1. semester IT

 Programming in C#

1. semester ETIT

 Programming in C#

C# og SQL

Get started on Visual Studio C#.

Name
:__

Class
: __________________

31.

3The use of this booklet - version 1.00.

3Get started on Visual Studio.

4Types in C# :

5Variables and constants

6Console programming.

6How to get data in and out in Console-applications

8Console mode programs with Visual Studio:

8Console-program 1 - Hello World.

8Console-program 2 - How to get a text in and out.

102.

10Console-program 3 - Make a simple table.

10Console-program 4 - Create all the tables from 1 to 10.

10A little bit more theory.

10Array

11Conditions

13Loop

14File handling

15Console-program 5 - Write and read from a file.

15Console-program 6 - Write 25 random numbers to a file.

15Console-program 7 - Read the 25 numbers from the file.

1.
The use of this booklet - version 1.00.

This booklet is your personal copy, get the idea of programming, make your first programs.
Take all the notes you want, use all the “back sides”, the “empty spaces” in this booklet for notes.

You will always know where the notes are.

The booklet is not a complete C# book, just enough to get started.

There is a lot of information and even complete books on the Internet, a lot of free material; there is enough to get you to a professional. My hope is that I can get you interested, and when that happens the way are open for a future where you never has to be unemployed.

As your teacher, I want you to ask every time there is something that you don’t understand.
Get started on Visual Studio.

What is Microsoft Visual Studio.
Micro Visual Studio is a very large packet of programming stuff. It is a complete program development system. There are many programming languages in Visual Studio, C# is only one of them, Visual Basic, C++, and Visual Java are some other. You are able to make programs for Console applications, Windows applications and even WEB applications.

We are only going to use C# in Console and Windows Applications.
First of all, Visual Studio has to be installed on your PC’s.

If you want to work on your own Laptop, you can download a trial version of Visual studio. This can be running for 12 month. The trial version has limitations, but it is nice to get started, in this class there will be no problems.

The trial version is named Microsoft Visual Studio Express.
Download it free from Microsoft.

We are going to connect to a SQL database, later on there will be a simple description on how to connect and a few commands to try.

Install your version of Visual Studio 2005.

After the installation we are going to make programs.
But what about a little bit of The Basic’s:

Types:
Variables, Constants:

Global, Locals:

How to declare a variable and a constant.

How to give a variable and a constant a value.
The working area of a variable or a constant.
Very short about Namespaces, Classes and Methods.

Types in C# :

C# type .Net type Size in Description

 bytes
bool Boolean 1 Contains either true or false

char Char 2 Contains any single Unicode

 character enclosed in single

 quotation mark such as 'c'

string String ? Contains text

Integral types
byte Byte 1 May contain integers from 0-255

sbyte SByte 1 Signed byte from -128 to 127

short Int16 2 Ranges from -32,768 to 32,767

ushort UInt16 2 Unsigned, ranges from 0 to 65,535

int Int32 4 Ranges from -2,147,483,648 to

(default) 2,147,483,647

uint UInt32 4 Unsigned, ranges from 0 to

 4,294,967,295

long Int64 8 Ranges from

 -9,223,372,036,854,775,808 to

 9,223,372,036,854,775,807

ulong UInt64 8 Unsigned, ranges from 0 to

 18,446,744,073,709,551,615

Floating point types
float Single 4 Ranges from ±1.5 × 10-45
 to ±3.4 × 1038 with 7 digits

 precision. Requires the

 suffix 'f' or 'F'

double Double 8 Ranges from ±5.0 × 10-324 to

(default) ±1.7 × 10308 with 15-16 digits

 precision

decimal Decimal 12 Ranges from 1.0 × 10-28 to

 7.9 × 1028 with 28-29 digits

 precision. Requires the

 suffix 'm' or 'M'

Variables and constants
The difference between a variable and a constant is:

A constant has the same value, and can not be changed by the program.
The value of a constant is set during the declaration, and can not be changed.

The value of a variable can be set either during declaration or in the program, and it can always be changed during the program.
Every variable and constant has to be declared before we can use it, so in the beginning of a program we declare the variable and constants vi want to use during the program.
Declaration of a variable
The variable can be declared without or with a value

int count;

int count = 12;

const int = 12;

Local or Global.

if we use the word local or global in front of a declaration we want to tell where this variable or constant is working, a local is only working in the method it is declared, the global is working in the hole class where it is declared.
Namespace, Classes and Methods.

A programming project can be compared to a namespace, a namespace can contain many classes, one class can contain many methods.

When we start a new project, the namespace is automatic created, the “main” class is automatic created as well, and even the “main” method. We are going to create classes and methods later on.
[image: image1.png]namespace

class

method

O

Console programming.

How to get data in and out in Console-applications
Methods to use in console programming.
Console.Clear();
erases the monitor
Console.Write();
writes to the monitor without new line
Console.WriteLine();
writes to the monitor and changes to new line
Console.Read();
reads a string from keyboard, does not go to next line.

ConsoleReadLine();
reads a string from keyboard, goes to next line.

Because all input is as a string, we have to convert to the variable type we want to use.
How to input to an integer:

string str = Console.ReadLine();

int a = Convert.ToInt16(str);

some samples.

int myInt;

double myDouble;

string myString;

myInt = 5;

//copying an int to a double causes no problems

myDouble = myInt;

Console.WriteLine("myDouble is {0}.", myDouble);

//copying a double to an int won't work!

myDouble = 3.5;

//myInt = myDouble; //this line causes an error

//Console.WriteLine(myInt);

//You can explicitly cast, but you might lose data

myInt = (int)myDouble;

Console.WriteLine("After casting, myInt = {0}.", myInt);

myString = myDouble.ToString();

Console.WriteLine("myDouble as a String: {0}", myString);

Console.Write("Please enter a number: ");

myString = Console.ReadLine();
Console.WriteLine("myString converted to double: {0}",

Convert.ToDouble(myString));
int myInt;

string myString;
myInt = Convert.ToInt32("123");

myString = Convert.ToString(123);

myInt = Convert.ToInt32(myString);

myInt = Convert.ToInt32(Console.ReadLine());
some other conversions methods:
ToBoolean()
ToByte()
ToChar()
ToDecimal()
ToDouble()
ToInt16()
ToInt32()
ToInt64()
ToUInt16()
ToUInt32()
Console mode programs with Visual Studio:

Start Visual Studio.

First time we have to choose C# as default.
Click on File

Click on New

Click on Project

Name the project ”con_prog_01”

Leave the ”v” in create directory for solution.

Choose now Console Application

Now the system generates a default source code, namespace, include files, a standard class, and a main method are ready for use.
We are now ready to write our code into the source code.
Console-program 1 - Hello World.
In every programming book and tutorial there is a program called “Hello world” , now it is your turn.

Try to write a program where the monitor is showing “Hello world”.

You have already been introduced to some of the methods you can use.

Please remember that you have to make a new project every time you start a new program.

Console-program 2 - How to get a text in and out.
using System;

using System.Collections.Generic;

using System.Text;

namespace ConsoleApplication1

{

 class Program

 {

 static void Main(string[] args)

 {

 String tekst;

 String tmp;

 Console.WriteLine(" please write your name ");

 tekst = Console.ReadLine();

 Console.WriteLine(" Hello {0} velcome to Visual Studio ",tekst);

 }

 }

}

When we save the project, Visual studio saves everything in each directory, you are able to go back to this project anytime.

When we want to see if our program works, press Ctrl+F5

Some other programs that typically are made in console mode.

2.

Console-program 3 - Make a simple table.
Now you have to write a program that can create a mathematical table.

Ask for a number between 1 and 10.

Sample

You asked for the number and got a five, so the program creates the “5 table”, and the monitor will look like that.

 1 * 5 = 05

 2 * 5 = 10

 3 * 5 = 15

 4 * 5 = 20

 5 * 5 = 25

 6 * 5 = 30

 7 * 5 = 35

 8 * 5 = 40

 9 * 5 = 45

10 * 5 = 50

Console-program 4 - Create all the tables from 1 to 10.
When you know how to create a table at a time, you can also create all of them at the same time.

Try to let it look nice as well.
A little bit more theory.
Array

When you have more than variable of the same type, and you want to index them array is the solution.
Here we create a array of strings, at the same time we give the variables values.
string[] languages = {

"Java",

"Basic",

"Pascal",

"C#",

"Perl",

};

The variable languages[0] now contents the word ”Java”,
Languages[2] ”Pascal” and so on.

Here we create an array with 5 variables in one dimension, and later on we are going to give the variables values.
string[] numbers = new String[5];

numbers[0] = "zero";

numbers[1] = "one";

numbers[2] = "two";

numbers[3] = "three";

numbers[4] = "four";

Conditions
Condition Testing

The key to a computer’s decision-making capability is the condition. A condition is an expression

that can be evaluated as true or false. In C#, conditions are always surrounded by parentheses, and

they usually compare a value to a variable. In the Hi Bill program, the first condition looks like this:

(fullName =="Bill Gates")

The term fullName is the name of a variable. The two equal signs (==) check for equality. This

condition checks whether the variable fullName is equal to the value "Bill Gates". Table 2.2

illustrates the various kinds of operators that can be used inside conditional statements.

Operator

Meaning

Sample Condition

<

Is less than

(x < 5)

>

Is greater than
(x > 5)

==

Is equal to

(x == 5)

<=

Is less than or equal to
(x <= 5)

>=

Is greater than or equal to
(x >= 5)

!=

Is not equal to
(x != 5)

Please notice that the equality operator is two quote signs, not one. All the comparison operators

can be used with any numeric or string values. If you use greater than or less than operators on

string values, the computer compares the values in alphabetical order. In other words, ("Apple" <

"Zebra") evaluates to true because Apple falls earlier than Zebra in alphabetical order. In essence,

Apple is less than Zebra.

Trap When assigning a value to a variable, use one equal sign (=). When comparing a variable to

another variable or a value, use two equal signs (==). Many programmers forget this and use

a single equal sign when they should use two. C# does not compile but often gives you a

strange error, such as "cannot implicitly convert type 'string' to 'bool'." (Other languages, such

as C, do compile and subsequently cause problems with the program that are hard to track

down.) If your program is not working, make sure that you are using the comparison operator
(==) inside your conditions.

The If Statement

The most common place to use a conditional structure is inside an if statement. The if statement is

basic. Here’s the simplest if statement in the Hi Bill program:

if (fullName == "Bill Gates")

{

 Console.WriteLine("Nice job on C#, Bill.");

}

The code starts with the keyword if, followed by a condition. In this case, the condition checks

whether the fullName variable (entered by the user) is equal to the value "Bill Gates". After the

condition, you see a line of code (that writes out a message, in this case) between a pair of

braces({}). If the condition is true, all the statements inside the braces are executed. If the condition

is false, the computer skips all the instructions inside the braces and move on to the next instruction

after the right brace (}). You can have as many lines of code as you like between the braces.

The Else Clause

Sometimes you want the computer to do one thing if the condition is true and something else if the

condition is false. For example, in the Hi Bill program, you want the computer to say one thing if Bill

Gates is the user but something else if the user is not Bill.

In these circumstances, you can use a special addition to the if statement: the else clause. Take a

look at the following segment of the Hi Bill program to see how the else clause works:

if (fullName == "Bill Gates")

{

 Console.WriteLine("C# is pretty cool");

}

else

{

 Console.WriteLine("Sorry, I was looking for Bill");

}

You can see that the code starts out the same way as the simple if statement, but after the first right

brace (}), I added the else clause and another left brace ({). All the code between the condition and

the else statement will be executed if the condition is evaluated to true. The code between else and

the last right brace will execute if the condition is false.

Multiple Conditions

If you are making a more complex comparison, you can also check for multiple conditions. The

following code fragment checks for Bill Gates or James Gosling (the author of the Java

programming language):

if (fullName == "Bill Gates")

{

 Console.WriteLine("C# is pretty cool");

}
else

if (fullName == "James Gosling")
{

 Console.WriteLine("Java is pretty cool");

}
else
{

 Console.WriteLine("Nice to see you, {0}!", fullName);

}

After the keyword else, you can place another if statement to check for another condition. In this

type of structure, the program checks the first condition. If it’s true, the program executes the code

after that condition and proceeds to the next line after the end of the entire if structure. If the initial

condition is false, the program checks each succeeding condition. If none of the other conditions are

true, the program executes the code following the else clause. You can use as many else if

structures as you like, as long as you are careful to end each one with a right brace.

Loop
using System;

namespace BeanCounter

{

 /// Repeats a simple task a number of times

 /// Demonstrates the basic for loop

 class Counter

 {

 static void Main(string[] args)

 {

 int beanNumber;

 for (beanNumber = 1; beanNumber <= 10; beanNumber++)
 {

 Console.WriteLine("bean {0}", beanNumber);

 } // end for

 Console.WriteLine();

 Console.WriteLine("press enter key to quit");

 Console.ReadLine();

 } // end main

 } // end class

} // end namespace
File handling

A simple way to write to a file
using System;
using System.IO;

namespace csharp_station.howto
{
 class TextFileWriter
 {
 static void Main(string[] args)
 {
 // create a writer and open the file
 TextWriter tw = new StreamWriter("date.txt");

 // write a line of text to the file
 tw.WriteLine(DateTime.Now);

 // close the stream
 tw.Close();
 }
 }
}

How to read from the file
using System;
using System.IO;

namespace csharp_station.howto
{
 class TextFileReader
 {
 static void Main(string[] args)
 {
 // create reader & open file
 TextReader tr = new StreamReader("date.txt");

 // read a line of text
 Console.WriteLine(tr.ReadLine());

 // close the stream
 tr.Close();
 }
 }
}

Console-program 5 - Write and read from a file.
Ask for name and address.

Append to a file.

Read from the file, get all the name and addresses listet,

Console-program 6 - Write 25 random numbers to a file.
With the random generator create 25 random numbers between 1 and 255, place this 25 numbers in a array and integers.

Write now this 25 numbers to a file.

Console-program 7 - Read the 25 numbers from the file.

Read the 25 numbers from the file, place the numbers into an array and integers and display the numbers on the monitor.

JKPE april 2011 – version 3.01
PAGE
16
JKPE juli 2010

