pnlPhoto.PointToClient(
 Form.MousePosition);
 UpdatePixelData(p.X, p.Y);
 AssignPixelToggle(true);

 _dlgPixel.Show();
 }
550 CHAPTER 16 MULTIPLE DOCUMENT INTERFACES

There are a couple ways to fix this problem. We will do so by observing that all
mouse movement in each window is processed by the pnlPhoto_MouseMove event
handler. This method in turn calls the UpdatePixelData method, as does all other
updates to the dialog. As a result, we can associate an existing PixelDlg form with
a new window by assigning the dialog at the start of our update method.

The following steps make this change in our application.

This now guarantees that a child form will pick up the global PixelDlg form as
needed. Of course, this change also causes the dialog to be created even when it is not
used. Such a change might not be appropriate in a large application with multiple
utility forms such as our pixel dialog. For our purposes, it is okay.

Compile and run the program to verify that our new code works. Also realize that
these changes are consistent with our non-MDI application. When a single MainForm
instance is present, it will now use the global PixelDlg instance to create the dialog, and
all code will work as we originally intended in chapter 8. You can test this by modifying
the MyPhotos project settings to use the MainForm.Main method as the entry point.

The PixelDlg form is now integrated into our MDI application. The next task
is to ensure that we do not open multiple windows for the same album file.

16.4.3 OPENING AN ALBUM TWICE

In our current code for the Open menu, the user selects an album and a new child
window is created to contain this album. This is fine as long as the selected album has
not been previously opened by the user. In the case where a MainForm window
already exists for the selected album, it would be more appropriate to simply display
the existing window at the top of the z-order.

This can be done by searching through the list of child windows for one that dis-
plays the selected album. The MdiChildren property in the Form class retrieves the
collection of child forms assigned to an MDI container form. This property can be
treated like any other array to search for a matching form.

This property is useful whenever a specific form is desired, as we do here. It can
also be used to see if any child forms are present in an MDI application and to obtain
the number of MDI child forms, although checking the ActiveMdiChild property
is typically a more efficient mechanism for the former task.

ENSURE AN EXISTING PIXELDLG FORM IS ASSIGNED TO NEW CHILD INSTANCES

 Action Result

7 Locate the UpdatePixelData
method.

 protected void UpdatePixelData(int xPos,
 int yPos)
 {

8 Assign the _dlgPixel field at
the beginning of the method.

 if (IsMdiChild)
 _dlgPixel = PixelDlg.GlobalDialog;
 . . .
 }
MDI CHILDREN 551

When implementing this change, we should keep in mind the fact that forms
other than our MainForm class might be contained by this array. The following steps
detail a solution for this change with this fact in mind.

This code uses some properties we have not seen before. When a matching child Form is
found, the WindowState property is used to assign or retrieve the current display state
of the MDI child form within its container. For a top-level form, this affects the display
state on the desktop. The WindowState property takes its values from the FormWin-
dowState enumeration, summarized in .NET Table 16.2. In the previous table, we
check to see if the MDI child is minimized, and if so return it to a Normal state.

HANDLE AN ATTEMPT TO OPEN A DISPLAYED ALBUM

 Action Result

1 In the MainForm.cs code
window, add a new
AlbumFile property to
retrieve the file name of the
displayed album.

 public string AlbumFile
 {
 get { return _album.FileName; }
 }

2 Locate the
menuOpen_Click event
handler in the ParentForm.cs
code window.

 private void menuOpen_Click
 (object sender, System.EventArgs e)
 {

3 Before opening a new
MainForm window, search
through the set of existing
child forms.

 . . .
 if (dlg.ShowDialog() == DialogResult.OK)
 {
 try
 {
 // See if album is already open
 foreach (Form f in MdiChildren)
 {

4 If a MainForm instance is
found, see if it displays the
selected album.

 if (f is MainForm)
 {
 MainForm mf = (MainForm) f;
 if (mf.AlbumFile == dlg.FileName)
 {

5 If a match is found, bring the
existing album to the front of
the application window.

 if (mf.WindowState
 == FormWindowState.Minimized)
 {
 mf.WindowState
 = FormWindowState.Normal;
 }
 mf.BringToFront();
 return;
 }
 }
 }

6 If no matching window is
found, the existing code will
create a new MainForm
object for the album.

 // Open new child window for album
 MainForm form
 = new MainForm(dlg.FileName);
 . . .
 }

How-to

a. If the form is minimized,
return it to a normal state.

b. Display the form at the
front of the MDI window.
552 CHAPTER 16 MULTIPLE DOCUMENT INTERFACES

We also use the BringToFront method to display the form at the top of the z-order
within the MDI container. This method is part of the Control class and can be used
to adjust the z-order position of any Windows Forms control within its container.
There is also a corresponding SendToBack method to place a control at the bottom
of the z-order.

Run the application to verify this feature works. Try minimizing or maximizing
the form before opening the same album to verify that the proper behavior occurs. Also
verify that when a new album is selected, a new MDI child form appears as before.

This completes the three tasks we set out at the start of section 16.4. We have
added a toolbar to our parent form and hidden the toolbar in the child, turned the
PixelDlg form into an MDI child when running as an MDI application, and
ensured that an album can only be opened within a single MDI child form.

As a final change, and to create a slightly more polished application, let’s make
one more addition here to place the current album in the title bar.

16.4.4 UPDATING THE TITLE BAR

An MDI application should normally update its title bar to reflect the contents of the
currently active child form. This provides good feedback to your users, especially
when the application is minimized and only appears in the task bar. In our case, we
will also include the version number on the title bar as is our custom. The result of
this change is shown in figure 16.8.

We could like to update the title bar whenever a new form is activated within the
MDI container. There is an event for just this purpose, namely the MdiChildActi-
vate event. This event occurs whenever an MDI child form is closed or becomes the
active form within the container.

.NET Table 16.2 FormWindowState enumeration

The FormWindowState enumeration specifies the possible display states for a Form on the
desktop or within an MDI application. This enumeration is part of the System.Win-
dows.Forms namespace.

Enumeration

Values

Maximized The form is maximized so that it fills the entire possible
display area, either the entire desktop or the entire display
window when the form is an MDI child form.

Minimized The form is minimized and is listed in the task bar or at the
base of the MDI container form.

Normal The form appears in its normal state. By default, the form is
visible and not maximized. If a maximized Form is minimized,
then setting the Form to Normal will return the form to a
maximized state.
MDI CHILDREN 553

We should also point out that MDI child forms do not receive the Activated or
Deactivate events. As a result, when converting from a single document interface
into a multiple document interface, any tasks performed in these events must now be
handled via another mechanism. Often the MdiChildActivate event can handle
the work previously done in these events. Another option is to use the focus-related
events, such as the Enter or Leave event. We will look at the activation events in
our MainForm window in a moment.

Let’s implement an MdiChildActivate event handler to update the title bar
for our application.

Figure 16.8 The title bar for our MDI application must handle the various types of

child forms the application can display.

UPDATE TITLE BAR IN THE PARENT FORM

 Action Result

1 In the ParentForm.cs code
window, override the protected
OnMdiChildActivate method.

 protected override void OnMdiChildActivate
 (System.EventArgs e)
 {

2 Implement this method to set
the title bar for the MDI
application.

 SetTitleBar();
 base.OnMdiChildActivate(e);
 }

3 In the MainForm.cs code
window, add an AlbumTitle
property to retrieve the title of
the currently displayed album.

 public string AlbumTitle
 {
 get { return _album.Title; }
 }
554 CHAPTER 16 MULTIPLE DOCUMENT INTERFACES

The text to appear in the title bar depends on which type of window is currently
active. When no window, or an unrecognized window, is active, then the title bar
simply includes the version number. The MdiChildActivate event gives no indi-
cation of the activating child, so we use the ActiveMdiChild property to retrieve
the active Form. We separate the title bar logic into a separate member SetTitle-
Bar, which allows us to call this method from the OnLoad method as well as our
event handler.

Compile and run the application to verify that these changes work as expected.
The title bar for both parent and child forms is rather similar. Feel free to modify one
or the other to make the title bars more unique. If you do this, make sure you consider
the behavior of the MainForm class as both an SDI and MDI application.

4 Back in the ParentForm.cs code
window, implement the
SetTitleBar method to
retrieve the version number for
the application.

 protected void SetTitleBar()
 {
 Version ver
 = new Version(Application.ProductVersion);

5 If the active child is a MainForm
object, include the album title in
the title bar.

How-to

Cast the active child to a
MainForm object in order to
retrieve the current album title.

 string titleBar
 = "{0} - MyPhotos MDI {1:#}.{2:#}";

 if (ActiveMdiChild is MainForm)
 {
 string albumTitle
 = ((MainForm)ActiveMdiChild).AlbumTitle;
 this.Text = String.Format(titleBar,
 albumTitle, ver.Major, ver.Minor);
 }

6 If the active child is a PixelDlg
object, display the string “Pixel
Data” in the title bar.

 else if (ActiveMdiChild is PixelDlg)
 {
 this.Text = String.Format(titleBar,
 "Pixel Data", ver.Major, ver.Minor);
 }

7 Otherwise, just display the
version number in the title bar.

 else
 {
 this.Text = String.Format(
 "MyPhotos MDI {0:#}.{1:#}",
 ver.Major, ver.Minor);
 }
 }

8 Also set the title bar in the
OnLoad method.

Note: This sets the title bar as
the application begins, before
any child windows are dis-
played.

 protected override void OnLoad(EventArgs e)
 {
 PixelDlg.GlobalMdiParent = this;
 SetTitleBar();

 base.OnLoad(e);
 }

UPDATE TITLE BAR IN THE PARENT FORM (continued)

 Action Result
MDI CHILDREN 555

16.4.5 REVISITING THE ACTIVATION EVENTS

Before we leave this section, there is one more additional change required in our pro-
gram. Take a look at the following OnActivated and OnDeactivate methods
from the MainForm class. As we mentioned previously, these events are not received
by MDI child forms, so our existing methods will never be called.
 protected override void OnDeactivate(EventArgs e)
 {
 if (ctrlKeyHeld)
 ReleaseControlKey();

 base.OnDeactivate(e);
 }

 protected override void OnActivated(EventArgs e)
 {
 // Update toggle toolbar button if required
 if (this._dlgPixel == null || _dlgPixel.IsDisposed)
 AssignPixelToggle(false);
 else
 AssignPixelToggle(_dlgPixel.Visible);

 base.OnActivated(e);
 }

As you may recall, we overrode the OnDeactivate method in earlier chapters to
note that the Ctrl key should be released when the Form is no longer the active appli-
cation on the desktop. We overrode the OnActivated method as part of the imple-
mentation for a toggle toolbar button tied to the PixelDlg form for the window.
The deactivate logic is still required, since the Ctrl key is still a part of our MDI
application. The pixel toggle button is not included in our current MDI application,
so the activation logic is not required here.

For the Ctrl key logic, we can duplicate the deactivation logic in an OnLeave
method. This method, you may recall, is invoked when a control, in this case our
form, loses focus. A standalone window, such as our SDI application, does not receive
this event, so this addition has no effect on our SDI program.

ENSURE THE CTRL KEY IS RELEASED WHEN AN MDI CHILD FORM LOSES FOCUS

 Action Result

1 In the MainForm.cs code
window, override the OnLeave
method to duplicate the logic
from the OnDeactivate
method for the MDI application.

 protected override void OnLeave(EventArgs e)
 {
 if (IsMdiChild && ctrlKeyHeld)
 ReleaseControlKey();

 base.OnLeave(e);
 }
556 CHAPTER 16 MULTIPLE DOCUMENT INTERFACES

With this change, our MDI application is ready. Compile and run the application
and try to find an error.1

TRY IT! We have been careful to use the IsMdiChild property in all our changes
to the MainForm.cs source file to ensure that the application can run as a
single document interface or a multiple document interface. Test this out
by modifying the Startup Object in the properties for the MyPhotos
project to use the MainForm.Main method. Recompile the application
and verify that it now runs as an SDI application. Change it back to an
MDI application by setting the Startup Object to ParentForm.Main.

Our final change in this chapter will be the addition of layout management for our
MDI child forms.

16.5 MDI CHILD WINDOW MANAGEMENT

Ultimately, an MDI application is simply a collection of Forms displayed in a parent
window. The .NET Framework provides some assistance in managing these forms
within this parent. In this section we will discuss child form layout and how to show
the active forms in a menu. The Form class contains a LayoutMdi method for the
former, while the MenuItem class contains an MdiList property for the latter. A new
top-level Window menu, as shown in figure 16.9, will make use of these constructs.

1 Of course, if you do find an error here or elsewhere in the book, please send me an email so the cor-
rection can be posted online and the error corrected in the next edition.

Figure 16.9 The new Window menu for our application will support options related

to managing child forms within the parent window.
MDI CHILD WINDOW MANAGEMENT 557

We will begin with the automatic layout of MDI child forms.

16.5.1 ARRANGING MDI FORMS

In an MDI application, as well as on the Windows desktop, a number of windows are
created and strewn about in various locations. It would be nice if our application per-
mitted automatic organization of the windows at the user’s request. This would allow
the user to immediately see all open windows and select the desired one.

Such support is provided by the LayoutMdi method of the Form class. This
method accepts an enumeration value specifying the type of layout to apply to the
MDI container, as shown by the following signature:
 public void LayoutMdi(MdiLayout layoutValue);

This method is called from the MDI container form, in our case the ParentForm
class. The MdiLayout enumeration is summarized in .NET Table 16.3. To demon-
strate how this is used, we will create a new Windows menu containing options for
each of the main layout options. An illustration of each option is shown in the table.

.NET Table 16.3 MdiLayout enumeration

The MdiLayout enumeration specifies the possible layout options for a set of MDI child
forms. This is used in the LayoutMdi method of the Form class to automatically display a set
of forms with the given layout mode. This class is part of the System.Windows.Forms
namespace.

The following table illustrates each layout style with a set of three child forms.

Enumeration

Values

ArrangeIcons The icons or minimized forms are arranged within the
client window. Note that this has no effect on child
forms that are not minimized.
558 CHAPTER 16 MULTIPLE DOCUMENT INTERFACES

Enumeration

Values

Cascade The child forms are displayed on top of each other in
step fashion so that only the title bar of the hidden forms
is visible.

TileHorizontal The client area is divided horizontally into equal sections
and each open window is displayed in a section.

TileVertical The client area is divided vertically into equal sections
and each open window is displayed in a section.

.NET Table 16.3 MdiLayout enumeration
MDI CHILD WINDOW MANAGEMENT 559

In your application, you can choose to support some or all of these options. The var-
ious layout styles are useful for quickly seeing the entire set of open windows in an
MDI application, and typically appear in a Windows menu located on the MDI par-
ent form. Since our application is nothing if not typical, we will do exactly this. The
following table details the required steps.

Set the version number of the MyPhotos application to 16.5.

ADD LAYOUT MENUS TO THE PARENT FORM

 Action Result

1 In the ParentForm.cs [Design] window, add
a new top-level Windows menu to the
form.

2 Add a menu item for each of the layout
styles.

Settings

Property Value

(Name) menuWindows

MergeOrder 3

Text &Window

Settings

Menu Property Value

Arrange (Name) menuArrange

Text &Arrange Icons

Cascade (Name) menuCascade

Text &Cascade

Horizontal (Name) menuTileHorizontal

Text Tile &Horizontal

Vertical (Name) menuTileVertical

Text Tile &Vertical
560 CHAPTER 16 MULTIPLE DOCUMENT INTERFACES

This change permits the user to automatically arrange the open windows in the
selected style. Compile and run the application, open a few windows, and verify that
these changes work as advertised.

The other topic related to our Windows menu is that of the MdiList property.

16.5.2 CREATING AN MDI CHILD LIST

It is common in MDI applications to provide a list of open windows as part of the
Window menu. This permits the user to quickly jump to an open window at the
click of the mouse. The .NET folks at Microsoft were kind enough to provide a quick
way to do this through the MdiList property of the MenuItem class.

3 Add a Click event handler for each menu
that calls the LayoutMdi method with the
corresponding MdiLayout enumeration
value.

 private void menuArrange_Click
 (object sender, System.EventArgs e)
 {
 LayoutMdi(MdiLayout.ArrangeIcons);
 }

 private void menuCascade_Click
 (object sender, System.EventArgs e)
 {
 LayoutMdi(MdiLayout.Cascade);
 }

 private void menuTileHorizontal_Click
 (object sender, System.EventArgs e)
 {
 LayoutMdi(MdiLayout.TileHorizontal);
 }

 private void menuTileVertical_Click
 (object sender, System.EventArgs e)
 {
 LayoutMdi(MdiLayout.TileVertical);
 }

ADD LAYOUT MENUS TO THE PARENT FORM (continued)

 Action Result

Figure 16.10

In the list of child

forms, note how the

active child form is

automatically

checked by the

framework.
MDI CHILD WINDOW MANAGEMENT 561

When this property is set to true on a top-level menu within an MDI application, the
list of child forms is automatically added to the menu. Figure 16.10 shows an example
of this behavior for the Window menu in our ParentForm class. The list of forms
appears below any existing menu items, with a separator added just before the list.

Up to nine forms are displayed, with a “More Windows…” menu added if more
than nine child forms exist. This additional menu is added by the .NET Framework,
and will display a dialog showing the list of all child forms. An example of this “More
Windows…” dialog is shown in figure 16.11. Note that even our PixelDlg form
appears in this window.

We can add this feature to our application simply by setting the MdiList property
for the Window menu.

That’s all it takes. Compile, run, and see it in action.
The related property MdiListItem exists in the Menu class, and can be used to

identify the MenuItem instance that displays the list of child forms within a Main-
Menu instance. We have not used this property in our application.

Before we leave the topic of child form layout, it is also worth mentioning that
child forms can be positioned manually using the standard members of the Control
class such as the Top, Width, Size, and Location properties.

This completes our MDI application for the moment. As is our custom, a short
recap of our accomplishments here will round out the chapter.

Figure 16.11

The Select Window dialog dis-

plays all active windows in

the application.

ENABLE A LIST OF CHILD WINDOWS TO APPEAR

 Action Result

1 In the ParentForm.cs [Design]
window, set the MdiList
property of the Window menu
to true.

The MDI child windows will be automatically inserted
when the contents of this menu are displayed.
562 CHAPTER 16 MULTIPLE DOCUMENT INTERFACES

16.6 RECAP

In this chapter we converted the single document interface, or SDI, application cre-
ated in part 2 of the book into a multiple document interface, or MDI, application.
This amazing feat was done through the creation of a new parent form window and
by using members of the Form class and other Windows Forms constructs.

We began by creating the ParentForm class to serve as our MDI container form,
and used the existing MainForm object as our child form. We examined the Merge-
Order and MergeType properties of the MenuItem class to merge the menus of our
parent and child forms into a single menu bar. We created a toolbar on our parent
form and integrated the PixelDlg form into the application as well.

From MDI applications we move to the topic of data binding.
RECAP 563

C H A P T E R 1 7

Data binding
17.1 Data grids 565
17.2 Data grid customization 573
17.3 Editable objects 580
17.4 Simple data binding 586
17.5 Recap 602
Data binding is a means for associating Windows Forms controls with one or more data
sources. We saw a little of this concept in chapter 10 for list controls such as the List-
Box and ComboBox classes. These controls provide the DataSource and DataMem-
ber properties for binding the list displayed by the control to a specific source of data.

In this chapter we will explore data binding in more detail. While we will keep
the discussion focused on Windows Forms classes, many of the examples and discus-
sions carry over to databases and the System.Data namespace where classes such as
DataSet and DataTable are found.

The application in this section will be similar in spirit to the MyAlbumEditor
application created in chapters 10 and 11. A ComboBox control will display a list of
available albums, and the photographs in the selected album will appear on the
remainder of the form. Our new application will be called MyAlbumData and is
shown in figure 17.1.
564

We begin with the DataGrid control, which displays a data source in tabular format.
We will look at this class in some detail, and discuss the concept of simple data bind-
ing later in the chapter.

17.1 DATA GRIDS

A data grid is just that: a grid in which data is displayed. The DataGrid class encap-
sulates this concept, allowing various collections of data to be displayed and manipu-
lated by a user. The concept of data binding is central to the DataGrid class, as data
is typically displayed in the control by binding an existing database table or collection
class to the data grid object.

As shown in figure 17.1, the DataGrid class displays data as a set of rows and
columns. The grid in general represents a specific collection of data, and this case rep-
resents a PhotoAlbum instance. Each row, in turn, represents a specific item in the
overall collection, and each column represents a specific field that can be assigned to
each item. In our application, each row will represent a Photograph object, and each
column a possible property of a photograph.

There are a number of terms related to DataGrid controls. A summary of these
is shown in figure 17.2 as they relate to our application. An overview of the DataGrid
class is provided in .NET Table 17.1.

Figure 17.1 Our new application will include a tab control with a data grid on one

tab page and a set of data-bound controls on a second tab page.
DATA GRIDS 565

bCaption

Displays a short string describing the table.

cDataGridTableStyle class

Used to customize the appearance and behavior of tables.
DataGridColumnStyle class

Used to customize the order, appearance and behavior of columns. The framework supports text
and boolean columns by default.

dRow Header

The area in front of a row. The small triangle indicates the current item.

eGrid Lines

The color and style of lines are configurable.

fCell

Refers to an individual value within the grid.

gColumn Header

Shows the name of each column.

The ListView class discussed in chapter 14 can also be used to present a table of
information. The Windows Forms namespace provides explicit classes to represent
the rows and columns in a list view. As you may recall, each item, or row, in the list is
represented by the ListViewItem class instance, and each column by a ListView-
SubItem instance and is presented based on a ColumnHeader instance.

As illustrated by figure 17.2, the DataGrid class takes a somewhat different
approach. The contents of the grid are contained in a single collection, such as an
array, a photo album, or a database table. Classes exist to configure the style in which
the provided data is displayed, including colors, column ordering, and other proper-
ties. We will discuss the details of these style classes later in the chapter.

b

d

c

E
F

G

Figure 17.2

This chapter will discuss

many of the terms and

classes related to data

grids.
566 CHAPTER 17 DATA BINDING

.NET Table 17.1 DataGrid class

The DataGrid class represents a control that displays a collection of data as a grid of rows
and columns. The data displayed and the style in which it is presented is fully configurable.
This class is part of the System.Windows.Forms namespace, and inherits from the Control
class. See .NET Table 4.1 on page 104 for a list of members inherited by this class.

Public Properties

AllowNavigation Gets or sets whether navigation is permitted.

AlternatingBackColor Gets or sets the background color to use on
every other row in the grid to create a ledger-
like appearance.

CaptionText Gets or sets the text to appear in the caption
area.

CaptionVisible Gets or sets whether the caption is visible.
Other properties related to this and other grid
areas are also provided.

CurrentCell Gets or sets a DataGridCell structure
representing the cell in the grid that has the
focus.

CurrentRowIndex Gets or sets the index of the selected row.

DataMember Gets or sets which list in the assigned data
source should be displayed in the grid.

DataSource Gets or sets the source of data for the grid.

Item Gets or sets the value of a cell. This property is
the C# indexer for this class.

ReadOnly Gets or sets whether the grid is in read-only
mode.

RowHeaderWidth Gets or sets the width of row headers in pixels.

TableStyles Gets the collection of DataGridTableStyle
objects specifying display styles for various
tables that may be displayed by the grid.

Public Methods

BeginEdit Attempts to begin an edit on the grid.

HitTest Returns location information within the grid of
a specified point on the screen. This works
much like the HitTest method in the
MonthCalendar class.

SetDataBinding Assigns the DataSource and DataMember
properties to the given values at run time.

Unselect Deselects a specified row.

Public Events

CurrentCellChanged Occurs when the current cell has changed.

DataSourceChanged Occurs when a new data source is assigned.

Navigate Occurs when the user navigates to a new
table.

Scroll Occurs when the user scrolls the data grid.
DATA GRIDS 567

17.1.1 CREATING THE MYALBUMDATA PROJECT

While the DataGrid class includes numerous members for customizing the appear-
ance and behavior of the control, it is possible to create a very simple grid with only a
few lines of code. We will begin with such an application, and enhance it over the
course of the chapter.

The following table lays out the creation and initial layout of our new application.

CREATE THE MYALBUMDATA PROJECT

 Action Result

1 Create a new project and solution in
Visual Studio .NET called
“MyAlbumData.”

The new solution is shown in the Solution Explorer
window, with the default Form1.cs [Design] window
displayed.

2 Rename the Form1.cs file and
related class file to our standard
MainForm class and assign some
initial settings for this form.

3 Drag a Label, ComboBox,
DataGrid, and Button control onto
the form. Arrange these controls as
shown in the graphic.

4 Create a Click event handler for
the Close button to shut down the
application.

 private void btnClose_Click
 (object sender, System.EventArgs e)
 {
 Close();
 }

Settings

Property Value

(Name) MainForm

Size 450, 300

Text MyAlbumData

Settings

Control Property Value

Label Text &Album

ComboBox
(Name) cmbxAlbum

Anchor Top, Left, Right

DataGrid

(Name) gridPhoto-
Album

Anchor Top, Bottom,
Left, Right

Button

(Name) btnClose

Anchor Bottom, Right

Text &Close
568 CHAPTER 17 DATA BINDING

With our initial window in place, we are ready to display some album data in the
window.

17.1.2 DISPLAYING DATA IN A DATA GRID

Our main window in the MyAlbumData application contains a combo box and a data
grid. Our ComboBox control will contain a list of the albums located in the default
album directory, while our DataGrid control will display the contents of the selected
album. This section will make the changes required for this behavior. Section 17.2 will
look at customizing the information displayed by the grid.

Fortunately, our existing MyPhotoAlbum project can do most of the work here.
The changes required are detailed in the following steps.

Set the version number of the MyAlbumData application to 17.1.

DISPLAY ALBUM DATA IN THE MYPHOTOALBUM APPLICATION

 Action Result

1 In the Solution Explorer window,
add the MyPhotoAlbum project
to the solution and reference it
from the MyAlbumData project.

2 At the top of the MainForm.cs
code window, add a using
statement for the new project
and the System.IO namespace.

using System.IO;
using Manning.MyPhotoAlbum;

3 Define a private PhotoAlbum
field within the MainForm class.

 private PhotoAlbum _album;
DATA GRIDS 569

4 Override the OnLoad method to:

a. Add the version number to the
title bar.

b. Initialize the photo album.
c. Set the album file names to

appear in the ComboBox
control.

Note: The assignment of the
DataSource property here is an
example of data binding. In this
case, we are binding the collec-
tion of objects for the ComboBox
control to an array of directory
strings.

 protected override void OnLoad(EventArgs e)
 {
 Version ver
 = new Version(Application.ProductVersion);
 Text = String.Format(
 "MyAlbumData {0:#}.{1:#}",
 ver.Major, ver.Minor);

 _album = new PhotoAlbum();

 cmbxAlbum.DataSource = Directory.GetFiles(
 PhotoAlbum.DefaultDir, "*.abm");
 }

5 Handle the SelectedIndex-
Changed event for the
ComboBox object.

 private void cmbxAlbum_SelectedIndexChanged
 (object sender, System.EventArgs e)
 {

6 In this handler, retrieve the string
selected in the combo box and
dispose of any existing album.

 string albumFile
 = cmbxAlbum.SelectedItem.ToString();

 if (_album != null)
 _album.Dispose();

7 Open the selected album file. _album.Clear();
 try
 {
 _album.Open(albumFile);

8 If the album opens successfully,
assign the album title as the
caption text for the DataGrid
control.

 gridPhotoAlbum.CaptionText = _album.Title;
 }

9 If the album cannot be opened,
clear the album and assign an
error message as the caption
text.

 catch (Exception)
 {
 _album.Clear();
 gridPhotoAlbum.CaptionText
 = "Unable to open album";
 }

10 Bind the contents of the
resulting album to appear in the
DataGrid control.

 gridPhotoAlbum.SetDataBinding(null, null);
 gridPhotoAlbum.SetDataBinding(_album, null);
 }

Note: Since the value of the _album field does not
actually change, we force the data grid to reload the
album data by binding it to null and then rebinding
to our PhotoAlbum instance. We will do this a bit
more elegantly later in the chapter.

DISPLAY ALBUM DATA IN THE MYPHOTOALBUM APPLICATION (continued)

 Action Result
570 CHAPTER 17 DATA BINDING

This code opens the selected album and assigns the title of the album to appear in the
caption area of the data grid. The collection of photographs in the album is bound to
the contents of the data grid. The result is shown in figure 17.3.

The caption area at the top of the control is assigned using the CaptionText prop-
erty. In the figure, the title of the colors.abm album is “Lots of Colors” as is shown in
the caption. The data source for the grid is assigned using the SetDataBinding
method. This method has the following signature:
 public void SetDataBinding(object dataSource, string dataMember);

The dataSource parameter is assigned to the DataSource property of the control,
while the dataMember parameter is assigned to the DataMember property. In our
application, the control recognizes our PhotoAlbum object as an IList interface
containing a collection of Photograph objects. This is performed internally using
the GetType method available on all object instances.

The properties of the Photograph object are determined internally using the mem-
bers of the System.Reflection namespace. These properties are then used as the col-
umns in the grid, and each Photograph in the album is presented as a row in the grid.

We will not discuss the System.Reflection namespace in detail here. This
namespace permits .NET objects such as the DataGrid control to determine the type
of object and members of that type at runtime. In this way our data grid can under-
stand how the PhotoAlbum object is organized, and automatically create an appro-
priate grid structure.

Since the order of columns in the grid corresponds to the internal order of prop-
erties in the PhotoAlbum class, your columns might be ordered differently than is
shown in figure 17.3. Also note that properties which only provide a get access
method are treated as read-only, while properties with both a get and set access
method are modifiable. As a result the Image and IsImageValid columns in our grid
are read-only, while the Photographer and Notes columns can be modified. We will
look at how to update the class with these changes shortly.

Figure 17.3

The DataGrid control sup-

ports two types of entries by

default. Boolean values, such

as the IsImageValid property,

appear as check boxes. All

other properties display the

result of their ToString prop-

erty as a text entry.
DATA GRIDS 571

Back to our SetDataBinding method, there are a number of different classes
that can serve as a source of data, depending on the type of C# interfaces they support.
A summary of data sources for the DataGrid class is given in the following table.

Data sources for the data grid control

Interface Usage Notes

IList A homogenous collection of objects. The
first item in the list determines the type.
The first property in that type is
displayed as the only column when
bound to a data grid.

This includes any simple array in C#,
and all classes based on the Array
object.

typed IList A typed collection, such as our
PhotoAlbum class. The type returned by
the Item property is used as the
assigned type, and all properties in this
type can be displayed in a data grid.
These can be bound to a data grid only at
run time.

Most notably, classes derived from
CollectionBase, such as our
PhotoAlbum class. Other classes
with an indexer of a fixed type will
also work here.

IList and
IComponent

With both interfaces available, the class
may appear in Visual Studio .NET in the
component tray and be bound to a data
grid at design time.

Integrating a collection class with
Visual Studio .NET is beyond the
scope of this book. A control can be
added to the Toolbox using the
Customize entry in the Toolbox
window’s popup menu. This often
requires members of the
System.Windows.Forms.Design
namespace to properly interact with
the Windows Forms Designer and
Property windows.

IBindingList This interface permits two-way
notification of changes, both from the
control to the class and from the class to
the control.

The DataView class in the
System.Data namespace
implements this interface, allowing a
data grid to update its contents when
the underlying database is modified.

IEditableObject Classes implementing this interface are
permitted to roll back, in a transaction-
oriented manner,a changes made to an
object.

a. The term transaction indicates that a series of steps either fully completes or appears to never have hap-
pened. For example, when transferring money between bank accounts, you must debit the first account
and then credit the second account. By making such a transfer transactional, you ensure that the first
account is never debited without guaranteeing that the second account is also credited. Aborting an
operation part-way through the required steps is said to roll back, or undo, the operation.

The DataRowView class is a
customized view of a row that
supports transactional changes to the
elements of the row.

IDataErrorInfo Objects can offer custom error
information that controls can bind to.

The DataRowView class supports this
interface as well in order to provide
appropriate feedback in a DataGrid
control when an error occurs.
572 CHAPTER 17 DATA BINDING

For our purposes, we will continue to use the typed IList interface supported by
our PhotoAlbum class. Later in the chapter we will add support for the IEdit-
ableObject interface in order to properly save modifications made in our data grid.

The next section discusses various ways of customizing what appears in the grid.

17.2 DATA GRID CUSTOMIZATION

One of the obvious drawbacks of letting .NET do all the work in laying out the con-
tents of a data grid is that we have no control over the selection and order of columns
to appear in the grid. In this section we will look at how to customize the contents of
a data grid for a particular data source using table and column styles. This will enable
us to build the application shown in figure 17.4.

In our current application we display a single kind of table, namely one based on the
PhotoAlbum class. In general, the data displayed in a data grid may vary depending
on the actions of the user. For example, just as our ListView control in chapter 14
displayed both albums and photographs, we could create an AlbumCollection
class derived from CollectionBase to contain the set of albums located in a given
directory. We could then use this class to display both album files and the contents of
albums in our data grid.

More commonly, a data grid is filled with information from a database, which
includes one or more tables. An employee database at a company might have one table
containing department information, another table containing the employees assigned
to each department, and another containing the projects each employee is assigned to.
A single data grid could display all three types of tables based on a set of options, and
it would be nice to customize the appearance of each type of table.

Figure 17.4 This data grid displays only certain properties of photographs, and the size

and content of each column are somewhat customized compared with the application

in the previous section.
DATA GRID CUSTOMIZATION 573

The TableStyles property in the DataGrid class supports this notion of con-
figuring the appearance of multiple tables. This property contains a collection of Data-
GridTableStyle objects, each of which describes the configuration for a table that
might be displayed by the grid. The DataGridTableStyle class, in turn, provides a
GridColumnStyles property that contains a collection of DataGridColumnStyle
objects. We will discuss each of these classes separately.

17.2.1 CUSTOMIZING TABLE STYLES

The DataGridTableStyle class permits a custom style for a specific type of table
to be defined. Many of the members of this class are duplicates of similar members in
the DataGrid class. The members of the active table style always override the default
settings for the data grid. A summary of this class appears in .NET Table 17.2.

.NET Table 17.2 DataGridTableStyle class

The DataGridTableStyle class represents the style in which to display a particular table that
can appear in a DataGrid control. It configures not only the general properties for the table but
also the individual columns that should appear in the table. This class is part of the System.Win-
dows.Forms namespace, and inherits from the System.ComponentModel.Component class.

Public

Properties

AllowSorting Gets or sets whether sorting is allowed on the grid when this
DataGridTableStyle is used.

AlternatingBack-
Color

Gets or sets the background color for alternating rows in the
grid when this DataGridTableStyle is used.

DataGrid Gets or sets the DataGrid control containing this style.

GridColumn-
Styles

Gets or sets the collection of DataGridColumnStyle objects
to use for the grid when this style is used.

LinkColor Gets or sets the color of link text to use in the grid when this
style is used.

MappingName Gets or sets the name used to associate this table style with
a specific data source. For a data source based on an IList
interface, the name of the list is specified, as in
myList.GetType().Name. For a data source based on a
DataSet instance, a valid table name in the data set should
be specified.

ReadOnly Gets or sets whether columns can be edited in the grid when
this style is used.

RowHeader-
Width

Gets or sets the width of row headers in the grid when this
style is used.

Public

Methods

BeginEdit Requests an edit operation on a row in the grid.

EndEdit Requests an end to an edit operation in the grid.

ResetBackColor Resets the BackColor property to its default value. A
number of other reset methods exist with a similar purpose.

Public

Events

AllowSorting-
Changed

Occurs when the AllowSorting property value changes. A
number of other changed events exist with a similar purpose.
574 CHAPTER 17 DATA BINDING

There are two keys to understanding the DataGridTableStyle class. The first is
the MappingName property. When a new source of data is assigned to a DataGrid
control, the list of table styles is examined to locate a style whose MappingName set-
ting matches the name of the table. If one is found, then that style is used to display
the grid. If no match is found, then the default settings for the grid control are used.
It is an error to assign identical mapping names to multiple styles within the same
data grid.

The second key to understanding this class is the GridColumnStyles property.
This property is a collection of DataGridColumnStyle objects and specifies the
selection and order of columns to display in the grid. If the GridColumnStyles
property is null, then the default set of columns is displayed.

We can use the DataGridTableStyle class to modify the appearance of our
DataGrid control when a PhotoAlbum is displayed. We will make the very simple
change of providing an alternating background color for the table. The steps required
are presented in the following table.

Set the version number of the MyAlbumData application to 17.2

This very simple change causes the application to display as is shown in figure 17.5.
Of course, the AlternatingBackColor and RowHeaderWidth properties are
available in the DataGrid class and can be set explicitly for this class. Assigning them
in a table style uses these properties only when a matching table name is displayed, in
this case a PhotoAlbum object.

Note that our choice of light gray may not work very well with some user’s desktop
colors. You can use an alternate color if you prefer, or a system color such as System-
Colors.ControlLight. In your own applications, make sure you carefully select

PROVIDE A CUSTOM TABLE STYLE WHEN A PHOTOALBUM IS DISPLAYED

 Action Result

1 In the MainForm.cs code
window, create a table style
instance in the OnLoad method.

Note: A table style can also be
created in the [Design] window
by clicking on the … button in
the TableStyles property.
Here we elect to create the
table style by hand.

 protected override void OnLoad(EventArgs e)
 {
 . . .
 // Table style for PhotoAlbum data source
 DataGridTableStyle albumStyle
 = new DataGridTableStyle();

2 Configure the new style for a
PhotoAlbum table with an
alternating background color of
LightGray.

 albumStyle.MappingName = "PhotoAlbum";
 albumStyle.AlternatingBackColor
 = Color.LightGray;
 albumStyle.RowHeaderWidth = 15;

3 Assign the new style to the
existing DataGrid control.

 // Assign the table style to the data grid
 gridPhotoAlbum.TableStyles.Add(albumStyle);
 }
DATA GRID CUSTOMIZATION 575

color choices for settings such as this, and use system settings where possible. Hard-
coding a specific color such as we do here is not typically recommended, since different
users may configure their desktops to appear using different sets of conflicting colors.

Note that the assignment of the MappingName is critical here. Using a name other
than PhotoAlbum would have no effect on our table since the name of the table
would not match the mapping name of the table style.

Of course, our table still uses the default set of columns since we have not yet
assigned any column styles to the GridColumnStyles property. Customizing the
columns in our table is our next topic.

17.2.2 CUSTOMIZING COLUMN STYLES

Now that we know how to customize the properties of a table, let’s look at how to
customize the columns that appear in the table. The DataGridColumnStyle class
is used for this purpose, and is summarized in .NET Table 17.3. This is an abstract
class from which various types of columns are derived. The .NET Framework cur-
rently provides classes to represent boolean and text columns, namely the Data-
GridBoolColumn and DataGridTextBoxColumn classes.

Figure 17.5 This figure shows an alternating background color of light gray

to present a ledger-like appearance.
576 CHAPTER 17 DATA BINDING

The order in which columns are assigned to a table style determines the order in
which they will appear in the data grid. We will use this feature to extend the table
style we created for our form to display only a subset of the available columns.

The code to make this change is detailed in the following table. Note that this
code uses the DataGridBoolColumn and DataGridTextBoxColumn classes. We
will discuss these classes in more detail in a moment.

.NET Table 17.3 DataGridColumnStyle class

The DataGridColumnStyle class represents a specific column that should appear when a
specific style table is displayed in a DataGrid control. This object is typically contained within
a DataGridTableStyle object, and indicates the position and style for the corresponding col-
umn when a table of the specified type is displayed. This class is part of the System.Win-
dows.Forms namespace, and inherits from the System.ComponentModel.Component class.

A DataGridColumnStyle object cannot be instantiated, as this is an abstract class. The
DataGridBoolColumn and DataGridTextBoxColumn classes derived from this class are
used to represent a column of boolean or textual values, respectively. Custom column styles
derived from this class may also be created.

Public

Properties

Alignment Gets or sets the alignment of data within the column.

DataGridTableStyle Gets the table style containing this column style.

HeaderText Gets or sets the header text for this column when the
associated table style is used.

MappingName Gets or sets the name used to associate this column
style with a specific data value in an associated data
source. For an IList data source, a valid property name
in the list should be specified. For a DataSet data
source, a valid column name in the associated table
should be provided.

NullText Gets or sets the text that is displayed when the column
contains a null reference.

PropertyDescriptor Gets or sets the PropertyDescriptor object
containing attributes of the data displayed by this
column style.

ReadOnly Gets or sets whether to treat the column as read-only.

Width Gets or sets the width in pixels for this column.

Public

Methods

ResetHeaderText Resets the HeaderText property to its default value,
which is a null reference.

Public

Events

AlignmentChanged Occurs when the Alignment property for the column
style changes.

FontChanged Occurs when the column’s font changes. A number of
other changed events exist with a similar purpose.
DATA GRID CUSTOMIZATION 577

This adds the new column styles to the existing table style object. When a data source
of type PhotoAlbum is displayed, the new styles specify which columns should

CUSTOMIZE THE COLUMNS TO APPEAR IN THE DATA GRID

 Action Result

1 Locate the OnLoad method in the
MainForm.cs code window.

 protected override void OnLoad(EventArgs e)
 {
 . . .

2 Create a column style for the
Caption property.

How-to

Use the DataGridTextBoxCol-
umn class and assign the Map-
pingName to match the Caption
property name.

 // Table style for PhotoAlbum data source
 . . .

 // Column styles for PhotoAlbum source
 DataGridColumnStyle captionCol
 = new DataGridTextBoxColumn();
 captionCol.MappingName = "Caption";
 captionCol.HeaderText = "Caption";
 captionCol.Width = 100;

3 Create column styles for the
IsImageValid, DateTaken,
Photographer, and FileName
properties as well.

How-to

Use the class specified for each
property in the following table.

 DataGridColumnStyle validCol
 = new DataGridBoolColumn();
 validCol.MappingName = "IsImageValid";
 validCol.HeaderText = "Valid?";
 validCol.ReadOnly = true;
 validCol.Width = 30;

 DataGridTextBoxColumn dateCol
 = new DataGridTextBoxColumn();
 dateCol.MappingName = "DateTaken";
 dateCol.HeaderText = "Date Taken";
 dateCol.Alignment
 = HorizontalAlignment.Center;
 dateCol.Format = "d";
 dateCol.Width = 80;

 DataGridColumnStyle photographerCol
 = new DataGridTextBoxColumn();
 photographerCol.MappingName ="Photographer";
 photographerCol.HeaderText = "Photographer";
 photographerCol.Width = 100;

 DataGridColumnStyle fileNameCol
 = new DataGridTextBoxColumn();
 fileNameCol.MappingName = "FileName";
 fileNameCol.HeaderText = "Image File Name";
 fileNameCol.ReadOnly = true;
 fileNameCol.Width = 200;

4 Add the new column styles to
the GridColumnStyles property
of the existing table style object.

How-to

Use the AddRange method to
add all column styles at once.

 // Add the column styles to the table style
 albumStyle.GridColumnStyles.AddRange(
 new DataGridColumnStyle[] {
 captionCol,
 validCol,
 dateCol,
 photographerCol,
 fileNameCol
 });

 // Assign the table style to the data grid
 gridPhotoAlbum.TableStyles.Add(albumStyle);
 }

Column Style Classes

Property Class

IsImageValid BoolColumn

DateTaken TextBoxColumn

Photographer TextBoxColumn

FileName TextBoxColumn
578 CHAPTER 17 DATA BINDING

appear and how they should look. For example, the column style based on the IsIm-
ageValid property is as follows:
 DataGridColumnStyle validCol = new DataGridBoolColumn();
 validCol.MappingName = "IsImageValid";
 validCol.HeaderText = "Valid?";
 validCol.ReadOnly = true;
 validCol.Width = 30;

This column will appear as read-only with a width of 30 pixels. The column header is
modified to use the string "Valid?" rather than the property name. This column is
our only column based on the DataGridBoolColumn class. This class appears as a
check box, which is checked only if the corresponding value is true. In fact, the dis-
played check box is a three-state check box in order to support a null state in addi-
tion to true and false.

The remaining column styles are all based on the DataGridTextBoxColumn
class. A summary of this class appears in .NET Table 17.4. Of particular note is the
date column, which uses the Format property in this class to display the date value
as a short date string. The Alignment property from the base class is also assigned
for this column in order to center the displayed date.
 DataGridTextBoxColumn dateCol = new DataGridTextBoxColumn();
 dateCol.MappingName = "DateTaken";
 dateCol.HeaderText = "Date Taken";
 dataCol.Alignment = HorizontalAlignment.Center;
 dateCol.Format = "d";
 dateCol.Width = 80;

Compile and run the application to see your code in action. The application should
appear as in figure 17.4 at the start of this section.

.NET Table 17.4 DataGridTextBoxColumn class

The DataGridTextBoxColumn class represents a data grid column style for string data. This
class hosts, or manages within a cell of the DataGrid control, a TextBox instance to support
editing of string values within the table. This class is part of the System.Windows.Forms
namespace, and inherits from the DataGridColumnStyle class. See .NET Table 17.3 for a list
of members inherited from this class.

Public Properties

Format Gets or sets a string specifying how text should be
formatted within the cell.

FormatInfo Gets or sets an IFormatProvider interface that is
used to interpret the Format setting.

TextBox Gets the TextBox object hosted by this column style.
This object is an instance of the DataGridTextBox
class, which is derived from TextBox.
DATA GRID CUSTOMIZATION 579

The DataGridBoolColumn class has an alternate set of properties appropriate for
boolean columns. Check out the .NET documentation for detailed information on
this class.

TRY IT! Modify the MappingName setting for the table style to use a name other
than the "PhotoAlbum" string. Verify that the DataGrid displays the al-
bum data in the default format shown in section 17.1.

If you are feeling ambitious, create the AlbumCollection class men-
tioned earlier in the chapter. This class should derive from the Collec-
tionBase class and encapsulate a set of PhotoAlbum objects. You can
copy much of the code from the PhotoAlbum class implementation by
modifying the use of Photograph to use PhotoAlbum instead. The de-
fault constructor should use the PhotoAlbum.DefaultDir value. You
can also add a constructor that accepts a directory name. Modify the MyAl-
bumData application to use this class to display a collection of PhotoAlbum
objects. Create a second DataGridTableStyle object to configure how
an AlbumCollection object should look as opposed to our style for the
PhotoAlbum object. Add this new style to the TableStyles property for
the grid, and verify that the correct table style displays based on the type of
data source assigned to the control.

As we mentioned earlier, some of our columns are configured as read-only while some
of them can be edited. You can see this in the existing application by clicking on an
editable cell and modifying its contents. Unfortunately, changing the contents of a
cell has no effect at the moment since we are not saving the modified values in our
album file. Saving such changes properly requires the use of the IEditableObject
interface, which is our next topic.

17.3 EDITABLE OBJECTS

So far we have bound a PhotoAlbum object to our DataGrid control and custom-
ized the table and columns that appear in the grid. At the moment, any changes made
by the user to the PhotoAlbum object are discarded when the displayed album
changes or the application exits. This is not really desirable, so let’s discuss how to
properly save changes made to the grid.

There are three areas for discussion here. The first is the way in which data grids
support editing of their contents. The second is how to enable such support in the
Photograph objects displayed by our table. The third is how to actually save the data
into an album file once such editing is possible. We will discuss each topic separately.

17.3.1 THE IEDITABLEOBJECT INTERFACE

The editing of rows in a grid is handled by the DataGrid control directly using the
discovered properties associated with our PhotoAlbum object. When the user
changes a caption, the Caption property is called automatically by the grid to
580 CHAPTER 17 DATA BINDING

update the corresponding Photograph object with the new value. Similarly, when
the photographer is changed, the Photographer property is called. The control
even handles the DateTaken property gracefully so that an invalid date value is never
assigned to the object.

The problem is that our updated Photograph objects are never saved in the cor-
responding album file. A quick and easy solution would be to forcibly save the album
whenever a new album is selected. For example, the SelectedIndexChanged event
handler could be altered as follows, with the modified lines in bold.
 private void cmbxAlbum_SelectedIndexChanged
 (object sender, System.EventArgs e)
 {
 string albumFile = cmbxAlbum.SelectedItem.ToString();

 // Forcibly save previous album – not our approach
 if (_album != null)
 {
 _album.Save();
 _album.Dispose();
 }

 _album.Clear();
 try
 . . .
 }

This would ensure that the album is always saved, even if the user does not wish to
save the changes. Not the best solution, although it does work. A better solution would
only save the album if it has been modified, and give the user an opportunity to elect
not to save the changes. In order to do this we must know when a Photograph has
been changed, and then use this information when a new album is selected.

Implementing this change requires the IEditableObject interface, summa-
rized in .NET Table 17.5. This interface defines a mechanism for modifying an object
in a transactional manner, so that either all changes to an object are made or none of
the changes are made. This is especially important in databases, where the fields of a
row may be dependent on one another, or in multi-user environments, where different
users may wish to update the same object at the same time. For example, in a customer
order database, you would not want to modify the shipping method without also
updating the shipping costs. The IEditableObject interface is used to ensure that
this happens.

As an example, the DataRowView class in the System.Data namespace sup-
ports the IEditableObject interface to ensure transactional update to the rows in
a database. We are not building a database here, but we would like to update the Pho-
toAlbum object in a consistent manner. The IEditableObject interface provides
a way for us to do this over the course of this section.
EDITABLE OBJECTS 581

17.3.2 SUPPORTING THE IEDITABLEOBJECT INTERFACE

Looking at the Photograph class, there are four modifiable properties. These are the
Caption, Photographer, DateTaken, and Notes properties. As a result, these are
the properties we need to consider in our IEditableObject implementation. The
following table summarizes the implementation of the required methods:

Our implementation will not be something you would present at a computer science
convention. In particular, a Photograph object can be modified without using our
edit methods, which kind of defeats the whole purpose of the interface. The code pre-
sented here is intended to illustrate the behavior of these methods and indicate how
they are used by the DataGrid control.

With this excuse in mind, let’s see how to support the editable object interface
for our Photograph class.

.NET Table 17.5 IEditableObject interface

The IEditableObject interface represents an interface for performing transactional opera-
tions on an object. This interface is used by various .NET classes such as the Windows Forms
DataGrid control to allow an object to track and enforce transactional behavior. This interface
is part of the System.ComponentModel namespace.

Public Methods

BeginEdit Initiates an edit operation on an object.

CancelEdit Discards any changes made since the last edit operation
began, including any new objects added to the list with
the IBindingList.AddNew method.

EndEdit Finalizes an edit operation. Any changes made since the
last edit operation began are made permanent in the
object, including any new objects added with the
IBindingList.AddNew method.

Implementation of IEditableObject methods for the Photograph class

Method Implementation notes

BeginEdit Should record the existing values of the modifiable properties and
place the photo in an editing state.

CancelEdit Should reinstate the recorded values from BeginEdit, and place the
photo in a nonediting state.

EndEdit Should discard the recorded values from BeginEdit, note if the
photo has been changed, and place the photo in a nonediting state.
582 CHAPTER 17 DATA BINDING

Set the version number of the MyPhotoAlbum library to 17.3.

SUPPORT THE IEDITABLEOBJECT INTERFACE IN THE PHOTOGRAPH CLASS

 Action Result

1 In the Photograph.cs code
window, indicate that we will
use members of the
System.ComponentModel
namespace.

using System.ComponentModel;

2 Add IEditableObject to the
list of supported interfaces for
this class.

public class Photograph : IDisposable,
 IEditableObject
{
 . . .

3 Add internal fields to track when
the object is in an editable state
or has been modified.

 private bool _modified;
 private bool _editing;

4 Initialize these fields in the
constructor.

 public Photograph(string fileName)
 {
 . . .
 _modified = false;
 _editing = false;
 }

5 Reset these values when the
photograph is saved into a
StreamWriter object.

 public void Write(StreamWriter sw)
 {
 . . .
 _modified = false;
 _editing = false;
 }

6 Add internal fields to record the
existing values of the four
modifiable properties.

 private string _editCaption;
 private string _editPhotographer;
 private DateTime _editDateTaken;
 private string _editNotes;

7 Implement the BeginEdit
method.

How-to

If editing is not already enabled,
record the current values and
enable editing.

Note: Ideally, we would permit
nesting of these calls. In this
example we will avoid this addi-
tional complexity.

 public void BeginEdit()
 {
 if (!_editing)
 {
 _editCaption = Caption;
 _editDateTaken = DateTaken;
 _editPhotographer = Photographer;
 _editNotes = Notes;
 _editing = true;
 }
 }

8 Implement the CancelEdit
method.

How-to

If editing is enabled, restore the
recorded values and disable
editing.

 public void CancelEdit()
 {
 if (_editing)
 {
 Caption = _editCaption;
 Photographer = _editPhotographer;
 DateTaken = _editDateTaken;
 Notes = _editNotes;
 _editing = false;
 }
 }
EDITABLE OBJECTS 583

The IEditableObject interface is now fully implemented. Another useful change
in our library is the ability to identify if a PhotoAlbum, and not just a Photograph,
has been modified. We can do this by continuing the previous steps to add a
HasEdits method in the PhotoAlbum class.

The MyPhotoAlbum library is ready to go. Make sure the library compiles with no
errors. The next step is to make use of these changes in our MyAlbumData applica-
tion. This is taken up in the next section.

17.3.3 USING EDITABLE OBJECTS

Typically, you do not actually use the editable object methods directly. These are used
internally by Windows Forms as required for the task at hand. In this case, our Data-
Grid control automatically recognizes that our PhotoAlbum object supports this
interface, and calls BeginEdit whenever a user initiates a change to a row in the grid.
If a user cancels an edit by pressing the Esc key, then CancelEdit is called. When the

9 Implement the EndEdit
method.

How-to

If editing is enabled, record
whether the data has been
modified and disable editing.

 public void EndEdit()
 {
 if (_editing)
 {
 _modified |= ((Caption != _editCaption)
 || (Photographer != _editPhotographer)
 || (DateTaken != _editDateTaken)
 || (Notes != _editNotes));
 _editing = false;
 }
 }

10 Also add a HasEdits property to
report whether the object has
been modified.

 public bool HasEdits
 {
 get { return _modified; }
 }

SUPPORT THE IEDITABLEOBJECT INTERFACE IN THE PHOTOGRAPH CLASS (continued)

 Action Result

ADD A HASEDITS PROPERTY TO THE PHOTOALBUM CLASS

 Action Result

11 In the PhotoAlbum.cs code
window, Implement a HasEdits
method in this class.

How-to

Use the Photograph.HasEdits
method to determine the
appropriate result.

 public bool HasEdits
 {
 get
 {
 foreach (Photograph p in this)
 {
 if (p.HasEdits)
 return true;
 }

 // No edits found
 return false;
 }
 }
584 CHAPTER 17 DATA BINDING

user finishes an edit by pressing the Enter key or selecting an alternate row, the
EndEdit method is invoked. The EndEdit method makes the changes to the object
permanent within the object itself.

In most applications, there is an operation or class that coordinates the in-mem-
ory version of an object with the permanent version of an object. In our application,
the in-memory version is our PhotoAlbum class, while the permanent version is our
album file. The Save method updates the album file with the version in memory,
while the Open method fills the in-memory version with the recorded version in the
album file.

This is true in the System.Data namespace as well. While we have avoided dis-
cussing this namespace in any real depth, it is useful to understand how the classes in
this namespace relate to our discussion. The abstract DataAdaptor class is the coor-
dinator between the in-memory version of the database, typically a DataSet instance,
and the permanent version is an external database. The DataAdaptor class provides
a Fill method to populate a DataSet with the external values, and an Update
method to save modifications in the DataSet into the external database.

For our purposes, we have provided the HasEdits method in our in-memory
objects in order to identify whether any changes must be saved into the album file. We
can do this in the SelectedIndexChanged event handler before the new album is
bound to our data grid.

The following table details the steps required to save our PhotoAlbum instance
into its associated album file:

Set the version number of the MyAlbumData application to 17.3.

SAVE A MODIFIED ALBUM

 Action Result

1 In the MainForm.cs window,
create a new SaveChanges
method to store any changes to
the displayed album into the
album file.

 private void SaveChanges()
 {
 if (_album.HasEdits)
 {
 DialogResult result = MessageBox.Show(
 "Do you wish to save your changes "
 + "to the album \'" + _album.Title
 + "\'?",
 "Save Changes?",
 MessageBoxButtons.YesNo,
 MessageBoxIcon.Question);
 if (result == DialogResult.Yes)
 _album.Save();
 }
 }

How-to

a. If the album has been modi-
fied, prompt the user to see
if he or she wishes to save
the changes.

b. If yes, then save the album in
the existing album file.
EDITABLE OBJECTS 585

With these modifications, our edits are now saved. Compile and run to verify that the
application works as advertised.

More .NET Additional information on the DataGrid control is available in the .NET
documentation and in various sample programs freely available on the In-
ternet. One such example is the CdrCatalog program built by Andrew
Skowronski that is available at http://cdrcatalog.sourceforge.net/. This pro-
gram manages offline media, such as a collection of recordable compact
discs, and makes use of a number of Windows Forms classes in addition to
the DataGrid control. The data source used by this application is a
DataSet object loaded from a local XML file.

17.4 SIMPLE DATA BINDING

Binding data to a data grid is referred to as complex data binding, since multiple values
are bound to a single control. Complex data binding also refers to binding objects to
a list control, such as a list box or combo box. For example, if we had actually imple-
mented the AlbumCollection class I keep mentioning to contain an array of Pho-
toAlbum objects, then the line to assign the DataSource for our combo box could
instead be written as:
 cmbxAlbum.DataSource = myAlbumCollection;
 cmbxAlbum.DataMember = "FileName";

This would display the collection of PhotoAlbum objects in the myAlbumCollec-
tion variable in the cmbxAlbum combo box, using the FileName property as the

2 Use this new method when the
user selects a new album in the
ComboBox control.

 private void cmbxAlbum_SelectedIndexChanged
 (object sender, System.EventArgs e)
 {
 string albumFile
 = cmbxAlbum.SelectedItem.ToString();

 if (_album != null)
 {
 SaveChanges();
 _album.Dispose();
 }

 _album.Clear();
 try
 . . .
 }

3 Also make sure any changes are
saved when the application
exits.

 protected override void OnClosing
 (CancelEventArgs e)
 {
 SaveChanges();
 base.OnClosing(e);
 }

SAVE A MODIFIED ALBUM (continued)

 Action Result
586 CHAPTER 17 DATA BINDING

name to display. The result would be the same as that which currently appears in our
application. This type of binding to a list control can also be done with database
objects, such as binding the entries in a ListBox control to the set of customer
names found in one column of a database table.

Simple data binding is used for binding single property values to a specific data
source. This type of binding is supported by the Control class directly, and is there-
fore inherited by and available in all controls in Windows Forms. The concepts and
techniques for so-called simple data binding are fairly identical to those we have
already discussed for the DataGrid control.

In this section we will alter our application to permit some simple data binding
to a photo album. We will see how to perform simple binding; update bound controls
dynamically, including the image associated with a photograph; and save changes to
bound controls.

17.4.1 ALTERING THE MYALBUMDATA APPLICATION

Before we get into the details of exactly how simple data binding is performed, let’s
whip through some changes to our MyAlbumData application in preparation for this
discussion. The change we will make is to place our existing DataGrid control
within a TabPage object, and add a new tab to display the Photograph informa-
tion for an album one photo at a time. Figure 17.6 shows the modified application
we will build throughout this and the next few sections.

Figure 17.6 These controls on the Photo tab are bound to their corre-

sponding values in a Photograph object.
SIMPLE DATA BINDING 587

In this section we will simply move our existing DataGrid control into an Album
tab, and create a Photo tab containing the controls shown in the figure. The follow-
ing steps implement this change.

Set the version number of the MyAlbumData application to 17.4.

CREATE THE CONTROLS WITHIN A TAB CONTROL OBJECT

 Action Result

1 In the MainForm.cs [Design] window,
alter the Size property for the form to
be 450×350.

2 Move the existing DataGrid control to
exist within a tab page.

How-to

a. Create a tab control containing two
tab pages.

b. Set their properties as shown.
c. Move the data grid into the Album

tab page, and set its Dock property
to Fill.

Settings

Control Property Value

TabControl (Name) tcMain

Anchor Top, Bottom,
Left, Right

TabPage (Album) (Name) tabAlbum

Text Album

TabPage (Photo) (Name) tabPhoto

Text Photo
588 CHAPTER 17 DATA BINDING

3 Create and position the controls for
the Photo tab page as shown in the
graphic.

Note: In the rather long Settings table
here, the Label controls are not
shown. For these controls, use the
default name, the text shown in the
graphic, and the same Anchor prop-
erty as the related control.

Also note that all TextBox controls
should have their Text property set to
an empty string.

Note: When assigning the Anchor property,
you may find it easier to first create and posi-
tion the controls and then use the following
technique:

a. Select a group of related controls by drag-
ging the mouse over a region of the form.

b. Assign the Anchor property for all controls
at once.

CREATE THE CONTROLS WITHIN A TAB CONTROL OBJECT (continued)

 Action Result

Settings

Control Property Value

FileName (Name) txtFileName

ReadOnly True

PictureBox (Name) pboxPhoto

Anchor Top, Bottom,
Left, Right

BorderStyle FixedSingle

Prev (Name) btnPrev

Anchor Bottom, Left

Text Pre&v

Next (Name) btnNext

Anchor Bottom, Right

Text Nex&t

Caption (Name) txtCaption

Anchor Top, Right

Photo-
grapher

(Name) txtPhoto-
grapher

Anchor Top, Right

Date Taken (Name) dtpDateTaken

Anchor Top, Right

Format Short

Notes (Name) txtNotes

Anchor Top, Bottom,
Right

Multiline True
SIMPLE DATA BINDING 589

That took a bit of work. As we mentioned earlier in the book, you can reduce the
amount of time spent drawing forms in Visual Studio by sketching out your controls
on paper before using Visual Studio. While not illustrated in these pages, I really did
sketch the Photo tab page by hand before creating this page in Visual Studio .NET.

With our controls defined, we are ready for our data binding discussion.

17.4.2 PERFORMING SIMPLE BINDING

The binding of controls to data involves four distinct roles, each with a correspond-
ing class. These correspond to the work performed by the .NET Framework on
behalf of bound controls, namely tracking which data has been bound to which con-
trol, managing a bound data source, tracking specific bindings to a control, and man-
aging the actual bindings. A summary of these roles, along with the Windows Forms
class and property related to these roles, is outlined in the following table:

We will discuss these classes and properties in more detail as we build our example. As
a brief explanation, the BindingContext class manages a collection of Binding-
ManagerBase objects. While any control can create an instance of this class in its
BindingContext property, the Form class creates one automatically to serve as the

4 Assign the tab order for the controls
within the Photo tab page as is shown
in the graphic.

CREATE THE CONTROLS WITHIN A TAB CONTROL OBJECT (continued)

 Action Result

Roles required for simple data binding

Role Class Accessing from Control class

Tacking bound data BindingContext BindingContext property

Managing a bound data
source

BindingManagerBase Index into BindingContext collection:

 BindingContext[source]
 BindingContext[source, member]

Managing bindings ControlBindingsCollection DataBindings property

Tracking a binding Binding Index into DataBindings collection:

 DataBindings[property]
590 CHAPTER 17 DATA BINDING

default container for all data bound to the form. In our case, we will simply use the
default BindingContext for our form, and not discuss this class in too much detail.

A single BindingManagerBase object exists for each bound data object. In our
case, with a single PhotoAlbum object bound to our controls, our application will
have a single BindingManagerBase created. For an object with multiple members,
such as a database with multiple tables, a BindingManagerBase will exist for each
member bound to a control.

A ControlBindingsCollection object contains the collection of actual
bindings created for a control. The DataBindings property in the Control class
contains the collection of these binding objects.

Each binding object is a Binding class instance. The Binding class permits any
property of any control to be bound to any column or property of a data source. We
will see this in our application shortly.

Let’s discuss the previous table from the bottom up, beginning with the Binding
class. Typically, it is not necessary to access this class directly. Even so, it is likely useful
to see the properties that make up each individual binding, so a summary of this class
appears in .NET Table 17.6. Note that the possible data sources for simple data bind-
ing correspond to those shown earlier in the chapter for the DataGrid control.

As you can see, this class is fairly generic, and permits any property to be bound
to pretty much anything. The Format and Parse events can even be used to specify
exactly how this binding will take place when converting between the data source and
the control’s property.

If you are thoroughly confused at this point, don’t fret. We will lay this out step
by step for our application, which should aid your understanding. Let’s start with a
summary of exactly what should be bound to what. The following table shows our con-
trols, the property in each control that we would like to bind, and the member of the
Photograph object within our PhotoAlbum data source that can provide this value.

Details of our initial data binding approach

Control name Control property to bind Photograph property for binding source

txtFileName Text FileName

txtCaption Text Caption

dtpDateTaken Value DateTaken

txtNotes Text Notes

pboxPhoto Image Image
SIMPLE DATA BINDING 591

So let’s do this. We already have a PhotoAlbum field in our MainForm class, so we
can bind these controls in our OnLoad method, as shown in the following table.

.NET Table 17.6 Binding class

The Binding class represents a simple data binding between a data source entry and a Win-
dows Form control. The Binding instances defined for a control are contained by the DataB-
indings property of that control. This class is part of the System.Windows.Forms
namespace.

Public

Constructor

Binding Create a new Binding instance. This has the
following signature:

 Binding(string propertyName,
 object dataSource,
 string dataMember);

Public Properties

BindingManagerBase Gets the BindingManagerBase class instance
for the data source used by this binding.

BindingMemberInfo Gets the BindingMemberInfo structure
containing information about the data member
used by this binding. This value is created using
the dataMember value passed to the Binding
constructor. For a database source, this
indicates the table and column that should be
bound. For an IList source, this indicates the
property member in the contained object that
should be bound.

Control Gets the control that is the subject of this
binding.

DataSource Gets the data source used by this binding,
taken from the corresponding value passed to
the Binding constructor.

IsBinding Gets whether this binding is currently active.

PropertyName Gets or sets the property name of the control
that is the subject of this binding. This is taken
from the corresponding value passed to the
Binding constructor.

Public Events

Format Occurs when the value from the data source
must be processed, or formatted, and assigned
to the bound property in the control.

Parse Occurs when the value from the control must
be processed, or parsed, and assigned to the
appropriate entry in the data source.
592 CHAPTER 17 DATA BINDING

The controls are now bound to the appropriate properties of the Photograph
objects contained by the PhotoAlbum instance. Take, for example, the DateTime-
Picker control. We bind the Value property of this control to the DateTaken
property of the active Photograph object in the _album collection with the follow-
ing code:
 dtpDateTaken.DataBindings.Add("Value", _album, "DateTaken");

The DataBindings collection supports the standard Add method to place a Bind-
ing object in the list. We could have created the Binding object explicitly with the
following code:
 Binding theBind = new Binding("Value", _album, "DateTaken");
 dtpDateTaken.DataBindings.Add(theBind);

Instead, since we do not need the Binding instance here, we used an override for the
Add method that accepts the constructor parameters for this object explicitly.

Note that the Photograph.DateTaken property is a DateTime value, which
happens to match the type of the DateTimePicker.Value property. In fact the type
of all our bindings, including the Image property for the PictureBox control,
matches the bound property in the Photograph object. The .NET Framework will
attempt to convert between the binding value and the bound value, but in our case
conversion is not necessary. As we mentioned earlier, the Format and Parse events
can be used to specify the conversion explicitly.

It is worth mentioning once again that any property of a control can be bound.
For example, we could add a MatteColor property to our Photograph object, and
bind the background color, the BackColor property, of the PictureBox or even the
TabPage itself to this color. We will not do this here, and I should probably caution

BIND THE PHOTO TAB CONTROLS TO PROPERTIES IN THE PHOTOGRAPH CLASS

 Action Result

1 Locate the OnLoad override in
the MainForm.cs code window.

 protected override void OnLoad(EventArgs e)
 {
 . . .

2 Assign data bindings to the
controls on the Photo tab page.

Note: Of critical importance
here is the fact that we use the
same PhotoAlbum instance
throughout the life of our appli-
cation. Since we bind these
controls as the main form is
loaded, the value of our album
cannot change unless we also
rebind the controls to the new
value.

 // Bind data for the Photo tab
 txtFileName.DataBindings.
 Add("Text", _album, "FileName");
 txtCaption.DataBindings.
 Add("Text", _album, "Caption");
 txtPhotographer.DataBindings.
 Add("Text", _album, "Photographer");
 dtpDateTaken.DataBindings.
 Add("Value", _album, "DateTaken");

 txtNotes.DataBindings.
 Add("Text", _album, "Notes");
 pboxPhoto.DataBindings.
 Add("Image", _album, "Image");
 }
SIMPLE DATA BINDING 593

you not to get too carried away with such features both in your data and in your appli-
cations. In some situations, such as a picture frame ordering interface, this type of fea-
ture could be very useful.

This code will compile and run and show a result similar to figure 17.7. Some
work is still required to update the controls when the album changes or the Next or
Prev button is pressed, and the PictureBox control has a size mode of Normal so
that only the upper left corner of the image is shown. We will address these issues as
we go along.

Before we do, it is also worth mentioning here that Visual Studio .NET provides
direct graphical support for data binding when using a database or other class that sup-
ports both the IList and IComponent interfaces. In particular, the values from a
database can be bound to a control during design time using the (DataBindings)
setting in the Properties window. This is beyond the scope of this book, but worth
keeping in mind as you develop more complex applications.

17.4.3 UPDATING DATA BOUND CONTROLS

With our controls bound, our next task is to properly update them as the selected
album changes. We also need to hook up the Next and Prev buttons so that they dis-
play the next or previous photo from the current album. Doing this requires the
BindingManagerBase class.

A summary of this class appears in .NET Table 17.7. An instance of this class is
created for each data source active in an application, and stored in a BindingContext
instance associated with a Control object. Normally, the BindingContext created
for the Form object is used, although a BindingContext can be attached to any Con-
trol. For example, a BindingContext can be created for a GroupBox, Panel, or
other parent control to contain the data sources for all controls within the container.

Figure 17.7 In this version,

the controls automatically

bind to the active Photo-

graph selected in the Data-

Grid control. Note that only

a portion of the image ap-

pears in the PictureBox con-

trol here.
594 CHAPTER 17 DATA BINDING

As indicated in the table, the BindingManagerBase class is an abstract class.
When a control is bound, the framework automatically creates the appropriate sub-
class of this object. A CurrencyManager instance is created for objects that support
the IList interface, while a PropertyManager is created for single-value objects.

Two of the more commonly used members of the BindingManagerBase class
are the Current and Position properties. The Current property retrieves the
object currently used to bind controls, while the Position property manages the
index of this object. In our application, this means that the Current property
retrieves the Photograph currently displayed by our controls, while the Position
property is used to assign or retrieve the index of the current Photograph object.

.NET Table 17.7 BindingManagerBase class

The BindingManagerBase class represents a data source bound to one or more controls
within a Windows Forms control. This class enables synchronization of all controls with a prop-
erty bound to the associated data source. This class is part of the System.Windows.Forms
namespace.

This class is abstract and cannot be instantiated. The CurrencyManager class is used for
all data sources that support the IList interface, while the PropertyManager class is used
for all single-value data sources. Also note that most of the members listed here are abstract
as well, and must be overridden by a derived class.

Public Properties

Bindings Gets the collection of bindings managed by this
object.

Count Gets the number of rows managed by this object.

Current Gets the current, or active, list item in the
associated data source.

Position Gets or sets the position, or index, of the item to
consider active in the associated data source.

Public Methods

AddNew Adds a new item of the appropriate type to the
associated data source.

CancelCurrentEdit Cancels the current edit, if any, of the associated
data source.

EndCurrentEdit Completes the current edit, if any, of the associated
data source.

GetItemProperties Retrieves the collection of PropertyDescriptor
objects from the associated data source.

RemoveAt Deletes the item at the specified index from the
associated data source.

ResumeBinding Resumes data binding for the data source.

SuspendBinding Suspends data binding for the data source.

Public Events
CurrentChanged Occurs when the the Current property changes.

PositionChanged Occurs when the the Position property changes.
SIMPLE DATA BINDING 595

We can make immediate use of the Position property to implement the Next and
Prev buttons for our application.

This change allows the user to move forward and backward within the selected
album. The controls automatically update whenever the Position property is
altered. If you compile and run the current code, you will find that the controls still
do not update properly when the selected album changes. For this we will need some
additional code.

If you look back at .NET Table 17.7 on the BindingManagerBase class, you
will see that there is no method to update, or refresh, the controls bound to the associ-
ated data source. This is because some binding managers, notably the PropertyMan-
ager, have no need for this functionality. The refresh behavior is only required when
a data source contains multiple instances. In this case, the binding manager is a Cur-
rencyManager class instance. A summary of this class appears in .NET Table 17.8.

HANDLE THE CLICK EVENTS FOR THE NEXT AND PREV BUTTONS

 Action Result

1 Create a new EnablePhotoButtons
method to enable or disable the Next
and Prev buttons as required based
on a given BindingManagerBase
object.

 private void EnablePhotoButtons
 (BindingManagerBase bm)
 {
 btnNext.Enabled
 = (bm.Position < _album.Count - 1);
 btnPrev.Enabled = (bm.Position > 0);
 }

2 Add a Click event handler for the
Next button in the Photo tab page
control of the MainForm window.

 private void btnNext_Click
 (object sender, System.EventArgs e)
 {

3 Retrieve the BindingManagerBase
object associated with the _album
data source.

 BindingManagerBase bm
 = BindingContext[_album];

4 If the object was retrieved and the
Position is not at the maximum
value, increment the current position.

 if ((bm != null)
 && (bm.Position < bm.Count - 1))
 {
 bm.Position ++;
 }

5 Call the EnablePhotoButtons
method at the end of this handler.

 EnablePhotoButtons(bm);
 }

6 Handle the Click event for the Prev
button in a similar fashion.

 private void btnPrev_Click
 (object sender, System.EventArgs e)
 {
 BindingManagerBase bm
 = BindingContext[_album];
 if ((bm != null) && (bm.Position > 0))
 bm.Position --;

 EnablePhotoButtons(bm);
 }
596 CHAPTER 17 DATA BINDING

From the table, it appears that the Refresh method is the solution we need. This
method updates the bound controls with the underlying data. For classes that sup-
port the IBindingList interface, most notably the database-related objects, this
method is not generally needed since the ItemChanged event will occur whenever
the database object itself is modified. Do not confuse the ItemChanged event with
the PositionChanged event, which occurs when a new item, or row, in the associ-
ated list is selected; or with the CurrentChanged event, which occurs when the
control’s bound property is altered.

For our purposes, the default behavior that occurs when the Position or Cur-
rent properties change will suffice. Since we do not support the IBindingList
interface, we need to call the Refresh method directly when our PhotoAlbum is
altered internally. In our current interface, this occurs each time a new album file is
selected in the Album combo box control.

The following table continues our prior steps to alter our SelectedIndex-
Changed event handler to invoke the Refresh method.

.NET Table 17.8 CurrencyManager class

The CurrencyManager class represents a binding manager that is associated with a data
source supporting the IList interface. This class is part of the System.Windows.Forms
namespace, and inherits from the BindingManagerBase class. See .NET Table 17.7 for the
members inherited from the base class.

Public Methods

Refresh Forces a repopulation of all bound controls for a data
source that does not support notification when the
underlying data changes.

Public Events

ItemChanged Occurs when an item in the associated data source is
altered. This event will only occur if the associated data
source supports two-way notification, such as the support
provided by the IBindingList interface.

UPDATE THE SELECTEDINDEXCHANGED EVENT HANDLER

 Action Result

7 Move the
DataGrid.SetDataBinding call
from the
SelectedIndexChanged event
handler to the end of the OnLoad
method.

 protected override void OnLoad(EventArgs e)
 {
 . . .
 gridPhotoAlbum.SetDataBinding(_album,
null);
 }

Note: At the start of the chapter, we had to clear
the binding and then rebind to the album each
time the album changed. This is no longer
required.
SIMPLE DATA BINDING 597

The controls in the Photo tab now update properly in all cases. You can compile and
run this to experience the magic. Note how the index into the album, based on the
Position property, is preserved when you change albums. If the second item in an
album is shown and a new album is selected, the second item in the new album is
selected. What happens when the number of photos in the current album is more
than the number in a newly selected album?

TRY IT! We have not discussed the data binding for list controls very much here. As
a way to see this in action, replace the txtPhotographer control with a
combo box called cmbxPhotographer. Use data binding to automatically
fill this list with the Photographer entries from the current album. This
should be done in the OnLoad method and should look like the following:

 cmbxPhotographer.DataSource = _album;
 cmbxPhotographer.DataMember = "Photographer";

8 At the end of the Selected-
IndexChanged event handler, add
a single empty Photograph
object to the cleared PhotoAlbum
instance when the album is
empty.

 private void cmbxAlbum_SelectedIndexChanged
 (object sender, System.EventArgs e)
 {
 . . .
 // Required to prevent binding exception
 if (_album.Count == 0)
 _album.Add(new Photograph(""));

Note: Our bound controls required that at least
one object be present in the collection. Otherwise,
the subsequent lines will throw an exception. A
more elegant solution might be to unbind the con-
trols and disable the tab control in this case.

9 Add code to the end of the
method to retrieve the
CurrencyManager object used to
manage the _album data source.

How-to

Retrieve the BindingManager-
Base for this data source from the
Form and convert it to a
CurrencyManager object.

 // Refresh the Photo tab controls
 BindingManagerBase bm
 = this.BindingContext[_album];
 CurrencyManager cm = bm as CurrencyManager;

10 If the CurrencyManager was
located, refresh the bound
controls.

 if (cm != null)
 cm.Refresh();

11 Also call EnablePhotoButtons to
enable or display the Next and
Prev buttons as required.

 EnablePhotoButtons(bm);
 }

UPDATE THE SELECTEDINDEXCHANGED EVENT HANDLER (continued)

 Action Result
598 CHAPTER 17 DATA BINDING

As you will see if you compile this change, all photographers assigned to the
album are listed, even if they occur multiple times. Even so, this is a good
example of how to populate a list quickly with values from a data source.

To provide a more robust implementation, implement a GetPhotog-
raphers method in the PhotoAlbum class that returns an array of unique
photographer strings in the album. This array can then be set as the Data-
Source for the combo box. Be careful here, as you will need to update this
setting in the SaveChanges method to accommodate any changes made
to the list.

As already mentioned, when binding to a database, the IBindingList interface will
ensure that the bound properties and the database object stay in sync. When either
object is modified, the other is automatically updated.

One issue that remains in our current application is the display of our image in
the PictureBox control. We will address this topic next.

17.4.4 DISPLAYING THE IMAGE

While our application is working quite well, there is the small matter of our Pic-
tureBox control. As a simple solution, we could modify the SizeMode property of
our PictureBox control to use the StretchImage value. This would stretch our
image to fit the window, but would not preserve the aspect ratio of our images.

A better solution, as we know very well, is to scale the image to preserve the aspect
ratio within the window. We can do this if we paint the image ourselves rather than pro-
vide a value for the Image property. The Paint event for the PictureBox control can
be used to perform this painting, although we still need to know which image to paint.
For this, we will use the Tag property to keep track of the current image.

Of course, as we mentioned earlier in the book, it would be nice to build a “Pho-
toBox” control that did this automatically. Such a control would extend the Windows
Forms PictureBox control to scale an image as we do in the subsequent table. Cod-
ing this by hand is not much extra work, so we did this explicitly here. A short dis-
cussion on how to build such a “PhotoBox” control is given at the end of section 18.2.

The following steps are required to scale the image within the pboxPhoto control.

MODIFY THE PICTUREBOX CONTROL TO DISPLAY A SCALED IMAGE

 Action Result

1 In the OnLoad method of the
MainForm.cs code window,
replace the binding of the Image
property in the pboxPhoto
control to use the Tag property
instead.

 protected override void OnLoad(EventArgs e)
 {
 . . .
 txtNotes.DataBindings.Add(
 "Text", _album, "Notes");
 pboxPhoto.DataBindings.Add(
 "Tag", _album, "Image");

 gridPhotoAlbum.SetDataBinding(_album, null);
 }
SIMPLE DATA BINDING 599

The photograph is now scaled and displayed within our PictureBox control. Note
how we used the entire client rectangle rather than the rectangle provided in the
Graphics object to ensure that the entire control area is redrawn.

It is worth noting here that binding to the Tag property is not strictly required.
Since we access the current Photograph object here, we could simply load the asso-
ciated image correctly. There may be a slight performance advantage here in having
the image already available in the Tag property, so we selected the approach shown
in the table.

2 Invalidate the PictureBox
control in the
EnablePhotoButtons method.

 private void EnablePhotoButtons
 (BindingManagerBase bm)
 {
 btnNext.Enabled
 = (bm.Position < _album.Count - 1);
 btnPrev.Enabled = (bm.Position > 0);

 // Force image to repaint
 pboxPhoto.Invalidate();
 }

3 Add a handler for the Paint
event for the PictureBox
control.

 private void pboxPhoto_Paint
 (object sender,
 System.Windows.Forms.PaintEventArgs e)
 {

4 Convert the Tag property to a
Bitmap object.

 Bitmap image = pboxPhoto.Tag as Bitmap;

5 If no image is present, clear the
graphics area.

 if (image == null)
 {
 // No image, just clear the graphics
 e.Graphics.Clear(SystemColors.Control);
 return;
 }

6 Retrieve the current
Photograph object from the
binding manager.

How-to

Use the Current property of
the binding manager object.

 // Load the current photo
 BindingManagerBase bm
 = BindingContext[_album];
 Photograph photo = bm.Current as Photograph;

7 If for some reason the current
Photograph is not found,
simply draw the image in the
client rectangle.

 Rectangle r = pboxPhoto.ClientRectangle;
 if (photo == null)
 {
 // Something is wrong, just draw the image
 e.Graphics.DrawImage(image, r);
 }

8 If the photo is found, draw the
image in the scaled rectangle.

 else
 {
 // Paint the image with proper aspect ratio
 e.Graphics.DrawImage(
 image, photo.ScaleToFit(r));
 }
 }

MODIFY THE PICTUREBOX CONTROL TO DISPLAY A SCALED IMAGE (continued)

 Action Result
600 CHAPTER 17 DATA BINDING

If you compile and run this application, make sure you note how the form resizes.
In particular, notice how we set the Anchor properties in this example to maximize
the area allocated for the image and notes controls.

Our final topic is to ensure that any changes we make to the controls in the Photo
tab are reflected in the album file.

17.4.5 SAVING CHANGES TO BOUND CONTROLS

Changes made to bound controls are saved much like we saw for the DataGrid con-
trol earlier in the chapter. When an object supports the IEditableObject inter-
face, the BeginEdit method is called whenever a bound property is assigned a new
value, and the EndEdit method is called when the user is done making changes to
the current item.

If you experiment with our interface, you will find that the program usually but
not always offers to save the most recent changes. The problem occurs when you edit
a couple of values for a Photograph and then click the Close button. In this case,
the EndEdit call is never made since the framework believes the edit is still active for
the displayed item. As a result, the PhotoAlbum.HasEdits property will return the
value false, and the changes are not saved.

We can fix this by forcing the current edit to end when we exit the program.

This change ensures that any modifications made to the current item are taken into
account when the application is closed. Note that there is also an EndEdit method
in the DataGrid class, which performs similar functionality on the data grid control.
Our approach is more general, and applies to all edits on any control related to the
given binding manager.

Compile and run the application and make sure this works correctly. Figure 17.8
shows the application with the message dialog for saving a change displayed.

FINISH ANY ACTIVE EDIT WHEN THE PROGRAM EXITS

 Action Result

1 Locate the OnClosing override
in the MainForm.cs code
window.

 protected override void OnClosing
 (CancelEventArgs e)
 {

2 Retrieve the binding manager for
the _album data source.

 // Complete any in-progress edits
 BindingManagerBase bm
 = BindingContext[_album];

3 Call the EndCurrentEdit
method to complete any
outstanding edits.

 if (bm != null)
 bm.EndCurrentEdit();

 SaveChanges();
 base.OnClosing(e);
 }
SIMPLE DATA BINDING 601

This completes our discussion on data binding. We end with the usual summary of
our accomplishments.

17.5 RECAP

In this chapter we investigated the concept of data binding and constructed a new
MyAlbumData application. We began with the DataGrid class and saw how to cre-
ate and fill a data grid, and how to customize the contents and appearance of the grid
for a specific type of data.

We then looked at the IEditableObject interface as a way to support trans-
actional updates to bound data. We implemented this interface in our Photograph
class in order to track and save any changes made by a user.

Binding to data grids is referred to as complex data binding. We also examined
simple data binding, used to bind a single property of a control to a value in a data
source. We created a TabPage object in our application to hold a set of controls
related to a Photograph object, and bound properties of our controls to the active
Photograph in a PhotoAlbum collection. We finished our chapter by examining the
update and storage of data sources as the user interacts with the application in general
and the bound controls in particular.

While the examples here did not use the System.Data namespace, the binding
of data grids and controls to database objects was discussed along the way in order to
provide some insight into how such binding might be performed.

Figure 17.8 The Save Changes dialog permits the user to save any changes

made to the individual controls.
602 CHAPTER 17 DATA BINDING

C H A P T E R 1 8

Odds and ends .NET

18.1 Printing 604
18.2 Timers 611
18.3 Drag and drop 618
18.4 ActiveX controls 625
18.5 Recap 635
In this last chapter of the book, it seems appropriate to mention a number of differ-
ent topics worthy of further exploration. This chapter presents various concepts that
might be of interest to you as you build and deploy Windows Forms applications.
Since the details of each topic could easily fill all or most of a chapter, we will instead
show a rather quick example for each subject. These examples should point you in
the right direction as you expand your knowledge of .NET in general and Windows
Forms in particular.

We will take a quick look at four different topics:
• Printing, including page setup and print preview.
• Windows Forms Timers, including stopping and restarting a timer.
• Drag and drop, both into and out of Windows Forms applications.
• Hosting ActiveX controls, by way of hosting a web browser control.

For no particular reason, these topics are presented in the same order as they are
listed. We begin with printing from Windows Forms applications.
603

18.1 PRINTING

Printing in Windows Forms is supported by the System.Drawing.Printing
namespace in addition to Windows Forms constructs. In this section we add printing
support to the MyPhotos MDI application built in chapter 16. The main classes
required are as follows:

Our example will use each of these four classes in order to support printing of an indi-
vidual photograph. Figure 18.1 shows the print preview dialog for one of our images.

Printing related classes

Class Description

PrintDocument A reusable component that is used to send output to the printer. The
PrintPage event occurs when print data should be sent to the printer
device.

PrintDialog A common dialog that offers options related to printing.

PrintPreviewDialog A form that contains a PrintPreviewControl object for presenting
how a document will look when it is printed on a specific printer device.

PageSetupDialog A common dialog that permits a user to alter the page settings
associated with a print document.

Figure 18.1 Note how the text here is drawn to the right of the image. Long strings, such

as the Notes text, are formatted to fit within the available page margins
604 CHAPTER 18 ODDS AND ENDS .NET

While this may not be the prettiest image printing application, it does demonstrate
some important principles, such as using the page margins and text wrapping. We
will present the changes in two parts, one for each of our ParentForm and Main-
Form objects.

18.1.1 USING THE PRINT CLASSES

The parent form will make direct use of the print classes previously mentioned, con-
tain the menu items for printing, and maintain the required PrintDocument
object. Placing the print document on the parent form ensures that any changes
made to the page margins or other document settings are seen by all child forms in
the application.

The following tables detail the changes required on the parent form.

Set the version number for the MyPhotos application to 18.1.

MODIFY PARENT FORM TO SUPPORT PRINT MENUS

 Action Result

1 In the ParentForm.cs [Design] window, add
three menus and a separator to the File
menu.

2 Also drag a PrintDocument object onto the
form.

The object appears in the component tray of
the designer window.

Settings

Menu Property Value

separator MergeOrder 6

Page
Setup

(Name) menuPageSetup

MergeOrder‘ 7

Text Page Set&up…

Print
Preview

(Name) menuPrintPreview

MergeOrder 7

Text Print Pre&view

Print (Name) menuPrint

MergeOrder 7

Shortcut CtrlP

Text &Print…

Settings

Property Value

(Name) printDoc

DocumentName Image Document
PRINTING 605

These menus provides the necessary user interface support. Next we hook up our
three print menus in the ParentForm class.

HANDLE PRINT RELATED MENUS IN PARENT FORM

 Action Result

3 Add a Click event handler for the
Page Setup menu to display a
PageSetupDialog window for the
form’s print document.

 private void menuPageSetup_Click
 (object sender, System.EventArgs e)
 {
 PageSetupDialog dlg
 = new PageSetupDialog();
 dlg.Document = printDoc;
 dlg.ShowDialog();
 }

4 Add a Click event handler for the
Print Preview menu to display a
PrintPreviewDialog window for
the form’s print document.

Note: The PrintPreviewDialog
window displays the document to
be printed within a PrintPreview-
Control object contained within
the preview window.

 private void menuPrintPreview_Click
 (object sender, System.EventArgs e)
 {
 PrintPreviewDialog dlg
 = new PrintPreviewDialog();
 dlg.Document = printDoc;
 dlg.ShowDialog();
 }

5 Add a Click event handler for the
Print menu to display a PrintDialog
window for the form’s print
document.

Note: The common print dialog
allows the user to select standard
settings such as which printer to use
and the number of copies to make.
If the user clicks the OK button, then
we invoke the Print method in the
PrintDocument class to initiate the
actual print operation.

 private void menuPrint_Click
 (object sender, System.EventArgs e)
 {
 PrintDialog dlg = new PrintDialog();
 dlg.Document = printDoc;
 if (dlg.ShowDialog() == DialogResult.OK)
 {
 printDoc.Print();
 }
 }

6 Handle the PrintPage event for the
PrintDocument object on the parent
form.

Note: This event occurs for each
page to be printed. The BeginPrint
and EndPrint events occur at the
start and end of the entire print
operation, respectively.

 private void printDoc_PrintPage
 (object sender, System.Drawing.
 Printing.PrintPageEventArgs e)
 {

7 In this handler:

a. If the active child is a MainForm
object, call the yet-to-be-written
PrintCurrentImage method on
this object.

b. Otherwise, cancel the print
operation.

 MainForm f = ActiveMdiChild as MainForm;
 if (f != null)
 f.PrintCurrentImage(e);
 else
 e.Cancel = true;
 }
606 CHAPTER 18 ODDS AND ENDS .NET

These event handlers establish the required printing support for the parent form. The
printing logic for the child form is presented next.

18.1.2 DRAWING A PRINT PAGE

With our user interface logic in place, we are ready to implement the printing of a
page. This is done using the PrintPageEventArgs parameter provided to the
PrintPage event handler. This class is summarized in .NET Table 18.1.

We will implement a PrintCurrentImage method in the MainForm class to make
use of this parameter. Internally, this will draw the photograph using the provided
Graphics object, and use an internal PrintTextString method to draw the indi-
vidual properties for the photograph.

.NET Table 18.1 PrintPageEventArgs class

The PrintPageEventArgs class represents an event argument containing information
required for printing pages to a printer. This class is part of the System.Drawing.Printing
namespace, and inherits from the System.EventArgs class.

Public Properties

Cancel Gets or sets whether the print job should be
cancelled.

Graphics Gets the Graphics object on which to paint the
page to print.

HasMorePages Gets or sets whether an additional page should
be printed after the current one.

MarginBounds Gets the printable area of a page, which is the
rectangle within the margins of the page.

PageBounds Gets the page area, which is the rectangle
representing the entire page.

PageSettings Gets the PageSettings object representing the
settings for the current page.

IMPLEMENT THE PRINTCURRENTIMAGE METHOD

 Action Result

1 In the MainForm.cs code
window, indicate that we will
use members of the
System.Drawing.Printing
namespace.

using System.Drawing.Printing;

2 Add a PrintCurrentImage
method that accepts a
PrintPageEventArgs object as
a parameter.

 public void PrintCurrentImage
 (PrintPageEventArgs e)
 {
PRINTING 607

3 If there is no current photo, then
abort the print operation.

 Photograph photo = _album.CurrentPhoto;
 if (photo == null)
 {
 // nothing to print, so abort
 e.Cancel = true;
 return;
 }

4 Otherwise, create some
shortcuts for the margins of the
page and the Graphics object.

 // Establish some useful shortcuts
 float leftMargin = e.MarginBounds.Left;
 float rightMargin = e.MarginBounds.Right;
 float topMargin = e.MarginBounds.Top;
 float bottomMargin
 = e.MarginBounds.Bottom;
 float printableWidth = e.MarginBounds.Width;
 float printableHeight
 = e.MarginBounds.Height;
 Graphics g = e.Graphics;

5 Create a Font object:

a. Use 11 point Times New
Roman.

b. Use the GetHeight method
to determine the height of
each line of text.

c. Use the MeasureString
method to determine the size
of a space.

 Font printFont
 = new Font("Times New Roman", 11);
 float fontHeight = printFont.GetHeight(g);
 float spaceWidth = g.MeasureString(" ",
 printFont).Width;

6 Determine the correct length so
that the image can be drawn
into a box which is 75% of the
shortest side of the page.

Note: This logic accounts for
both landscape and portrait
page orientation. The xPos and
yPos variables represent where
the first line of text should be
drawn.

 // Draw image in box 75% of shortest side
 float imageBoxLength;
 float xPos = leftMargin;
 float yPos = topMargin + fontHeight;
 if (printableWidth < printableHeight)
 {
 imageBoxLength = printableWidth * 75/100;
 yPos += imageBoxLength;
 }
 else
 {
 imageBoxLength = printableHeight * 75/100;
 xPos += imageBoxLength + spaceWidth;
 }

7 Draw the image into a box of the
determined size.

 // Draw image at start of the page
 Rectangle imageBox
 = new Rectangle((int)leftMargin + 1,
 (int)topMargin + 1,
 (int)imageBoxLength,
 (int)imageBoxLength);
 g.DrawImage(photo.Image,
 photo.ScaleToFit(imageBox));

8 Determine the RectangleF
object where all text should be
drawn.

 // Determine rectangle for text
 RectangleF printArea
 = new RectangleF(xPos, yPos,
 rightMargin - xPos,
 bottomMargin - yPos);

IMPLEMENT THE PRINTCURRENTIMAGE METHOD (continued)

 Action Result
608 CHAPTER 18 ODDS AND ENDS .NET

The PrintTextString method is implemented by the subsequent steps. Note that
our implementation prints the given string across multiple lines if necessary by draw-
ing each word in the text string separately. Also note that the printArea variable is
passed by reference. This is required in order to modify the printable area for text
strings in the PrintTextString method. Since the RectangleF structure is a
value type, it is normally passed by value.

9 Print the file name, caption,
photographer, and notes
properties for the photograph
onto the page.

How-to

Use the yet-to-be-written
PrintTextString method.

 PrintTextString(g, printFont,
 "FileName:", photo.FileName,
 ref printArea);
 PrintTextString(g, printFont,
 "Caption:", photo.Caption,
 ref printArea);
 PrintTextString(g, printFont,
 "Photographer:", photo.Photographer,
 ref printArea);
 PrintTextString(g, printFont,
 "Notes:", photo.Notes,
 ref printArea);
 }

IMPLEMENT THE PRINTCURRENTIMAGE METHOD (continued)

 Action Result

IMPLEMENT THE PRINTTEXTSTRING METHOD

 Action Result

10 Add a PrintTextString
method to the MainForm.cs
code window.

 protected void PrintTextString(
 Graphics g,
 Font printFont,
 string name,
 string text,
 ref RectangleF printArea)
 {

11 Create some local variables for
the margins of the printable
area.

 // Establish some useful shortcuts
 float leftMargin = printArea.Left;
 float rightMargin = printArea.Right;
 float topMargin = printArea.Top;
 float bottomMargin = printArea.Bottom;

12 Also determine the height of the
font and the coordinates where
the text should be drawn.

 float fontHeight = printFont.GetHeight(g);
 float xPos = printArea.Left;
 float yPos = topMargin + fontHeight;

13 Find the width of a space and
the name for the text string.

 float spaceWidth = g.MeasureString(" ",
 printFont).Width;
 float nameWidth
 = g.MeasureString(name, printFont).Width;

14 If this name does not fit in the
printable area, then abort the
operation.

 if (!printArea.Contains(xPos + nameWidth,
 yPos))
 {
 // Does not fit, so abort
 return;
 }
PRINTING 609

When you test this code, make sure it works properly when printing with both land-
scape and portrait orientation. The page setup dialog can be used to alter the orienta-
tion, as well as the margins on the page. For further information on printing, or for
details on the classes or methods used here, consult the .NET Framework online doc-
umentation.

15 Otherwise, draw the name on
the page and adjust the left
margin to occur after this string.

 g.DrawString(name, printFont,
 Brushes.Black, new PointF(xPos, yPos));
 leftMargin += nameWidth + spaceWidth;
 xPos = leftMargin;

16 Divide the text string into
individual words, and iterate
over these words.

 // Draw text, use multi-lines if necessary
 string[] words
 = text.Split(" \r\t\n\0".ToCharArray());
 foreach (string word in words)
 {

17 Determine the width of the next
word.

 float wordWidth = g.MeasureString(
 word, printFont).Width;
 if (wordWidth == 0.0)
 continue;

18 If the size of this word takes it
past the right margin, then
adjust the drawing coordinates
to start a new line.

 if (xPos + wordWidth > rightMargin)
 {
 // Start a new line
 xPos = leftMargin;
 yPos += fontHeight;
 if (yPos > bottomMargin)
 {
 // no more page, abort foreach loop
 break;
 }
 }

19 Draw this word at the current
position, and adjust the x
coordinate appropriately.

 g.DrawString(word, printFont,
 Brushes.Black,
 new PointF(xPos, yPos));
 xPos += wordWidth;
 }

20 When finished drawing the text,
adjust the printable area to
exclude the area just drawn.

 // Adjust print area based on drawn text
 printArea.Y = yPos;
 printArea.Height = bottomMargin - yPos;
 }

IMPLEMENT THE PRINTTEXTSTRING METHOD (continued)

 Action Result
610 CHAPTER 18 ODDS AND ENDS .NET

18.2 TIMERS

We will look at Windows Forms timers
next. A timer is an object that raises an
event after a configurable period of time
has elapsed. There are, in fact, three
Timer classes provided by the .NET
Framework. There is one in the Sys-
tem.Threading namespace for use
among multiple threads; one in the
System.Timers namespace for server-
based recurring tasks; and one in the
System.Windows.Forms namespace
that is optimized for the single-threaded
processing environment used to handle
events in a Form object.

Here we will concern ourselves with
the Windows Forms timer. This timer
object is normally associated and config-
ured within a form. For our example, we
will create a small slide show form that
will flip through each photo in an album. Our new window is shown in figure 18.2,
and will be accessible from a new menu item in the View menu of our MyPhotos MDI
application. A quick summary of the Timer class we will use is given in .NET
Table 18.2.

Figure 18.2 The slide show uses a TrackBar

control to track the current position within the

album.

.NET Table 18.2 Timer class

The Windows Forms Timer class represents a timer component that raises events at user-
defined intervals. This timer is optimized for use in Windows Forms applications and is
expected to occur within the processing thread for a Form object. This class is part of the
System.Windows.Forms namespace, and inherits from the System.Component-
Model.Component class.

Public Properties

Enabled Gets or sets whether the time is currently active.

Interval Gets or sets the time in milliseconds between timer ticks.

Public Methods

Start Starts the timer. This is equivalent to setting the Enabled
property to true.

Stop Stops the timer. This is equivalent to setting the Enabled
property to false.

Public Events
Tick Occurs when the timer is enabled and the specified

interval has elapsed.
TIMERS 611

Our discussion is divided into the user interface portion and the code portion.

18.2.1 CREATING A SLIDE SHOW FORM

We begin our discussion with the design of the new form. This form will use a con-
trol we have not previously discussed, namely the TrackBar control. A summary of
this control is given in .NET Table 18.3.

The following table details the steps for drawing the user interface for the Slide-
ShowForm class, including the TrackBar control:

.NET Table 18.3 TrackBar class

The TrackBar class represents a control that supports tracking of an integer value through a
scrolling interface. The control may appear horizontally or vertically. This class is part of the
System.Windows.Forms namespace, and inherits from the Control class.

Public Properties

AutoSize Gets or sets whether the control should automatically
resize based on its current settings.

LargeChange Gets or sets the amount added or subtracted from
the Value property for a large scroll in the control.
The default is five (5).

Maximum Gets or sets the maximum value for this track bar. The
default is ten (10).

Minimum Gets or sets the minimum value for this track bar. The
default is zero (0).

Orientation Gets or sets the Orientation enumeration value for
the display orientation of the control.

SmallChange Gets or sets the amount added or subtracted from
the Value property for a small scroll in the control.
The default is one (1).

TickFrequency Gets or sets the delta between tick marks drawn on
the control. The default is one (1).

TickStyle Gets or sets how the tick marks are displayed on the
control.

Value Gets or sets the numeric value of the current position
of the slider in the control.

Public Methods
SetRange Sets the minimum and maximum values for the

control.

Public Events

ValueChanged Occurs when the Value property of the control is
modified, either by movement of the slider or
assignment in code.
612 CHAPTER 18 ODDS AND ENDS .NET

Set the version number of the MyPhotos application to 18.2.

CREATE THE SLIDE SHOW FORM

 Action Result

1 Add a new Form class file to the
MyPhotos project called
SlideShowForm.cs.

The new file is shown in the Solution Explorer
window, and the form in the Windows Forms
Designer window.

2 Place a PictureBox object at the top
of the form.

This is shown in the graphic for the following step.

3 Place a Label, TextBox, and two
Button controls below the picture box.
Position these as shown in the graphic.

Settings

Property Value

ControlBox False

MaximizeBox False

MinimizeBox False

ShowInTaskbar False

Size 300, 340

StartPosition CenterParent

Settings

Property Value

(Name) pboxSlide

Anchor Top, Bottom, Left, Right

BorderStyle Fixed3D

Settings

Control Property Value

Label Text &Interval

Anchor Bottom, Left

TextBox (Name) txtInterval

Anchor Bottom, Left

Button 1 Text 2

(Name) btnStop

Anchor Bottom, Right

Text &Stop

Button 2 (Name) btnClose

Anchor Bottom, Right

Text &Close
TIMERS 613

This completes the design of the interface. The next step is to hook up our controls
in the code.

More .NET The ProgressBar class represents a control that permits the progress of
an event or procedure to be displayed. This class is related to the TrackBar
class in that it contains Minimum, Maximum, and Value properties to man-
age the current appearance of the control. You can check out this class in
the .NET documentation.

I opted to use a track bar in our example because of its support for user
adjustment of the current position via the Scroll event. This feature is
not available in the ProgressBar class as it is not really intended to inter-
act directly with the user.

4 Place a TrackBar control at the base of
the form.

5 Drag a Timer object onto the form.

6 In the MainForm.cs [Design] window,
add a Slide Show menu to the bottom
of the View menu.

CREATE THE SLIDE SHOW FORM (continued)

 Action Result

Settings

Property Value

(Name) trackSlide

Anchor Bottom, Left, Right

Settings

Property Value

(Name) slideTimer

Settings

Property Value

(Name) menuSlideShow

Text &Slide Show…
614 CHAPTER 18 ODDS AND ENDS .NET

18.2.2 IMPLEMENTING THE SLIDE SHOW BEHAVIOR

Our user interface is ready to go. The following table details the steps required to
implement this form to present a slide show to the user:

IMPLEMENT THE SLIDE SHOW BEHAVIOR

 Action Result

1 In the SlideShowForm.cs code
window, Indicate that we will use
the MyPhotoAlbum library in this file.

using Manning.MyPhotoAlbum;

2 Create two private fields in the class
to hold the album and the current
display position.

 private PhotoAlbum _album;
 private int _albumPos;

3 Modify the constructor to accept a
PhotoAlbum object and initialize
these private fields.

 public SlideShowForm(PhotoAlbum album)
 {
 // Required for Form Designer support
 InitializeComponent();

 // Other initialization
 _album = album;
 _albumPos = 0;
 }

4 Implement a SetInterval method
to calculate the timer interval based
on the value in the text box control.

Note: Since we do not prevent our
text box from containing letters, we
need to catch the possible excep-
tion here.

 protected void SetInterval()
 {
 int interval = 0;
 try
 {
 interval
 = Convert.ToInt32(txtInterval.Text);
 }
 catch
 {
 // Reset interval value
 txtInterval.Text = "2";
 interval = 2;
 }

 slideTimer.Interval = interval * 1000;
 }

5 Override the OnLoad method to:

a. Set the timer interval.
b. Enable the timer.
c. Set the minimum and maximum

value for the track bar based on
the number of photos in the
album.

 protected override void OnLoad(EventArgs e)
 {
 SetInterval();
 slideTimer.Enabled = true;

 trackSlide.Minimum = 0;
 trackSlide.Maximum = _album.Count - 1;
 base.OnLoad(e);
 }
TIMERS 615

6 Add a Paint event handler for the
PictureBox control to do the
following:

a. If the current position is out of
range, simply return.

b. Load the current Photograph.
c. Display the caption in the title bar.
d. Preserve the aspect ratio when

drawing the image into the
window.

 private void pboxSlide_Paint
 (object sender,
 System.Windows.Forms.PaintEventArgs e)
 {
 if (_albumPos >= _album.Count)
 return;

 Photograph photo = _album[_albumPos];
 if (photo != null)
 {
 this.Text
 = String.Format("{0} ({1:#}/{2:#})",
 photo.Caption,
 _albumPos + 1, _album.Count);
 e.Graphics.DrawImage(photo.Image,
 photo.ScaleToFit(
 pboxSlide.ClientRectangle));
 }
 else
 e.Graphics.Clear(SystemColors.Control);
 }

7 Add a Tick event handler for the
slideTimer component.

How-to

This is the default event for this
component, so simply double-click
the timer in the component tray.

 private void slideTimer_Tick
 (object sender, System.EventArgs e)
 {

8 In this handler, increment the current
album position.

 _albumPos ++;

9 If the position is passed the end of
the album, reset the slide show as
follows:

a. Modify the Stop button text to be
Start.

b. Reset the track bar value to zero.
c. Invalidate the picture box to draw

the initial photograph.
d. Disable the timer.

 if (_albumPos > _album.Count)
 {
 btnStop.Text = "&Start";
 _albumPos = 0;
 trackSlide.Value = 0;
 pboxSlide.Invalidate();
 slideTimer.Enabled = false;
 }

10 If the position is at the end of the
album, set the title bar to indicate
the slide show is finished.

 else if (_albumPos == _album.Count)
 {
 this.Text = "Finished";
 }

11 Otherwise, for a valid album index:

a. Invalidate the picture box to draw
the next image.

b. Set the track bar value to the cur-
rent position.

 else
 {
 pboxSlide.Invalidate();
 trackSlide.Value = _albumPos;
 }

12 Reassign the interval value to pick up
any changes made by the user.

 // Reset the interval
 SetInterval();
 }

IMPLEMENT THE SLIDE SHOW BEHAVIOR (continued)

 Action Result
616 CHAPTER 18 ODDS AND ENDS .NET

13 Add a Click event handler for the
Close button to close the form.

 private void btnClose_Click
 (object sender, System.EventArgs e)
 {
 this.Close();
 }

14 Add a Click event handler for the
Stop button.

 private void btnStop_Click
 (object sender, System.EventArgs e)
 {

15 If the current Text value is Stop,
stop the timer and set the button
text to Resume.

Note: While our Stop button has
three different display strings, we
preserve the keyboard access key
of Alt+S in all three values.

 if (btnStop.Text == "&Stop")
 {
 // Stop
 slideTimer.Stop();
 btnStop.Text = "Re&sume";
 }

16 For other text values, start the timer
and set the button text to Stop.

 else
 {
 // Resume or Start
 slideTimer.Start();
 btnStop.Text = "&Stop";
 }
 }

17 Add a Scroll event handler for the
TrackBar control.

Note: This is the default event for
the track bar control, and occurs
when the user manually adjusts the
slider position.

 private void trackSlide_Scroll
 (object sender, System.EventArgs e)
 {

18 In this handler:

a. Set the album position to the new
value.

b. Invalidate the picture box to draw
the selected photo.

 _albumPos = trackSlide.Value;
 pboxSlide.Invalidate();
 }

19 Add a Resize event handler for the
PictureBox control to invalidate the
control and redraw the image.

 private void pboxSlide_Resize
 (object sender, System.EventArgs e)
 {
 pboxSlide.Invalidate();
 }

20 Back in the MainForm class, add a
Click event handler for the Slide
Show menu to create and display a
SlideShowForm dialog.

 private void menuSlideShow_Click
 (object sender, System.EventArgs e)
 {
 using (SlideShowForm f
 = new SlideShowForm(_album))
 {
 // Display slide show as modal dialog
 f.ShowDialog();
 }
 }

IMPLEMENT THE SLIDE SHOW BEHAVIOR (continued)

 Action Result
TIMERS 617

The slide show form is now fully integrated into our main application. Compile and
run to see this window. Load an album and select the Slide Show menu to display the
new dialog.

TRY IT! Throughout the book we have used the photo album and photograph ab-
stractions we constructed in chapter 5 to represent and display images. In
the MyPhotos application we display photographs in a Panel control,
while in our other applications we use a PictureBox control. In both cas-
es we were forced to override the Paint event in order to draw a photo-
graph with the proper aspect ratio. It would be nice to have a control that
provided this functionality directly.

Try creating a new PhotoBox class based on the Windows Forms Pic-
tureBox control that adds a new SizeMode setting called ScaleImage
to the control. When set to this value, this new control should display the
entire image with the proper aspect ratio within the control, just as we have
done throughout the book. You can replace the existing Picture-
Box.SizeMode property using a new set of enumeration values by defin-
ing the property in the following manner. You will also need to override the
OnPaint and OnResize methods to properly draw an image within the
new control.

 private PhotoBoxSizeMode _sizeMode;
 public new PhotoBoxSizeMode SizeMode
 {
 get { return _sizeMode; }
 set { _sizeMode = value; }
 }

Use your new control in place of the PictureBox control in the Slide-
ShowForm window. My implementation of this control is available on the
book’s web site. Also included on the site are the instructions for making
this new control, referred to as a custom control, available in the Toolbox
window of Visual Studio .NET.

18.3 DRAG AND DROP

Continuing with our whirlwind tour of topics, let’s take a quick look at drag and
drop. This refers to dragging an object from one location to another, and can occur
within an application or between applications. Typically, a drag and drop operation is
begun by clicking an object with the mouse pointer, holding down the mouse button
while moving, or dragging, the object to a new location; and dropping the object at
the new location by releasing the mouse button.

This topic can get fairly complicated, so we will show a rather basic example sup-
porting the following types of drag and drop operations.

• Dragging a file from the Windows file system into a PhotoAlbum in a Main-
Form window.
618 CHAPTER 18 ODDS AND ENDS .NET

• Dragging a photograph file from the MainForm window to an external Win-
dows location.

• Dragging the photograph caption from the MainForm window to a text editor.
• Dragging a photograph file from one PhotoAlbum to another within the

MyPhotos MDI application.

The Windows Forms Control class provides direct support for drag and drop oper-
ations. The following table summarizes these members.

At a high level, a drag and drop operation performs the following steps. These steps
are illustrated by the code in the subsequent sections. Note that the source and target
of the operation may be within the same application or in separate applications.

1 A source control initiates drag and drop, typically within a MouseDown event
handler, using the DoDragDrop method. One or more data objects and associ-
ated formats are provided as part of invoking this method.

2 The user drags the object to a target control that has its AllowDrop property set
to true.

3 As the mouse enters the target control, the DragEnter event occurs to permit
the target to identify whether the data can be recognized by this control. This
permits the operating system to display an appropriate mouse cursor for the user.

4 If so, then the DragOver event occurs as the user moves the drag and drop
object within the control.

5 If the object is dragged out of the control, the DragLeave event occurs.

6 If the user releases the object within the target control, then the DragDrop event
occurs to permit the control to receive the data.

7 The result of the operation is returned by the DoDragDrop method in the origi-
nal source control.

Members of the Control class related to drag and drop

Public Properties
AllowDrop Gets or sets whether the control will permit drag and drop

operations within its boundaries. The default is false.

Public Methods
DoDragDrop Initiates a drag and drop operation from within this control.

Typically, this is called from a MouseDown event handler.

Public Events

DragDrop Occurs when the user completes a drag and drop operation
within this control.

DragEnter Occurs when an object is dragged into the control’s
boundaries.

DragLeave Occurs when an object formerly dragged into the control is
dragged out of the control’s boundaries.

DragOver Occurs when an object within the control is moved within
the control’s boundaries.
DRAG AND DROP 619

We will divide our example into two sections. First, we will begin a drag and drop
operation from within the PictureBox control of our MainForm class. Next, we
will receive external drag and drop operations within this same control.

18.3.1 INITIATING DRAG AND DROP

The key to beginning a drag and drop operation is the DoDragDrop method. This
method defines the data for the operation and the kind of operation permitted.
 public DragDropEffects DoDragDrop(object data,
 DragDropEffects allowedEffects);

While the data parameter can be any data, the DataObject class provides a stan-
dard mechanism for safely transferring data between applications. The DragDrop-
Effects enumeration permits different types of drag and drop operations to be
supported. For example, the Move, Copy, and Link values permit an object to be
moved, copied, or linked from the original data source to the drop target.

The DoDragDrop method does not return until the drag and drop operation is
completed. The return value indicates what effect was performed by the operation.
The QueryContinueDrag event in the Control class can be used to keep tabs on
the operation. This event occurs periodically during drag and drop and can be used
to cancel the operation or to modify the application window as required.

In our application, we will simply begin the operation and let the .NET Frame-
work take care of the rest. We will provide two types of data formats using the
DataObject class. The first will be the FileDrop format recognized by the Win-
dows file system and applications such as Microsoft Paint. The second will be the
Text format recognized by most word processors.

The following table details the changes required.

Set the version number of the MyPhotos application to 18.3.

BEGIN A DRAG AND DROP OPERATION

 Action Result

1 Locate the MouseDown event
handler for the Panel control in
the MainForm.cs code window.

 private void pnlPhoto_MouseDown
 (object sender,
 System.Windows.Forms.MouseEventArgs e)
 {

2 If the Ctrl key is not held down,
then retrieve the current
photograph for the album.

 if (ctrlKeyHeld)
 {
 . . .
 }
 else
 {
 // Initiate drag and drop for this image
 Photograph photo = _album.CurrentPhoto;
620 CHAPTER 18 ODDS AND ENDS .NET

This code begins a drag and drop operation that can be received by any other applica-
tion running on the computer. Other applications look at the provided data formats
to identify whether they can accept the dragged data. We will look at how to do this
in Windows Forms in a moment.

Of course, for applications that can receive multiple formats, the result they
receive depends on which format they prefer. Most word processing applications look
for the Text format first, and will therefore receive the Caption property of our
photo, rather than the associated file object.

Compile and run the application. Display an album and click on the image. Hold
the mouse and drag it to a new location to perform a drag and drop operation.
Figure 18.3 shows the result of dragging one of our favorite images from the MyPhotos
application into a Microsoft Paint application. The Paint application opens the given
file and displays a copy of the image in its main window. Also try dragging an image
into WordPad or some other word processor to see how the caption string appears.

3 If this Photograph is found,
create a FileDrop data format for
dragging the photograph to a new
location.

How-to

a. Construct a DataObject
instance to hold the data for-
mats.

b. Construct a string array to
hold the associated file.

c. Associate the string array with
the FileDrop format for the
data.

 if (photo != null)
 {
 // Create object for encapsulating data
 DataObject data = new DataObject();

 // Construct string array for FileDrop
 string[] fileArray = new string[1];
 fileArray[0] = photo.FileName;
 data.SetData(DataFormats.FileDrop,
 fileArray);

Note: The DataFormats class encapsulates vari-
ous data formats that can be used by drag and
drop operations. The FileDrop format used here
requires a string array as the data type. This per-
mits multiple files to be provided at once.

4 Also assign a Text format using
the Caption property of the
photograph as the associated
data.

 // Use the caption for the text format
 data.SetData(DataFormats.Text,
 photo.Caption);

5 Call the DoDragDrop method with
the constructed data object to
initiate a drag and drop Copy
operation.

 // Initiate drag and drop
 pnlPhoto.DoDragDrop(data,
 DragDropEffects.Copy);
 }
 }
 }

BEGIN A DRAG AND DROP OPERATION (continued)

 Action Result
DRAG AND DROP 621

This completes our example for initiating a drag and drop operation. The next topic
is to handle drag and drop operations within the MainForm window.

18.3.2 RECEIVING DRAG AND DROP

Regardless of where a drag and drop operation originates, an application can elect to
handle the incoming data. The DragEnter and DragDrop events are used to receive
such operations. Event handlers for both of these events receive a DragEventArgs
object as their event parameter. A summary of this object appears in .NET Table 18.4.

Figure 18.3 The FileDrop format used here to drag an image into Microsoft Paint is a com-

mon method for transferring files between applications.
622 CHAPTER 18 ODDS AND ENDS .NET

For our example, we will recognize the FileDrop format in the MainForm window
to receive files dragged from the file system or from other MainForm windows.

The steps required are detailed in the following table:

.NET Table 18.4 DragEventArgs class

The DragEventArgs class represents the event arguments required for drag and drop events, namely the
DragEnter, DragOver, and DragDrop events in the Control class. This class is part of the Sys-
tem.Windows.Forms namespace, and inherits from the System.EventArgs class.

Public Properties

AllowedEffect Gets which drag and drop operations are permitted
by the source of the drag event.

Data Gets the IDataObject interface that holds the data
and data formats associated with the event.

Effect Gets or sets the DragDropEffects enumeration
values indicating which drag and drop operations are
permitted in the target of the drag event.

KeyState Gets the current state of the Shift, Ctrl, and Alt
keyboard keys.

X Gets the x-coordinate of the current mouse pointer
position.

Y Gets the y-coordinate of the current mouse pointer
position.

HANDLE DRAG AND DROP IN THE MAINFORM WINDOW

 Action Result

1 In the MainForm.cs [Design] window,
set the AllowDrop property on the
Panel control to true.

Drop operations are now permitted in the panel
control.

2 Add a DragEnter event handler for
the panel.

 private void pnlPhoto_DragEnter
 (object sender,
 System.Windows.Forms.DragEventArgs e)
 {

3 If the data associated with the event
supports the FileDrop data format,
then indicate that this control will
support the Copy drag and drop
effect.

How-to

Use the GetDataPresent method
from the IDataObject interface.

 if (e.Data.GetDataPresent(
 DataFormats.FileDrop))
 e.Effect = DragDropEffects.Copy;
DRAG AND DROP 623

This completes our handling of drag and drop. Compile and run the program to see
this in action. Display two different albums in separate MainForm windows. You
should be able to perform the following drag and drop operations to obtain the
described results:

• Find a new image file in Windows Explorer. Drag this file into one of the album
windows. The image is added to the album and displayed in the window.

• Find an image file in Windows Explorer that is already in an album. Drag this
file into the album. The existing Photograph object is displayed in the window.

4 Otherwise, indicate that the current
drag and drop data is not accepted by
this control.

 else
 e.Effect = DragDropEffects.None;
 }

5 Add a DragDrop event handler for the
panel.

 private void pnlPhoto_DragDrop
 (object sender,
 System.Windows.Forms.DragEventArgs e)
 {

6 In this handler:

a. Retrieve the data in FileDrop for-
mat associated with the event.

b. Convert this data to an Array
instance.

c. For each object in the array, con-
vert the object to a string.

 object obj = e.Data.GetData(
 DataFormats.FileDrop);
 Array files = obj as Array;

 int index = -1;
 foreach (object o in files)
 {
 string s = o as string;

7 If a string is found, then:

a. Create a new Photograph object
using this string.

b. See if the Photograph is already in
the current album.

c. If not, then add the new photo to
the album.

Note: Recall that the Photograph
object will simply display a bad
image bitmap if an invalid or non-
image file name is provided.

 if (s != null)
 {
 Photograph photo
 = new Photograph(s);

 // Add the file (if not present)
 index = _album.IndexOf(photo);
 if (index < 0)
 {
 index = _album.Add(photo);
 _bAlbumChanged = true;
 }
 }
 }

8 If a Photograph was found in the
foreach loop, then

a. Adjust the current album position
to the discovered index.

b. Invalidate the form to redraw the
window.

 if (index >= 0)
 {
 // Show the last image added
 _album.CurrentPosition = index;
 Invalidate();
 }
 }

HANDLE DRAG AND DROP IN THE MAINFORM WINDOW (continued)

 Action Result
624 CHAPTER 18 ODDS AND ENDS .NET

• Highlight a set of files in Windows Explorer. Drag these files into one of the
album windows. Each file is added to the window if not already present. The
last file added is displayed in the window.

• Click on an image displayed in one album window and drag it to a second
album window. The image is added to the second album, or displayed if it is
already present.

This completes our drag and drop example. We should also mention that the List-
View and TreeView classes support per-item dragging via the ItemDrag event. The
ItemDrag event occurs when the user begins dragging an item in the list or tree.
Typically, the event handler for the ItemDrag event calls the DoDragDrop method
as we did in this section, with the object associated with a specific list item or tree
node as the source of the operation. For example, we could modify our MyAlbumEx-
plorer interface to permit photographs to be reordered within the ListView control,
or dragged into a new album in the TreeView control.

18.4 ACTIVEX CONTROLS

Our final section will look at how to include an ActiveX control, more specifically the
Microsoft Web Browser control, within a Windows Forms application. We will avoid
a detailed discussion of ActiveX in general and the Web Browser control in particular,
and instead allow the example to speak for itself.

Our example will host a browser control within an About Box dialog for our
MyPhotos application. This may seem slightly unorthodox, but should create an inter-
esting example while still presenting the topic at hand.

The foundation of ActiveX support in Windows Forms is the AxHost control.
This abstract class is, quite simply, a control that hosts, or displays, an ActiveX control
as a full-featured Windows Forms control. The class is based on the Windows Forms
Control class so that the standard properties, methods, and events we have discussed
throughout the book are available in hosted controls. The .NET framework provides
an ActiveX Control Importer tool to generate an AxHost interface for a specific
ActiveX control. We will discuss this tool in a moment.

In our application, we will create an AboutBox form to display information
about the application. As shown in figure 18.4, this Form will include a LinkLabel
object that will link to the web site for this book.

Figure 18.4

This form uses a Label control

to display the application Icon,

and LinkLabel controls to ini-

tiate user actions.
ACTIVEX CONTROLS 625

We could just as easily use Button controls rather than link labels. Since we have not
used LinkLabel objects in a previous example, this is a good opportunity to do so
here. When the user clicks the “Click to close window” label, the window will close as
we have seen with a Close button in previous examples. When the user clicks the
“Click for book’s web site” label, a hidden panel will appear and display the web site
for the book you are reading. This is shown in figure 18.5. Note in this figure that the
title bar of the form reflects the current web page title, and the link label text now
allows the user to hide the web browser. Of course, connecting to the web site pre-
sumes you have an active connection to the Internet available.

We will divide our discussion into three sections. First we will create the form
required; then we will wrap the Web Browser control in an AxHost control, and
finally we will use this new control to display the web page as in figure 18.5.

18.4.1 CREATING THE ABOUT BOX

Our first task is to create the new Form class for our new About box. The steps
required are as follows:

Figure 18.5 In the embedded web page in this window, the user can follow any links displayed

and perform other standard browser actions in the window.
626 CHAPTER 18 ODDS AND ENDS .NET

Set the version number of the MyPhotos application to 18.4.

DESIGN THE ABOUT BOX FORM

 Action Result

1 Add a new Form class file to the
MyPhotos project called
AboutBox.cs.

2 Assign the following settings to the
form.

3 Drag an ImageList onto the form
and set the following properties:

4 Add the following icons from the
common image directory to the
Images collection for this list.

• icons/Writing/BOOK02.ICO
• icons/Writing/BOOKS04.ICO

Settings

Property Value

MinimizeBox False

ShowInTaskbar False

Size 400,144

StartPosition CenterParent

Text About MyPhotos

Settings

Property Value

(Name) imageIcons

ImageSize 32, 32
ACTIVEX CONTROLS 627

This completes the design of our AboutBox form. We will also need a menu in the
ParentForm class to display this form.

5 Add the four labels, namely two
Label controls and two LinkLabel
controls, to the form. Size and
position them as shown in the
graphic.

6 Also add a hidden Panel control to
the base of the form.

Note: The panel is visible in Visual Studio even
though it will be hidden when the form is actu-
ally displayed.

DESIGN THE ABOUT BOX FORM (continued)

 Action Result

Settings

Control Property Value

Icon
Label

(Name) lblIcon

BorderStyle FixedSingle

ImageList imageIcons

ImageIndex 0

Text

Text
Label

(Name) lblAboutText

Anchor Top, Left, Right

BorderStyle Fixed3D

Text MyPhotos

Site Link (Name) linkWebSite

Text Click for book’s
web site

Close
Link

(Name) linkClose

Anchor Top, Right

Text Click to close
window

TextAlign TopRight

Settings

Property Value

(Name) pnlWebSite

Anchor Top, Bottom, Left, Right

BorderStyle Fixed3D

Visible False
628 CHAPTER 18 ODDS AND ENDS .NET

Our design is ready to go. Our next topic is the generation of wrapper classes for
ActiveX controls.

18.4.2 WRAPPING THE WEB BROWSER CONTROL

As we mentioned earlier, the .NET Framework provides a tool for creating a derived
AxHost class from an existing ActiveX control. This section will use this tool to wrap
the standard browser control for use in our application.

The Windows Forms ActiveX Control Importer program is called “aximp” and
is available as part of the Visual Studio .NET product. This program is run on the
command line and accepts an ActiveX control library.
 C:\> aximp source-file

The source-file here is the DLL or OCX file containing the ActiveX control. For our
purposes, the Web Browser control is located in the file shdocvw.dll in the Windows
“system32” directory. An AxHost based class can be created with the following steps:

CREATE MENU IN PARENT FORM

 Action Result

7 In the ParentForm.cs [Design]
window, add a new top-level
Help menu.

8 Add a single About MyPhotos
menu item under this new
menu.

Settings

Property Value

(Name) menuHelp

MergeOrder 9

Text &Help

Settings

Property Value

(Name) menuAbout

Text &About MyPhotos…
ACTIVEX CONTROLS 629

The two generated files work together to present the ActiveX control as a Windows
Forms control in the .NET environment. The first file AxShDocVw.dll, is named by
prepending “Ax” to the given source file name. This file encapsulates the Windows
Forms proxy class for the control, derived from the AxHost class. Each object from
the original library is defined under a namespace identical to the assembly name, in
this case the AxShDocVw namespace.

The second file ShDocVw.dll, named identical to the given source file name, con-
tains the common language runtime proxy for the COM types from the source library.
This file is used implicitly by the Windows Forms control defined in the first file.

With a wrapper for our Web Browser control defined, we are ready to implement
the internals of our About box.

CREATE WRAPPER CLASS FOR WEB BROWSER CONTROL

 Action Result

1 Display a Visual Studio .NET
Command Prompt.

How-to

This is available from the Start
menu in the Microsoft Visual
Studio .NET folder, under the
Visual Studio .NET Tools heading.

2 Create a suitable directory for
holding the generated wrapper
class.

 cd Windows Forms\Projects
 mkdir WebBrowser

Note: This example uses the
directory “C:\Windows
Forms\Projects\WebBrowser” for
this purpose. You should use an
appropriate directory for your
application.

3 Change the current directory to be
this new directory.

 cd WebBrowser

4 Generate the wrapper class by
executing the following command:

 aximp
c:\winnt\system32\shdocvw.dll

Note: Depending on your operat-
ing system, you may need to
replace “c:\winnt” in this com-
mand with the appropriate Win-
dows directory.

Two new assemblies are generated in the current
directory. These are:

 aximp c:\winnt\
 system32\shdocvw.dll
630 CHAPTER 18 ODDS AND ENDS .NET

18.4.3 USING THE WEB BROWSER CONTROL

So far we have defined a user interface and created a wrapper class for the Web
Browser ActiveX control. In this section we will implement the AboutBox form to
work as described earlier.

The following table begins this process by describing the changes required for our
standard Windows Forms controls.

HANDLE THE STANDARD CONTROLS

 Action Result

1 In the AboutBox.cs code window,
create two constants for the two
types of icons in our image list.

 protected const int SDI_ICON = 0;
 protected const int MDI_ICON = 1;

2 Implement an IsMdiApplication
property to define whether the
active form is a MDI application.

How-to

a. In the get accessor, return
whether the current image index
in the lblIcon control is the
MDI icon.

b. In the set accessor, assign the
ImageIndex for the lblIcon
control based on the assigned
value setting.

 public bool IsMdiApplication
 {
 get { return (lblIcon.ImageIndex
 == MDI_ICON); }
 set
 {
 if (value)
 lblIcon.ImageIndex = MDI_ICON;
 else
 lblIcon.ImageIndex = SDI_ICON;
 }
 }

3 Implement an AboutText property
to get or set the Text property for
the lblAboutText control.

 public string AboutText
 {
 get { return lblAboutText.Text; }
 set { lblAboutText.Text = value; }
 }

4 In the ParentForm class, add a
Click handler for the About
MyPhotos menu to create an
AboutBox instance and assign its
settings.

How-to

a. Set IsMdiApplication to
true.

b. Set the AboutText property to
an appropriate string.

c. Set the Owner property to the
current Form.

d. Set the dialog’s Icon to use the
current form’s icon.

e. Show the dialog.

 private void menuAbout_Click
 (object sender, System.EventArgs e)
 {
 AboutBox dlg = new AboutBox();
 dlg.IsMdiApplication = true;

 Version ver = new
 Version(Application.ProductVersion);
 dlg.AboutText
 = String.Format("MyPhotos (MDI) "
 + "Application, Version {0:#}.{1:#} "
 + "\nSample for /"Windows Forms "
 + "Programming with C#\"\nby "
 + "Erik Brown \nCopyright (C) 2001 "
 + "Manning Publications Co.",
 ver.Major, ver.Minor);
 dlg.Owner = this;
 dlg.Icon = this.Icon;

 dlg.Show();
 }
ACTIVEX CONTROLS 631

These changes configure the controls with the appropriate information and behavior.
Note that the LinkClicked event handler receives a LinkLabelLinkClicked-
EventArgs object as its event parameter. The LinkLabel class provides a Links
property that defines one or more links, as a collection of LinkLabel.Link
objects, within the single link label control. The LinkLabelLinkClickedEvent-
Args object specifies the link that was clicked by the user.

In our application, our labels use the entire text string as a link. Let’s continue
the previous steps and handle the linkWebSite control to see how to bring up a Web
Browser.

5 Back in the AboutBox class, add a
LinkClicked handler for the
linkClose link label control to
close the form.

How-to

This is the default event for link
labels, so simply double-click the
link control in the design window.

 private void linkClose_LinkClicked
 (object sender, System.Windows.Forms.
 LinkLabelLinkClickedEventArgs e)
 {
 Close();
 }

HANDLE THE STANDARD CONTROLS (continued)

 Action Result

HANDLE THE LINKWEBSITE CONTROL

 Action Result

6 Add a reference to the
generated AxSHDocVW.dll
assemply in the MyPhotos
project.

How-to

In the Add Reference dialog,
click the Browse... button to
locate and select the
generated assembly.

7 In the AboutBox.cs code
window, indicate that we will
use this library in our code.

using AxSHDocVw;
632 CHAPTER 18 ODDS AND ENDS .NET

8 Define the following fields in
our AboutBox class:

a. A browser field representing
a WebBrowser control.

b. A constant string contain-
ing the web site we will dis-
play.

 private AxWebBrowser browser;
 private const string startPage
 = "www.manning.com/eebrown";

Note: The AxWebBrowser class here is based on
Microsoft’s SHDocVw.dll library from the Windows
directory. We will not cover the contents of this
library in detail, as it is beyond the scope of our cur-
rent discussion. Look up the WebBrowser Control
index entry in the online documentation provided
with Visual Studio .NET for more information on this
class.

9 Add a LinkLabel event
handler for the linkWebSite
control.

 private void linkWebSite_LinkClicked
 (object sender, System.Windows.Forms.
 LinkLabelLinkClickedEventArgs e)
 {

10 If the browser control already
exists, then shut down the
web site and hide the Panel
object.

Note: This code resets the
dialog to its original state.

 if (browser != null)
 {
 // Shut down existing browser
 pnlWebSite.Visible = false;
 browser.Dispose();
 browser = null;

 // Reset dialog settings
 linkWebSite.Text
 = "Click for book's web site";
 this.Size = new Size(400, 140);
 this.Text = "About MyPhotos";
 }

11 If the browser control does not
exist, then create the browser
and define some initial
settings.

How-to

a. Create a new AxWeb-
Browser control.

b. Set its Dock property to
Fill.

c. Add a TitleChange event
handler.

d. Add a HandleCreated
event handler.

 else
 {
 // Create web browser object
 browser = new AxWebBrowser();
 browser.Dock = DockStyle.Fill;

 browser.TitleChange += new
 DWebBrowserEvents2_TitleChangeEventHandler
 (this.browser_TitleChange);
 browser.HandleCreated += new
 EventHandler(this.browser_HandleCreated);

Note: The HandleCreated event is inherited from
the Control class and uses the familiar mechanism.
The TitleChange event is part of the WebBrowser
control, and is part of the AxSHDocVw namespace.

Details on the DWebBrowserEvents2 interface
and the TitleChange event are included with the
online documentation for Visual Studio .NET.

12 Make the Panel control on the
form visible and add the
browser control to appear
within this panel.

 // Show panel containing new browser
 pnlWebSite.SuspendLayout();
 pnlWebSite.Visible = true;
 pnlWebSite.Controls.Add(browser);
 pnlWebSite.ResumeLayout();

HANDLE THE LINKWEBSITE CONTROL (continued)

 Action Result
ACTIVEX CONTROLS 633

This completes our implementation. Compile and run to view the AboutBox dialog
in all its glory. You will notice that when viewing the web page within our applica-
tion, the user cannot navigate to an arbitrary web address. This is very different than

13 Modify the text displayed for
the linkWebSite control and
enlarge the Form to be
600x400 pixels.

 linkWebSite.Text = "Click to hide web page";
 this.Size = new Size(600, 400);
 }
 }

14 Create the handler for the
TitleChange event to display
the new document title in the
title bar of the AboutBox form.

 private void browser_TitleChange
 (object sender,
 DWebBrowserEvents2_TitleChangeEvent e)
 {
 this.Text = e.text;
 }

15 Add a DisplayPage method
to navigate to a given URL.

How-to

a. Create object instances to
represent the reference
parameters.

b. Display the wait cursor.

c. Use the Navigate method
to display the given URL.

d. Finally, reset the current
cursor.

Note: The Navigate method
is discussed in the online doc-
umentation.

The four param objects are
required here to match the
signature of the Navigate
method as defined by the
ActiveX Control Importer
(aximp.exe). A future version
of the importer may permit
these settings to be null.

 protected void DisplayPage(string url)
 {
 // These are required because the importer
 // assumes these are in/out parameters
 // and defines them as passed by reference.
 object param2 = 0;
 object param3 = "";
 object param4 = "";
 object param5 = "";

 try
 {
 Cursor.Current = Cursors.WaitCursor;
 browser.Navigate(url,
 ref param2, ref param3,
 ref param4, ref param5);
 }
 finally
 {
 Cursor.Current = Cursors.Default;
 }
 }

16 Create the handler for the
HandleCreated event to
display the start page.

How-to

a. Display the starting page
using the DisplayPage
method.

b. Remove the Handle-
Created handler.

 public void browser_HandleCreated
 (object sender, EventArgs evArgs)
 {
 // The WebBrowser has been created
 // Display the starting page
 DisplayPage(startPage);

 // Remove this handler
 browser.HandleCreated -= new
 EventHandler(this.browser_HandleCreated);
 }

HANDLE THE LINKWEBSITE CONTROL (continued)

 Action Result
634 CHAPTER 18 ODDS AND ENDS .NET

using a Web Browser such as Internet Explorer, where the user has more control over
which pages are displayed.

This completes our example wrapping the Web Browser ActiveX control as a
Windows Forms control. It also completes this chapter as well as the book.

In keeping with tradition, we provide a final recap of the topics covered in this
chapter.

18.5 RECAP

This chapter presented an overview of various topics in Windows Forms application
development. Each topic was discussed very briefly, and we demonstrated each feature
with an example that extended the MyPhotos MDI application built in chapter 16.

The specific topics covered included printing from an application, using Win-
dows Forms timers, dragging and dropping objects into and out of an application, and
hosting an ActiveX control within a Windows Forms program. On the final topic, we
illustrated this feature by embedding a Web Browser control within an AboutBox
form displayed by our application.

Along the way we also illustrated some classes not previously discussed, notably the
TrackBar and LinkLabel controls. More details on these as well as the other topics
in this chapter are available in the online documentation for the .NET Framework.

If you have read this book from cover to cover, then congratulations. Regardless
of how you came to this sentence, the appendices include some reference material on
C# and .NET namespaces, as well as class hierarchy charts for the Windows Forms
namespace.

Good luck with your programming endeavors. May your code always compile
and applications never fail.
RECAP 635

A P P E N D I X A

C# primer

A.1 C# programs 638
A.2 Types 639
A.3 Language elements 654
A.4 Special features 667
This appendix provides an introduction and reference to the C# programming lan-
guage. If you are looking for a detailed description of C#, there are a number of
resources listed in the bibliography that provide this kind of coverage. If you are
familiar with object-oriented programming or with C-based languages such as C++ or
Java, then this appendix will get you started and serve as a quick reference for terms
and keywords you encounter in this book and elsewhere.

You will also discover that many of the terms and keywords presented here are
discussed in detail in the text. A reference to one or more of these locations is provided
for many of the topics shown here. These are also indexed at the back of the book.

This appendix will approach C# in a somewhat formal manner. We will discuss
the following topics:

• The organization of a C# program.
• The types and type members available in the language.
• The formal elements of the language, including built-in types, operators, and

keywords.
• Special features of C#, such as arrays and automated documentation.
637

A.1 C# PROGRAMS

A C# program consists of a collection of source files where each source file is an
ordered sequence of Unicode characters. Typically, each source file corresponds to a
single file in the file system. A program is compiled into a set of computer instructions
known as an assembly . The .NET Framework interprets or otherwise executes an
assembly to perform the instructions given in the original program.

A.1.1 ASSEMBLIES

Assemblies are containers for types, and are used to package and deploy compiled C#
programs. An assembly may contain one or more types, the instructions to imple-
ment these types, and references to other assemblies. While not strictly required, an
assembly is normally a single file in a file system. For example, the System.Win-
dows.Forms.dll file is the assembly for the System.Windows.Forms namespace.

There are two kinds of assemblies: Applications and libraries. An application is an
assembly that has a main entry point and usually has a “.exe” extension. Applications
are used to perform a specific task or tasks on behalf of a computer user. The main
entry point of an application is the initial instruction to execute in the program.

A library is an assembly that does not have a main entry point and usually has a
“.dll” extension. Libraries are used to encapsulate one or more types for use when
building other assemblies.

A.1.2 NAMESPACES

Logically, the source files in a C# program contain a collection of namespaces. Each
namespace defines a scope, or declaration space, in which a set of zero or more type
declarations and zero or more nested namespaces are defined. The possible type decla-
rations are classes, structures, interfaces, enumerations, and delegates. Each type dec-
laration is assigned a name that is unique within its declaration space, in this case
within the defined namespace. It is an error for two type declarations to have the
same name within the same namespace.

All type declarations are assigned to a namespace. If a specific namespace is not
specified, then the type is assigned to the default namespace, also called the global
namespace.

A namespace is declared in the following manner:1

 namespace <name>
 {
 <nested-namespaces>opt
 <type-declarations>
 }

1 We use the convention here and in other syntax examples where items in angle brackets < > are filled-
in by the programmer. An optional item will include an “opt” subscript following the item.
638 APPENDIX A C# PRIMER

The <name> for a namespace can be a single identifier, or a series of identifiers sepa-
rated by periods. Nested namespaces are declared in the same way as non-nested
namespaces. The various kinds of type declarations each have their own syntax, and
are described next.

A.2 TYPES

All types are classified as either a value type or a reference type. These correspond to
whether the type stores the actual data, or value, for the type, or whether the type
simply stores a reference to the actual data.

Value types include simple built-in types such as int and char, enumerations,
and structures. A value type contains its data. For example, an int type assigned to
the number 5 stores this number directly. Thus, two different value types contain sep-
arate copies of the data and, therefore, modifying one of these types has no affect on
the other. Value types include the built-in types, structures, and enumerations.

Reference types, on the other hand, contain a reference to their data. Examples
include the string type and all Windows Forms controls. A string type assigned
to the string “Hello” stores a reference to a section of memory where the characters
“Hello” are actually stored. The area of memory reserved for reference types is called
the heap, and is managed internally by the .NET Framework. Thus, two different ref-
erence types can point to the same physical data. As a result, the modification of one
reference type can affect another reference type. Reference types include classes, inter-
faces, delegates, and arrays.

The following table illustrates the difference between these two kinds of types.

In the value type column of the above table, the assignment of v2 = v1 copies the
contents of v1 into v2. As a result, changing the value of v1.vData has no effect on
the value stored by v2. In the reference column, the assignment of r2 = r1 causes
both objects to refer to the same data. Here, changing the value of r1.rData also
affects the value seen by r2. Note that all value types in the .NET Framework implic-
itly inherit from the System.ValueType class. This class overrides the methods

Comparison of value and reference types

Value type Reference type

Declaration
 struct ValInt {
 public int vData;
 }

 class RefInt {
 public int rData;
 }

Usage

 ValInt v1, v2;
 v1.vData = 5;
 v2 = v1;
 v1.vData = 7

 RefInt r1, r2;
 r1.rData = 5;
 r2 = r1;
 r1.rData = 7;

Result Value of v2.vData is still 5. Value of r2.rData is now 7.
TYPES 639

inherited from the System.Object class with more appropriate implementations
for value types.

Back to the topic at hand, a type is specified with a type declaration as part of a
namespace, or within the default namespace. The possible type declarations are classes,
structures, interfaces, enumerations, and delegates.

A.2.1 CLASSES

A class is a reference type that defines a new data abstraction. Each class is composed
of one or more members that define the contents, operations, and behavior permitted
by instances of the class.

A class is declared using the class keyword in the following manner:
 <modifiers>opt class <identifier> : <base>opt <interfaces>opt
 {
 <class-members>
 }

where
• <modifiers> is optional, and is an accessibility level as defined in the subse-

quent table or one of the keywords new, abstract, or sealed. If unspeci-
fied, a class is assigned the default accessibility level of the containing
declarative scope. Multiple complementary modifiers may be specified.

• <identifier> is the unique name to assign to the class.
• <base> is optional, and defines a single base class for the new class.
• <interfaces> is optional, and specifies one or more interface types which

this class supports. If both <base> and <interfaces> are omitted, then the
colon ‘:’ is also omitted.

• <class-members> are the members of the class. The possible members of a
class are constants, fields, methods, properties, events, indexers, operators, con-
structors, and nested type declarations. Nested type declarations are simply
other types defined to exist within the declarative scope defined by the class.
The other kinds of members are discussed in the subsequent sections.

Every member of a class, and in fact every member of any type, has a defined accessi-
bility associated with it. The accessibility of a member controls which regions of a
program may make use of that member. The five levels of accessibility are shown in
the following table:

Accessibility levels for C# types

Accessibility level Meaning

public Any type in any assembly can access the member.

protected Any derived type in any assembly can access the member.
640 APPENDIX A C# PRIMER

These accessibility levels are used to declare nested types as well as other members. The
default accessibility level of top-level types is internal. Within a class declaration,
the default accessibility level is private. The default value of a class instance is null.

The various kinds of class members other than nested types are described in the
following sections.

Constants

A constant is an unchangeable value that can be computed at compile time. A con-
stant is declared using the const keyword in the following manner:
 <modifiers>opt const <type> <constant-name> = <value> ;

where
• <modifiers> is optional, and must be either an accessibility level or the new

keyword. If unspecified, a constant is assigned the default accessibility level of
the containing declarative scope. Multiple complementary modifiers may be
specified.

• <type> is any value type.
• <constant-name> is the unique name for the constant.
• <value> is the fixed value to assign to the constant.

A few examples of constant declarations are given below.
 const int DaysPerYear = 365;

 // The constant value here is calculated by the compiler.
 const double AlmostPi = 22.0 / 7.0;

 // A constant taken from a public enumeration.
 public enum Weekday = { Sun, Mon, Tue, Wed, Thu, Fri, Sat };
 protected const Weekday FirstDayOfWeek = Sun;

Fields

A field is a variable value that can be modified at run time. A field is declared in the
following manner:
 <modifiers>opt <type> <field-name> = <initial-value> ;

where

internal Any type in the same assembly can access the member.

protected internal Any derived type in the same assembly can access the member.

private Only the containing type can access the member.

Accessibility levels for C# types (continued)

Accessibility level Meaning
TYPES 641

• <modifiers> is optional, and must be either an accessibility level or one of
the keywords new, readonly, static, or volatile. If unspecified, a field is
assigned the default accessibility level of the containing declarative scope. Mul-
tiple complementary modifiers may be specified.

• <type> is any valid type.
• <field-name> is the unique name for the field.
• <initial-value> is the value to initially assign to the field. This value may

be modified by the program at runtime.

A few examples of field declarations are given below.
 public readonly string _defaultDir = @"C:\My Documents\Albums";
 private PhotoAlbum _album;

 // Possible fields in a Fraction class
 public class Fraction
 {
 private long _num;
 private long _den;
 . . .
 }

Methods

A method is a member that implements an operation or action that can be performed
by a class or other object. For example, in a Fraction class, a method could be used
to add two fractions together or compute the inverse of a fraction. A method may
return a result, and can optionally accept one or more parameters that are used to per-
form the implemented action. A method is declared in the following manner:
 <modifiers>opt <return-type> <member-name> (<parameters>opt)
 {
 <statements>opt
 }

where
• <modifiers> is optional, and must be either an accessibility level or one of

the keywords new, static, virtual, sealed, override, abstract, or
extern. If unspecified, a method is assigned the default accessibility level of
the containing declarative scope. Multiple complementary modifiers may be
specified.

• <return-type> is either a valid type or the void keyword. When a type is
specified, the return keyword is used to return an instance of this type as the
result of the method.

• <member-name> is the unique name for the method.
642 APPENDIX A C# PRIMER

• <parameters> is optional. When specified, each parameter provides a type
and an identifier, with possible modifiers out and ref. The params keyword
may be used as the final parameter to indicate an array of values of a given type.

• <statements> is optional and specifies one or more statements specifying
the computer instructions for performing the defined action.

A few examples of method declarations that might be provided as part of a Frac-
tion class are given as follows:
 // public method
 public void Add(Fraction b)
 {
 this._den = this._den * b._den;
 this._num = (this._num * b._den) + (b._num * this._den);
 }

 // protected method with ref parameter
 protected void Invert(ref Fraction a)
 {
 Fraction f = new Fraction(a._den, a._num);
 a = f;
 }

 // static method with return type and params parameter
 public static Fraction AddMultiple(params Fractions[] fracts)
 {
 Fraction a = new Fraction(1, 1);
 foreach (Fraction f in fracts)
 {
 a.Add(f);
 }

 return a;
 }

Properties

A property is a member that provides access to a characteristic of a class or other
object. For example, in a Fraction class, a property might provide the numerator of
the fraction, or the floating-point value of the fraction. A property provides accessors
that specify the operations to perform when its value is read or written. A property
may support both read and write accessors, called get and set respectively, or be
read-only or write-only. A property is declared in the following manner:
 <modifiers>opt <type> <member-name>
 {
 <property-accessors>
 }

where
TYPES 643

• <modifiers> is optional, and must be either an accessibility level or one of the
keywords new, static, virtual, sealed, override, abstract, or extern.
If unspecified, a property is assigned the default accessibility level of the contain-
ing declarative scope. Multiple complementary modifiers may be specified.

• <type> is the type for the property.
• <member-name> is the unique name for the property.
• <property-accessors> is one or both of the get and set accessor. Each

accessor consists of its accessor type, either get or set, and the block of state-
ments defining the programming instructions for this accessor. In the get
accessor, the type of the property must be returned using the return keyword.
In the set accessor, an implicit parameter called value is used to represent
the instance of the specified type provided by the caller.

Note that properties are declared much like methods, except that properties do not
use parentheses and cannot have explicit parameters. A few examples of property dec-
larations that might be used within a Fraction class are given below.
 public long Numerator
 {
 get { return this._num; }
 set { this._num = value; }
 }

 public long Denominator
 {
 get { return this._den; }
 set
 {
 if (value == 0)
 throw new DivideByZeroException("Denominator cannot be zero");

 this._den = value;
 }
 }

 // a read-only property
 protected double Value
 {
 get { return ((double)this._num / (double)this._den); }
 }

Events

An event is a member that enables a class or other object to provide notifications. An
instance of a class can associate one or more methods, known as event handlers, with
specific events in order to receive such notifications. An event is declared using the
event keyword. Like properties, an event can declare accessors to specify how event
handlers are added to or removed from the event. Such accessors are optional, result-
ing in the following forms for an event declaration:
644 APPENDIX A C# PRIMER

 <modifiers>opt event <delegate-type> <member-name> ;

 <modifiers>opt event <delegate-type> <member-name>
 {
 <event-accessors>
 }

where
• <modifiers> is optional, and must be an accessibility level or one of the key-

words new, static, virtual, sealed, override, abstract, or extern.
If unspecified, a property is assigned the default accessibility level of the con-
taining declarative scope. Multiple complementary modifiers may be specified.

• <delegate-type> is the delegate on which this event is based.
• <member-name> is the unique name for the property.
• <event-accessors>, when specified, must provide both the add and
remove accessor. These accessors define how a method is added to and
removed from the event. In both accessors, an implicit parameter called value
is used to represent the specified method.

Outside of the type where an event is defined, only the += and –= operators are per-
mitted in order to add and remove methods, respectively. Methods are added to events
as delegate instances based on the delegate type for the event. The following code
shows how a DivideByZero event might be implemented within a Fraction class:
 // public class for event data
 public class DivideByZeroArgs
 {
 . . .
 }

 public delegate void DivideByZeroHandler(object sender,
 DivideByZeroArgs e);

 public class Fraction
 {
 . . .
 // Declare the DivideByZero event for this class
 public event DivideByZeroHandler DivideByZero;

 // Declare a method to invoke the event
 public virtual void OnDivideByZero(DivideByZeroArgs e)
 {
 if (DivideByZero == null)
 {
 // No handlers, so raise exception
 throw new DivideByZeroException("Divide by zero");
 }
 else
 DivideByZero(this, e); // call event handlers
 }
TYPES 645

 // Declare property that can invoke event
 public long Denominator
 {
 get { return this._den; }
 set
 {
 if (value == 0)
 {
 DivideByZeroArgs args = new DivideByZeroArgs(..);
 OnDivideByZero(this, args);
 // Do something based on event handler
 }
 else
 this._den = value;
 }
 }

Indexers

An indexer is a member that enables an object to be treated as an array. Elements in
the “array” are referenced using square brackets. An indexer employs the this key-
word as part of its declaration, which typically appears as follows:
 <modifiers>opt <type> this [<parameters>]
 {
 <accessors>
 }

where
• <modifiers> is optional, and must be an accessibility level or one of the key-

words new, virtual, sealed, override, or abstract. If unspecified, an
indexer is assigned the default accessibility level of the containing declarative
scope. Multiple complementary modifiers may be specified.

• <type> is the type returned by this indexer. This typically corresponds to the
type of objects contained by the containing class.

• <parameters> are the parameters for the indexer. The format corresponds to
that of a method, except that at least one parameter is required for an indexer,
and ref and out parameters are not permitted.

• <property-accessors> provide the block of statements associated with
reading and writing indexer elements. These are identical to the accessors used
for properties.

The following code shows a PartsOfOne class that provides the fractions between 0
and 1, inclusive, that divide an object into an equal number of parts. An indexer is
used to return the nth Fraction object. For example, PartsOfOne(3) will return
the fractions for zero (as 0 over 3), one-third, two-thirds, and one (as 3 over 3).
 public class PartsOfOne
 {
646 APPENDIX A C# PRIMER

 private ulong _parts;

 PartsOfOne(ulong parts)
 {
 _parts = parts;
 }

 // Indexer to return nth part as a Fraction between 0 and 1
 public Fraction this[ulong n]
 {
 if (n < 0 || n > _parts)
 throw new IndexOutOfRangeException();

 return new Fraction(n, _parts);
 }
 }

Operators

An operator is a member that defines the meaning of an expression operator as applied
to an instance of an object. There are three types of operators. A unary operator
applies to a single type, a binary operator applies to two types, and a conversion opera-
tor converts an object from one type to another. The corresponding three operator
types all use the operator keyword, and are formatted as follows:

 <modifiers> <type> operator <unary-op> (<parameter>)
 {
 <statements>
 }

 <modifiers> <type> operator <binary-op> (<parameter>, <parameter>)
 {
 <statements>
 }

 <modifiers> <conv-kind> operator <type> (<parameter>)
 {
 <statements>
 }

where

• <modifiers> must be one of the keywords public, static, or extern.
• <type> is the type returned by the operator.
• <unary-op> is a unary operator: + - ! ~ ++ -- true false
• <binary-op> is a binary operator: + - * / % & | ^ << >> == != > <
>= <=

• <conv-kind> is the kind of conversion, either implicit or explicit. An
implicit conversion is invoked automatically by the compiler, such as from int to
long. An explicit conversion requires an explicit cast, such as from int to byte.
TYPES 647

• <parameter> is a type and identifier to accept in the conversion.
• <statements> is the block of statements associated with the operator. This

block must return a value of the specified type.

The following code shows an example of unary, binary, and conversion operator dec-
laration for a Fraction class.
 // Unary operator for the negative operation
 public Fraction operator -(Fraction a)
 {
 return new Fraction(-a.Numerator, a.Denominator);
 }

 // Binary operator for the addition operation
 public Fraction operator +(Fraction a, Fraction b)
 {
 int den = a.Denominator * b.Denominator;
 int num = (a.Numerator * b.Denominator)
 + (b.Numerator * a.Denominator);
 return new Fraction(num, den);
 }

 // Explicit conversion from Fraction to double
 static explicit operator double(Fraction a)
 {
 return ((double)a.Numerator / (double)a.Denominator);
 }

Constructor

A constructor is a member that initializes a class or an instance of a class or other
object. There are two types of constructors. A static constructor performs one-time ini-
tialization for an object, while an instance constructor initializes a specific instance of
an object. Static constructors cannot be invoked explicitly and are executed at most
once in a program after any static fields have been initialized and before any static
class members are referenced or instances of the class created. Instance constructors
are executed as an object is created. The default constructor for a class is an instance
constructor with no parameters, and is created automatically if no instance construc-
tors for a class are provided.

Constructors are declared as follows, with static constructors declared using the
static keyword:
 static <identifier>()
 {
 <statements>
 }

 <modifiers> <identifier> (<parameters>opt) <initializer>opt
 {
 <statements>
 }
648 APPENDIX A C# PRIMER

where
• <identifier> is the name of the type for which the constructor is defined.
• <modifiers> is optional, and must be an accessibility level or the keyword
extern. If unspecified, a constructor is assigned the default accessibility level
of the containing declarative scope. Multiple complementary modifiers may
be specified.

• <parameters> is optional, and specifies one or more parameters for the con-
structor. These are identical to method parameters.

• <initializer> is optional, and specifies another instance constructor to
invoke before this instance constructor is executed. This has the form
base(<args>) or this(<args>), where <args> specifics zero or more
arguments for the constructor to invoke. The base keyword form invokes an
instance constructor in the base class, while the this keyword form invokes
another instance constructor in the same object.

• <statements> is the block of statements associated with the constructor.

The following code shows some examples of constructors as might be provided for a
Fraction class:
 public class Fraction
 {
 private static readonly int Unit;

 // This a lame example of a static constructor
 static Fraction()
 {
 Unit = 1;
 }

 private long _num;
 private long _den;

 // Instance constructors
 public Fraction(long top, long bottom)
 {
 _num = top;
 _den = bottom;
 }

 public Fraction(long number) : this(number, 1)
 {
 }
 . . .
 }

Destructor

A destructor is a member that implements the actions required to destroy an instance
of a class. The destructor for a class may be invoked any time after the instance is no
TYPES 649

longer accessible by any code. Any destructors for inherited classes are invoked at this
time as well. A destructor is declared as follows:
 ~ <identifier>()
 {
 <statements>
 }

where
• <identifier> is the name of the class for which the destructor is defined.
• <statements> is the block of statements associated with the destructor.

In many, if not most, situations, a destructor is not required. When a Dispose
method is required to clean up non-memory resources, a destructor should normally be
provided to call the Dispose method in the event a program fails to do so explicitly.

For a Fraction class, a destructor is most likely not required. However, in order
to give an example, a destructor for this class might be concocted as follows:
 public class Fraction
 {

 private long _num;
 private long _den;
 . . .

 // Destructor (not the best example)
 ~Fraction()
 {
 _num = 0;
 _den = 1;
 }
 }

A.2.2 STRUCTURES

A structure is a value type that defines a new data abstraction. Structures are very sim-
ilar to classes, except that classes are allocated on the heap while structures are allo-
cated in place, either on the stack or within the type that declares them. Structures
also cannot be inherited, nor can they inherit from other classes. The default value of
a structure instance is the value obtained by setting each value type member to its
default value and all reference types to null.

A structure is declared using the struct keyword with the following form:
 <modifiers>opt struct <identifier> : <interfaces>opt
 {
 <struct-members>
 }

where
650 APPENDIX A C# PRIMER

• <modifiers> is optional, and must be an accessibility level or the keyword new.
If unspecified, a structure is assigned the default accessibility level of the contain-
ing declarative scope. Multiple complementary modifiers may be specified.

• <identifier> is the unique name to assign to the structure.
• <interfaces> is optional, and specifies one or more interface types which

this structure supports. If <interfaces> is omitted, then the colon ‘:’ is also
omitted.

• <struct-members> are the members of the structure. Structures contain the
same kinds of members as classes, namely constants, fields, methods, properties,
events, indexers, operators, constructors, and nested type declarations. The
meaning and purpose of these members is identical to that previously described
for classes. One difference is that a default constructor for structures is provided
automatically, and cannot be explicitly specified. If not specified, a struct mem-
ber is assigned the private accessibility level.

Structures are appropriate for short-lived or small objects where local allocation is
beneficial. The Fraction class used in examples throughout this appendix might be
a good candidate for a structure. Here is an example of a PageRef structure that
stores a range of page numbers:
 public struct PageRef
 {
 private int _startPage;
 private int _endPage;

 // Declarations of members to manipulate pages
 }

A.2.3 INTERFACES

An interface is a reference type that defines a contract consisting of a set of members.
A class or structure supports an interface by specifying the interface in its specifica-
tion and adhering to the defined contract. This is done by providing implementa-
tions of each interface member within the class or structure. An instance of an
interface type cannot be explicitly declared, although an instance of a class or struc-
ture may be cast to an interface type.

An interface is declared using the interface keyword in the following manner:
 <modifiers>opt interface <identifier> : <interfaces>opt
 {
 <interface-members>
 }

where
• <modifiers> is optional, and must be an accessibility level or the keyword new.

If unspecified, an interface is assigned the default accessibility level of the con-
taining declarative scope. Multiple complementary modifiers may be specified.
TYPES 651

• <identifier> is the unique name to assign to the interface. By convention,
all interface identifiers begin with a capital I.

• <interfaces> is optional, and specifies one or more interface types which
must also be supported in order for a class or structure to support this inter-
face. If <interfaces> are omitted, then the colon ‘:’ is also omitted.

• <interface-members> are the members required in order to support this
interface. The possible members of an interface are methods, properties, events,
and indexers. The declarations of these members mimic the declaration shown
for classes, except that an implementation is not provided nor is an accessibility
level defined. All interface members are considered to be publicly accessible.

Here is an example of an IBookDisplay interface that might be provided to indi-
cate how a book is displayed in a Windows Forms Panel control:
 interface IBookDisplay
 {
 // Interface properties must indicate which accessors to support
 int ReadingRate
 {
 get;
 set;
 }

 void BeginDisplay(Panel displayPanel);
 void NextPage();
 void EndDisplay();

 Page this[int pageNum];
 }

 // Class that supports the IBookDisplay interface
 public class PhotoAlbum : CollectionBase, IBookDisplay
 {
 // Implementation of IBookDisplay
 // interface and other members
 }

A.2.4 ENUMERATIONS

An enumeration is a value type that defines a related group of symbolic constants, and
is quite similar to enumeration types in C. The default value of an enumeration
instance is the value obtained by casting the number zero (0) to the enumeration
type. All enumeration types implicitly inherit from the System.Enum class in the
.NET Framework. This class provides a standard set of methods that may be used
when manipulating enumerations.

An enumeration is declared using the enum keyword in the following manner:
 <modifiers>opt enum <identifier> : <int-type>opt
 {
 <enum-members>
 }
652 APPENDIX A C# PRIMER

where
• <modifiers> is optional, and must be an accessibility level or the keyword
new. If unspecified, an enumeration is assigned the default accessibility level of
the containing declarative scope. Multiple complementary modifiers may be
specified.

• <identifier> is the unique name to assign to the enumeration.
• <int-type> is optional, and specifies a built-in integer type to represent the

declared enumeration values. This integer type is one of byte, sbyte, short,
ushort, int, uint, long, or ulong. If an <int-type> is not specified, the
colon is omitted and the int type is used. Note that the possible values for an
enumeration are not limited to its explicitly declared members. Any valid value
of the underlying type is a valid value for the enumeration type.

• <enum-members> are the members of this enumeration. Each member is
written as <identifier> or as <identifier> = <int-value>. Multiple
members are separated by commas ‘,’ and each member has an assigned con-
stant integer value. The default assigned value for the first member is zero, and
the default value for subsequent members is one greater than the value assigned
to the previous member.

Here are a few examples of enumerations:
 // Days of week (values 0 to 6)
 enum DaysOfWeek1 = { Sun, Mon, Tue, Wed, Thu, Fri, Sat }

 // Days of week as unsigned short types (values 1 to 7)
 enum DaysOfWeek2 : ushort = { Sunday = 1, Monday, Tuesday,
 Wednesday, Thursday, Friday, Saturday }

 // Multiples of 10 enumeration
 enum TensTable =
 {
 Ten = 10, Twenty = 20, Thirty = 30, Forty = 40, Fifty = 50,
 Sixty = 60, Seventy = 70, Eighty = 80, Ninety = 90
 }

A.2.5 DELEGATES

A delegate is a reference type that encapsulates one or more methods. A delegate is cre-
ated with a defined method signature, and any method in any class or structure that
adheres to this defined signature may be assigned to the delegate. Each method
assigned to a delegate is referred to as a callable entity.

In the .NET Framework, a delegate is a class implicitly derived from the Sys-
tem.Delegate class. Note that an instance of a delegate, since it is implicitly a class,
has a default value of null.

Delegates are declared and used somewhat like function pointers in C++, except
that delegates encapsulate both an object instance and a method. This encapsulation
of the object as well as the method permits delegates to refer to both static and instance
TYPES 653

methods. The declaration of a delegate requires the delegate keyword employed in
the following manner:
 <modifiers>opt delegate <return-type> <identifier> (<parameters>opt)

where
• <modifiers> is optional, and must be an accessibility level or the keyword
new. If unspecified, a delegate is assigned the default accessibility level of the con-
taining declarative scope. Multiple complementary modifiers may be specified.

• <return-type> is the return type for the delegate.
• <identifier> is the unique name to assign to the delegate.
• <parameters> is optional, and indicates the parameters for the delegate.

Delegate parameters are specified in the same manner as method parameters
for a method within a class or structure.

A few examples of delegates are given below. Delegates are also used to create events
in the Events discussion on page 644. A detailed example using a delegate appears in
section 9.2.1 on page 272.
 protected delegate int FindIndex(string name);
 public delegate void EventHandler(object sender, EventArgs e);
 public delegate Photograph ReadDelegate(StreamReader sr);

A.3 LANGUAGE ELEMENTS

This section presents the built-in types, operators, and keywords of C# in tabular
form. The tables present a brief description of each item. The following aspects of the
C# language are presented:

• Built-in types
• Operators
• Keywords

A.3.1 BUILT-IN TYPES

The following table summarizes the types built into C#. These types, as well as all
user-defined types in C#, implicitly inherit from the object class, which also
appears in this table. The table provides a short description of each type, along with
each type’s default value and the class used to represent the type in the .NET Frame-
work. Within C# source files written for the framework, the type and the .NET class
are interchangeable.

C# built-in types

Type Description Default value .NET class

bool A boolean value false System.Boolean

byte An unsigned 8-bit integer (byte)0 System.Byte
654 APPENDIX A C# PRIMER

A.3.2 OPERATORS

Many of the operators in C# are taken from C++ and have identical meanings. The
following table summarizes the operators available as they relate to the built-in types.
Most of these operators may be overridden for user-defined types. Keyword operators
such as true, new, and is are not shown in this table. These are summarized in the
table of keywords given in the next section.

char A 16-bit Unicode character '\0' System.Char

decimal A 128-bit decimal value 0.0m System.Decimal

double A 64-bit floating point value 0.0d System.Double

float A 32-bit floating point value 0.0f System.Single

int A 32-bit integer 0 System.Int32

long A 64-bit integer 0L System.Int64

object Any object. The ultimate base class of
any type.

null System.Object

sbyte An 8-bit integer (sbyte)0 System.SByte

short A 16-bit integer 0 System.Int16

string A reference type of a collection of char
types

null System.String

uint An unsigned 32-bit integer 0u System.UInt32

ulong An unsigned 64-bit integer (ulong)0 System.UInt64

ushort An unsigned 32-bit integer (ushort)0 System.UInt16

C# built-in types (continued)

Type Description Default value .NET class

C# operators

Category Operators Examples

Arithmetic + - * / % int num = -12;
int age = days / 365;
int onesPlace = number % 10;

Logical (boolean and bitwise) & | ^ ! ~ && || bool isTrue = ! false;
int choices = gates & openSet;

String concatenation + string hi = "Hello " + "World!";

Increment, decrement ++ -- index ++;

Shift << >> long kilobyte = 1 << 10;

Relational == != > < <= >= bool isDigit = (x >= 0) && (x < 10);

Assignment = += -= *= /= %= &=
|= ^= <<= >>=

int byFives += 5;

Member access . return myString.ToLower();
LANGUAGE ELEMENTS 655

A.3.3 KEYWORDS

This section presents a complete list of all keywords used by C#, along with a descrip-
tion and example of each keyword. These keywords are reserved words that have spe-
cial meanings to the C# compiler, and should not normally be used as identifiers in
your programs. To use a reserved keyword as an identifier, prefix the string with an at-
sign ‘@’ character. For example, while class is a reserved keyword, @class is a valid
identifier.

Some of these keywords are discussed in detail in section A.2 beginning on
page 639. Many of these keywords also appear elsewhere in the book. Sometimes a
detailed discussion is provided, and sometimes the keyword just occurs as part of the
presented code. The “See also” column in the following table provides a reference to
these sections where appropriate:

Indexing [] Photograph first = _album[0];

Cast () short num = (short)7;
Photograph photo = (Photograph) obj;

Conditional ?: int size
 = (list == null) ? 0 : list.Count;

Delegates + - += -= photo.Display += new
 DisplayHandler(photo_Display);

Indirection and Address (in
unsafe code only)

* -> {} & int num = 11;
int* pnum = #

C# operators (continued)

Category Operators Examples

C# keywords

Keyword Description Example See also

abstract Indicates that a class cannot
be instantiated and is intended
as a base for other classes.

// Define an abstract class
public abstract class Person
{
 // Define abstract members
 public abstract string Address;
 public abstract Point GetHomeCoord();
 . . .
}

sealed;
Menu class in
.NET Table 3.1,
page 72

Within an abstract class,
indicates that a property or
method has no
implementation and must be
overridden in a derived class.

sealed

as Converts an expression to a
given type. On an error, returns
the value null.

object obj = lstPhotos.SelectedItem;
Photograph photo = obj as Photograph;

is;
example in
section 9.3.4,
page 300
656 APPENDIX A C# PRIMER

base Represents the base class
from within a derived class.

See example for override keyword. example in
section 5.3.3,
page 148

bool Denotes a boolean type, with
possible values true and
false.

bool result = photo.IsValidImage();
bool isExample = true;

true;
false;
discussion in
section 3.4.1,
page 89

break Terminates the enclosing loop
or conditional construct.
Execution resumes after the
terminated construct.

foreach (Photograph p in _album)
{
 if (p == myPhoto)
 break;
}

case;
examples in
section 6.7.1,
page 190 and
section 18.1.2,
page 607

byte Denotes an unsigned 8-bit
integer value, with values 0 to
255.

char c = 'y';
byte b = Convert.ToByte(c);

case Identifies a possible
expression within a switch
statement.

See example for switch keyword. default;
switch;
discussion in
section 6.7.1,
page 190 and
section 9.2.1,
page 272

catch Identifies a type of exception
to handle in a try-catch
statement.

See example for try keyword. try; finally
throw; section
2.3.2 on page
58

char Denotes a Unicode 16-bit
character value.

char response = ReadResponse();
char yes = 'y', no = 'n';

checked Performs integer overflow
checking on the given
statement. If an overflow
occurs, an exception is raised.
By default, all integer
expressions are checked.

try
{
 y = checked(a/b + c);
}
catch (System.OverflowException e)
{
 . . .
}

unchecked;

class Defines a new data
abstraction, or data type, along
with a set of members that
interact with this type. Classes
are represented as reference
types. A class can inherit from
at most one other class and
from multiple interfaces.

See examples for const and override
keywords.

struct;
chapter 5 on
Reusable
Libraries,
section 5.1,
page 127

C# keywords (continued)

Keyword Description Example See also
LANGUAGE ELEMENTS 657

const Indicates that a field or variable
cannot be modified. The value
for a constant must be
assigned as part of the
declaration.

public class BookReference
{
 // Must be assigned here
 protected int timeout = 30;
 protected const string defaultURL
 = "www.manning.com/eebrown";

 // Assigned here or in constructor
 public readonly string bookURL;

 BookReference(string name, string url)
 {
 if (url == null)
 bookURL = defaultURL;
 else
 bookURL = url;
 . . .
 }
}

readonly;
example in
section 6.6.1,
page 182

continue Passes control to the next
iteration of the enclosing loop.

for (int x = 0;
 x < Contractors.Count;
 x++)
{
 if (Contractors[x].IsSalaried)
 continue;

 // Determine hourly pay
}

example in
section 15.3.2,
page 498,
listing 15.1

decimal Denotes a decimal number
with up to roughly 28
significant digits. Stored as a
128-bit data value. Use the
suffix m or M to denote a
numeric value as a decimal
type.

decimal circumference;
decimal radius = 7m;
decimal pi = 3.1415;
circumference = 2m * pi * radius;

delegate Defines a reference type that
encapsulates a method with a
specific signature.

// Define the ReadDelegate delegate
public delegate Photograph
 ReadDelegate(StreamReader sr);

discussion in
section 1.3.1,
page 20;
example in
section 9.2.1,
page 272

default In a switch block, identifies the
statement to execute if none
of the given constant
expressions match the given
expression.

See example for switch keyword. case;
switch;
discussion in
section 6.7.1,
page 190 and
section 9.2.1,
page 272

do Executes a statement or block
one or more times until a
specified while expression
evaluates to false.

do
{
 name = reader.ReadLine();
 if (name != null)
 // Make use of the name
} while (name != null);

while;
example in
section 6.7.1,
page 190

C# keywords (continued)

Keyword Description Example See also
658 APPENDIX A C# PRIMER

double Denotes a 64-bit floating point
value. By default, all non-
integral numbers are treated as
values of this type. Use the d
or D suffix to denote a numeric
value as a double type.

double circumference;
double radius = 7d;
double pi = 3.1415;
circumference = 2d * pi * radius;

float;

else In an if statement, the
statement to execute if the
expression returns false.

See example for if keyword. if; examples
throughout text

enum Denotes an enumeration, or
enumerated type, consisting of
a defined set of constants each
assigned a value from a given
integral type.

enum WeekDays= { Sun, Mon, Tue, Wed,
 Thu, Fri, Say };

example in
section 7.2.2,
page 199

event Defines a handler abstraction
in which to define a set of
methods that should be
invoked when a specific
incident, or event, occurs.
Methods are added or
removed to an event with the
+= and -= operators.

class Photograph
{
 public event ReadDelegate LoadPhoto;
 . . .
}

delegate;
section 1.3.1,
page 20 and
section 3.3,
page 85

explicit Declares that a type
conversion must be invoked
with a cast. Omitting the cast
results in a compile-time error.

public static explicit
 operator Photograph(string s)
{
 // code to convert from string
}

implicit;

extern Modifies a class member
declaration to indicate that the
member is implemented
outside the current class file.

class Photograph
{
 public extern void Draw(Graphics g);
 . . .
}

false As an operator in user-defined
types, defines the meaning of
“false” for instances of that
type.

public static bool
 operator false(MyType x)
{
 // Return whether MyType is "false"
}

true;

As a literal, the boolean value
of false.

bool isChapter = false; true;
discussion in
section 3.4.2,
page 93

finally Indicates a block of code that
executes regardless of
whether an exception occurs
in the preceding try block.

See example for try keyword. catch;
try;
throw;
example in
section 6.6.1,
page 182

C# keywords (continued)

Keyword Description Example See also
LANGUAGE ELEMENTS 659

fixed In unsafe code, prevents
relocation of a variable by the
garbage collector.

// In unsafe code, pin current photo
fixed (Photograph photo = CurrentPhoto)
{
 // Perform unsafe operations
}
// CurrentPhoto no longer pinned

unsafe

float Denotes a 32-bit floating point
value. Use the f or F suffix to
denote a numeric value as a
float type.

float circumference;
float radius = 7f;
float pi = 3.1415f;
circumference = 2f * pi * radius;

double

for Executes a statement or block
repeatedly as long as a given
expression evaluates to true.

public bool FindPhoto(string name,
 out int index)
{
 for (int x = 0; x < this.Count; x++)
 {
 if (this[x].Name == name)
 {
 index = x; // assign out param
 return true;
 }
 }

 return false;
}

foreach;
example in
section 10.2.2,
page 328

foreach Executes a statement or block
using every element in an array
or collection, if any.

foreach (Photograph p in CurrentAlbum)
{
 // Do something with each Photograph
}

for; in;
example in
section 3.4.2,
page 93 and
section 5.1.1,
page 128

goto Transfers program control
directly to a labeled statement.

Note: The use of this keyword
is generally discouraged.

 do
 {
 // Do something
 if (unable to continue)
 goto CleanUp;

 // Do something else
 } while (some expression);

CleanUp:
 f.Close();

In a switch statement,
transfers control to a given
case label or to the default
label.

switch (version)
{
 case 67:
 photo = Photograph.ReadVer67(s);
 goto default;

 case 77:
 // Version 77 specific tasks
 goto case 67;

 default:
 Photograph.ReadGlobalData(s);
 Break;
}

C# keywords (continued)

Keyword Description Example See also
660 APPENDIX A C# PRIMER

if A control statement in which a
statement is executed only if a
given expression evaluates to
true.

if (_album.Count > 0)
 DisplayPhotos(_album);
else
 statusBar.Text = "Album is empty";

else; examples
throughout
book

implicit Declares that a type
conversion should be invoked
automatically by the compiler
as required.

public static implicit
 operator Photograph(Bitmap img)
{
 // code to convert from Bitmap
}

explicit

in In a foreach block, separates
the identifier from the
expression.

See example for foreach keyword. foreach

int Denotes a 32-bit integer value.
Integer values are treated as
int by default. Note that there
is no implicit conversion from
floating point values to int.

int apprxCircum
int radius = 7;
int pi = 31415;
apprxCircum = 2 * pi * radius / 10000);

long;
short

interface Defines a new data
abstraction, or data type, in
which all members are
implicitly abstract. A class or
structure can inherit from
multiple interfaces.

interface IBookDisplay
{
 // Declaration of interface members
}

class;
struct;
section 5.1 on
page 127

internal Access modifier for types and
type members that indicates
the identifier is only accessible
by objects within the same
assembly.

See example for public keyword. public;
protected;
private;
see section
16.4.1, page
543

is Identifies whether a given
expression can be converted,
or cast, to a given type.

object obj = lstPhotos.SelectedItem;
if (obj is Photograph)
{
 Photograph photo = (Photograph) obj;
 . . .
}

as;
discussion in
section 3.4.1,
page 89

lock Marks a statement block as a
critical section, ensuring that
only one thread can execute
the statement block at a time.

public void SortPhotos(bool ascending)
{
 lock (this)
 {
 . . .
 }
}

long Denotes a 64-bit integer value.
Use the L suffix to denote an
integer value as a long type.
The l suffix may also be used,
but is easily confused with the
number 1 and is not
recommended.

long apprxCircum
long radius = (long)7;
long pi = (long) 314159265;
apprxCircum
 = 2L * pi * radius / 100000000L);

int;
short

C# keywords (continued)

Keyword Description Example See also
LANGUAGE ELEMENTS 661

namespace Declares a scope for organizing
code and naming types and
members. If no namespace is
defined, an object is part of the
unnamed, or global,
namespace.

namespace MyPhotoAlbum
{
 class PhotoAlbum : CollectionBase
 {
 . . .
 }
}

example in
section 5.2.1,
page 134;
step in section
9.1.1, page 265

new As an operator, creates an
object and invokes its
constructor. Value types are
created in place, while
reference types are created on
the heap.

int index = new int();
string s;
Photograph photo = new Photograph(s);

s = new string();

discussion on
page section
1.1.3, page 9

As a modifier, explicitly hides a
member inherited from a
derived class. This is typically
used to give a new meaning or
purpose to an identifier.

public MainForm : Form
{
 . . .
 protected new void OnLoad(EventArgs e)
 {
 . . .
 }
}

override;
discussion in
section 5.4.2,
page 154

null Literal that represents an
uninitialized state, often
referred to as a null reference.
This is the default value for all
reference types.

Photograph photo = _album.CurrentPhoto;
if (photo != null)
{
 // Do something with photograph
}

examples
throughout text

object The base class of all types in
C#. Any value of any type can
be assigned to variables of
type object.

object o1 = 7;
object o2 = new string("hear me roar!");
object o3 = _album.CurrentPhoto;

.NET Table 5.3
on page 155

operator Declares the behavior of an
operator when used with a
specific type, such as a class
or structure. Three kinds of
operators are supported: unary
operators, binary operators,
and conversion operators.

public static Complex
 operator –(Complex x)
{
 return new Complex(-x.Real, -x.Imgn);
}

public static Complex
 operator +(Complex x, Complex y)
{
 return new Complex(x.Real + y.Real,
 x.Imgn + y.Imgn);
}

explicit;
implicit

out Indicates that any changes
made to a method parameter
should be reflected in the
variable when control returns
to the caller. A variable used as
an out method parameter may
be uninitialized.

See example for for keyword. ref;
params

C# keywords (continued)

Keyword Description Example See also
662 APPENDIX A C# PRIMER

override Explicitly replaces a member
inherited from a derived class.
This is typically used to provide
a more appropriate
implementation of an inherited
member in the current type.

public class CollectionBase
{
 . . .
 public virtual void Clear()
 {
 // Base implementation of Clear
 }
}

public class PhotoAlbum : CollectionBase
{
 . . .
 public override void Clear()
 {
 // Override implementation of Clear
 base.Clear();
 }

 public static void Main()
 {
 CollectionBase c = new PhotoAlbum();

 // invokes PhotoAlbum.Clear
 c.Clear();
 }
}

new;
discussion in
section 5.4.2,
page 154

params Indicates that a method will
receive a set of parameters.
This can occur only once and at
the end of the list of
parameters.

public void AddRange
 (params Photograph[] photos)
{
 foreach (Photograph p in photos)
 {
 _album.Add(p);
 }
}

out;
ref

private Access modifier for types and
type members that indicates
the object or member is
accessible only to the type in
which it is defined.

public class PhotoAlbum : CollectionBase
{
 // only available within this class
 private int _defaultPhotoIndex;

 // Only available in this assembly
 internal bool IsDisplayed
 {
 . . .
 }

 // available to any derived class
 protected void TurnPage()
 {
 . . .
 }

 // available to any type
 public Photogram CurrentPhoto
 {
 . . .
 }
}

internal;
section 1.2.2,
page 16 and
section 9.1.1,
page 265

C# keywords (continued)

Keyword Description Example See also
LANGUAGE ELEMENTS 663

protected Access modifier for types and
type members that indicates
the object or member is only
accessible by the containing
type or by types derived from
the containing type.

section 1.2.2,
page 16 and
section 9.1.1,
page 265

public Access modifier for types and
type members that indicates
the object or member is
accessible by any type.

section 1.2.2,
page 16 and
section 9.1.1,
page 265

readonly Indicates that a field cannot be
assigned except in the
declaration of the field or the
constructor of the containing
type.

See example for const keyword. const

ref Indicates that any changes
made to a method parameter
should be reflected in the
variable when control returns
to the caller. Unlike the out
keyword, a variable used as a
ref method parameter must
be initialized.

// Locate photo after given index
public bool FindPhotoAfter
 (string name, ref int index)
{
 . . .
}

out;
params;
section 18.1.2,
page 607

return Terminates execution of the
containing method and passes
control and the result of the
method back to the caller.

See example for for keyword. examples
throughout text

sbyte Denotes a signed 8-bit integer
value from –128 to 127. An
explicit cast is required to
convert an integer value to a
sbyte type.

sbyte sb = 'y';
sbyte sb = (sbyte)5; e

byte

sealed Indicates that a class cannot
be inherited. A sealed class
cannot also be abstract.
Note that struct types are
implicitly sealed.

public sealed class
 SecurePerson : Person
{
 . . .
}

sealed;
Application
class on
page 12

short Denotes a 16-bit integer value
from –32,768 to 32,768. An
explicit cast is required to
convert an integer value to a
short type.

short apprxCircum
short radius = (short)7;
short pi = (short) 314;
apprxCircum
 = (short)(2 * pi * radius / 100);

int;
long

sizeof Determines the size in bytes of
a value type.

int size1 = sizeof(long);
int size2 = sizeof(Rectangle);
int size3 = sizeof(Complex);

C# keywords (continued)

Keyword Description Example See also
664 APPENDIX A C# PRIMER

stackalloc In unsafe code, allocates a
block of memory on the stack
and returns a pointer to this
block. This memory is not
subject to garbage collection
and is valid only within the
method in which it is defined.

public unsafe void QuickSort()
{
 Photograph* photos
 = stackalloc Photograph[Count];

 // Sort album contents
 // using local memory
}

unsafe

static Declares a member that is
associated with the type itself
rather than with each instance
of that type.

private string _defaultDir
 = @"C:\My Documents\Albums";

public static string DefaultAlbumDir
{
 get { return _defaultDir; }
 set { _defaultDir = value; }
}

example in
section 5.4.1,
page 151

string Object representing a set of
Unicode characters. While
string is a reference type, the
equality operators == and !=
are defined to compare values
rather than references.

string s = null;
string defaultAlbum = "myAlbum";
string _defaultDir
 = @"C:\My Documents\Albums";

discussion in
section 5.4.2,
page 154

struct Defines a new data
abstraction, or data type, along
with a set of members that
interact with this type.
Structures are represented as
value types, and are implicitly
sealed.

struct Complex
{
 double real;
 double imaginary;
}

class;
discussion in
section 1.1.3,
page 9

switch Executes one of a given set of
statements based on the
constant value of a given
expression. If a match for the
current value is not found, then
a default statement can
optionally be executed.

switch (version)
{
 case 67:
 photo = Photograph.ReadVer67(s);
 break;
 . . .

 default:
 throw ApplicationException(
 "Unrecognized album version");
}

case;
default;
discussion in
section 6.7.1,
page 190 and
section 9.2.1,
page 272

this Represents the current
instance for which a method is
called. Static member
functions cannot employ the
this keyword.

See example for for keyword. example in
section 1.1.2,
page 8

throw Raises a new exception, or re-
raises a caught exception.

See example for switch keyword. try;
catch;
section 2.3.2,
page 58)

C# keywords (continued)

Keyword Description Example See also
LANGUAGE ELEMENTS 665

true As in operator in user-defined
types, defines the meaning of
“true” for instances of that
type.

public static bool
 operator true(MyType x)
{
 // Return whether MyType is "true"
}

false

As a literal, the boolean value
of true.

bool isAppendix = true; false;
discussion in
section 3.4.2,
page 93

try Begins a block in which
exceptions may be handled,
depending on the attached
catch clauses.

// Open a file
FileStream fs = new FileStream(...);

try
{
 // Do something with open file
}
catch (IOException ex)
{
 // Handle caught exception
}
finally
{
 fs.Close(); // ensure file closure
}

catch
finally
throw
section 2.3.2,
page 58

typeof Obtains the System.Type
object for a given type. Use the
Object.GetType method to
obtain the type instance for an
expression.

Type t = typeof(Photograph); code in section
10.5.3, page
348

uint Denotes an unsigned 32-bit
integer value. Use the u or U
suffix to denote an integer
value as a uint type.

uint apprxCircum
uint radius = 7u, pi = 314159;
apprxCircum
 = 2u * pi * radius / 100000u;

ulong;
ushor

ulong Denotes an unsigned 64-bit
integer value. When using the
L suffix to denote a long

integer or the U suffix to
denote an unsigned integer,
the value is considered ulong if
it is beyond the range of the
long or uint type,
respectively.

ulong apprxCircum
ulong radius = 7L;
ulong pi = 31415926535
apprxCircum
 = 2 * pi * radius / 10000000000L);

ulong;
ushort

unchecked Suppresses integer overflow
checking on the given
statement. If an overflow
occurs, the result is truncated.
By default, all integer
expressions are checked.

long bigPrime = 9876543211;
long notSoBigNum
 = unchecked(bigPrime * bigPrime);

checked

C# keywords (continued)

Keyword Description Example See also
666 APPENDIX A C# PRIMER

A.4 SPECIAL FEATURES

This section presents some noteworthy features of the C# language. These topics
did not fit in previous sections of this appendix, but are important concepts for

unsafe Indicates an unmanaged
region of code, in which
pointers are permitted and
normal runtime verification is
disabled.

See example for stackalloc keyword.

ushort Denotes an unsigned 16-bit
integer value. A cast is
required to convert an int or
uint value to ushort.

ushort apprxCircum
ushort radius = (ushort)7;
ushort pi = (ushort)314;
apprxCircum = (ushort)2
 * pi * radius / (ushort)100;

uint;
ulong

using As a directive, indicates a
namespace from which types
do not have to be fully
qualified.

Alternatively, indicates a
shortcut, or alias, for a given
class or namespace name.

using System.Windows.Forms;
using App = Application;

public void Main()
{
 Form f = new MainForm();
 App.Run(f);
}

section 1.2.1 on
page 15

As a statement, defines a
scope for a given expression or
type. At the end of this scope,
the given object is disposed.

using (OpenFileDialog dlg
 = new OpenFileDialog())
{
 // Do something with dlg
}

discussion in
section 8.2.1,
page 233

virtual Declares that a method or
property member may be
overridden in a derived class.
At runtime, the override of a
type member is always
invoked.

See example for override keyword. override;
section 9.1.1,
page 265

volatile Indicates that a field may be
modified in a program at any
time, such as by the operating
system or in another thread.

// Read/Write x anew for each line.
volatile double x = 70.0;
int num = x;
x = x * Sqrt(x);

void Indicates that a method does
not return a value.

See examples for override and protected key-
words.

examples
throughout text

while As a statement, executes a
statement or block of
statements until a given
expression is false.

Photograph p = _album.FirstPhoto;
while (p != null)
{
 // Do something with Photograph
 p = _album.NextPhoto;
}

for;
foreach

In a do-while loop, specifies
the condition that will
terminate the loop.

See example for do keyword. do;

C# keywords (continued)

Keyword Description Example See also
SPECIAL FEATURES 667

programming in the language. The topics covered are exceptions, arrays, the Main
entry point, boxing, and documentation.

Readers more familiar with C# will recognize certain features omitted from this
discussion and the book in general. These include attributes, reflection, and the pre-
processor. These features, while important, were considered beyond the scope of this
book, and are not required in many Windows Forms applications. A brief discussion
of attributes is provided in chapter 2 as part of a discussion on the AssemblyInfo.cs file.

A.4.1 EXCEPTIONS

An exception is a type of error. Exceptions provide a uniform type-safe mechanism for
handling system level and application level error conditions. In the .NET Frame-
work, all exceptions inherit from the System.Exception class. Even system-level
errors such as divide-by-zero and null references have well-defined exception classes.

If a program or block of code ignores exceptions, then exceptions are considered
unhandled. By default, an unhandled exception immediately stops execution of a pro-
gram.2 This ensures that code which ignores exceptions does not continue processing
when an error occurs. Code that does not ignore exceptions is said to handle excep-
tions, and must indicate the specific set of exception classes that are handled by the
code. An exception is said to be handled or caught if a block of code can continue pro-
cessing after an exception occurs. Code which generates an exception is said to throw
the exception.

The try keyword is used to indicate a block of code that handles exceptions. The
catch keyword indicates which exceptions to explicitly handle. The finally key-
word is used to indicate code that should be executed regardless of whether an excep-
tion occurs.

Code that handles one or more exceptions in this manner uses the following
format:
 try
 <try-block>
 <catch-blocks>opt
 <finally-block>opt

where
• <try-block> is the set of statements, enclosed in braces, that should handle

exceptions.
• <catch-blocks> is optional, and consists of one or more catch blocks as

defined below.

2 Well, most of the time. If an unhandled exception occurs during the execution of a static constructor,
then a TypeInitializationException is thrown rather than the program exiting. In this case,
the original exception is included as the inner exception of the new exception.
668 APPENDIX A C# PRIMER

• <finally-block> is optional, and consists of the finally keyword fol-
lowed by the set of statements, enclosed in braces, that should execute whether
or not an exception occurs.

The format of a try block allows for one or more catch blocks, also called catch
clauses, to define which exceptions to process. These are specified with the catch
keyword in the following manner:
 catch <exception>opt
 <catch-block>

where
• <exception> is optional, and indicates the exception this catch clause will

handle. This must be a class enclosed in parenthesis with an optional identifier
that the block will use to reference this exception. If no class is provided, then
all exceptions are handled by the clause.

• <catch-block> is the set of statements, enclosed in braces, that handles the
given exception.

For example, one use for exceptions is to handle unexpected conversion errors, such
as converting a string to an integer. The following side-by-side code contrasts two
ways of doing this:

When an exception occurs in a program that satisfies more than one catch block
within the same try block, the first matching block is executed. For this reason, the
more distinct exceptions should appear first in the list of catch blocks. As an example,
consider the IOException class, which is thrown when an unexpected I/O error
occurs. This class derives from the Exception class. The following code shows how
an exception block might be written to handle exceptions that might occur while
reading a file:
 // Open some file system object
 FileStream f = new FileStream(...);

// A string theString requires conversion
int version = 0;
try
{
 version = Convert.ToInt32(theString);
}
catch
{
 version = 0;
}

// A string theString requires conversion
int version = 0;
try
{
 version = Convert.ToInt32(theString);
}
catch (FormatException)
{
 version = 0;
}

If any exception occurs while converting the
string to an int, then the catch clause will set
version to 0. For example, if the theString
variable is null, an ArgumentException will
occur, and version will still be set to 0.

The catch clause will set version to 0 only if a
FormatException exception occurs while
converting the string to an int. Any other
exception is unhandled and will exit the program
if not handled by a previous method.
SPECIAL FEATURES 669

 try
 {
 //Code that makes use of FileStream object
 }
 catch (IOException ioex)
 {
 // Code that handles an IOException
 // This code can use the "ioex" variable to reference the exception
 }
 catch (Exception ex)
 {
 // Code that handles any other exception
 }

Additional examples of exceptions appear throughout the book, beginning in
section 2.3.2 on page 58.

A.4.2 ARRAYS

An array is a data structure consisting of a collection of variables, all of the same type.
Arrays are built into C# and may be one-dimensional or many-dimensional. Each
dimension of an array has an associated integral length. Arrays are treated as reference
types. In the .NET Framework, the System.Array class serves as the base class for
all array objects. More information on the Array and related ArrayList class can
be found in chapter 5.

A standard array for any type is constructed using square brackets in the following
manner:
 <type> [<dimension>opt]

where
• <type> is the non-array type for the array. A non-array type is any type that is

not an array.
• <dimension> is zero or more commas ‘,’ indicating the dimensions of the

array.

Note that multiple square brackets may be specified to have variable length array ele-
ments. An example of this is shown below. To reference a value in an array, square
brackets are again used, with an integer expression from zero (0) to one less than the
length of the array. If an array index is outside of the valid range of the array, an
IndexOutOfRangeException object is thrown as an exception.

Some examples of arrays and additional comments on the use of arrays are given
below. Note that the Length property from the System.Array class determines the
number of elements in an array, and the foreach keyword can be used on all arrays
to enumerate the elements of the array.
 // an uninitialized array defaults to null
 int[] a;
670 APPENDIX A C# PRIMER

 // This array contains 4 int values, which default to 0
 // Here, the valid indexes are b[0], b[1], b[2], b[3]
 int[] b = new int[4];

 // An array can be initialized directly or with the new keyword
 // evens.Length will return 6
 // foreach (int p in primes) iterates through the elements in primes
 int[] evens = { 2, 4, 6, 8, 10, 12 };
 int[] primes = new int[] {2, 3, 5, 7, 11, 101, 9876543211 };

 // This example shows a 2 by 2 string array
 // Here, names[0,0] = "Katie" and names[1,1] = "Bianca"
 string[,] names = { { "Katie", "Sydney" }, { "Edmund", "Bianca"} };

 // This example shows an array of arrays.
 // Here, x[0] is an int array of length three with values 1, 2, 3.
 // Also, x[1][1] = 12 and x[2][4] = 25.
 // Attempting to reference x[3] or x[1][2] will throw an exception
 int[][] x = { { 1, 2, 3 }, { 11, 12 }, { 21, 22, 23, 24, 25} };

A.4.3 MAIN

A program has to start somewhere. In C and C++ programs, the global procedure
main is the defined entry point for the program. This starting point is referred to as
the entry point for the program.

In C#, a class must define a static method called Main to serve as the entry point.
The method must have one of the following signatures.
 static void Main()
 static void Main(string[] args)
 static int Main()
 static int Main(string[] args)

A program will return a value if the Main method returns a value. A program can
receive command-line arguments by specifying an array of string objects as the
only parameter to the Main method.

If two or more classes in a program contain a Main method, then the /main
switch must be used with the C# compiler to specify which method to consider the
entry point for the program.

A.4.4 BOXING

By definition, the object class is a reference type. However, it also serves as the ulti-
mate base class for all types, including the built-in types. As a result, value types such
as int and bool can be used wherever an object instance is required. For example,
the ArrayList class represents a dynamically-sized array, and includes an Add
method to add an object to the array. This method is declared as follows:
 public virtual int Add(object value);
SPECIAL FEATURES 671

Within the Add method, a reference type is expected. So what happens when a value
type is passed into this method? Clearly, an explicit mechanism for treating value
types as a reference type is required.

This mechanism is called boxing. Boxing implicitly copies the data in a value type
into an object instance allocated on the heap. For example:
 // Boxing of an integer constant
 object obj = 123;

 // Boxing of an int type.
 ArrayList list = new ArrayList();
 int x = 32768;
 list.Add(x);

A boxed value is converted back into a value type through a process called unboxing.
Conceptually, boxing and unboxing happens automatically and the programmer can
remain blissfully unaware of this concept. Boxed values can be treated as their
unboxed equivalents. For example:
 int n = 5;

 object obj = 123;
 if (obj is int)
 n = (int) obj;

These statements are perfectly legal, and result in the value of 123 for the variable n.
The reason boxing is important is because of the performance implications involved.
The boxing and unboxing of values takes time, and this can seriously impact the per-
formance of an application.

Note in particular that boxing occurs when a structure, which is a value type, is
cast to an interface, which is a reference type. For this reason, care should be taken
when creating structures that support one or more interfaces. In such a situation, the
performance implications of boxing might warrant using a class instead of a structure.

A.4.5 DOCUMENTATION

A final topic worth mentioning in this appendix is that of automated documentation.
C# supports a set of XML-style tags that can be used in comments and extracted by
the compiler. Such comments must begin with a triple-slash (///) and can occur
before the declaration of most types and type members.

The C# compiler supports the /doc switch to generate the XML documentation
file. Details on this process and the resulting output are available in the .NET docu-
mentation.
672 APPENDIX A C# PRIMER

The following table provides a summary of the tags that are currently recognized
by the compiler. An example using the <summary> tag appears in section 5.2.1 on
page 134.

C# documentation tags

Tag Purpose

<c> Specifies text that should be marked as code.

<code> Specifies multiple lines that should be marked as code.

<example> Documents an example of a type or method.

<exception> Specifies documentation for an exception class.

<include> Includes an external file to include in the documentation.

<list> Specifies a list of items within another tag. This supports bulleted lists,
numbered lists, and tables.

<para> Starts a new paragraph within another tag.

<param> Documents a parameter within a method or other construct.

<paramref> Specifies text that should be marked as a parameter.

<permission> Documents the accessibility level of a member.

<remarks> Documents general comments about a type or type member.

<returns> Documents the return value of a method.

<see> Specifies a link in running text to another member or field accessible from the
current file.

<seealso> Specifies a link in a See Also section to another member of field accessible form
the current file.

<summary> Documents a short description of the member or type.

<value> Documents a short description of a property.
SPECIAL FEATURES 673

A P P E N D I X B

.NET namespaces

B.1 System.Collections 675
B.2 System.ComponentModel 675
B.3 System.Data 675
B.4 System.Drawing 675
B.5 System.Globalization 676
B.6 System.IO 676
B.7 System.Net 676

B.8 System.Reflection 677
B.9 System.Resources 677
B.10 System.Security 678
B.11 System.Threading 678
B.12 System.Web 679
B.13 System.Windows.Forms 679
B.14 System.XML 679
This appendix provides an overview of some of the System namespaces provided by
Microsoft in the .NET Framework, and discusses their relationship to Windows
Forms applications. For a complete list of namespaces in .NET, see the .NET Frame-
work Class Library documentation.

The System namespace contains the commonly-used types1required by .NET
programs and libraries, as well as services such as data type conversion, environment
management, and mathematical operations. In particular, most of the classes men-
tioned in Appendix A that implement core functionality such as the built-in types,
enumerations, and delegates are included in this namespace. Members of this
namespace are discussed throughout the book as they are used in the sample programs.

1 The word type is used in the C# sense here, as defined in Appendix A. More generally, a type can be
a class, structure, interface, enumeration, or a delegate. By definition, a namespace defines one or
more types.
674

The remainder of this appendix discusses specific namespaces under the System
umbrella. Each section discusses a separate namespace, with the sections arranged in
alphabetical order.

For additional information on these and other namespaces in .NET, see the
resources listed in Appendix D and in the bibliography. For some sample applications
along with a discussion of many of these namespaces, see the book Microsoft .NET for
Programmers by Fergal Grimes, available from Manning Publications.

B.1 SYSTEM.COLLECTIONS

The System.Collections namespace defines various types required to manipu-
late collections of objects, including lists, queues, stacks, hash tables, and dictionaries.
An exception is the Array class, which is part of the System namespace, since this
class provides core functionality defined by the C# language.

Members of this namespace are discussed throughout the book, and in particular
in chapter 5, where the PhotoAlbum class is built as a collection of Photograph
objects.

B.2 SYSTEM.COMPONENTMODEL

This namespace defines various types that define the runtime and design-time behav-
ior of components and controls. In particular, this class defines the Component and
Container classes and their corresponding interfaces.

The Component class is introduced in chapter 3 as the base class for much of the
functionality in the Windows Forms namespace. Members of this namespace are also
critical for data binding support, which is discussed in chapter 17.

B.3 SYSTEM.DATA

The System.Data namespace defines classes and other types that constitute the
ADO.NET architecture. This architecture enables the manipulation and manage-
ment of data from multiple data sources, including both local and remote databases
and connected or disconnected interaction.

Although this namespace is not discussed in detail in the book, chapter 17 pro-
vides some details on using databases with the data binding interface supported by
Windows Forms, and in particular with the Windows.Forms.DataGrid control.

See the bibliography for references to additional information on this namespace,
and in particular the book ADO.NET Programming by Arlen Feldman, available from
Manning Publications.

B.4 SYSTEM.DRAWING

This namespace defines basic functionality in the GDI, or graphical device interface,
architecture. This includes the Graphics class for drawing to a device, as well as the
Pen class for drawing lines and curves and the Brush class used to fill the interiors of
SYSTEM.DRAWING 675

shapes. It also includes the Point, Size, Rectangle and other structures used for
positioning and sizing Windows Forms controls within a container.

The System.Drawing.Design namespace provides design-time support for
user interface logic and drawing. The UITypeEditor class in this namespace can be
used to provide a graphical editor for a type, including types used with Windows
Forms controls.

An overview of the System.Drawing namespace is provided in .NET Table 4.6
on page 124. Members of this namespace are used in chapter 4 to draw a rectangle into
an owner-drawn StatusBar control; in chapter 7 and elsewhere to paint an image; and
in chapter 10 to draw both an image and text into an owner-drawn ListBox control.

B.5 SYSTEM.GLOBALIZATION

The System.Globalization namespace defines locale-related information such
as the formatting of dates, times, currency, and numbers.

A number of Windows Forms controls include some sort of formatting property
that can be used to specify formatting information. Chapter 11 discusses the Data-
TimeFormatInfo class defined in this namespace, and the MonthCalendar control
that relies on the calendar information maintained by classes within this namespace.
Chapter 17 also introduces the Format event in the Windows.Forms.Binding
class that can be used to specify how bound data should be formatted for a particular
data binding.

B.6 SYSTEM.IO
This namespace defines types for performing synchronous and asynchronous reading
and writing of data streams and files. It also defines types for interacting with the file
system, such as the Directory, File, and Path classes.

The FileStream, StreamReader, and StreamWriter classes are introduced
in chapter 6 in order to read and write album files from the MyPhotos application.
Members for interacting with the file system are discussed here as well.

For detailed information on this namespace, consult the references listed in
Appendix D and the bibliography.

B.7 SYSTEM.NET

The System.Net namespace defines types for common Internet protocols such as
HTTP and local file management, including the abstract WebRequest and WebRe-
sponse classes. The related System.Net.Sockets namespace defines a managed
implementation of the Windows Sockets interface.

These interfaces can be very useful in Windows Forms applications for interacting
with remote servers and services, and for building custom communication interfaces
between one or more applications. In Windows Forms applications, it is common to
create a specific thread responsible for external communication of this kind, rather
676 APPENDIX B .NET NAMESPACES

than performing such communication as part of a user interface thread. See the dis-
cussion on the System.Threading namespace later in this appendix for more infor-
mation on threading.

Since the programs in this book are designed to be standalone applications, nei-
ther of these interfaces is discussed in the book.

B.8 SYSTEM.REFLECTION

This namespace defines a managed view of loaded types and their members, includ-
ing classes and their methods, properties, and events. It supports the ability to
dynamically create new types and invoke existing types and their members. For exam-
ple, the classes in this namespace can be used to query the classes in an assembly and
invoke specific properties and methods within that assembly.

Windows Forms controls use this namespace internally to query and interact with
various types of objects. A brief exercise at the end of chapter 10 discusses how the
ListBox control uses reflection to determine the value of the DisplayMember set-
ting in this control, and illustrates how to invoke a property by name using the Prop-
ertyInfo class. Reflection is also briefly discussed in chapter 17.

B.9 SYSTEM.RESOURCES

The System.Resources namespace defines types that permit programs to create,
store, and manage resources used by an application. Resources can be stored in a
loaded assembly or in a satellite assembly that is external to the application. In partic-
ular, this namespace is used to manage culture-specific resources for an application,
and is used for localization of applications.

Localization is the process of building an interface that can be used in multiple
cultures and languages. Typically, it involves placing strings, images, and other cul-
ture-specific resources into a resource file, and loading such resources dynamically at
runtime. This resource file can then be translated into another language or based on
another culture to generate alternate resource files. These alternate resource files can
then be used with the same program assembly to execute the program in the corre-
sponding language or culture.

For example, while the applications in this book were written for a U.S. English
user, we might want to support users that understand Canadian French, or Mexican
Spanish. Placing our original strings and other constructs in a separate resource file
would allow us to do just this.

If you are interested in writing an application targeted at multiple cultures, it is
worth your time to understand this process before you begin. It can be quite difficult
to localize an existing program, rather than building in such support from the start.

While the book does not discuss localization in particular, a brief discussion of
resources can be found while discussing the storage of images in chapter 12 and again
SYSTEM.RESOURCES 677

in chapter 13. The .NET documentation provides some sample programs that illus-
trate localization, as do many of the resources provided later in the book.

B.10 SYSTEM.SECURITY

This namespace defines the common language runtime security system, including
security permissions for code and assemblies. The SecurityManager class in this
namespace is the main access point for classes interacting with the security system.

This namespace is beyond the scope of the book, and aside from a brief mention
in chapter 9, it is not really discussed. See the resources listed in appendix D and the
bibliography for more information, and in particular look at .NET Security by Tom
Cabanski, which is available from Manning Publications.

B.11 SYSTEM.THREADING

The System.Threading namespace defines the types that enable multithreaded pro-
gramming, including the Thread class and synchronization primitives such as the
Monitor and Mutex classes. A thread is a sequence of execution corresponding to a
defined set of computer instructions. All C# programs in .NET begin with a Main
method, running in what is called the main thread. This main thread may create, or
spawn, additional threads as required. Each thread performs a defined task or set of tasks.
At a basic level, multiple threads simply permit a program to do multiple things at once.

Generally speaking, threads are either interface threads or worker threads. An inter-
face thread is a thread that interacts with the user in some fashion. The main thread
in a Windows Forms program is typically an interface thread, and the Applica-
tion.Run method introduced in chapter 1 is used to start a message loop on this
thread which receives operating system messages and converts them into .NET events
that invoke event handlers registered with the program.

A worker thread is a thread that performs some kind of analysis or other work on
behalf of a program, and typically is hidden from a user. For example, a worker thread
might receive stock price information from a remote server that a user interface thread
displays in a ListView control.

Threads are created using the Thread class, with a ThreadStart delegate spec-
ifying the method or other program code that should be executed within the thread.
The trick with multithreaded programming isn’t the ability to have multiple threads;
it is the synchronization, or co-existence, of these threads that causes difficulties. For
this reason, synchronization constructs such as locking have evolved to control the
interaction between multiple threads, and to make sure that different threads do not
access the same portion of memory, databases, or other shared data at the same time.

As we focused on the Windows Forms namespace in this book, our examples did
not include multiple threads of control. For a detailed discussion of how threads are
used in .NET applications, including Windows-based programs, see .NET Multi-
threading by Alan Dennis, available from Manning Publications.
678 APPENDIX B .NET NAMESPACES

B.12 SYSTEM.WEB

This namespace defines types and additional namespaces for interacting with Web
browsers and servers over the Internet. It contains the System.Web.Services
namespace used when building Web services, and the System.Web.UI namespace
for building user interfaces in Web applications.

As this book is all about building Windows-based applications, it does not discuss
these namespaces. See the references listed in appendix D and the bibliography for
more information on building Web applications and services.

B.13 SYSTEM.WINDOWS.FORMS

The System.Windows.Forms namespace defines types for building Windows-
based applications. The Control class in this namespace is the basis for the user
interface objects defined here.

The related System.Windows.Forms.Design namespace is used to provide
design-time support for Windows Forms controls, most notably for integrating cus-
tom controls into Visual Studio .NET. The design namespace permits custom con-
trols to define their behavior in the Toolbox and Properties windows, and manage
their appearance when displayed in the Windows Forms Designer window.

The Windows Forms namespace is, of course, the topic of this book. While some
basic custom controls are built in the book by defining a new class from an existing
control, a discussion of design-time integration of such controls is beyond the scope
of the book.

B.14 SYSTEM.XML
This namespace defines types in support of various Extensible Markup Language, or
XML, standards, including XML 1.0 and XSD schemas. The XML standards were
based on an older Standards Generalized Markup Language, or SGML, originally
developed as a generalized solution for formatting documentation. Pure SGML proved
a bit problematic for communication over networks, most notably the Internet, so
XML was designed as a restricted form of SGML to overcome these difficulties.

XML is a great way to specify data in a generalized manner for use with the
DataSet class in the System.Data namespace, and for interacting with remote
applications and databases. For a detailed discussion of XML, see Complete .NET XML
by Peter Waldschmidt, available from Manning Publications.
SYSTEM.XML 679

A P P E N D I X C

Visual index
C.1 Objects 682
C.2 Marshal by reference objects 683
C.3 Components 684
C.4 Common dialogs 685

C.5 Controls (part 1) 686
C.6 Controls (part 2) 687
C.7 Event data 688
C.8 Enumerations 688
This appendix presents a visual index of the Windows Forms classes covered in this
book, as well as other .NET classes discussed in the text. These are organized as a set
of class hierarchies in order to fit neatly on these pages. The following figure shows a
diagram of the sections in this appendix.
680

The figures and tables on subsequent pages have the following features:
• Classes in the Windows Forms namespace are gray.
• Classes from other namespaces are white.
• Classes presented or discussed in the book provide the corresponding table or

section and page number.

The complete set of all Windows Forms classes derived from the MarshalByRef-
Object, Component, and Control classes are provided. For more information on
other classes and namespaces in the .NET Framework, consult the online docu-
mentation.
681

C.1 OBJECTS

Figure C.1 The Object class is the base class of all types in the .NET

Framework. This figure shows the classes derived from the System.Object

class that appear in the book.
682 APPENDIX C VISUAL INDEX

C.2 MARSHAL BY REFERENCE OBJECTS

Figure C.2 The MarshalByRefObject class represents an object that is marshaled by ref-

erence. This figure shows the complete set of Windows Forms classes derived from the

System.MarshalByRefObject class.
MARSHAL BY REFERENCE OBJECTS 683

C.3 COMPONENTS

Figure C.3 The Component class represents an object that is marshaled by reference and

can exist within a container. This figure shows the complete set of Windows Forms classes

derived from the System.ComponentModel.Component class.
684 APPENDIX C VISUAL INDEX

C.4 COMMON DIALOGS

Figure C.4 The CommonDialog class represents a component that provides a standard in-

terface for common functionality required by Windows Forms applications. This figure

shows the complete set of Windows Forms classes derived from the System.Win-

dows.Forms.CommonDialog class.
COMMON DIALOGS 685

C.5 CONTROLS (PART 1)

Figure C.5 The Windows Forms Control class represents a component with a visual rep-

resentation on the Windows desktop. This and the following figure show the complete set

of Windows Forms classes derived from the System.Windows.Forms.Control class.
686 APPENDIX C VISUAL INDEX

C.6 CONTROLS (PART 2)

Figure C.6 The Windows Forms Control class represents a component with a visual repre-

sentation on the Windows desktop. This and the preceding figure show the complete set of

Windows Forms classes derived from the System.Windows.Forms.Control class.
CONTROLS (PART 2) 687

C.7 EVENT DATA

This table shows the Windows Forms classes derived from the System.EventArgs
class that are covered in the book. The complete list of Windows Forms event classes
is available in the .NET documentation. This table simply serves as a quick index to
those that are represented in the text.

C.8 ENUMERATIONS

This table shows the enumerations defined in the Windows Forms namespace that
are covered in the book. The complete list of Windows Forms enumerations is avail-
able in the .NET documentation. This table simply serves as a quick index to those
that are represented in the text.

EventArgs class Covered in

CancelEventArgs Section 8.2.2, page 235

ColumnClickEventArgs Section 14.3.3, page 458

DragEventArgs .NET Table 18.4, page 623

DrawItemEventArgs .NET Table 4.4, page 119

KeyEventArgs .NET Table 12.2, page 386

KeyPressEventArgs .NET Table 12.1, page 384

LabelEditEventArgs .NET Table 14.7, page 469

LinkLabelLinkClickedEventArgs Section 18.4.1, page 626

MeasureItemEventArgs .NET Table 10.7, page 346

MouseEventArgs .NET Table 12.3, page 389

NodeLabelEditEventArgs .NET Table 15.5, page 517

PaintEventArgs .NET Table 7.3, page 205

PrintPageEventArgs .NET Table 18.1, page 607

QueryContinueDragEventArgs Section 18.3.1, page 620

StatusBarDrawItemEventArgs Section 4.4.1, page 118

ToolBarButtonClickEventArgs Section 13.3.1, page 420

TreeViewCancelEventArgs .NET Table 15.4, page 502

TreeViewEventArgs Section 15.3.3, page 501

Enumeration Covered in

AnchorStyles .NET Table 1.3, page 30

BorderStyle Section 2.2.3, page 48

CheckState Section 9.3.5, page 304

ColumnHeaderStyle Section 14.2, page 443
688 APPENDIX C VISUAL INDEX

ComboBoxStyle .NET Table 10.5, page 336

ControlStyles .NET Table 7.4, page 210

DateTimePickerFormat .NET Table 11.4, page 369

DialogResult .NET Table 8.2, page 230

DockStyle .NET Table 1.4, page 32

DragDropEffects Section 18.3.1, page 620

DrawItemState Section 10.5.3, page 348

DrawMode .NET Table 10.6, page 346

FlatStyle Section 9.2.2, page 277

FormBorderStyle Section 8.3.3, page 240

FormWindowState .NET Table 16.2, page 553

ItemActivation .NET Table 14.8, page 472

Keys Section 12.1.2, page 386

MdiLayout .NET Table 16.3, page 558

MenuMerge .NET Table 16.1, page 536

MessageBoxButtons .NET Table 8.1, page 226

MessageBoxDefaultButton .NET Table 8.1, page 226

MessageBoxIcon .NET Table 8.1, page 226

MessageBoxOptions .NET Table 8.1, page 226

MonthCalendar.HitArea .NET Table 11.6, page 381

MouseButtons Section 12.2.1, page 388

Orientation Section 18.2.1, page 612

PictureBoxSizeMode Section 3.4.1, page 89

SelectionMode .NET Table 10.3, page 328

Shortcut Section 3.2.3, page 79

SortOrder Section 14.3.3, page 458

StatusBarPanelAutoSize Section 4.3.1, page 111

StatusBarPanelBorderStyle Section 4.3.1, page 111

StatusBarPanelStyle Section 4.3.1, page 111

TabAlignment Section 11.2.2, page 363

ToolBarButtonStyle .NET Table 13.3, page 415

TreeViewAction Section 15.3.3, page 501

View .NET Table 14.1, page 440

Enumeration (continued) Covered in (continued)
ENUMERATIONS 689

A P P E N D I X D

For more information
This appendix lists additional sources of information about the .NET Framework.
The Internet sites listed here were valid as of January 1, 2002. The sites are listed
without prejudice. You can make your own judgment on which ones most closely
match your needs.

Internet resources

csharp.superexpert.com
msdn.microsoft.com (Microsoft Developer Network)
www.4guysfromrolla.com
www.codeproject.com
www.csharpfree.com
www.csharphelp.com
www.csharpindex.com
www.csharp-station.com
www.cshrp.net
www.c-sharpcenter.com
www.c-sharpcorner.com
690

www.dotnet247.com
www.dotnetjunkies.com
www.dotnetwire.com
www.devasp.net
www.devdex.com
www.gotdotnet.com
www.mastercsharp.com
www.pune-csharp.com
www.vscodeswap.com

Magazines

Dr. Dobbs Journal: www.ddj.com
MSDN Magazine: msdn.microsoft.com/msdnmag
.NET Magazine: www.thedotnetmag.com
.NET Programmer’s Journal: www.sys-con.com/dotnet
Visual Studio Magazine: www.vcdj.com
Web Services Journal: www.wsj2.com
XML Magazine: www.xmlmag.com

Newsgroups

The following newsgroups are available from the news.microsoft.com server:

microsoft.public.dotnet.framework.sdk
microsoft.public.dotnet.framework.windowsforms
microsoft.public.dotnet.languages.csharp
691

bibliography
Microsoft .NET Framework

Archor, Tom. Inside C#, Redmond, WA: Microsoft Press, 2001.

Cabanski, Tom. .NET Security. Greenwich, CT: Manning Publications Co., 2002.

Conrad, James, et al. Introducing .NET. Birmingham, UK: Wrox Press, 2001.

Dennis, Alan. .NET Multithreading, Greenwich, CT: Manning Publications Co., 2002

Feldman, Arlen. ADO.NET Programming, Greenwich, CT:
Manning Publications Co., 2002

Grimes, Fergal. Microsoft .NET for Programmers, Greenwich, CT:
Manning Publications Co., 2001.

Gunnerson, Eric. A Programmer’s Introduction to C#, Second Edition, Berkeley, CA:
Apress, 2001.

Liberty, Jesse. Programming C#, Sebastopol, CA: O’Reilly & Associates, 2001.

Robinson, Simon, et al. Professional C#. Birmingham, UK: Wrox Press, 2001.

Troelsen, Andrew. C# and the .NET Platform, Berkeley, CA: Apress, 2001

Waldschmidt, Peter. Complete .NET XML, Greenwhich, CT: Manning
Publications Co., 2002

Related languages and environments

Flanagan, David. Java in a Nutshell, Second Edition, Sebastopol, CA:
O’Reilly & Associates, 1997.

Kernighan, Brian W. and Ritchie, Dennis M. The C Programming Language,
Second Edition, Prentice Hall, 1988.

Liskov, B., Atkinson, et al. CLU Reference Manual, Harrisonburg, VA:
Springer-Verlag, 1984.

Prosise, Jeff. Programming Windows 95 with MFC, Redmond, WA:
Microsoft Press, 1996.
692

Robinson, Matthew and Vorobiev, Pavel. Swing, Greenwich, CT: Manning
Publications Co., 2000.

Stroustrup, Bjarne. The C++ Programming Language, Third Edition, Reading, Mass:
Addison-Wesley, 1977.

Software development and user interface design

Brooks, Jr., Frederick P. The Mythical Man-Month, Anniversary Edition, Reading, MA:
Addison-Wesley, 1995.

Kelly, Tom. The Art of Innovation: Lessons in Creativity from IDEO, America’s Leading Design
Firm, NewYork, NY: Doubleday, 2001.

Norman, Donald. The Design of Everyday Things, New York, NY: Doubleday, 1990.

Schneiderman, Ben. Designing the User Interface, Third Edition, Reading, Mass:
Addison-Wesley, 1997.
693

index
Symbols

#region directive 42
& character

for access keys 17, 77
(Name) property 50
* character

in version string 44
+ (plus sign)

strings 228
.NET Framework xxxi
.resources files 404
.resx files 405
\n character 228
/addmodule switch 139
/doc switch 42
/main switch 11, 536
/out switch 139
/r switch 20
/reference switch 5
/target switch 138
<c> tag 675
<code> tag 675
<example> tag 675
<exception> tag 675
<include> tag 675
<list> tag 675
<para> tag 675
<param> tag 675
<paramref> tag 675
<permission> tag 675
<remarks> tag 675

<returns> tag 675
<see> tag 675
<seealso> tag 675
<summary> tag 57, 675

adding in Visual Studio 90
<value> tag 675
? conditional operator 259
@ character

identifiers 658
strings 177

| operator 30

A

AbbreviatedDayNames
property 371

AbbreviatedMonthNames
property 371

Abort value 230
AboutBox form 628
abstract class 71

comparison with
interface 128

abstract keyword 24, 658
AcceptButton property 197

example 248
for dialog box 241

AcceptsReturn property 288
example (TextBox) 283

AcceptsTab property 282
AcceptsTabChanged event 282

access keys 17, 77, 281
access methods 143
accessibility level 642
accessors 645
Action property 504
Action-Result tables

description of xxv
Activate method 197
ActivateControl method 197
Activated event 556
activation

in ListView 474
Activation property 444
Active property 431
ActiveControl property 196
ActiveForm property 197
ActiveMdiChild property

example 549
ActiveX Control Importer

tool 631
ActiveX controls

hosting 627
Add method

in ArrayList class 131
in Forms.Collection class 18
in IList interface 129

Add value 538
AddAnnuallyBoldedDate

method 374
AddExtension property 24
AddMessageFilter method 12
695

AddNew method 584
in BindingManagerBase

class 597
AddRange method 131

example (for Controls) 53
AfterExpand event 489
AfterLabelEdit event

in ListView class 444, 470
in TreeView class 489

alias, with using keyword 15
Alignment property

example (DataGridText-
BoxColumn) 581

example (TabControl) 366
in DataGridColumnStyle

class 579
in StatusBarPanel class 116
in TabControl class 357,

363, 367
AlignmentChanged event 579
AllowColumnReorder

property 465
AllowDrop property 104, 621

example (Panel) 625
AllowedEffect property 625
AllowNavigation property 569
AllowSorting property

in DataGridTableStyle
class 576

AllowSortingChanged event 576
Alt property 387
Alt value 387
AlternatingBackColor property

example 577
in DataGrid class 569
in DataGridTableStyle

class 576
AMDesignator property 371
ampersand character 17
Anchor property 29, 104

example (Button) 266
example (GroupBox) 318
example (TabControl) 366
example (within TabPage) 591
in Panel class 215

relationship to Dock 31
values 30

Anchor property. See also Dock
property 30

anchored menu 70
AnchorStyles enumeration 30,

63
values 30

AnnuallyBoldedDates
property 374

App.ico file 409
Appearance property

in CheckBox class 305
in RadioButton class 300
in TabControl class 357, 363
in ToolBar class 413

AppearanceChanged event 300
AppendText method 282
Application class 12

members 12
ProductVersion property 45
Run method 11

application data
global 12
user 12

ApplicationData value 177
ApplicationExit event 12
applications 640
AppWorkspace color 533
ArrangeIcons value 560
Array class 130–131, 672
ArrayList class 130–131

members 131
arrays 672
as keyword 304, 658
ascending order 460
Ascending value 461
aspect ratio 28
assemblies 5, 640

attributes 44
version conventions 44

AssemblyCompanyAttribute
class 44

AssemblyCopyrightAttribute
class 44

AssemblyDescriptionAttribute
class 44

AssemblyInfo.cs file 43
AssemblyProductAttribute

class 44
AssemblyTitleAttribute class 44
AssemblyVersionAttribute

class 44
asterisk (*)

in version string 44
Attribute class 43
attributes 43, 670

in AssemblyInfo.cs 44
AutoCheck property

in CheckBox class 305
in RadioButton class 300

AutomaticDelay property 431
AutoPopDelay property 431
AutoScroll property 196, 213

example 214
AutoScrollMargin property 196
AutoScrollMinSize

property 196, 213
example 215

AutoScrollPosition
property 196, 213
example 215

AutoSize property
in Label class 280
in StatusBarPanel class 116
in TackBar class 614
in ToolBar class 413

AutoSizeChanged event 280
AxHost class 627
aximp.exe 631

B

B method 260
BackColor property

in Control class 104
in ListViewSubItem

class 459
base keyword 149, 659
BaseEditDlg form 265
696 INDEX

BeforeCollapse event 489
BeforeExpand event

example 505
BeforeLabelEdit event

in ListView class 470
BeforeSelect event 489
BeginEdit method

in DataGrid class 569
in DataGridTableStyle

class 576
in IEditableObject

interface 584
in ListViewItem class 451,

470
in TreeNode class 495

BeginInit method 114
in StatusBarPanel class 116

BeginPrint event 608
BeginUpdate method

example (ListBox) 327
in ComboBox class 335
in ListBox class 324

binary operator 649
Binding class 592, 594

members 594
Binding constructor 594
BindingContext class 592
BindingContext property 592
BindingManagerBase class 592,

597
Current property 602
EndCurrentEdit method 603
members 597
Position property 598

BindingManagerBase
property 594

BindingMemberInfo
property 594

BindingMemberInfo
structure 594

Bindings property 597
Bitmap class

custom drawing 152
drawing by hand 153
file formats supported 168

GetPixel method 260
performance implications 127

Bitmap Editor window 400
bitmaps, common files for 406
BoldedDates property 374
bool keyword 659
bool type 95, 656
Boolean class 656
BorderStyle enumeration 51, 280
BorderStyle property

example (Label) 254
example (Panel) 216
for dialog box 241
in Label class 280
in Panel class 218
in PictureBox class xxvi
in Splitter class 492
in StatusBarPanel class 116

Bottom property 17
Bottom value

in AnchorStyles
enumeration 30

in DockStyle
enumeration 32

in TabAlignment
enumeration 367

Bounds property
in DrawItemEventArgs

class 119
in ListViewItem class 451

boxing 185, 674
break keyword 659
BringToFront method 104

example 555
Brush class 120, 124
Brushes class 120, 122

SlateGray property 122
Built-in types 656
Button class 291–292

DialogResult property 249
members 292

Button property
in MouseEventArgs class 390
in ToolBarButtonClickEvent-

Args class 423

Button1 value 226
Button2 value 226
Button3 value 226
ButtonBase class 292

Image property 394
ImageAlign property 394
members 292

ButtonClick event 423
ButtonClick property 413
ButtonDropDown event 427
ButtonDropDown property 413
Buttons property 413
ButtonSize property 413
Byte class 656
byte keyword 659
byte type 656

C

c documentation tag 675
C language xxx
C# compiler 5, 138

/addmodule switch 139
/doc switch 42
/main switch 11, 536
/out switch 139
/r switch 20
/reference switch 5
/target switch 138
executables 139
libraries 139
modules 139
output type 138

C# files
extension 5

C# language
#region directive 42
@ prefix 658
abstract keyword 24
as keyword 304
base keyword 149
boolean type (bool) 95
built-in types 656
case keyword 191
delegate keyword 22, 275
INDEX 697

C# language (continued)
documentation lines 42
documentation tags 675
event keyword 170
exceptions 60
foreach loop 95
foreach, implementing 129
inheritance 128, 133
internal keyword 268, 547
is keyword 92
keywords 658
namespace keyword 6
new keyword 9
object class 154
override keyword 155
private keyword 268
properties 17
protected keyword 268
public keyword 268
sealed keyword 12
source files 133
strings 177
switch keyword 191
throw keyword 190
using keyword 15, 234

C++ destructor 251
C++ language xxx
CalendarBackground value 382
CalendarFont property 368
CalendarForeColor

property 368
callable entity 655
Cancel property 236

in PrintPageEventArgs
class 609

Cancel value 230
CancelButton property

example 249
for dialog box 241

CancelCurrentEdit method 597
CancelEdit method 584
CancelEdit property 471

in NodeLabelEditEventArgs
class 519

CancelEventArgs class 236, 309

Cancel property 236
CanUndo property 282
Capacity property 131
CaptionDlg class 242
CaptionText property 569

example 572
Cascade value 561
case keyword 191, 659
case label, fall through 211
CaseInsensitiveComparer

class 461, 463
catch 59
catch blocks 61
catch keyword 659
CausesValidation property 309
CDialog class 194, 251
CFrameWnd class 194
ChangeExtension method 180

example 473
Char class 289, 657
char keyword 659
char type 657
CharacterCasing property 288
check box buttons 291
CheckAlign property 300
CheckBox class 291, 305

example 306
members 305

CheckBoxes property
in ListView class 444
in TreeView class 489

checked keyword 659
Checked property

example (MenuItem) 94
in CheckBox class 305
in DateTimePicker class 368
in MenuItem class 82
in RadioButton class 300

Checked value 305
CheckedChanged event

in CheckBox class 305
in RadioButton class 300

CheckFileExists property 24
CheckState enumeration 305
CheckState property 305

CheckStateChanged event 305
class hierarchy 71
class keyword 659
classes 6, 642

indexers 148
Clear method

example (Graphics) 205
in ArrayList class 131
in CollectionBase class 132
in ListView class 444

ClearSelected method 324
example 332

Click event
in Control class 104
in MenuItem class 82

Clickable value 444
Clicks property 390
ClientRectangle property 104

for Forms 17
Clipboard 282
Clipboard class 282
ClipRectangle property 205
Clone method

in ColumnHeader class 456
CloneMenu method

example (MenuItem) 100
in MainMenu class 77
in MenuItem class 82

Close method 197, 233
in Form class 88
relationship to Dispose 233
vs. Application.Exit

method 88
CloseUp event 368
Closing event 197, 235
code documentation tag 675
code, Web Page

documentation 42
Collapse method 495, 504
CollapseAll method 489, 504
CollectionBase class 130, 133

members 132
OnClear method 149
OnRemoveComplete

method 150
698 INDEX

Color structure 120, 193
B method 260
G method 260
R method 260
RGB values 260

ColorDepth property 417
ColorDialog class 193
Colors window 401
Column property 461
ColumnClick event 444, 461
ColumnClickEventArgs

class 461
example 464

ColumnHeader class
displaying in Visual

Studio 457
members 456

ColumnHeaderCollection
class 477

ColumnHeaderStyle
enumeration 444

Columns property 444, 455,
476

COM 128
ComboBox class 335

comparison with ListBox 334
FindString method 344
members 335
SelectedItem property 342
Text property 342

ComboBoxStyle
enumeration 337
values 337

common dialogs 193
common image directory 406
CommonAppDataRegistry

property 12
CommonDialog class 24, 193
Compare method 461
Comparer class 461
compiled 640
compiling .NET programs 5
complex data binding 588
Component class 72, 114
component tray 76, 99

components xxxii, 73
components field

disposing of 420
const keyword 660
constants 643
constructors 8, 650

instance 650
invoking existing

constructor 544
static 650

ContainerControl
class 195–196
ActivateControl method 197
ActiveControl property 196

containers xxxii
Contains method 129, 131
ContentAlignment

enumeration 404
Contents value

in StatusBarPanelAutoSize
enumeration 115

context menu 70
ContextMenu class 73, 97–99

members 99
ContextMenu property 97, 99,

104, 290
example (PictureBox) 98

continue keyword 660
control

forcing Paint event 93
Control class 53, 103, 105

AllowDrop property 625
BindingContext

property 592
BringToFront method 555
ContextMenu property 99
ControlCollection class 18
DataBindings property 593,

595
DoDragDrop method 622
drag and drop 621
DragDrop event 624
DragEnter event 624
Focus method 307
GetStyle method 210

members 104
OnPaint method 170
QueryContinueDrag

event 622
SendToBack method 555
SetStyle method 210

Control property 205, 387, 594
in Splitter class 492

Control value 387, 391
Control.ControlCollection

class 18
ControlBindingsCollection

class 592
ControlBox property 29, 197

and icons 409
ControlCollection class 18
ControlKey value 391
controls xxxii

anchoring 29
associating data with 304
class heirarchy 103
cutting and pasting 365
enter and leave events 309
events related to focus 309
in MDI applications 533
setting focus to 309

Controls property 18, 104
example (Form) 18

Controls, docking 31
ControlStyles enumeration 210

values 210
conversion operator 649
Convert class

ToInt32 method 463
Cookies value 177
Copy method 282
CopyTo method 129, 131

implementation 146
Count property 129, 131

in BindingManagerBase
class 597

in CollectionBase clas 132
CreateDirectories method 178
CreatePrompt property 182
csc. See C# compiler 5
INDEX 699

CStatic class 244, 280
Ctrl key

multiple selection 173
culture-specific resource 404
CurrencyManager class 597,

599
members 599

Current property 129, 597
example 602

CurrentCell property 569
CurrentCellChanged event 569
CurrentChanged event 597
CurrentCulture property 12
CurrentDirectory property 176
CurrentRowIndex property 569
Cursor class, in controls 104
Cursor property 104, 393
cursors

common files for 406
modifying defaults 393

Cursors class 393
custom controls 381, 620
custom date-time formats 371
custom menu class 378
Custom value 370
CustomFormat property 368,

371
CView class 194

D

d suffix 661
data binding 321

data sources 574
data collections

classes 129
interfaces 129

Data property 625
DataAdaptor class 587

Fill method 587
Update method 587

DataBindings property 592
example 595

DataFormats class 623
FileDrop field 623
Text field 623

DataGrid class 569
CaptionText property 572
members 569
SetDataBinding method 573
sources of data 574
TableStyles property 576

DataGrid property 576
DataGrid.HitTestInfo class 569
DataGridBoolColumn class 581
DataGridCell structure 569
DataGridColumnStyle class 579

members 579
DataGridTableStyle class 576

example 577
members 576

DataGridTableStyle
property 579

DataGridTextBox class 581
DataGridTextBoxColumn

class 581
members 581

DataMember property
in DataGrid class 569

DataObject class 622
DataRowView class 574, 583
DataSource property

in Binding class 594
in DataGrid class 569
in ListControl class 316

DataSourceChanged event
in ListControl class 316

DataView class 130, 574
date and time, customizing 371
Date property 378
Date value 382
date values, customizing 371
DateChanged event 374
dates

comparing 480
formating 371

DateSelected event 374
DateSeparator property 371
DateTime structure 273

Compare method 480
Date property 378

DateTimeFormatInfo class 371
DateTimePicker class 368

CustomFormat property 371
Format property 370
members 368

DateTimePickerFormat
enumeration 370
members 370

DayNames property 371
DayOfWeek value 382
days of the week

specifying 371
DCE 128
Deactivate event 197, 556
Decimal class 657
decimal keyword 660
decimal type 657
declaration space 640
default constructor 650

in structures 653
default keyword 660
default namespace 640
Default property 461
default value

for built-in types 656
DefaultItemHeight field 323
delegate

example 276
Delegate class 655
delegate keyword 22, 275, 660
delegates 22, 655
delete

in C++ 10
Delta property 390
descending order 460
Descending value 461
DesktopBounds property 29
DestopLocation property 29
destructors 651
Details value 443
detents 390
deterministic scope 234
device contexts 124
dialog boxes

hiding 262
700 INDEX

dialog boxes (continued)
modal 225
nonmodal 225
properties required 240

DialogResult
enumeration 23–24, 226,
230
members 230

DialogResult property 197, 249,
292

Directory class 178
CreateDirectories

method 178
GetFiles method 336

DirectorySeparatorChar field 180
DisplayMember property

in ListControl class 316
DisplayMemberChanged event

in ListControl class 316
DisplayMode enumeration 200
DisplayRectangle property 104

in Panel class 218
Dispose method 23, 42, 72, 158

components field 420
relationship to Close 233

Disposed event 72
Divider property 413
DLL 128
do keyword 660
Dock property 31, 104

default value 108
example

(MonthCalendar) 375
example (PictureBox) 76
example (TreeView) 490
in Panel class 215
in Splitter class 492
in StatusBar class 108
relationship to Anchor 31
values 31

Dock property. See also Anchor
property 31

DockPadding property 196
DockStyle enumeration 31–32

values 32

documentation 42
documentation tags 675
DoDragDrop method 621–622
DomainUpDown class 372
Double class 657
double keyword 661
double type 657
DoubleBuffer value 210
DoubleClick event 390

example (ListBox) 325
drag and drop 620

Control members 621
steps to perform 621

DragDrop event 621, 624
DragDropEffects

enumeration 622, 625
DragEnter event 621, 624
DragEventArgs class 625

members 625
DragLeave event 621
DragOver event 621
Draw event 417
DrawBackground method 119
DrawFocusRectangle

method 119
DrawImage method 205
Drawing namespace 120

types 120
drawing, selected text 351
DrawItem event 108, 118

and Paint event 205
example 121
in ComboBox class 335
in ListBox class 324
in MenuItem class 82
in TabControl class 357

DrawItemEventArgs
class 118–119
members 119

DrawItemState
enumeration 119

DrawLine method
example 152

DrawMode enumeration 347
values 347

DrawMode property 323, 335
example (ListBox) 346
in TabControl class 357

DrawRectangle method 120
DropDown event 335

in DateTimePicker class 368
dropdown menus

tool bars, customizing 427
DropDown value 337
DropDownArrows

property 413, 426
DropDownButton value 416
DropDownStyle property 335
DropDownWidth property 335
DroppedDown property 335
Dynamic Link Library. See

DLL 128

E

Effect property 625
else keyword 661
Empty property 181
Enabled property

example (MenuItem) 94
in Control class 104
in MenuItem class 82
in Panel class 218
in Timer class 613
in ToolBarButton class 415

EndCurrentEdit method 597
example 603

EndEdit method
in DataGridTableStyle

class 576
in IEditableObject

interface 584
EndInit method 114

in StatusBarPanel class 116
EndPrint event 608
EnsureVisible method 444, 451,

504
Enter event 309
Enter key

in TextBox class 283
INDEX 701

entry point 11, 640, 673
Enum class 654
enum keyword 661
enumerated type

cast from integer 201
enumerations 654

as flags 63
Environment class 175

members 176
SpecialFolder

enumeration 177
Equals method 155
event delegates

naming conventions 170
event handlers 21, 646

adding in Visual Studio 55
calling from constructor 211
naming convention 55

event keyword 170, 661
EventArgs class

Empty property 181
EventHandler delegate 22
events 21, 646

multiple handlers 22
example documentation tag 675
Exception class 60, 62, 670

members 62
Message property 61

exception documentation
tag 675

exception handling 58
performance

considerations 469
exceptions 59, 670

alternatives to 58
finally block 185
in static constructors 670

Exit method 12, 176
ExitCode property 176
ExitThread method 12
Expand method 504
ExpandAll method 495, 504
explicit keyword 649, 661
extern keyword 661

F

f suffix 662
false keyword 661
Favorites value 177
fields 16, 643
FIFO queue 130
File class

Move method 473
file extensions

C# 5
projects 38
solutions 38

FileAccess enumeration 184
FileDialog class 23–24

members 24
FileDrop field 623
FileMode enumeration 184
FileName property 24

in OpenFileDialog 25
FileNames property 24
FileOK event 24
files, renaming 46
FileShare enumeration 184
FileStream class 184
Fill method 587
Fill value 32
FillRectangle method 120

example 122
Filter property 24

example
(OpenFileDialog) 23

finally block 185
finally keyword 661
FindString method 324, 344
FirstNode property 495
fixed keyword 662
FixedHeight value 210
FixedSingle value 253
FixedWidth value 210
FlagsAttribute attribute 63
FlatStyle enumeration 280
FlatStyle property 292

in Label class 280
flicker, preventing 212, 327
float keyword 662

float type 657
flyby text 105, 108

implementing 109
focus events 309
Focus method 307
Focused property

example 519
in ListViewItem class 451

Font class 120
example 610
GetHeight method 610

Font property
in DrawItemEventArgs

class 119
in ListViewItem class 451
in ListViewSubItem

class 459
FontChanged event 579
FontDialog class 193
for keyword 662
foreach keyword 95, 662
foreach statement

supporting in classes 129
ForeColor property

in DrawItemEventArgs
class 119

in ListViewItem class 451
in ListViewSubItem

class 459
Form class 7, 198

ActiveMdiChild
property 549

adding to a project 242
as dialog box 240
BindingContext

property 592
class hierarchy 195
ClientRectangle property 17
Close method 88, 233
desktop properties 29
displaying a Form 12
exiting 12
Height property 17
HelpButton property 435
Hide method 233, 262
702 INDEX

Form class (continued)
Icon property 406
IsMdiChild property 542
keyboard events, receiving 386
LayoutMdi method 560
MdiChildActivate event 555
MdiChildren property 553
members 197
Menu property 76
MenuComplete event 109
MenuStart event 109
MergedMenu property 537
MinimumSize property 28
MousePosition property 258
OnClosing method 235
OnKeyPress method 386
OnLeave method 558
OnMouseMove method 261
Owner property 258
Show method 233, 257
ShowDialog method 251
Visible property 262
Width property 17
WindowState property 554

Form controls
centering 17
resizing 26

form inheritance 264
Format event 594
Format method

example (String) 117
Format property 370

in DataGridTextBoxColumn
class 581

in DateTimePicker class 368
FormatChanged event

in DateTimePicker class 368
FormatInfo property 581
FormBorderStyle

enumeration 241
FormBorderStyle property 29

FixedSingle value,
example 253

Forms Designer. See Windows
Forms Designer 48

FormWindowState
enumeration 555
values 555

forward declarations 100
FromImage method 153
fully qualified name 7, 15

G

G method 260
garbage collection 10
GDI+ 118, 124
get accessor 645
get keyword 143
GetBaseException method 62
GetCommandLineArgs

method 176
GetContextMenu method 72
GetDataPresent method 625
GetDirectoryName method 180

example 473
GetDisplayRange method 374
GetEnumerator method 129,

132
GetEnvironmentVariable

method 176
GetExtension method 180
GetFileName method 180
GetFileNameWithoutExtension

method 180
GetFiles method

example 336
GetFolderPath method 176
GetForm method 77
GetFullPath method 180
GetHashCode method 155

reason to override 156
GetHeight method,

example 610
GetItemProperties method 597
GetItemText method 316
GetLogicalDrives method 176
GetMainMenu method 72
GetNextControl method 104
GetNodeAt method 489
GetNodeCount method 489

GetObject method 405
GetPathRoot method 180
GetPixel method 260
GetSelected method 324

example 328
GetStyle method 210
GetTabRect method 357
GetTempFileName method 180
GetToolTip method 431
GetType method 155
global namespace 640
GotFocus event 309
goto keyword 662
Graphics class 120, 123

Clear method 205
DrawImage method 205
drawing a Bitmap 152
FromImage method 153
MeasureString method,

example 349
members 124

Graphics property 205
in DrawItemEventArgs

class 119
in MeasureItemEventArgs

class 347
in PrintPageEventArgs

class 609
GraphicsUnit enumeration 124
GridColumnStyles property 576

example 580
GroupBox class 215, 300

compared to Panel 301
example 301, 318
tab order behavior 302

H

Handle property 72
in ImageList class 417

HandleCreated property
in ImageList class 417

Handled property 288
in KeyEventArgs class 387
in KeyPressEventArgs

class 385
INDEX 703

HasExtension method 180
Hashtable class 130
HasMorePages property 609
header files 133
HeaderStyle property

in ListView class 444
HeaderText property 579
heap 10, 641
Height property 17

for Forms 17
HelpButton property 435

for dialog box 241
HelpLink property 62
HelpProvider class 435

SetHelpString method 435
HelpRequested event 24, 241
Hide method 233
HideSelection property 489
Highlight property

example 351
HighlightText property

example 351
HightlightText property 119
HitArea enumeration 382

values 382
HitArea property 380
HitTest method

example
(MonthCalendar) 378

in DataGrid class 569
in MonthCalendar class 374

HitTestInfo class 380
HitArea values 382
in DataGrid class 569
in MonthCalendar class 380
Time property 380
Time values 382

HorizontalAlignment
enumeration 116

hot tracking 359
HotTrack property 357
hours

specifying 371
HScroll property 196

I

IBinding interface
AddNew method 584

IBindingList interface 574
ICloneable interface 128
ICollection interface 129

CopyTo method 129, 146
Count property 129
implementing 146
SyncRoot property 129

IComparer interface 444, 461
default comparer 463
members 461

IComponent interface 72–73,
574

Icon class 406
Icon Editor window 409
Icon property 29, 197, 406
icons

common files for 406
editing 409

IDataErrorInfo interface 574
IDataObject interface 625

GetDataPresent method 625
IDE 34
identifiers

@ prefix 658
IDictionary interface 176
IDisposable interface 73, 158

members 158
Idle event 12
IEditableObject interface 574,

584
members 584

IEnumerable interface 129
GetEnumerator method 129

IEnumerator interface 129
Current property 129
MoveNext method 129
Reset method 129

IExtenderProvider interface 431
if keyword 663
IFormatProvider interface 581

Ignore value 230
IList interface 129

Add method 129
as data source 574
Contains method 129
data binding 321
implementing 147
Item property 129
RemoveAt method 129

Image class 25, 120, 417
Image Collection Editor dialog

box 418
Image Editor toolbar 401
Image property 292, 394

example 404
example (PictureBox) 25
in Label class 280
in PictureBox class xxvi

ImageAlign property 292, 394
example 404

ImageIndex property 280, 292,
418
in ListViewItem class 451
in TabPage class 361
in ToolBarButton class 415
in TreeNode class 495
in TreeView class 489

ImageList class 417
disposing of 420
members 417

ImageList property 292, 418
example (ToolBar) 422
in Label class 280
in TabControl class 357
in ToolBar class 413
in TreeView class 489

ImageListStream class 417, 420
Images property 417
ImageSize property 417

in ToolBar class 413
ImageStream property 417
IMessageFilter interface 12
implicit keyword 649, 663
in keyword 663
704 INDEX

include documentation tag 675
Index property 81, 347

in ColumnHeader class 456
in DrawItemEventArgs

class 119
in ListViewItem class 451
in MenuItem class 82
in TreeNode class 495

indexers 148, 648
IndexFromPoint method 324
IndexOf method 131
Information value 226
inheritance 6
Inheritance Picker dialog

box 270
InitialDelay property 431
InitialDirectory property 24
InitializeComponent

method 245
InnerException property 62
InnerList property 132
instance constructors 650
int keyword 663
Int type 657
Int16 class 657
Int32 class 657
Int64 class 657
integer type

cast to enumeration 201
interactive development environ-

ment (IDE) 34
interface keyword 663
interfaces 128, 653

collection related 129
comparison with abstract

class 128
data binding 574
supporting from a class 145

Intermediate value 305
internal keyword 268, 547, 663
Internal modifier 268
internationalization 12
Interval property 613
Invalidate method 93, 104
InvalidCastException class 93

InvalidOperationException
class 305

InvalidPathChars field 180
IOException class 61, 190, 228
is keyword 92, 663

compared with as
keyword 92

IsBinding property 594
IsDigit method 289
IsEditing property 495
IsExpanded property 495
IsInputChar method 387
IsInputKey method 387
IsLetter method 289
IsMdiChild property 197

example 542
IsParent property 72
IsSelected property 495
IsVisible property 495
Item property 129, 471

in DataGrid class 569
ItemActivate event 444, 474
ItemActivation

enumeration 474
members 474

ItemChanged event 599
ItemDrag event 627

in ListView class 444
in TreeView class 489

ItemHeight property 323
in MeasureItemEventArgs

class 347
Items property 323

in ComboBox class 335
in ListView class 444

ItemSize property 357
ItemWidth property

in MeasureItemEventArgs
class 347

K

keyboard events
sequence of 288

keyboard shortcuts
enumeration 81

for Add New Item dialog 400
KeyChar property 288, 385
KeyCode property 387
KeyData property 387
KeyDown event 288, 385
KeyEventArgs class 387

members 387
KeyPress event 104, 288, 385
KeyPressEventArgs class 288,

385
members 385

KeyPreview property 386
Keys enumeration 387

Ctrl key 391
KeyState property 625
KeyUp event 288, 385
KeyValue property 387

L

L suffix 663
Label class 280

AutoSize property 283
BorderStyle property 254
compared to read-only text

box 281
example 244
image example 630
members 280
tab order behavior 280

Label property 471
in NodeLabelEditEventArgs

class 519
LabelEdit property 444, 470

in TreeView class 489
LabelEditEventArgs class 471

members 471
LargeChange property 614
LargeIcon value 442
LargeImageList property 444
LayoutMdi method 560
Leave event 309
Left property 17
Left value

in AnchorStyles
enumeration 30
INDEX 705

Left value (continued)
in DockStyle

enumeration 32
in TabAlignment

enumeration 367
libraries 640
Life, the universe, and

everything 42
LIFO queue 130
Lines property 282
Link class 634
LinkClicked event, example 634
LinkColor property 576
LinkLabel class 281, 628

example 630
Link class 634
LinkClicked event 634
Links property 634

LinkLabel.Link class 634
LinkLabelLinkClickedEvent-

Args class 634
Links property 634
list documentation tag 675
List property 132
List value 443
ListBox class 323

ClearSelected method 332
comparison with

ComboBox 334
contrasted with ListView 442
DrawMode property 346
GetSelected method 328
members 323
preventing flickering 327
SelectedIndices property 332
SelectedItems property 332
SetSelected method 332

ListBox.SelectedIndexCollection
class 332

ListControl class 316
members 316

ListView class 444
AfterLabelEdit event 470
BeforeLabelEdit event 470
ColumnClick event 461

columns in Visual Studio 457
Columns property 455, 476
contrasted with ListBox 442
display styles 442
item definition 451
ItemActivate event 474
LabelEdit property 470
ListViewItemSorter

property 461
members 444
MultiSelect property 466
SelectedIndices property 466
SelectedItems property 466
Sorting property 461
View property 450

ListView property 451
in ColumnHeader class 456

ListViewItem class 442, 451
BeginEdit method 470
constructors 451
members 451
subitems 459

ListViewItem.ListViewSubItem
class 459

ListViewItemSorter
property 444, 461

ListViewSubItem class 442, 459
constructors 459
members 459

Load event 197
locale. See

internationalization 12
localization 405, 679
Location property 104
lock keyword 663
long keyword 663
long type 657
Long value 370
LostFocus event 309

M

m suffix 660
MachineName property 176
Main function 11
main menu 70

Main method 673
MainMenu class 73, 77

members 77
makefiles 138
MappingName property

example (DataGridTable-
Style) 577

for DataSet data source 576,
579

for IList data source 576, 579
in DataGridColumnStyle

class 579
in DataGridTableStyle

class 576
MarginBounds property 609
MarshalByRefComponent

class 72
MarshalByRefObject class 72
marshaling 73
MaxDate property 368, 374
MaxDropDown property

example 341
MaxDropDownItems

property 335
MaximizeBox property 29, 197

for dialog box 241
Maximized value 555
MaximizedBounds property 29
Maximum property

in TrackBar class 614
MaximumSize property 29, 197
MaxLength property 282, 335
MaxSelectionCount property 374
MDI child forms

and other controls 533
MdiChildActivate event 555
MdiChildren property 553
MdiClient class 533
MdiLayout enumeration 560

values 560
MdiList property 565
MdiListItem property 72, 565
MeasureItem event 82

example 348
in ListBox class 324
706 INDEX

MeasureItemEventArgs
class 347
members 347

MeasureString method 349
members 8, 642
Menu 71
menu bars 70
Menu class 72–73

class hierarchy 72
MdiListItem property 565
members 72
MergeMenu method 537
Popup event 88

Menu property 76, 197
menu separator 74
MenuComplete event 109
MenuItem class 73, 82

CloneMenu method 100
Index property 81
MdiList property 565
members 82
MergeOrder property 539
MergeType property 538
merging menus 537
RadioCheck property 448
Select event 109
Tag property, lack of 378

MenuItemCollection class 72
MenuItems property 72
MenuMerge enumeration 538

values 538
menus

access keys 77
context menus 97
duplicating 100
inserting menu bar item 164
providing help text 109
submenus. See MenuItems

property 72
MenuStart event 109
MergedMenu property 537
MergeItems value 538
MergeMenu method 72, 82,

537
MergeOrder property 82, 539

MergeType property 538
Message property

example 61
MessageBox class 225–226

members 226
newline in text 228

MessageBoxButtons
enumeration 226

MessageBoxDefaultButton
enumeration 226
values 226

MessageBoxIcon
enumeration 226
values 226

MessageBoxOptions
enumeration 226

metafiles
common files for 406

MethodBase class 62
methods 8, 644
MFC, group boxes 215
Microsoft Development

Environment 37
MiddleCenter value 404
MinDate property 368
MinExtra property 492
MinimizeBox property 29

for dialog box 241
Minimized value 555
Minimum property

in TrackBar class 614
MinimumSize property 28–29
MinSize property 492
minutes, specifying 371
MinWidth property 116
mnemonics 281
modal dialog box 225

Dispose method 234
Modal property 197
modeless dialog boxes 225
modeless dialog. See nonmodal

dialog 257
Modifiers property 267, 387

values 267
MonthCalendar class 374

HitArea enumeration 382
HitTest method 378
members 374

MonthCalendar.HitArea
enumeration 382

MonthCalendar.HitTestInfo
class 380
HitArea values 382
Time values 382

MonthNames property 371
months, specifying 371
mouse pointers 393
MouseButtons

enumeration 390
MouseDown event 377, 389
MouseEnter event 389
MouseEventArgs class 261, 390

members 390
MouseHover event 389
MouseLeave event 389
MouseMove event 261, 389
MousePosition property 258
MouseUp event 104, 389
MouseWheel event 389
Move method, example 473
MoveNext method 129
Muliline property 282
MultiColumn property 323
MultiExtended value 329
Multiline property 357, 363
MultilineChanged event 282
MultiSelect property

in ListView class 444, 466
Multiselect property 167
MultiSimple value 329
multithreading 680
MyListViewComparer class 461
MyPhotos application 35

N

Name property 50
example 53

namespace keyword 6, 664
namespaces xxi, 640
INDEX 707

namespaces (continued)
naming convention 136
setting default 265

naming conventions
controls in Visual Studio 49
event delegates 170
event handlers 55
namespaces 136
properties 143

NativeWindow class 210
Navigate event 569
new keyword 9, 664

as modifier 155
New Project dialog box 37
NextMonthButton value 382
NextMonthDate value 382
NextVisibleNode property 495
No value 230
Node property 504

in NodeLabelEditEventArgs
class 519

NodeFont property 495
NodeLabelEditEventArgs

class 519
members 519

nodes 488–489
Nodes property 489, 495
NoMatches field 323
None value 387

in AnchorStyles
enumeration 30

in DialogResult
enumeration 230

in DockStyle
enumeration 32

in SelectionMode
enumeration 329

in SortOrder
enumeration 461

in StatusBarPanelAutoSize
enumeration 115

in StatusBarPanelBorderStyle
enumeration 115

nonmodal dialog boxes 225, 252
displaying 257

Normal value
in DrawMode

enumeration 347
in FormWindowState

enumeration 555
Nowhere value 382
null keyword 664
NullText property 579
NumericUpDown class 372

O

Object class 72, 154, 657
inheritance from 134
members 155

object class 154
vs. Object class 154

object keyword 664
object type 657
objects

equality 155
OK value 230

in MessageBox class 226
OKCancel value 226
OnClear method 132

example (PhotoAlbum) 149
OnClosing method 235

example 236, 269
One value 329
OneClick value 474
OnInsert method 132
OnKeyDown method 387

example 388
OnKeyPress method

example 386
OnLeave method

example 558
OnLoad method

example 572
OnMenuComplete method 110
OnMouseMove method 261
OnPaint method 170
OnRemoveComplete method

example (PhotoAlbum) 150

OnwerDraw value
in StatusBarPanelStyle

enumeration 115
OpenFile method 167, 182

example
(OpenFileDialog) 25

OpenFileDialog class 23–24,
167
FileName property 25
Filter property 23
members 167
OpenFile method 25
ShowDialog method 23
Title property 23

OperatingSystem class 176
operator keyword 664
operators 649
option button 291
Orientation enumeration 614
Orientation property 614
OSVersion property 176
out keyword 664
OutOfMemoryException

class 61
override 129
override keyword 155, 665
OverwritePrompt property 182
Owner property

example 258, 633
OwnerDraw property 82
OwnerDrawFixed value 347
owner-drawn list 345
owner-drawn objects

events for 118
OwnerDrawVariable value 347

P

PageBounds property 609
PageSettings class 609
PageSettings property 609
PageSetupDialog class 193, 606

example 608
Paint event 104, 118, 170

and DrawItem event 205
example 220
708 INDEX

PaintDialog class 193
PaintEventArgs class 170,

204–205
members 205

PaintEventHandler delegate 170
painting 170
Panel class 215–216

BorderStyle property 216
ClientRectangle

property 218
compared to GroupBox 301
example 217
members 218
Paint event, example 220
PointToClient method 258

Panel property 108, 119
PanelClick event 108
para documentation tag 675
param documentation tag 675
paramref documentation

tag 675
params keyword 665
Parent property

in Control class 104
in MenuItem class 82
in StatusBarPanel class 116
in ToolBarButton class 415
in TreeNode class 495

Parse event 594
PartialPush property 415
PasswordChar property 288

example 297, 306
Paste method 282
Path class 180

ChangeExtension
method 473

GetDirectoryName
method 473

GetFileNameWithoutExten-
sion method 179

members 180
PathSeparator field 180
PathSeparator property 489
Pen class 120, 124, 153

example 152

Red property 153
PerformClick method 292

in MenuItem class 82
in RadioButton class 300

PerformSelect method 82
permission documentation

tag 675
Personal value 177
PhotoAlbum class 127

Save method 182
PhotoBox class 620
Photograph class 127, 141

ScaleToFit method 207
PictureBox class xxvi

customizing 620
Image property 25
members xxvi
Paint event, example 517
SizeMode property 25

PictureBoxSizeMode
enumeration 90

PMDesignator property 371
Point structure 120
PointF structure 120
PointToClient method 104,

258
Popup event 82, 88

example 94
in ContextMenu class 99

popup menu 70
Position property 597

example 598
PositionChanged event 597
PreferredHeight property

in Label class 280
PreferredWidth property

in Label class 280
preprocessor 670
PrevMonthButton value 382
PrevMonthDate value 382
PrevNode property 495
Print method

example 608
PrintDialog class 606

example 608

PrintDocument class 606
Print method 608
PrintPage event 608

PrintPage event 606
example 608

PrintPageEventArgs class 609,
690
members 609

PrintPreviewControl class 606
PrintPreviewDialog class 606

example 608
private inheritance 133
private keyword 268, 665
Private value 268
ProductName property 12
ProductVersion property 12

example 45
ProgressBar class 616
projects 38

creating 37
file extension 38
setting default

namespace 265
properties 17, 645

constructing 143
editing in Visual Studio 50
naming convention 143

Properties window 50
features 87
graphic 87

PropertyDescriptor class 597
PropertyDescriptor

property 579
PropertyInfo class 352
PropertyManager class 597
PropertyName property 594
protected inheritance 133
protected internal keyword 268
protected keyword 268, 666
Protected modifier 268
public keyword 268, 666
Public modifier 268
push buttons 291
PushButton value 416
Pushed property 415
INDEX 709

Q

QueryContinueDrag event 622
question mark (?)

as conditional operator 259
Question value 226
Queue class 130

R

R method 260
radio buttons 291
RadioButton class 291, 300

members 300
tab order behavior 302
Tag property 301

RadioCheck property 82
example 448

Raised value
in StatusBarPanelBorderStyle

enumeration 115
readonly keyword 666
ReadOnly property 569

in DataGridColumnStyle
class 579

in DataGridTableStyle
class 576

in TextBoxBase class 282
ReadOnlyChecked

property 167
RecreateHandle event 417
Rectangle class 207
Rectangle property 415
Rectangle structure 120
redrawing a control 93
ref keyword 666
reference types 9, 641
ReferenceEquals method 155
reflection 670
Refresh method 599
Region class 120, 124
RegistryKey class 12
remarks documentation tag 675
Remove method

in ArrayList class 131
in ListViewItem class 451

Remove value 538
RemoveAll method 431
RemoveAt method 129

example 169
in ArrayList class 131
in BindingManagerBase

class 597
in CollectionBase class 132

RemoveBoldedDate
method 374

renaming files 46
Replace dialog box 47
Replace value 538
Reset method 24, 129
ResetBackColor method 576
ResetHeaderText method 579
resgen.exe compiler 404
ReshowDelay property 431
ResizeRedraw value 210
resources, compiling 404
ResourcesManager class 405
RestoreDirectory property 24
ResumeBinding method 597
ResumeLayout method

example (Form) 53
Retry value 230
Return key. See Enter key 283
return keyword 666
returns documentation tag 675
RGB 252
RichTextBox class 282
Right property 17
Right value

in AnchorStyles
enumeration 30

in DockStyle
enumeration 32

in TabAlignment
enumeration 367

in ToolBarTextAlign
enumeration 414

RightToLeft property
in ContextMenu class 99
in MainMenu class 77

RowCount property 357

RowHeaderWidth
property 569, 576
example 577

Run method 12
example 11

S

SaveFileDialog class 24, 182
members 182

saving files, conventions 186
SByte class 657
sbyte keyword 666
sbyte type 657
Scale to fit

graphic 206
ScaleToFit method 206
Scroll event 569
ScrollableControl class 195–196
ScrollBar class 196
ScrollBars property 288
ScrollChange property 374
ScrollToCaret method 282
sealed keyword 12, 666
seconds

specifying 371
see documentation tag 675
seealso documentation tag 675
Select event 82, 109
Select method

in TextBoxBase class 282
Selectable value 210
SelectAll method

in ComboBox class 335
in TextBoxBase class 282

Selected property
in ListViewItem class 451

SelectedImageIndex property
in TreeNode class 495

SelectedIndex property
in ListControl class 316
in TabControl class 357

SelectedIndexChanged event
in ListBox class 324
in ListView class 444
in TabControl class 357
710 INDEX

SelectedIndices property 323,
332

SelectedItem property 323, 342
in ComboBox class 335

SelectedItems property 323, 466
in ListBox class 332
in ListView class 444

SelectedNode property 489
example 512

SelectedStart property 282
SelectedTab property 357
SelectedText property

in ComboBox class 335
in TextBoxBase class 282

SelectedValue property 316
SelectionChangeCommitted

event
in ComboBox class 335

SelectionLength property
example (ComboBox) 343

SelectionMode enumeration
values 329

SelectionMode property 323
SelectionRange property 374
SelectionStart property

example (ComboBox) 343
in MonthCalendar class 374

SendTo value 177
SendToBack method 104, 555
Separator value 416
set accessor 645
set keyword 143
SetAutoScrollMargin

method 196
SetDataBinding method 569,

573
SetDate method 374
SetHelpLink method 62
SetHelpString method 435
SetRange method 614
SetSelected method 324
SetStyle methods 210
SetToolTip method 431
Shared Library. See DLL 128
Shift key, multiple selection 173

Shift property 387
Shift value 387
short keyword 666
short type 657
Short value 370
Shortcut enumeration 81
shortcut menu 70
Shortcut property 82

example 81
Show method 233, 257

in ContextMenu class 99
in MessageBox class 226

ShowAlways property 431
ShowCheckBox property 368
ShowDialog method 24, 197,

251
example

(OpenFileDialog) 23
ShowHelp property 24
ShowInTaskBar property 29,

197
for dialog box 241

ShowPanels property 108
ShowPlusMinus property 489
ShowReadOnly property 167
ShowShortcut property 82

example 85
ShowToday property 374
ShowTodayCircle property 374
ShowToolTips property 357,

413
ShowUpDown property 368
Simple data binding 589
Simple value 337
Single class 657
Size property, for dialog box 241
Size structure 28, 120
SizeF structure 120
SizeMode property

example (PictureBox) 25
in PictureBox class xxvi
in TabControl class 357

SizeModeChanged event xxvi
sizeof keyword 666
SizingGrip property 108

SmallChange property 614
SmallIcon value 442
SmallImageList property 444
SmoothingMode

enumeration 124
Solution Explorer

viewing source code 40
Solution Explorer window 38
solutions 38

file extension 38
Sort method 131
Sorted property 323

in ComboBox class 335
in TreeView class 489

SortedList class 130
sorting

ListView columns 460
Sorting property 461

in ListView class 444
SortOrder enumeration 461
source code

documentation 42
source files 640
Source property 62
SourceControl property 99
SpecialFolder enumeration 177

members 177
SplitPosition property 492
Splitter class 492

members 492
SplitterMoved event 492
Spring value

in StatusBarPanelAutoSize
enumeration 115

Stack class 130
stackalloc keyword 667
StackTrace property 62
standard error 184
standard in 184
standard out 184
Standard value 474
StandardClick value 210
StandardDoubleClick value 210
Start property 613
StartMenu value 177
INDEX 711

StartPosition property 197
for dialog box 241

startup project 135
StartupPath property 12
State property 119
StateImageIndex property

in ListViewItem class 451
StateImageList property 444
static constructors 650
static keyword 667
status bar panels 105
StatusBar class 109

class heirarchy 103
Dock Property 108
example 106
flyby text 108
members 108
owner-drawn panels 115
TabStop property 107

StatusBarDrawItemEventArgs
class 119

StatusBarPanel class 116
AutoSize property,

values 114
BorderStyle property,

values 115
displaying 108
example 111
members 116
Style property, values 115
Text property, example 116
Width property 115

StatusBarPanel Collection Editor
dialog box 112

StatusBarPanelAutoSize
enumeration 114

StatusBarPanelBorderStyle
enumeration 115

StatusBarPanelCollection
class 108

StatusBarPanelStyle
enumeration 115

Stop property 613
StreamWriter class 184
StretchToFit value 204

String class 657
comparison 156
Equals override 156
Format method 117
ToLower method 156

string class vs. String class 154
string keyword 667
string type 657
StringCollection class 130
strings

@ notation 177
construction with +

operator 228
ignoring escape

sequences 177
measuring graphical size 124

strongly typed 132
struct keyword 9, 667
structures 652

performance
considerations 674

Style property
in StatusBarPanel class 116
in ToolBarButton class 415

SubItems property 451
summary documentation tag 675
Sunken value

in StatusBarPanelBorderStyle
enumeration 115

SuspendBinding method 597
SuspendLayout method

example (Form) 52
switch keyword 191, 667
switch statement

with enumeration type 201
SyncRoot property 129
System

AppWorkspace color. 533
system menu 235
System namespace

classes, for C# types 656
System.Array class 672
System.Attribute class 43
System.Collections

namespace 677

System.ComponentModel
namespace 677

System.Data namespace 574,
677

System.Delegate class 655
System.Drawing namespace 29,

118, 121, 203, 677
types 120

System.Drawing.Design
namespace 678

System.Enum class 654
System.Exception class 60, 670
System.Globalization

namespace 678
System.IO namespace 178, 678
System.Net namespace 678
System.Net.Sockets

namespace 678
System.Object class. See Object

class 72
System.Reflection

namespace 43, 352, 573, 679
System.Resources

namespace 405, 679
System.Security namespace 680
System.Threading

namespace 680
System.ValueType class 641
System.Web namespace 681
System.Web.Services

namespace 681
System.Web.UI namespace 681
System.Windows.Forms

namespace xxi, 681
System.Windows.Forms

namespace. See Windows
Forms namespace 682

System.Windows.Forms.Design
namespace 381, 574, 681

System.XML namespace 186,
681

SystemColors class 120, 205
Control property 205

Systems.Collections
namespace 461
712 INDEX

T

tab strip 357
TabAlignment enumeration 367
TabControl class 357

Alignment property 367
class hierarchy 356
members 357

TabCount property 357
TabIndex property 104

example 53
Tabindex property 49
table styles

mapping names 576
tables

action-result format xxv
TableStyles property 569, 576
TabPage class 361

class hierarchy 356
creating by hand 361
creating in Visual Studio 366
members 361

TabPage Collection Editor dialog
box 366

TabStop property 104
in StatusBar class 107–108

Tag property 301, 423, 503
example

(ToolBarButton) 423
example (TreeNode) 502
in ListViewItem class 451
in ToolBarButton class 415
in TreeNode class 495

TagPages property 357
TargetSite property 62
templates 147
Text field 623
Text property 342

example (StatusBar) 109
for status bars 108
in ColumnHeader class 456
in Control class 104
in ListViewItem class 451
in ListViewSubItem

class 459
in MenuItem class 82

in StatusBarPanel class 116
in ToolBarButton class 415
in TreeNode class 495
menu separator 81

Text value 115
TextAlign property 288

example (Button) 404
example (ToolBar) 414
in ColumnHeader class 456
in Label class 280
in ToolBar class 413

TextAlignChanged event 288
in Label class 280

TextBox class 282, 288
AcceptsReturn property 283
ContextMenu property 290
DataBindings property 595
example 244
members 288
Multiline property,

example 283
PasswordChar property 297

TextBox property 581
TextBoxBase class 282

members 282
TextChanged event

example 290
example (ComboBox) 342

TextRenderingHint
enumeration 124

TextWriter class 185
WriteLine method 185

this keyword 8, 667
Thread class 680
ThreadException class 12
ThreadException event 12
ThreadExit event 12
threading 680
three-state check boxes 305
ThreeState property 305
throw 59
throw keyword 190, 667
thumbnail 345
tick 273
Tick property 613

TickCount property 176
TickFrequency property 614
TickStyle property 614
TileHorizontal value 561
TileVertical value 561
Time property 380
Time value 370
time values, customizing 371
Timer class 613

members 613
timers 613
times

comparing 480
formatting 371

TimeSeparator property 371
TimeSpan structure 273
Title property 24

example (OpenFileDialog) 23
TitleBackground value 382
TitleMonth value 382
TitleYear value 382
TodayDate property 374
TodayLink value 382
toggle button 291
Toggle method 495, 504
ToggleButton value 416
ToInt32 method

example 463
ToLower method 156
tool bar

separator 416
ToolBar class 413

Dock property 414
members 413

ToolBarButton class 413, 415
custom dropdown menu 427
members 415
PushButton style 422
Separator style 424
Tag property 423

ToolBarButtonClickEventArgs
class 423, 427

ToolBarButtonStyle
enumeration 416
members 416
INDEX 713

ToolBarTextAlign
enumeration 414

Toolbox window 48
locking in place 243
sorting alphabetically 243

ToolTip class 432
members 431
SetToolTip method 434

ToolTipText property 431
in StatusBarPanel class 116
in TabPage class 361
in ToolBarButton class 415

Top property 17
Top value

in AnchorStyles
enumeration 30

in DockStyle
enumeration 32

in TabAlignment
enumeration 367

TopIndex property 323
TopNode property 489
ToString method

in Exception class 62
in Object class 155

TrackBar class 614
example 616
members 614

transaction 574
transparency 406
TransparentColor property 417
TreeNode class 495

Collapse method 504
collapsing nodes 504
constructors 495
EnsureVisible method 504
Expand method 504
expanding nodes 504
members 495
Tag property 503
Toggle method 504

TreeNode Editor dialog box 497
TreeView class 489

BeforeExpand event 505
CollapseAll method 504

ExpandAll method 504
Focused property 519
GetNodeAt method 525
members 489
SelectedNode property 512

TreeViewAction
enumeration 504

TreeViewCancelEventArgs
class 504
members 504

TreeViewEventArgs class 504
TrimToSize method 131
true keyword 668
try keyword 668
try-catch blocks 61
TwoClick value 474
type declarations 640
TypeInitializationException

class 670
typeof keyword 668
type-safe 22

U

u suffix 668
uint keyword 668
uint type 657
UInt16 class 657
UInt32 class 657
UInt64 class 657
UITypeEditor class 678
ulong keyword 668
ulong type 657
unary operator 649
unchecked keyword 668
Unchecked value 305
Underneath value 414
Undo method 282
unsafe keyword 669
Unselect method 569
Update method 587
UpdatePixelData method 259
UpDownBase class 372
UseMnemonic property 280
UserAppDataRegistry

property 12

UserControl class 381
UserMouse value 210
UserName property 176
UserPaint value 210
ushort keyword 669
ushort type 657
using keyword 669

and Dispose method 234
as directive 15
as statement 234

using statement
example 506

V

Validated event 307, 309
example 307
example (ComboBox) 342

value documentation tag 675
Value property

example
(DateTimePicker) 369

in DateTimePicker class 368
in TrackBar class 614

value types 9, 641
assignment 28

ValueChanged event
in DateTimePicker class 368
in TrackBar class 614

ValueMember property 316
ValueType class 641
Version class 46
version number 6

modifying 45
versions

conventions 44
examples 44
generating build number 44
generating revision

number 44
retrieving 12

vertical bar 30
videos, common files for 406
View enumeration 443

values 442
714 INDEX

View property 444
example 450

virtual keyword 669
Visible property

in Control class 104
in MenuItem class 82
in Panel class 218
in ToolBarButton class 415

Visual Studio .NET 34
and data binding 596
building documentation 42
components field 420
controls, transferring between

containers 365
creating a class library 134
event handlers, adding 55
integrating custom

controls 620
projects, compiling 39
projects, properties 265
projects, running 39
Properties window 50
references 137
renaming files 46
statement completion 56
window location, altering 50

Visual Studio .NET Command
Prompt 5

Visual Studio .NET See also Solu-
tion Explorer 40

Visual Studio .NET. See also
Windows Forms Designer 75

void keyword 669
volatile keyword 669
VS .NET. See Visual Studio

.NET 34
VScroll property 196

W

Warning value 226
weekdays

specifying 371
WeekNumbers value 382
while keyword 669
Width property 17

for Forms 17
in ColumnHeader class 456
in DataGridColumnStyle

class 579
in StatusBarPanel 115
in StatusBarPanel class 116

Win32 API xxx
window handles 124
Window property

example 352
Windows Desktop 29
Windows Forms Designer 39,

42
adding controls 48
altering z-order 107
Bring to Front 107
menu, adding 76
removing controls 75
Send to Back 107
setting control properties 48

Windows Forms namespace xxi,
682
common dialogs 687
components 687
controls 688–689
enumerations 690
event data 690
marshal by ref objects 686
objects 684
types 682

WindowState property 197, 554
WindowText property 119

example 352

WM_ERASEBKGND
message 210

WM_MOUSEDOWN
message 210

WM_MOUSEMOVE
message 210

WM_MOUSEUP message 210
WM_PAINT message 210
WordWrap property 282
WorkingSet property 176
Wrappable property 413
WriteLine method 185

X

X property
in DragEventArgs class 625
in MouseEventArgs class 390

XML 186, 681
XmlReader class 186

Y

Y property
in DragEventArgs class 625
in MouseEventArgs class 390

years
specifying 371

Yes value 230
YesNo value 226
YesNoCancel value 226

Z

z-order 18
changing for a control 104
example 32
example

(MyAlbumExplorer) 490
modifying 555
INDEX 715

The Windows Forms Control class represents a component with a visual representation on

the Windows desktop. This and the following figure show the complete set of Windows

Forms classes derived from the System.Windows.Forms.Control class.

Windows Forms controls (part 1)

The Windows Forms Control class represents a component with a visual representation on

the Windows desktop. This and the preceding figure show the complete set of Windows

Forms classes derived from the System.Windows.Forms.Control class

Windows Forms controls (part 2)

	Inside front cover
	brief contents
	Part 1� Hello Windows Forms�1
	Part 2� Basic Windows Forms�67
	Part 3� Advanced Windows Forms�437

	��contents
	����preface
	about this book
	The Windows Forms namespace
	Part 1: Hello Windows Forms
	Part 2: Basic Windows Forms
	Part 3: Advanced Windows Forms

	Who should read this book?
	Conventions
	Action
	Result

	Source code downloads
	Author online
	acknowledgments
	about .NET

	Casting the .NET
	Windows Forms overview
	about the cover illustration
	Hello Windows Forms

	chapter�1
	Getting started with Windows Forms
	1.1 Programming in C#
	1.1.1 Namespaces and classes
	1.1.2 Constructors and methods
	1.1.3 C# types
	1.1.4 The entry point
	1.1.5 The Application class
	1.1.6 Program execution

	1.2 Adding controls
	1.2.1 Shortcuts and fully qualified names
	1.2.2 Fields and properties
	1.2.3 The Controls property

	1.3 Loading files
	1.3.1 Events
	1.3.2 The OpenFileDialog class
	1.3.3 Bitmap images

	1.4 Resizing forms
	1.4.1 Desktop layout properties
	1.4.2 The Anchor property
	1.4.3 The Dock property

	1.5 Recap

	chapter�2
	Getting started with Visual Studio .NET
	2.1 Programming with Visual Studio .NET
	2.1.1 Creating a project
	Action
	Result

	2.1.2 Executing a program
	Action
	Result

	2.1.3 Viewing the source code
	View the code generated by Visual Studio .NET
	Action
	Result

	2.2 Adding controls
	2.2.1 The AssemblyInfo file
	Action
	Results

	2.2.2 Renaming a form
	Action
	Result

	2.2.3 The Toolbox window
	Action
	Result

	2.3 Loading files
	2.3.1 Event handlers in Visual Studio .NET
	Action
	Result

	2.3.2 Exception handling
	Action
	Result
	Action
	Results and Comments

	2.4 Resizing forms
	2.4.1 Assign the Anchor property
	Action
	Result

	2.4.2 Assign the MinimumSize property
	Action
	Result

	2.5 Recap
	Basic Windows Forms

	chapter�3
	Menus
	3.1 The nature of menus
	3.1.1 The Menu class
	3.1.2 The Menu class hierarchy
	3.1.3 Derived classes

	3.2 Menu bars
	3.2.1 Adding the Main menu
	Action
	Result

	3.2.2 Adding the File menu
	Action
	Result

	3.2.3 Adding the dropdown menu
	3.2.4 Adding a View menu
	Action
	Result
	Action
	Result

	3.3 Click events
	3.3.1 Adding handlers via the designer window
	Action
	Result

	3.3.2 Adding handlers via the properties window
	Action
	Result

	3.4 Popup events and shared handlers
	3.4.1 Defining a shared handler
	Action
	Result
	Action
	Result
	Action
	Result

	3.4.2 Handling Popup events
	Action
	Result

	3.5 Context menus
	3.5.1 Creating a context menu
	Action
	Result

	3.5.2 Adding menu items
	Action
	Result

	3.6 Recap

	chapter�4 �
	Status bars
	4.1 The Control class
	4.2 The StatusBar class
	4.2.1 Adding a status bar
	Action
	Result

	4.2.2 Assigning status bar text
	Action
	Result

	4.3 Status bar panels
	4.3.1 Adding panels to a status bar
	Action
	Result

	4.3.2 Assigning panel text
	Action
	Result

	4.4 Owner-drawn panels
	4.4.1 The DrawItem event
	4.4.2 Drawing a panel
	Action
	Result
	Action
	Result

	4.5 Recap

	chapter�5
	Reusable libraries
	5.1 C# classes and interfaces
	5.1.1 Interfaces
	5.1.2 Data collection classes

	5.2 Class libraries
	5.2.1 Creating the class library
	Action
	Result
	Action
	Result
	Action
	Result
	Action
	Result

	5.2.2 Using the command-line tools
	5.2.3 Creating the PhotoAlbum class
	Action
	Result

	5.2.4 Creating the Photograph class
	Action
	Result
	Action
	Result
	Action
	Result
	Action
	Result

	5.3 Interfaces revisited
	5.3.1 Supporting the ICollection interface
	5.3.2 Supporting the IList interface
	Action
	Result

	5.3.3 Implementing album position operations
	Action
	Result
	Action
	Result

	5.4 Robustness issues
	5.4.1 Handling an invalid bitmap
	Action
	Result

	5.4.2 Overriding methods in the Object class
	Action
	Result
	Action
	Result
	Action
	Result

	5.4.3 Disposing of resources
	Action
	Result

	5.4.4 Associating a file name with an album
	Action
	Result

	5.5 Recap

	chapter�6
	Common file dialogs
	6.1 Design issues
	6.1.1 Changing the menu bar
	Action
	Results
	Action
	Result

	6.1.2 Adding class variables
	Action
	Result

	6.2 Multiple file selection
	6.2.1 Adding images to an album
	Action
	Result

	6.2.2 Removing images from an album
	Action
	Result

	6.3 Paint events
	6.3.1 Drawing the current photograph
	Action
	Result

	6.3.2 Displaying the current position
	Action
	Result

	6.4 Context menus revisited
	6.4.1 Displaying the next photograph
	Action
	Result

	6.4.2 Displaying the previous photograph
	Action
	Result

	6.5 Files and paths
	6.5.1 Creating a default album directory
	Action
	Result

	6.5.2 Setting the title bar
	Action
	Result

	6.5.3 Handling the New menu
	Action
	Result

	6.6 Save file dialogs
	6.6.1 Writing album data
	Action
	Result
	Action
	Result
	Action
	Result

	6.6.2 Saving an album as a new file
	Action
	Result

	6.6.3 Saving an existing album
	Action
	Result

	6.7 Open file dialogs
	6.7.1 Reading album data
	Action
	Result

	6.7.2 Opening an album file
	Action
	Result

	6.8 Recap

	chapter�7
	Drawing and scrolling
	7.1 Form class hierarchy
	7.1.1 The ScrollableControl class
	7.1.2 The Form class

	7.2 Image drawing
	7.2.1 Deleting the PictureBox control
	Action
	Result

	7.2.2 Handling the Image menu
	Action
	Result
	Action
	Result

	7.2.3 Implementing the Stretch to Fit option
	Action
	Result

	7.2.4 Implementing a Scale to Fit option
	Action
	Result
	Action
	Result
	Action
	Result
	Action
	Result
	Action
	Result

	7.2.5 Repainting when the form is resized
	Action
	Result

	7.3 Automated scrolling
	7.3.1 Properties for scrolling
	7.3.2 Implementing automated scrolling
	Action
	Result
	Action
	Result

	7.4 Panels
	7.4.1 Adding a panel
	Action
	Result

	7.4.2 Updating the menu handlers
	Action
	Result

	7.4.3 Drawing the status bar panel
	Action
	Result

	7.4.4 Drawing the image
	Action
	Result
	Action
	Result

	7.5 Recap

	chapter�8
	Dialog boxes
	8.1 Message boxes
	8.1.1 The MessageBox.Show method
	8.1.2 Creating an OK dialog
	Action
	Result

	8.1.3 Creating a YesNo dialog
	Action
	Result

	8.1.4 Creating A YesNoCancel dialog
	Action
	Result
	Action
	Result

	8.2 The Form.Close method
	8.2.1 The relationship between Close and Dispose
	8.2.2 Intercepting the Form.Close method
	Action
	Result

	8.3 Modal dialog boxes
	8.3.1 Adding captions to photos
	Action
	Result
	Action
	Result

	8.3.2 Preserving caption values
	Action
	Result
	Action
	Result

	8.3.3 Creating the CaptionDlg form
	Action
	Result
	Action
	Result

	8.3.4 Adding properties to the CaptionDlg form
	Action
	Result
	Action
	Result

	8.3.5 Displaying the dialog in the MainForm class
	Action
	Result
	Action
	Result
	Action
	Result

	8.4 Modeless dialogs
	8.4.1 Creating the PixelDlg form
	Action
	Result

	8.4.2 Adding class members to PixelDlg
	Action
	Result
	Action
	Result

	8.4.3 Displaying the modeless PixelDlg form
	Action
	Result
	Action
	Result
	Action
	Result

	8.4.4 Updating the PixelDlg form
	Action
	Result

	8.4.5 Updating PixelDlg as the mouse moves
	Action
	Result

	8.5 Recap

	chapter�9
	Basic controls
	9.1 Form inheritance
	9.1.1 Creating a base form
	Action
	Result
	Action
	Result
	Action
	Result

	9.1.2 Creating a derived form
	Action
	Result

	9.2 Labels and text boxes
	9.2.1 Expanding the Photograph class
	Action
	Result
	Action
	Result
	Action
	Result

	9.2.2 Creating the PhotoEditDlg panel area
	Action
	Result

	9.2.3 Creating the multiline text box
	Action
	Result
	Action
	Result

	9.2.4 Adding PhotoEditDlg to our main form
	Action
	Result
	Action
	Result

	9.2.5 Using TextBox controls
	Action
	Result
	Action
	Result

	9.3 Button classes
	9.3.1 Expanding the PhotoAlbum class
	Action
	Result
	Action
	Result
	Action
	Result

	9.3.2 Using the new album settings
	Action
	Result
	Action
	Result

	9.3.3 Creating the AlbumEditDlg panel area
	Action
	Result

	9.3.4 Using radio buttons
	Action
	Result

	9.3.5 Using check box buttons
	Action
	Result

	9.3.6 Adding AlbumEditDlg to our main form
	Action
	Result
	Action
	Result

	9.4 Recap

	chapter�10
	List controls
	10.1 List boxes
	10.1.1 Creating a list box
	Action
	Result
	Action
	Result
	Action
	Result

	10.1.2 Handling selected items
	Action
	Result

	10.2 Multiselection list boxes
	10.2.1 Enabling multiple selection
	Action
	Result

	10.2.2 Handling the Move Up and Move Down buttons
	Action
	Result
	Action
	Result

	10.2.3 Handling the Remove button
	Action
	Result

	10.3 Combo boxes
	10.3.1 Creating a combo box
	Action
	Result

	10.3.2 Handling the selected item
	Action
	Result

	10.4 Combo box edits
	10.4.1 Replacing the photographer control
	Action
	Result

	10.4.2 Updating the combo box dynamically
	Action
	Result
	Action
	Result

	10.5 Owner-drawn lists
	10.5.1 Adding a context menu
	Action
	Result

	10.5.2 Setting the item height
	Action
	Result

	10.5.3 Drawing the list items
	Action
	Result
	Action
	Result

	10.6 Recap

	chapter�11
	More controls
	11.1 Tab controls
	11.1.1 The TabControl class
	11.1.2 Creating a tab control
	Action
	Result
	Action
	Result

	11.2 Tab pages
	11.2.1 Creating tab pages dynamically
	Action
	Result

	11.2.2 Creating tab pages in Visual Studio
	Action
	Result

	11.3 Dates and Times
	11.3.1 Dates and times
	Action
	Result

	11.3.2 Customizing a DateTimePicker control
	Action
	Result

	11.4 Calendars
	11.4.1 Adding a MonthCalendar control
	Action
	Result

	11.4.2 Initializing a calendar
	Action
	Result

	11.4.3 Handling mouse clicks in a calendar control
	Action
	Result
	Action
	Result

	11.5 Recap

	chapter�12
	A .NET assortment
	12.1 Keyboard events
	12.1.1 Handling the KeyPress event
	Action
	Result

	12.1.2 Handling other keyboard events
	Action
	Result

	12.2 Mouse events
	12.2.1 The MouseEventArgs class
	12.2.2 Handling mouse events
	Action
	Result
	Action
	Result
	Action
	Result

	12.3 Image buttons
	12.3.1 Implementing Next and Prev buttons
	Action
	Result
	Action
	Result
	Action
	Result
	Action
	Result
	Action
	Result
	Action
	Result

	12.3.2 Drawing bitmaps for our buttons
	Action
	Result
	Action
	Result

	12.3.3 Placing images on our buttons
	Action
	Result

	12.4 Icons
	12.4.1 Replacing the icon on a form
	Action
	Result
	Action
	Result

	12.4.2 Replacing the application icon
	Action
	Result

	12.5 Recap

	chapter�13
	Toolbars and tips
	13.1 Toolbars
	13.1.1 The ToolBar class
	13.1.2 Adding a toolbar
	Action
	Result

	13.1.3 The ToolBarButton class

	13.2 Image lists
	13.2.1 The ImageList class
	13.2.2 Creating an image list
	Action
	Result

	13.3 Toolbar buttons
	13.3.1 Adding a push button
	Action
	Result
	Action
	Result
	Action
	Result
	Action
	Result

	13.3.2 Adding a dropdown button
	Action
	Result

	13.3.3 Adding a toggle button
	Action
	Result
	Action
	Result

	13.4 Tool tips
	13.4.1 The ToolTip class
	13.4.2 Creating tool tips
	Action
	Result
	Action
	Result

	13.5 Recap
	Advanced Windows Forms

	chapter�14
	List views
	14.1 The nature of list views
	14.2 The ListView class
	14.2.1 Creating the MyAlbumExplorer project
	Action
	Result
	Action
	Result

	14.2.2 Creating a list view
	Action
	Result
	Action
	Result

	14.2.3 Populating a ListView
	Action
	Result
	Action

	14.3 ListView columns
	14.3.1 Creating the columns
	Action
	Result

	14.3.2 Populating the columns
	Action
	Result

	14.3.3 Sorting a column
	Action
	Result
	Action
	Result
	Action
	Result

	14.4 Selection and editing
	14.4.1 Supporting item selection
	Action
	Result

	14.4.2 Supporting label edits
	Action
	Result
	Action
	Result

	14.5 Item activation
	14.5.1 Handling item activation
	Action
	Result

	14.5.2 Defining new columns
	Action
	Result
	Action
	Result

	14.5.3 Populating the ListView
	Action
	Result

	14.5.4 Sorting a column (again)
	Action
	Result
	Action
	Result
	Action
	Result

	14.5.5 Updating the properties menu
	Action
	Result

	14.5.6 Updating label editing
	Action
	Result
	Action
	Result

	14.5.7 Redisplaying the albums
	Action
	Result

	14.6 Recap

	chapter�15
	Tree views
	15.1 Tree view basics
	15.2 The TreeView class
	15.2.1 Creating a tree view
	Action
	Result

	15.2.2 Using the Splitter class
	Action
	Result

	15.2.3 Using the TreeNode class
	Action
	Result

	15.3 Dynamic tree nodes
	15.3.1 Assigning index constants
	Action
	Result

	15.3.2 Creating the album nodes
	Action
	Result
	Action
	Result

	15.3.3 Creating the photograph nodes
	Action
	Result
	Action
	Result

	15.4 Node selection
	15.4.1 Supporting node selection
	Action
	Result
	Action
	Result

	15.4.2 Revisiting the list view
	Action
	Result
	Action
	Result
	Action
	Result

	15.5 Fun with tree views
	15.5.1 Displaying the photograph
	Action
	Result

	15.5.2 Supporting label edits
	Action
	Result

	15.5.3 Updating the properties menu
	Action
	Result

	15.6 Recap

	chapter�16
	Multiple document interfaces
	16.1 Interface styles
	16.1.1 Single document interfaces
	16.1.2 Explorer interfaces
	16.1.3 Multiple document interfaces
	16.1.4 Support in Windows Forms

	16.2 MDI forms
	16.2.1 Creating an MDI container form
	Action
	Result

	16.2.2 Creating an MDI child form
	Action
	Result

	16.2.3 Adding a new entry point
	Action
	Result

	16.3 Merged menus
	16.3.1 Assigning merge types
	Action
	Result

	16.3.2 Assigning merge order
	Action
	Result
	Action
	Result

	16.3.3 Opening a child form
	Action
	Result

	16.4 MDI children
	16.4.1 Replacing the toolbar
	Action
	Result
	Action
	Result
	Action
	Result

	16.4.2 Displaying pixel data
	Action
	Result
	Action
	Result
	Action
	Result
	Action
	Result

	16.4.3 Opening an album twice
	Action
	Result

	16.4.4 Updating the title bar
	Action
	Result

	16.4.5 Revisiting the activation events
	Action
	Result

	16.5 MDI child window management
	16.5.1 Arranging MDI forms
	Action
	Result

	16.5.2 Creating an MDI child list
	Action
	Result

	16.6 Recap

	chapter�17
	Data binding
	17.1 Data grids
	17.1.1 Creating the MyAlbumData project
	Action
	Result

	17.1.2 Displaying data in a data grid
	Action
	Result

	17.2 Data grid customization
	17.2.1 Customizing table styles
	Action
	Result

	17.2.2 Customizing column styles
	Action
	Result

	17.3 Editable objects
	17.3.1 The IEditableObject interface
	17.3.2 Supporting the IEditableObject interface
	Action
	Result
	Action
	Result

	17.3.3 Using editable objects
	Action
	Result

	17.4 Simple data binding
	17.4.1 Altering the MyAlbumData application
	Action
	Result

	17.4.2 Performing simple binding
	Action
	Result

	17.4.3 Updating data bound controls
	Action
	Result
	Action
	Result

	17.4.4 Displaying the image
	Action
	Result

	17.4.5 Saving changes to bound controls
	Action
	Result

	17.5 Recap

	chapter�18
	Odds and ends .NET
	18.1 Printing
	18.1.1 Using the print classes
	Action
	Result
	Action
	Result

	18.1.2 Drawing a print page
	Action
	Result
	Action
	Result

	18.2 Timers
	18.2.1 Creating a slide show form
	Action
	Result

	18.2.2 Implementing the slide show behavior
	Action
	Result

	18.3 Drag and drop
	18.3.1 Initiating drag and drop
	Action
	Result

	18.3.2 Receiving drag and drop
	Action
	Result

	18.4 ActiveX controls
	18.4.1 Creating the About box
	Action
	Result
	Action
	Result

	18.4.2 Wrapping the web browser control
	Action
	Result

	18.4.3 Using the web browser control
	Action
	Result
	Action
	Result

	18.5 Recap

	appendix�A
	C# primer
	A.1 C# programs
	A.1.1 Assemblies
	A.1.2 Namespaces

	A.2 Types
	A.2.1 Classes
	A.2.2 Structures
	A.2.3 Interfaces
	A.2.4 Enumerations
	A.2.5 Delegates

	A.3 Language elements
	A.3.1 Built-in types
	A.3.2 Operators
	A.3.3 Keywords

	A.4 Special features
	A.4.1 Exceptions
	A.4.2 Arrays
	A.4.3 Main
	A.4.4 Boxing
	A.4.5 Documentation

	appendix�B
	.NET namespaces
	B.1 System.Collections
	B.2 System.ComponentModel
	B.3 System.Data
	B.4 System.Drawing
	B.5 System.Globalization
	B.6 System.IO
	B.7 System.Net
	B.8 System.Reflection
	B.9 System.Resources
	B.10 System.Security
	B.11 System.Threading
	B.12 System.Web
	B.13 System.Windows.Forms
	B.14 System.XML

	appendix�C
	Visual index
	C.1 Objects
	C.2 Marshal by reference objects
	C.3 Components
	C.4 Common dialogs
	C.5 Controls (part 1)
	C.6 Controls (part 2)
	C.7 Event data
	C.8 Enumerations

	appendix�D
	For more information
	bibliography
	���index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Bibliography
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Inside back cover

